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HYDRODYNAMIC LIMIT FOR AN ACTIVE EXCLUSION PROCESS

by

Clément Erignoux

Abstract. � Collective dynamics can be observed among many animal species, and have given rise in the
last decades to an active and interdisciplinary �eld of study. Such behaviors are often modeled by active
matter, in which each individual is self-driven and tends to update its velocity depending on the one of its
neighbors.

In a classical model introduced by Vicsek & al., as well as in numerous related active matter models, a
phase transition between chaotic behavior at high temperature and global order at low temperature can be
observed. Even though ample evidence of these phase transitions has been obtained for collective dynamics,
from a mathematical standpoint, such active systems are not fully understood yet. Signi�cant progress has
been achieved in the recent years under an assumption of mean-�eld interactions, however to this day, few
rigorous results have been obtained for models involving purely local interactions.

In this paper, we describe a lattice active particle system, in which particles interact locally to align their
velocities. We obtain rigorously, using the formalism developed for hydrodynamic limits of lattice gases, the
scaling limit of this out-of-equilibrium system, for which numerous technical and theoretical di�culties arise.

Résumé (Limite hydrodynamique pour un processus d'exclusion actif). � L'étude des dy-
namiques collectives, observables chez de nombreuses espèces animales, a motivé dans les dernières décennies
un champ de recherche actif et transdisciplinaire. De tels comportements sont souvent modélisés par de la
matière active, c'est-à-dire par des modèles dans lesquels chaque individu est caractérisé par une vitesse
propre qui tend à s'ajuster selon celle de ses voisins.

De nombreux modèles de matière active sont liés à un modèle fondateur proposé en 1995 par Vicsek &
al.. Ce dernier, ainsi que de nombreux modèles proches, présentent une transition de phase entre un com-
portement chaotique à haute température, et un comportement global et cohérent à faible température. De
nombreuses preuves numériques de telles transitions de phase ont été obtenues dans le cadre des dynamiques
collectives. D'un point de vue mathématique, toutefois, ces systèmes actifs sont encore mal compris. Plusieurs
résultats ont été obtenus récemment sous une approximation de champ moyen, mais il n'y a encore à ce
jour que peu d'études mathématiques de modèles actifs faisant intervenir des interactions purement micro-
scopiques.

Dans cet article, nous décrivons un système de particules actives sur réseau interagissant localement pour
aligner leurs vitesses. Nous obtenons rigoureusement, à l'aide du formalisme des limites hydrodynamiques
pour les gaz sur réseau, la limite macroscopique de ce système hors-équilibre, qui pose de nombreuses
di�cultés techniques et théoriques.
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1. Introduction

1.1. Collective motion among biological organisms. � Collective motion is a widespread phe-

nomenon in nature, and has motivated in the last decades a fruitful and interdisciplinary �eld of study
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[34]. Such behavior can be observed among many animal species, across many scales of the living spec-

trum, and in a broad range of environments. Animal swarming usually needs to balance out the bene�ts of

collective behavior (defense against predation, protection of the young ones, increased vigilance) against

the drawback of large groups (food hardships, predator multiplication, etc.).

Despite the numerous forms of interaction between individuals, all of these self-organization phe-

nomenons present spontaneous emergence of density �uctuations and long range correlations. This sim-

ilarity suggests some universality of collective dynamics models [25], [51]. Even though the biological

reasons for collective behavior are now well known, the underlying microscopic and macroscopic mecha-

nisms are not yet fully understood. To unveil these mechanisms, numerous aggregation models have been

put forward.

These models can be built on two distinct principles. The �rst approach speci�es the macroscopic

partial di�erential equation which rules the evolution of the local density of individuals. The main upside

is that one can use the numerous tools developed for solving PDE's. Several examples of such models

are presented in Okubo and Levin's book, [32]. Since it represents an average behavior, this approach to

collective dynamics is, however, mainly �tted to describe systems with large number of individuals, and

does not take into account the �uctuations to which smaller systems are subject.

The second approach, called Individual-Based Models (IBM), speci�es the motion of each individual

organism. If the motion of each individual was described realistically (from a biological standpoint), the

theoretical study of these models with large number of degrees of freedom would be extremely di�cult.

For this reason, it is usually preferred to simplify the rules for the motion of each individual, as well

as its interaction with the group. A classical simpli�cation is to consider that the interaction of each

individual with the group is averaged out over a large number of its neighbors. This so-called local �eld

simpli�cation often allows to obtain explicit results, at the expense however of their biological accuracy

(cf. below).

In this article, we link these two approaches to collective motion, by describing a microscopic dynamics

with local interactions for particles on a lattice, for which we derive the macroscopic partial di�erential

equation followed by the particle density.

1.2. Microscopic active matter models. � In order to represent the direction of the motion of each

individual, as well as spatial constraints (e.g. volume of each organism), collective dynamics are often

modeled by individual-based active matter models. Active matter is characterized by an energy dissipation

taking place at the level of each individual particle, which allows it to self-propel, thus yielding an extra

degree of freedom representing the direction of its motion. One can therefore obtain a phase transition

towards collective motion when these directions align on lengths large with respect to the size of the

particles. Active matter models exhibit various behaviors, and in the context of collective motion, two

phenomena are particularly important :

� when each particle tends to align the direction of its motion to that of its neighbors, one can

observe a phase transition between order and disorder depending on the strength of the alignment.

This alignment phase transition was �rst observed in an in�uential model for collective dynamics

introduced by Vicsek et al. [50]

� When the particle's velocity decreases with the local density, congestion e�ects appear : par-

ticles spend more time where their speed is lower, and therefore tend to accumulate there. This

phenomenon, called Motility-Induced Phase Separation (MIPS), was extensively studied in the

recent years [9], [21], [11].

Vicsek model and phase transition in alignment models. � Interest for self-organization phenomenons

have grown signi�cantly in statistical physics, where the diversity of such behaviors opens numerous

modeling perspectives, and raises new questions regarding out-of-equilibrium systems. Many stochastic

models have been introduced to represent speci�c biological behavior using statistical physics methods

and have revealed a phase transition between high density collective motion, and disordered behavior

with short range correlations at low densities.
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(a) (b)

Figure 1. Schematic representation of the phase transition in Vicsek's model.

(a) low density and high noise intensity,

(b) high density and low noise intensity.

A pioneering model was proposed in 1995 by Vicsek et al. They introduce in [50] a general IBM (cf.

previous paragraph) to model collective dynamics. In the latter, a large number of particles move in

discrete time, and update the direction of their motion to the average direction of the particles in a small

neighborhood. The direction of their motion is also submitted to a small noise, which makes the dynamics

stochastic.

Despite its relative simplicity, the original model described in [50] is extremely rich, and has given rise

to a considerable literature (cf. the review by Viczek and Zafeiris, [51]). The �rst article on this model

unveiled a phase transition between a high-noise, low-density disordered phase and a low-noise high-

density ordered phase. Initially thought to be critical, this transition was later shown to be discontinuous

[12], with an intermediate region in which an ordered band cruises in a disordered background. It was

recently shown that this transition can be understood as a liquid-gas phase separation in which the

coexistence phase is organized in a smectic arrangement of �nite-width bands travelling collectively [42].

Numerous extensions and variations on Vicsek's model have been put forward, usually by considering a

continuous time dynamics, more pertinent to represent biological organisms.

Phase transitions are central to the study of collective dynamics, where coherent behavior arise when

the alignment becomes strong enough. This notion of phase transition for alignment dynamics is remi-

niscent of the Ising and XY models, two classical statistical physics models. The Ising model is known

to have a symmetry breaking phase transition leading to the emergence of a spontaneous magnetization.

Unlike the Ising model, the XY model (for which the spins are two-dimensional unit vectors parametrized

by angles θ ∈ [0, 2π[) does not present in two dimensions this type of symmetry breaking phase transition,

according to the Mermin-Wagner Theorem. This is one of the reasons for the popularity of the Vicsek

model [50], whose alignment dynamics is reminiscent of the XY model, but unlike the latter presents a

phase transition of the magnetization due to the particle motility [47]. Both the Ising and XY models are

now well understood. These are equilibrium models and they fall within the formalism of Gibbs measures,

which relates to the thermodynamical parameters of the system.

Active matter models like Vicsek's are out of equilibrium, and in the case of Vicsek's model, the phase

transition is a dynamical phenomenon. The concepts developed for equilibrium models, namely Gibbs

measures and free energy, can therefore no longer be used, and despite ample numerical evidence of

spontaneous magnetization, (cf. [41]) mathematically proving a phase transition becomes signi�cantly

harder.

Despite these issues, several exact results have been obtained for systems closely related to Vicsek's

model. In 2007, Degond and Motsch notably introduced a continuous time version of Vicsek's model,
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and derived the macroscopic scaling limit of the system [18], as well as its microscopic corrections [19].

Their model, which was directly inspired by that of Vicsek et al., is a locally mean-�eld model, where

particles interact with all other particles present in a small macroscopic neighborhood. This approximation

simpli�es a number of di�culties of out-of-equilibrium systems. In their initial article [18], Degond and

Motsch assume that a law of large number holds for the microscopic system. This was later rigorously

proved in [4]. The phase transition as a function of the noise level, between disordered system and global

alignment, was shown in [16] for this model. Similar results have since been extended to more general

forms of alignment, (e.g. [3], [6], [17]) and to density dependent parameters [22]. The evolution of the

macroscopic density was also obtained in the particular case where the interaction between individuals is

driven by a Morse potential, [7], where previously the shape of animal aggregates (e.g. �sh schools mills)

was only known empirically.

The Active Ising Model (AIM) is another alignment model, phenomenologically close to Vicsek's model

[41], put forward to better understand collective dynamics. It is less demanding from a computational

standpoint, and is extensively studied both numerically and theoretically by Solon and Tailleur in [43].

This model does not rely on the mean-�eld approximation of the Vicsek's model. The particles (with either

�+� or �-� spins) move independently in a discrete space domain, performing an asymmetric random walk

with drift directed according to the particle's spin. In addition to the displacement dynamics, the particles

align their spins with the other particles on the same site as in a fully connected Ising model.

It was numerically shown in [43] that the AIM presents, as does Vicsek's, a phase transition depend-

ing both on the temperature and the particle density. At low temperature and density, one observes a

magnetically neutral gas, whereas at strong temperature and densities, one obtains a strongly polarized

liquid. In an intermediary domain, these two phases coexist. The AIM being an out-of-equilibrium model

as well, its mathematical study is di�cult, mainly because of the lack of mean-�eld approximation present

in Vicsek's model. To our knowledge, there exists to this day no mathematical proof of the phase transi-

tion of the AIM. The model considered in this paper is closely related to both the Vicsek and the active

Ising models.

Motility-Induced Phase Transition (MIPS). � As previously emphasized, a second interesting phe-

nomenon can occur in active matter : when the motility of the particles decreases as the local particle

density increases, one can observe a phase separation between a low density gaseous phase, and con-

densed clusters. This separation is a direct consequence of particles slowing down in dense areas : since

they spend more time there, they tend to accumulate. This creates the congestion phenomenon called

Motility Induced Phase Transition, or MIPS, which was thoroughly studied in recent years (cf. the review

by Cates and Tailleur, [11]).

This congestion phenomenon can be observed across several types of dynamics, under the condition

that the particle's velocities and di�usion constants depend on the local density. One of the most studied

is the run-and-tumble dynamics [8], which models the behavior of bacteria : each individual goes in a

straight line for a while, and then reorients in another random direction. However, MIPS is not speci�c to

run and tumble dynamics : it is shown numerically in [10], [40] that MIPS also occurs for active Brownian

particles, for which each particles motion's direction di�uses, instead of updating at discrete times like

in the run-and-tumble dynamics. MIPS can also be observed in lattice models [46], or in models with

repulsive forces [21], for which the kinetic slowdown is a consequence of repulsive forces.

Unlike the collective dynamic models inspired by Vicsek's, the model studied in this article (which will

from now on be referred to as Active Exclusion Process, or AEP) involves purely microscopic rather than

mean-�eld interactions. To illustrate the link of our model with MIPS, and as a prelude to the rest of the

introduction, let us brie�y describe a simpli�ed version of the AEP. On a two-dimensional periodic lattice,

consider two-typess of particles, denoted �+� and �−�, which move and update their type according to

their neighbors.

� Each particle's type is randomly updated by a Glauber dynamics depending on its nearest

neighbors.



6 C.ERIGNOUX

� The motion of any particle is a random walk, weakly biased in one direction depending on its

type : the �+� particles will tend to move to the right, whereas the �−� particles will tend to move

to the left.

� The vertical displacement is symmetric regardless of the particle's type.

To model hard-core interactions, an exclusion rule is imposed, i.e. two particles cannot be present on

the same site : a particle jump towards an occupied site will be canceled. This induces the congestion

e�ects which can lead to motility induced phase transition (MIPS), and one can therefore hope that this

model encompasses both the alignment phase transition characteristic of the Vicsek's and the Active

Ising models, as well as MIPS.

A �rst microscopic dynamics combining alignment and stirring was introduced in [13], where De Masi

et al. consider a lattice gas with two types of particles, in which two neighboring particles can swap their

positions, and can change type according to the neighboring particles. They derived the hydrodynamic

limit, as well as the �uctuations, when the stirring dynamics is accelerated by a di�usive scaling, w.r.t.

the alignment dynamics. This scale separation is crucial to have both alignment and stirring present in

the hydrodynamic limit.

In this article, we derive the hydrodynamic limit for an extension of the model brie�y described above.

Generally, the strategy to obtain the hydrodynamic limit for a lattice gas depends signi�cantly on the

microscopic features of the model, and must be adapted on a case by case basis to the considered dynamics.

For example, the exclusion rule in the AEP makes it non-gradient, thus the proof of its hydrodynamic

limit is signi�cantly more elaborate. The end of this introduction is dedicated to describing the di�culties

occurring in the derivation of the hydrodynamic limit of our model.

1.3. Hydrodynamics limits for non-gradients systems. � The Active exclusion process (AEP)

presented above belongs to a broad class of microscopic lattice dynamics for which the instantaneous

particle currents along any edge cannot be written as a discrete gradient. This di�culty appears naturally

in exclusion systems, in particular for systems with multiple particle types, or for generalized exclusion

processes where only a �xed number κ (κ ≥ 2) of particles can be present at the same site. Such systems

are called non-gradients. A considerable part of this article is dedicated to solving the di�culties posed

by the non-gradient nature the AEP.

The �rst proof for a non-gradient hydrodynamic limit was obtained by Varadhan in [48], and Quastel

[35] (cf. below). To illustrate the di�culty let us consider a general di�usive particle system of size N in

1 dimension, evolving according to a Markov generator LN . Such a di�usive system must be rescaled in

time by a factor N2, therefore each jump in LN should occur at rate N2. Denoting by ηx the state of the

system at the site x (e.g. number of particles, energy of the site), LNηx is a microscopic gradient,

LNηx = N2(jx−1,x − jx,x+1),

where jx,x+1 is the instantaneous current along the edge (x, x + 1), and the N2 comes from the time-

rescaling. This microscopic gradient balances out a �rst factor N , and acts as a spatial derivative on

a macroscopic level. In order to obtain a di�usive equation similar to the heat equation, one needs to

absorb the second factor N in a second spatial derivative. This is the main di�culty for non-gradient

systems, for which the instantaneous current jx,x+1 does not take the form of a microscopic gradient.

The purpose of the non-gradient method developed by Varadhan is to obtain a so-called microscopic

�uctuation-dissipation relation

jx,x+1 ' −D(ηx+1 − ηx) + LNgx,
where LNgx is a small �uctuation which usually disappears in the macroscopic limit according to Fick's

law for di�usive systems. Although the link to the macroscopic �uctuation-dissipation relation (cf. Section

8.8, p140-141 in [45] for more detail on this relation) is not apparent, the latter is indeed a consequence

of the microscopic identi�cation above, as emphasized in Remark 6.36.

1.4. Multi-type lattice gases, and contributions of this article. � Numerous statistical physics

articles focus on particle systems with several particle types, and the di�culties to obtain their hydrody-

namic limit vary signi�cantly depending on the speci�cities of each microscopic dynamics. Active matter
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provides natural examples of multi-type particle systems, since each possible velocity can be interpreted

as a di�erent type. When the particles evolve in a continuous space domains, (e.g. [15], [16]) and in

the absence of hard-core interactions, the density of each type of particles can essentially be considered

independently regarding displacement, and the scaling limit usually decouples the velocity variable and

the space variable.

In the case of lattice gases, however, it becomes necessary to specify the way particles interact when

they are on the same site. Dynamically speaking, the multi-type models often allow either

� swapping particles with di�erent types, as in [37] for a totally asymmetric system with velocity

�ips.

� The coexistence on a same site of particles with di�erent velocities, as in [14] or [39] for a model

closely related to the one investigated in this article with weak driving forces.

These simpli�cations allow to bypass the speci�c issues which arise for di�usive systems with complete

exclusion between particles, since the latter often require the non-gradient tools mentioned previously.

The �rst hydrodynamic limits for non-gradient microscopic systems were studied by Varadhan and

Quastel. They developed in [48] and [35] the general method to derive the hydrodynamic limit for

non-gradient systems with only requirement a sharp estimate for the Markov generator's spectral gap.

Quastel also notably obtained in [35] an explicit expression for the di�usion and conductivity matrices

for the multi-type exclusion process, as a function of the various particle densities and of the self-di�usion

coe�cient ds(ρ) of a tagged particle for the equilibrium symmetric simple exclusion process with density

ρ. This result was then partially extended to the weakly asymmetric case (in [36] as a step to obtain a

large deviation principle for the empirical measure of the symmetric simple exclusion process, and where

the asymmetry does not depend on the con�guration, and in [24] for a weak asymmetry with a mean-�eld

dependence in the con�guration), as well as a more elaborate dynamics with creation and annihilation of

particles [38].

The purpose of this article is to derive the hydrodynamic limit for an active matter lattice gas with

purely microscopic interactions. This article also provides a generalization, as well as a detailed proof of

the results derived by Quastel [35]. First, some of the speci�c arguments used by Quastel are only true

in the simple symmetric case. In particular, in the case of multi-type exclusion dynamics, it is crucial

to ensure that the particle density does not reach 1, because when this is the case, the system loses its

mixing properties. When the considered dynamics is a multi-type symmetric exclusion, the macroscopic

density for the total number of particles evolves according to the heat equation, and density control at any

given time is ensured by the maximum principle. In our case, the limiting equation is not di�usive, and

the density control is much harder to derive. Second, [35] was one of the �rst examples of hydrodynamic

limit for non-gradient systems, and to make the proof more accessible, we adapted it by using the more

recent formalism developed in [27], in which an important upside is the clear identi�cation of the orders

of the estimates in the scaling parameter N .

We also extend the proof of the hydrodynamic limit for the multi-type exclusion process [35] to the

weakly asymmetric case when the particle types depend on a continuous parameter. The hydrodynamic

limit for lattice gases with K particle types takes the form of K coupled partial di�erential equations.

Extending it to a continuum of particle types therefore poses the issue of the well-posedness of the system.

One way to avoid this di�culty is to consider the scaling limit of only a �nite number of macroscopic

parameters to partially characterize the system's local equilibrium (density, local energy [33], momentum

[20], local asymmetry) which reduces the description to a �nite number of coupled PDEs.

This is not the solution we chose for our model, because the equations for a �nite number of velocities

found a natural extension in the continuous velocity case. We thus kept the scaling limit of each parti-

cle type, by introducing an angular variable joint to the space variable. This induced several technical

di�culties. In particular, as opposed to the previous examples, local equilibrium is not characterized

by a �nite number of macroscopic parameters, which required signi�cant adaptation of the proof of the

hydrodynamic limit.
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1.5. Active Exclusion Process and main result. � The remainder of this Section is dedicated to

a short description of our model and its hydrodynamic limit. For simplicity, we �rst focus on the reduced

model with only two types of particles, and then introduce the full Active Exclusion Process treated in

this article. Precisely describing the complete model, and rigorously stating its hydrodynamic limit, will

be the purpose of Section 2.

Description of a simpli�ed process with two particle types. � For the clarity of notations, we describe

and study our model in dimension d = 2. The simpli�ed version of the model can be considered as an

Active Ising Model [43] with an exclusion rule : each site x of the periodic lattice T2
N of size N is either

� occupied by a particle of type �+� (η+
x = 1),

� occupied by a particle of type �−� (η−x = 1),

� empty if η+
x = η−x = 0.

Each site contains at most one particle, thus the pair (η+
x , η

−
x ) entirely determines the state of any

site x, and is either (1, 0), (0, 1) or (0, 0). The initial con�guration for our particle system is chosen

at local equilibrium and close to a smooth macroscopic pro�le ζ0 = ζ+
0 + ζ−0 : T2 → [0, 1], where

T2 is the continuous domain [0, 1]2 with periodic boundary conditions, and ζ+
0 (x) (resp. ζ−0 (x)) is the

initial probability that the site x contains a �+� particle (resp. �−�). We denote by η̂ the collection

((η+
x , η

−
x ))x∈T2

N
.

Each particle performs a random walk, which is symmetric in the direction i = 2, and weakly asym-

metric in the direction i = 1. The asymmetry is tuned via a positive parameter λ, thus a �+� (resp. �−�)
particle at site x jumps towards x+e1 at rate 1+λ/N (resp. 1−λ/N) and towards x−e1 at rate 1−λ/N
(resp. 1 + λ/N). If a particle tries to jumps to an occupied site, the jump is canceled. In order to obtain

a macroscopic contribution of this displacement dynamics, it must be accelerated by a factor N2.

Moreover, the type of the particle at site x is updated at random times, depending on its nearest

neighbors. Typically, to model collective motion, a �−� particle surrounded by �+� particles will change

type quickly, whereas a �−� particle surrounded by �−� particles will change type slowly, to model the

tendency of each individual to mimic the behavior of its neighbors. The microscopic details of this update

dynamics is not crucial to the hydrodynamic limit (in the scaling considered here), we therefore choose

general bounded �ip rates rates cx,β(η̂) parametrized by an inverse temperature β.

The complete dynamics can be split into three parts, namely the symmetric and asymmetric contri-

butions of the exclusion process, and the Glauber dynamics, evolving on di�erent time scales. For this

reason, each corresponding part in the Markov generator has a di�erent scaling in the parameter N : the

two-type process is driven by the generator

LN = N2

[
L+

1

N
LWA

]
+ LG,

whose three elements we now de�ne. Fix a function f of the con�guration, we denote by

ηx = η+
x + η−x ∈ {0, 1}

the total occupation state of the site x. The nearest-neighbor simple symmetric exclusion process generator

L is

Lf(η̂) =
∑
x∈T2

N

∑
| z |=1

ηx (1− ηx+z)
(
f(η̂x,x+z)− f(η̂)

)
,

LWA encompasses the weakly asymmetric part of the displacement process,

LWAf(η̂) =
∑
x∈T2

N

∑
i=1,2, δ=±1

δλ(η+
x − η−x ) (1− ηx+δei)

(
f(η̂x,x+δei)− f(η̂)

)
,

which is not a Markov generator because of its negative jump rates, but is well-de�ned once added to the

symmetric part of the exclusion process. Finally, LG is the generator which rules the local alignment of

the angles

LGf(η̂) =
∑
x∈T2

N

ηxcx,β(η̂) (f(η̂x)− f(η̂)) .
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In the identities above, η̂x,x+z is the con�guration where the states of x and x+ z have been swapped in

η̂, and η̂x is the con�guration where the type of the particle at site x has been changed.

Hydrodynamic limit. � Let us denote by ρ+
t (u) (resp. ρ−t (u)) the macroscopic density of �+� (resp.�−�)

particles, and by ρt(u) = ρ+
t (u) + ρ−t (u) the total density at any point u in T2. Let us also denote by

mt(u) = ρ+
t (u)− ρ−t (u) the local average asymmetry.

Then, as a special case of our main result (with minor adjustments) the pair (ρ+
t , ρ

−
t ) is solution, in a

weak sense, to the partial di�erential system

(1.1)

{
∂tρ

+
t = ∇.

[
d(ρ+

t , ρt)∇ρt + ds(ρt)∇ρ+
t

]
+ 2λ∂u1

[
ms(ρ+

t , ρt) + ds(ρt)ρ
+
t

]
+ Γt,

∂tρ
−
t = ∇.

[
d(ρ−t , ρt)∇ρt + ds(ρt)∇ρ−t

]
+ 2λ∂u1

[
ms(ρ−t , ρt)− ds(ρt)ρ−t

]
− Γt

with initial pro�le

(1.2) ρ±0 (u) = ζ̂±(u).

In the PDE (1.3), ∂u1
denotes the partial derivative in the �rst space variable, ds is the self-di�usion

coe�cient for the SSEP in dimension 2 mentioned in the introduction, the coe�cients d and s are given

by

d(ρ∗, ρ) =
ρ∗

ρ
(1− ds(ρ)) and s(ρ∗, ρ) =

ρ∗

ρ
(1− ρ− ds(ρ)),

and Γt is the local creation rate of particles with type �+�, which can be written as the expectation under

a product measure of the microscopic creation rate. Although it is not apparent, the coe�cients d, s, and

ds are solution to a Stokes-Einstein relation in a matrix form when the di�erential equation is written

for the vector (ρ+
t , ρ

−
t ).

As mentioned previously, this simpli�ed model is very close to the Active Ising Model [43] with a weak

driving force. The main di�erence is the exclusion rule : in the AIM, there is no limit to the number

of particles per site, and each particle's type is updated depending on the other particles present at the

same site. In our two-type model, the exclusion rule creates a strong constraint on the displacement and

therefore changes the form of the hydrodynamic limit, which is no longer the one derived in [43].

Description of the Active Exclusion Process (AEP). � We now describe the Active Exclusion Process,

which is a generalization of the model presented above. Since the AEP is thoroughly introduced in section

2, we brie�y describe it here, and only give a heuristic formulation for our main result. The type of any

particle is now a parameter θ ∈ [0, 2π[ which represents the angular direction of its weak driving force.

To compare with the simpli�ed model, the �+� particles correspond to the angle θ = 0, whereas the �−�
particles correspond to the angular direction θ = π.

Any site is now either occupied by a particle with angle θ (ηx = 1, θx = θ), or empty (ηx = 0,

θx = 0 by default). The initial con�guration η̂(0) of the system is chosen at local equilibrium, close to a

smooth macroscopic pro�le ζ̂ : T2 × [0, 2π[→ R+, where each site x is occupied by a particle with angle

θx ∈ [θ, θ + dθ[ with probability ζ̂(x/N, θ)dθ, and the site remains empty w.p. 1−
∫

[0,2π[
ζ̂(x/N, θ)dθ.

Our Active Exclusion Process is driven by the Markov generator

LN = N2

[
L+

1

N
LWA

]
+ LG,

with three parts described below. Fix a function f of the con�guration. The nearest-neighbor simple

symmetric exclusion process generator L is unchanged with respect to the two-type case, whereas LWA is

now given by

LWAf(η̂) =
∑
x∈T2

N

∑
i=1,2, δ=±1

δλi(θx)ηx (1− ηx+δei)
(
f(η̂x,x+δei)− f(η̂)

)
,

where the asymmetry in the direction i for a particle with angle θ is encoded by the functions λi(θ),

λ1(θ) = λ cos(θ) and λ2(θ) = λ sin(θ).
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To �x ideas, The Glauber generator will be taken of the form

LGf(η̂) =
∑
x∈T2

N

ηx

∫
S

cx,β(θ, η̂)
(
f(η̂x,θ)− f(η̂)

)
dθ,

where η̂x,θ is the con�guration where θx has been set to θ, and we choose alignment rates as for the

Glauber dynamics of the XY model. More precisely, we consider

cx,β(θ, η̂) =
exp

(
β
∑
y∼x ηy cos(θy − θ)

)
∫
S

exp
(
β
∑
y∼x ηy cos(θy − θ′)

)
dθ′

,

which tends to align θx with the θy's, where y is a neighbor site of x. In the jump rates above, we take the

value in [−π, π] of the angle θy − θ. The intensity λ and the inverse temperature β still tune the strength

of the drift and the alignment.

As mentioned before, we settle for now for a heuristic formulation of the hydrodynamic limit. Let us

denote by ρθt (u) the macroscopic density of particles with angle θ, and by ρt(u) =
∫
θ
ρθt (u)dθ the total

density at any point u in the periodic domain T2 := [0, 1]2. Let us also denote by
→
Ωt the local direction

of the averaged asymmetry
→
Ωt(u) =

∫
[0,2π[

ρθt (u)

(
cos(θ)

sin(θ)

)
dθ.

As expected from (1.1), the main result of this article is that ρθt is solution, in a weak sense, to the partial

di�erential equation

(1.3) ∂tρ
θ
t = ∇.

[
d(ρθt , ρt)∇ρt + ds(ρt)∇ρθt

]
+ 2∇.

[
s(ρθt , ρt)λ

→
Ωt + ds(ρt)ρ

θ
t

(
λ1(θ)

λ2(θ)

)]
+ Γt,

with initial pro�le

ρθ0(u) = ζ̂(u, θ).

In the PDE (1.3), ds is the self-di�usion coe�cient for the SSEP in dimension 2 mentioned previously, the

coe�cients d and s are the same as in the two-type case, and Γt is the local creation rate of particles with

angles θ, which can be written as the expectation under a product measure of the microscopic creation

rate.

Before properly stating the hydrodynamic limit, let us recall the major di�culties of the proof. The

main challenge is the non-gradient nature of the model : the instantaneous current of particles with angle

θ between two neighboring sites x and x+ ei can be written

jθx,x+ei = 1{θx=θ}ηx(1− ηx+ei)− 1{θx+ei=θ}ηx+ei(1− ηx),

which is not a discrete gradient. One also has to deal with the loss of ergodicity at high densities, and with

the asymmetry a�ecting the displacement of each particle, which drives the system out-of-equilibrium,

and complicates the non-gradient method. Finally, the non-linearity of the limiting equation also induces

several di�culties throughout the proof.

Model extensions. � Several design choices for the model have been made either to simplify the notations,

or to be coherent with the collective dynamics motivations. However, we present now some of the possible

changes for which our proof still holds with minimal adaptations.

� The model can easily be adapted to dimensions d ≥ 2. The dimension 1, however, exhibits very

di�erent behavior, since neighboring particles with opposite drifts have pathological behavior and

freeze the system.

� The nearest neighbor jumps dynamics can be replaced by one with symmetric transition function

p(·). This involves minor adjustments of the limiting equation, as solved by Quastel [35].

� The drift functions can be replaced by any bounded function, and can also involve a spatial

dependence, as soon as λi(u, θ) is a smooth function of the space variable u.

� We chose for our alignment dynamics a jump process, however analogous results would hold for

di�usive alignment. The jump rates can also be changed to any local and bounded rates.
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1.6. Structure of the article. � Section 2 is dedicated to the full description of the model, to

introducing the main notations, and the proper formulation of the hydrodynamic limit for the Active

Exclusion Process.

Section 3 is composed of three distinct parts. In 3.1 we characterize local equilibrium for our process

by introducing the set M1(S) of parameters for the grand canonical measures of our process. We also

give a topological setup for M1(S), for which some elementary properties are given in Appendix B. In

Section 3.2, we prove using classical tools that the entropy of the measure of our process with respect

to a reference product measure is of order N2. The last part 3.3 of this Section tackles the problem of

irreducibility, which is speci�c to our model and is one of its major di�culties. The main result there is

that on a microscopic scale, large local clusters are seldom completely full, which is necessary to ensure

irreducibility on a microscopic level.

Section 4 proves a law of large numbers for our process. The Replacement Lemma stated in Section 4.1

relies on the usual one block (Section 4.3) and two blocks (Section 4.4) estimates. However, even though

we use the classical strategy to prove both estimates, some technical adaptations are necessary to account

for the speci�cities of our model.

Section 5 acts as a preliminary to the non-gradient method. The two main results of this section are

the spectral gap of the symmetric generator on a speci�c class of functions (Section 5.2), whose proof's

strategy is due to Quastel [35], and the comparison of the AEP's measure to that of an equilibrium

process without drift nor alignment (Section 5.3). We also prove there, adapting the classical methods, a

compactness result for the sequence of measures of our process, (Section 5.4) as well as an energy estimate

(Section 5.5) necessary for the non-gradient method.

The non-gradient estimates are obtained in Section 6. It is composed of a large number of intermediate

results which we do not describe here. The use of the non-gradient method to the AEP, however, requires

to overcome several issues speci�c to our model. One speci�c di�culty is solved in Section 6.3, where we

estimate the contributions of microscopic full clusters. In Sections 6.8 and 6.9, we prove that for our well

chosen di�usion and conductivity coe�cients, the total displacement currents can be replaced by the sum

of a gradient quantity and the drift term. For the sake of clarity, we use to do so the modern formalism

for hydrodynamic limits as presented in [27] rather than the one used in [35].

All these results come together in Section 7, where we conclude the proof of the hydrodynamic limit

for our process. Some more speci�c work is necessary in order to perform the second integration by parts,

due to the delicate shape of the di�usive part of our limiting di�erential equation.

2. Notations and Main theorem

We describe an interacting particle system, where a particle follows an exclusion dynamics with a weak

bias depending on an angle associated to this particle. At the same time, each particle updates its angle

according to the angles of the neighboring particle. We study the macroscopic behavior of the corresponding

2-dimensional system with a periodic boundary condition.

2.1. Main notations and introduction of the Markov generator. � A con�guration of the system

is made of two parts. The �rst one is the set of occupied sites, and the second the preferred direction of

the particles. More precisely, on the two dimensional discrete set

T2
N = {1, . . . , N}2

with periodic boundary conditions, we de�ne the occupation con�guration η = (ηx)x∈T2
N
∈ {0, 1}T2

N which

determines the occupied sites of the domain. We allow at most one particle per site, and ηx represents

whether the site x ∈ T2
N is occupied (ηx = 1) or empty (ηx = 0). For any occupied site x ∈ T2

N , we also

introduce θx ∈ [0, 2π[ the angle of the particle at x, which represents the mean direction of its velocity in

the plane. We will denote by

S = [0, 2π[,

the periodic set of possible angles. When the site x is unoccupied, the angle of the site is set to θx = 0

by default.
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De�nition 2.1 (Con�gurations, cylinder & angle-blind functions)

For any site x ∈ T2
N , we denote by η̂x the pair (ηx, θx), and by η̂ = (η̂x)x∈T2

N
the complete con�guration.

The set of all con�gurations will be denoted by

ΣN =
{

(ηx, θx)x∈T2
N
∈ ({0, 1} × S)

T2
N | θx = 0 if ηx = 0

}
.

We will call cylinder function any function f depending on a �nite set of vertices Bf ⊂ T2
N , and C

1

w.r.t. each θx, for any x ∈ Bf . The set of cylinder functions on the torus will be denoted C. Note that a
cylinder function is always bounded.

We will call angle-blind function any function depending on η̂ only through the occupation variables

η = (ηx)x∈T2
N
. In other words, an angle-blind function depends on the position of particles, but not on

their angles. We denote by S ⊂ C the set of cylinder angle-blind functions.

We will use on the discrete torus the notations | . | for the norm |x | =
∑
i |xi |.

Let T be a �xed time, we now introduce the process (η̂(t))t∈[0,T ] on ΣN which is central to our work.

Our goal is to combine the two dynamics present in Viscek's model [50] : The �rst part of the process is

the displacement dynamic, which rules the motion of each particle. The moves occur at rates biased by

the angle of the particle, and follows the exclusion rule. Thus, for δ = ±1 the rate px(δei, η̂) at which the

particle at site x moves to an empty site x+ δei, letting e1 = (1, 0), e2 = (0, 1) be the canonical basis in

Z2, is given by

px(δei, η̂) =

{
1 + λδ cos(θx)/N if i = 1

1 + λδ sin(θx)/N if i = 2
,

where λ ∈ R is a positive parameter which characterizes the strength of the asymmetry. For convenience,

we will denote throughout the proof

(2.1) λ1(θ) = λ cos(θ) and λ2(θ) = λ sin(θ).

The previous rates indicate that the motion of each particle is biased in a direction given by its angle.

The motion follows an exclusion rule, which means that if the target site is already occupied, the jump is

canceled. Note that in order to see the symmetric and asymmetric contributions in the di�usive scaling

limit, we must indeed choose an asymmetry scaling as 1/N . Furthermore, in order for the system to

exhibit a macroscopic behavior in the limit N → ∞, we need to accelerate the whole exclusion process

by N2, as discussed further later on.

The second part of the dynamic is the spin update process, which will be from now on referred to as the

Glauber part of the dynamic. A wide variety of choices is available among discontinuous angle dynamics

(jump process) and continuous angle dynamics (di�usion). We choose here a Glauber jump process with

inverse temperature β ≥ 0 described more precisely below.

The generator of the complete Markov process is given by

(2.2) LN = N2LD + LG,

where

(2.3) LD = L+
1

N
LWA

is the generator for the displacement process (which two parts are de�ned below) and LG is the generator

of the Glauber dynamics. The process can therefore be decomposed into three distinct parts, with di�erent

scalings inN , namely the symmetric part of the motion, with generatorN2L, the asymmetric contribution
to the displacement generator NLWA with parameter λ ≥ 0, and �nally the spin-alignment with generator

LG and inverse temperature β ≥ 0, which are de�ned for any function f : ΣN → R, by

(2.4) Lf(η̂) =
∑
x∈T2

N

∑
| z |=1

ηx (1− ηx+z)
(
f(η̂x,x+z)− f(η̂)

)
,

LWAf(η̂) =
∑
x∈T2

N

∑
i=1,2, δ=±1

δλi(θx)ηx (1− ηx+δei)
(
f(η̂x,x+δei)− f(η̂)

)
,
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(2.5) LGf(η̂) =
∑
x∈T2

N

ηx

∫
S

cx,β(θ, η̂)
(
f(η̂x,θ)− f(η̂)

)
dθ.

Note that LWA alone is not a Markov generator due to the negative jump rates, but considering the

complete displacement generator L + N−1LWA solves this issue. In the expressions above, we denoted

η̂x,x+z the con�guration where the occupation variables η̂x and η̂x+z at sites x and x + z have been

exchanged in η̂

η̂x,x+z
y =


η̂x+z if y = x,

η̂x if y = x+ z,

η̂y otherwise,

and η̂x,θ the con�guration where the angle θx in η̂ has been updated to θ

η̂x,θy =

{
(ηy, θ) if y = x,

η̂y otherwise.

We choose for cx,β the jump rates

cx,β(θ, η̂) =
exp

(
β
∑
y∼x ηy cos(θy − θ)

)
∫
S

exp
(
β
∑
y∼x ηy cos(θy − θ′)

)
dθ′

,

which tend to align the angle in x with the neighboring particles according to XY-like jump rates with

inverse temperature β. Note that by construction, for any non-negative β,
∫
θ
cx,β(θ, η̂)dθ = 1 and that

the jump rates cx,β(θ, η̂) can be uniformly bounded from above and below by two positive constants

depending only on β.

The process de�ned above will be referred to as Active Exclusion Process, shortened as AEP.

2.2. Measures associated to a smooth pro�le and de�nition of the Markov process. � We

now introduce the important measures and macroscopic quantities appearing in the expression of the

hydrodynamic limit. Let us denote by T2 the periodic domain in dimension 2,

T2 = [0, 1]2.

De�nition 2.2 (Density pro�le on T2). � We call density pro�le on the torus any function

ρ̂ : (u, dθ) 7→ ρ̂(u, dθ)

such that

� for any u ∈ T2, ρ̂(u, .) is a positive measure on S.

� For any u ∈ T2, the total mass ρ(u) of ρ̂(u, .) is in [0,1].

For any density pro�le ρ̂ on the torus, ρ̂(u, dθ) represents the local density in u of particles with angle in

dθ, and ρ represents the total density of particles in u.

De�nition 2.3 (Measure associated to a density pro�le on the torus)

To any density pro�le on the torus ρ̂, we associate µNρ̂ , the product measure on ΣN such that the law

of η̂x is given for any x ∈ T2
N by

(2.6)


µNρ̂ (ηx = 0) = 1− ρ(x/N),

µNρ̂ (ηx = 1) = ρ(x/N),

µNρ̂ (θx ∈ dθ | ηx = 1) = ρ̂(x/N, dθ)/ρ(x/N),

and such that η̂x, η̂y are independent as soon as x 6= y.

In other words, under µNρ̂ an occupied site in x ∈ T2
N has probability ρ(x/N) =

∫
[0;2π[

ρ̂(x/N, θ)dθ,

the angle of an empty site is 0, and the angle of an occupied site x is distributed according to ρ̂(x/N, ·).
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De�nition of the process. � Let Σ
[0,T ]
N := D([0, T ],ΣN ) denote the space of right-continuous and left-

limited (càdlàg) trajectories η̂ : t → η̂(t). We will denote by η̂[0,T ] the elements of Σ
[0,T ]
N . For any initial

measure ν on T2
N , any non-negative drift λ ≥ 0, and any β ≥ 0, we write Pλ,βν for the measure on Σ

[0,T ]
N

starting from the measure η̂(0) ∼ ν, and driven by the Markov generator LN = LN (λ, β) described

earlier. We denote by Eλ,βν the expectation w.r.t. Pλ,βν . In the case λ = β = 0, there is no drift and the

angle of the particles are chosen uniformly in S. In this case, we will omit λ and β in the previous notation

and write Pν for the measure and Eν for the corresponding expectation. Let us now de�ne the initial

measure from which we start our process. Let ζ̂ ∈ C(T2 × S) be a continuous function on T2 × S, which

will de�ne the initial macroscopic state of our particle system. We assume that for any u ∈ T2,

(2.7) 0 < ζ(u) :=

∫
S

ζ̂(u, θ)dθ < 1,

i.e. that the initial density is less than one initially everywhere on T2, as well as for any θ ∈ S,

(2.8) ζ̂(u, θ) > 0.

We can now de�ne the initial density pro�le on the torus ρ̂0 by

(2.9) ρ̂0(u, dθ) = ζ̂(u, θ)dθ.

We start our process from a random con�guration

(2.10) η̂(0) ∼ µN := µNρ̂0

�tting the pro�le ρ̂0, according to De�nition 2.3. Given this initial con�guration, we de�ne the Markov

process η̂[0,T ] ∈ Σ
[0,T ]
N ∼ Pλ,β

µN
driven by the generator LN introduced in (2.2), starting from µN .

Topological setup. � Let us denote by M(T2 × S) the space of positive measures on the continuous

con�guration space, and

(2.11) M[0,T ] = D
(
[0, T ]×M(T2 × S)

)
the space of right-continuous and left-limited trajectories of measures on T2 × S. Each trajectory η̂[0,T ]

of the process admits a natural image inM[0,T ] through its empirical measure

πNt

(
η̂[0,T ]

)
=

1

N2

∑
x∈T2

N

ηx(t)δ(x/N,θx(t)).

We endowM[0,T ] with Skorohod's metric de�ned in Appendix A.1, and the set P(M[0,T ]) of probability

measures on M[0,T ] with the weak topology. We now de�ne QN ∈ P(M[0,T ]) the law of the empirical

measure πNt
(
η̂[0,T ]

)
of our process η̂[0,T ] ∼ Pλ,β

µN
.

2.3. Hydrodynamic limit. �

Self-di�usion coe�cient. � The hydrodynamic limit for our system involves the di�usion coe�cient of a

tagged particle for symmetric simple exclusion process (SSEP) in dimension 2. Let us brie�y remind here

its de�nition. On Z2, consider a in�nite equilibrium SSEP with density ρ and a tagged particle placed

at time 0 at the origin. e keep track of the position X(t) = (X1(t), X2(t)) ∈ Z2 of the tracer particle at

time t and denote by Q∗ρ the measure of the process starting with measure µρ on Z2 \ {0} and a particle

at the origin.

De�nition 2.4 (Self-Di�usion coe�cient). � The self-di�usion coe�cient ds(ρ) is de�ned as the

limiting variance of the tagged particle

ds(ρ) := lim
t→∞

EQ∗ρ(X1(t)2)

t
.
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From a mathematical standpoint, this result is a consequence of [28]. A variational formula for ds has

been obtained later by Spohn [44]. The regularity of the self-di�usion coe�cient was �rst investigated in

[49], where Varadhan shows that the self-di�usion matrix is Lipschitz-continuous in any dimension d ≥ 3.

Landim, Olla and Varadhan since then proved in [30] that the self-di�usion coe�cient is in fact of class

C∞ in any dimension. The matter of self-di�usion being treated in full detail in Section 6, p199-240 of

[29], we do not develop it further here. We summarize in appendix A.2 some useful results on the matter.

Di�usion, conductivity and alignment coe�cients. � Given a density pro�le on the torus ρ̂(u, dθ), recall

from De�nition 2.2 that ρ(u) =
∫
S
ρ̂(u, dθ) is the local density. We introduce the coe�cients

(2.12) d(ρ̂, ρ)(u, dθ) =
ρ̂(u, dθ)

ρ(u)
(1− ds(ρ(u))), s(ρ̂, ρ)(u, dθ) = (1− ρ(u)− ds(ρ(u)))

ρ̂(u, dθ)

ρ(u)
,

where ds is the self-di�usion coe�cient described in the previous paragraph. We also de�ne
→
Ω(ρ̂), the

vector representing the mean direction of the asymmetry under ρ̂,

→
Ω(ρ̂)(u) =

∫
S

ρ̂(u, dθ′)

(
cos(θ′)

sin(θ′)

)
.

as well as Γ(ρ̂) the local creation rate of particles with angle θ

Γ(ρ̂)(u, dθ) = ρ̂(u, dθ)
[
Eρ̂(u,·)(cx,β(θ, η̂))− 1

]
,

where under Eρ̂(u,·), each site is occupied independently w.p. ρ(u), and the angle of each particle is

chosen according to the probability law ρ̂(u, ·)/ρ(u). The exact de�nition of Eρ̂(u,·) is given just below in

De�nition 3.4.

Weak solutions of the PDE. � In order to state the hydrodynamic limit of our system, we need to

describe the notion of weak solutions in our case, which is quite delicate because of the angles.

De�nition 2.5 (Weak solution of the di�erential equation). � Any trajectory of measures

(πt)t∈[0,T ] ∈M[0,T ] will be called a weak solution of the partial di�erential equation

(2.13)

∂tρ̂t = ∇. [d(ρ̂t, ρt)∇ρt + ds(ρt)∇ρ̂t] + 2λ∇.
[
s(ρ̂t, ρt)

→
Ωt + ρ̂tds(ρt)

(
cos(θ)

sin(θ)

)]
+ Γ(ρ̂t) and ρ̂0 = ζ̂,

if the following four conditions are satis�ed :

i) π0(du, dθ) = ζ̂(u, θ)dudθ

ii) for any �xed time t ∈ [0, T ], the measure πt is absolutely continuous in space w.r.t. the Lebesgue

measure on T2, i.e. there exists a density pro�le on the torus (in the sense of De�nition 2.2) ρ̂t, such

that

πt(du, dθ) = ρ̂t(u, dθ)du.

iii) Letting ρt(u) =
∫
S
ρ̂t(u, dθ), ρ is in H1([0, T ] × T2), i.e. there exists a family of functions ∂uiρt

in L2([0, T ]× T2) such that for any smooth function G ∈ C0,1([0, T ]× T2),∫
[0,T ]×T2

ρt(u)∂uiGt(u)dtdu = −
∫

[0,T ]×T2

Gt(u)∂uiρt(u)dtdu

iv) For any function H ∈ C1,2,1([0, T ]× T2 × S),

< πT , HT > − < π0, H0 >=

∫ T

0

< πt, ∂tHt > dt

−
∫ T

0

∫
T2×S

[
2∑
i=1

(
∂uiHt(u, θ)

[
d(ρ̂t, ρt)− d′s(ρt)ρ̂t

]
(u, dθ)∂uiρt(u)− ∂2

uiHt(u, θ)ds(ρt)ρ̂t(u, dθ)

+ ∂uiHt(u, θ)

[
2λs(ρ̂t, ρt)

→
Ω(ρ̂t) + 2λi(θ)ds(ρt)ρ̂t

]
(u, dθ)

)
−Ht(u, θ)Γ(ρ̂t)(u, dθ)

]
dudt,

where the various coe�cients are those de�ned just before, and the functions λi are de�ned in (2.1).
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Note that in this De�nition, the only quantity required to be in H1 is the total density ρ : indeed, the

term ds(ρt)∇ρ̂t is rewritten as

ds(ρt)∇ρ̂t = ∇(ds(ρt)ρ̂t)− d′s(ρt)ρ̂t∇ρt,

and the �rst term in the right-hand side above allows another derivative to be applied to the test function

H, whereas the second term only involves the derivative of ρ as wanted.

We are now ready to state our main theorem :

Theorem 2.6. � The sequence (QN )N∈N de�ned at the end of Section 3.1 is weakly relatively compact,

and any of its limit points Q∗ is concentrated on trajectories (πt)t∈[0,T ] which are weak solution of equation

(2.13) in the sense of De�nition 2.5.

Remark 2.7 (Uniqueness of the weak solutions of equation (2.13))

One of the reasons for our weak formulation of the scaling limit of the Active Exclusion Process is the

lack of proof for the uniqueness of weak solutions of equation (2.13). Several features of equation (2.13)

make the uniqueness di�cult to obtain : First, our di�erential equation does not really take the form of

an autonomous di�erential equation : the variation of ρ̂t(u, θ) involves the total density ρ, therefore the

di�erential equation is in fact a di�erential system operating on the vector (ρ̂t(u, θ), ρt(u)). Cross-di�usive

systems can exhibit pathological behavior when the di�usion matrix has negative eigenvalues, but in our

case, both eigenvalues are non-negative and this issue does not appear.

However, although cross-di�usive systems are quite well understood (cf. for example [1]), our equation

involves a drift term which factors in via the vector
→
Ω(ρ̂t) the whole pro�le (ρ̂t(u, θ))θ∈[0,2π]. One of

the consequences of this drift term, which is the main obstacle to prove uniqueness, is that even the

uniqueness of the total density ρt(u) is not well established. Indeed, contrary to [35], in which the total

density evolves according to the heat equation, the total density in our case is driven by the Burgers-like

equation

∂tρt(u) = ∆ρt(u) +∇.(mt(u)(1− ρt(u)))

where m is a quantity which depends on the whole pro�le (ρ̂t(u, θ))θ∈[0,2π], and for which uniqueness is

hard to obtain.

2.4. Instantaneous currents. � In order to get a grasp on the delicate points of the proof, and to

introduce the particle currents on which rely the proof of Theorem 2.6, we need a few more notations.

Throughout the proof, for any function ϕ : ΣN → R and x ∈ T2
N , we will denote by τxϕ : ΣN → R

the function which associates to a con�guration η̂ the value ϕ(τ−xη̂), where τ−xη̂ is the translation of the

con�guration η̂ by a vector −x.
For any function

H : [0, T ]× T2 × S → R
(t, u, θ) 7→ Ht(u, θ)

,

and any measure π on T2 × S, let us denote

< π,Ht >=

∫
T2×S

Ht(u, θ)dπ(u, θ)

the integral of H with respect to the measure π. We consider the martingale MH,N
t

(2.14) MH,N
t =< πNt , Ht > − < πN0 , H0 > −

∫ T

0

(∂s + LN ) < πNs , Hs > ds,

where πNs is the empirical measure of the process

πNs =
1

N2

∑
x∈T2

N

ηx(s)δ(x/N,θx(s)).

It is well known that the quadratic variation of this martingale can be explicitly computed, and is of

order O(N−2) (cf. Appendix 1.5 of [27]) and therefore vanishes as N goes to in�nity. The martingale
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thus vanishes uniformly in time, in probability under Pλ,β
µN

. Now let us recall that

LN = N2
(
L+N−1LWA

)
+ LG,

and that τx represents the translation of a function by x. Assume that the function H takes the form

(2.15) Hs(x, θ) = Gs(x)ω(θ),

where G and ω are respectively functions on [0, T [×T2 and S. From now on, for any function Φ : S→ R,
any con�guration η̂ and any x ∈ T2

N we will shorten

ηΦ
x = Φ(θx)ηx.

With these notations, we can write the generator part of the integral term of (2.14) as

(2.16)

∫ T

0

LN < πNs , Hs > ds =
1

N2

∫ T

0

∑
x∈T2

N

Gs(x/N)
(
N2[Lηωx (s) +N−1LWAηωx (s)

)
+ LGηωx (s)]ds.

Let us introduce accordingly the three instantaneous currents in our active exclusion process (AEP).

De�nition 2.8. � Given a site x ∈ T2
N , each part of the generator LN 's action over ηωx can be written

(2.17) Lηωx =

2∑
i=1

(τx−eij
ω
i − τxjωi ) with jωi (η̂) = ηω0 (1− ηei)− ηωei (1− η0) ,

(2.18) LWAηωx =

2∑
i=1

(τx−eir
ω
i − τxrωi ) with rωi (η̂) = ηωλi0 (1− ηe1) + ηωλiei (1− η0),

and

(2.19) LGηωx = τxγ
ω with γω(η̂) =

∫
S

c0,β(θ, η̂)(ω(θ)− ω(θ0))dθ.

For ei ∈ {1, i} we will at times write jωx,x+ei = τxj
ω
i (resp. rωx,x+ei = τxr

ω
i ), which is interpreted as the

instantaneous current with intensity ω in the direction i along the edge (x, x+ei) of the symmetric (resp.

weakly asymmetric) part of the process. The last quantity τxγ
ω is the local alignment rate.

When considering the time process (η̂(t))t∈[0,T ] we will, for the sake of concision, write jωi (t) for

jωi (η̂(t)), and in the same fashion rωi (t) instead of rωi (η̂(t)), and γω(t) instead of γω(η̂(t)).

Finally, in the case where ω ≡ 1, we will denote by

ji := j1
i = η0 − ηei .

Performing a �rst integration by parts on the exclusion part of the right-hand side of (2.16), we obtain

thanks to equations (2.17), (2.18) and (2.19)

∫ T

0

LN < πNs , Hs > ds =
1

N2

∫ T

0

∑
x∈T2

N

τx

[
2∑
i=1

(
Njωi (s) + rωi (s)

)
∂ui,NGs(x/N) +Gs(x/N)γω(s)

]
ds,

(2.20)

where ∂ui,N is the discrete partial derivative

(∂ui,NG)(x/N) = N [G((x+ ei)/N)−G(x/N)] .

The spatial averaging is of great importance throughout the proof of the hydrodynamic limit, we need

some convenient notation to represent this operation. For any site x ∈ T2
N and any integer l, we denote

by

Bl(x) =
{
y ∈ T2

N , ||y − x||∞ ≤ l
}
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the box of side length 2l + 1 around x. In the case where x = 0 is the origin, we will simply write

Bl := Bl(0). For any �nite subset B ⊂ T2
N , we will denote |B | the number of sites in B. Given ϕ a

function on ΣN , we denote by

(2.21) 〈ϕ〉lx =
1

|Bl(x) |
∑

y∈Bl(x)

τyϕ

the average of the function ϕ over Bl(x). In the case where ϕ(η̂) = ηω0 , (resp. ϕ(η̂) = η0), we will write

τxρ
ω
l = 〈ϕ〉lx (resp. τxρl) for the empirical average of ηω (resp. η) over the box centered in x of side length

2l + 1.

We will also denote for any integer l by ρ̂l the empirical angle measure de�ned by

(2.22) ρ̂l =
1

|Bl |
∑
x∈Bl

ηxδθx ∈M1(S),

whereM1(S) is the set of non-negative measures on S with total mass in [0, 1] (cf. De�nition 3.1 below).

Finally, to simplify notations throughout the proof, we will write εN instead of the integer part bεNc.

3. Canonical measures, entropy and irreducibility

3.1. De�nition of the canonical measures. � Due to the presence of angles, the canonical product

measures for the AEP are not parameterized by the local density α ∈ [0, 1] like the SSEP, but rather by

a measure α̂ on [0, 2π] whose total mass
∫
S
α̂(dθ) is the local density.

De�nition 3.1 (Angle pro�le). � Recall that T2 is the 2-dimensional continuous torus (R/Z)2, and

letM(S) be the set of non-negative measures on S. We will call angle measure any measure α̂ ∈ M(S)

with total mass α :=
∫
S
α̂(dθ) ≤ 1. We denote by

(3.1) M1(S) = { α̂ ∈M(S), α ∈ [0, 1] } ,

the set of angle measures.

We now de�ne a topological setup on M1(S). Let us consider on C1(S), the set of di�erentiable

functions, the norm ||g||∗ = max(||g||∞ , ||g′||∞), and let B∗ be the unit ball in (C1(S), ||.||∗).

De�nition 3.2. � We endow M(S), the vector space of �nite mass signed measures on S, with the

norm

||| α̂ ||| = sup
g∈B∗

{∫
g(θ)dα̂(θ)

}
,

and with the corresponding distance

d(α̂, α̂′) := sup
g∈B∗

{∫
S

g(θ)dα̂(θ)−
∫
S

g(θ)dα̂′(θ)

}
.

We then endow M1(S) with the topology induced by ||| . |||. This distance is in fact a generalization of

the Wasserstein distance to measures which are not probability measures.

Remark 3.3. � This topology is the simplest to verify that

� for any cylinder function ψ, the application α̂ 7→ Eα̂(ψ) is Lipschitz-continuous (cf. Proposition

B.2).

� any continuous pro�le α̂ is the limit of combinations of Dirac measures.

� if θk → θ, then ||| δθk − δθ ||| → 0.

It is therefore the natural choice for our problem. For example, the last condition would not be veri�ed

by the weak topology on S, since for any θ 6= θ′, one can �nd a continuous function g such that g(θ) = 0

and g(θ′) = 1.

We now introduce the canonical measures of our process, which are translation-invariant particular

cases of measures associated to a density pro�le, introduced in De�nition 2.3.
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De�nition 3.4 (Grand canonical measures). � Consider a translation invariant density pro�le on

the torus ρ̂, i.e. such that for any u ∈ T2,

ρ̂(u, dθ) = α̂(dθ)

for some angle measure α̂ ∈ M1(S) independent of u. We will write µα̂ for the product measure µNρ̂ ,

and Eα̂ will denote the corresponding expectation. This class of measures will be referred to as grand

canonical measures. Furthermore, for any α ∈ [0, 1], the measure µα̂ associated with the uniform density

pro�le on the torus

ρ̂(u, dθ) ≡ αdθ/2π,

where the angle of each particle is chosen uniformly in S, will be denoted by µ∗α, and the corresponding

expectation will be denoted by E∗α.

Note that these measures are dependent on N , but due to their translation invariant nature, we will

omit this dependence in our notation.

Remark 3.5. � For any density α ∈ [0, 1], the measure µ∗α on ΣN is not invariant for our dynamic,

because although it is invariant for the symmetric part of the exclusion, the weakly asymmetric part (as

well as the Glauber part as soon as β 6= 0) breaks this property. We will however prove in Section 3.2 that

due to the scaling in N , the stationary measure of our dynamics is locally close to a product measure µ∗α.

De�nition 3.6 (Canonical measures). � Consider l ∈ N∗ and let K be an integer bounded up by

(2l + 1)2 and ΘK = {θ1, . . . , θK} an orderless family of angles, we shorten by K̂ the pair (K,ΘK). We

will denote by Kl the set of all possible K̂,

Kl = {K̂ = (K,ΘK), K ≤ (2l + 1)2}.

Since our process is not irreducible when there is only one or less empty site (Cf Section 3.3 below), we

also introduce

(3.2) K̃l = {K̂ ∈ Kl, K ≤ (2l + 1)2 − 2},

the set of K̂ for which the exclusion process on Bl is irreducible. Furthermore, for any �xed K̂ ∈ Kl, we
denote by

(3.3) ΣK̂l =

{
η̂ ∈ ΣN ,

∑
x∈Bl

ηxδθx =
K∑
k=1

δθk

}
,

the set of con�gurations with K particles of angles ΘK in Bl.

Let µ∗α,l denote the measure µ
∗
α on Bl, for any density α ∈]0, 1[, we will denote by µl,K̂ the conditioning

of µ∗α,l to ΣK̂l , and by El,K̂ the corresponding expectation

El,K̂(g) = E∗α,l
(
g
∣∣∣ η̂ ∈ ΣK̂l

)
.

These measures will be referred to as canonical measures of the process.

De�nition 3.7. � Fix l ∈ N, we associate to any K̂ ∈ Kl the angle measure

α̂K̂,l =
1

(2l + 1)2

K∑
k=1

δθk .

When there is no ambiguity, we will drop the dependence in l and simply write α̂K̂ = α̂K̂,l.

Several results regarding the metric space (M1(S), ||| . |||) are stated in Appendix B : The equivalence

of ensembles is brie�y proved in Section B.1, the Lipschitz-continuity of the expectation w.r.t. µα̂ in the

parameter α̂ is proven in Section B.2, and �nally, the compactness of the set (M1(S), ||| . |||) is proved in

Section B.3.
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3.2. Entropy production and local equilibrium. � The proof of the replacement Lemma is based

on the control of the entropy production of the process. The di�culty here is that the invariant measures of

the process are not known, and the decay of the relative entropy w.r.t. these measures cannot be computed

directly. Thus we consider approximations of these measures, and for a �xed non-trivial density α ∈]0, 1[,

our goal is to get an estimate of the entropy of the process's time average with respect to the reference

measure µ∗α introduced in De�nition 3.4.

Let us �x α ∈]0, 1[, we are going to prove that regardless of the initial density pro�le, the entropy

of the AEP w.r.t the measure of a process started from µ∗α and following a symmetric simple exclusion

process can be controlled by CN2 for some constant C.

The choice of µ∗α among the µ∗α′ , α
′ ∈]0, 1[ is not important, since for any di�erent angle density

α′ ∈]0, 1[, the relative entropy between the two product measures µ∗α and µ∗α′ is of order N
2 as well.

For some cylinder function h ∈ C, and some edge a = (a1, a2), we denote by ∇a the gradient repre-

senting the transfer of a particle from site a1 to site a2 under the exclusion process

(3.4) ∇af(η̂) = ηa1 (1− ηa2) (f (η̂a1,a2)− f(η̂)) .

We will shorten this notation in the case where a = (0, ej) by writing ∇j := ∇(0,ej). Before turning

to the control of the entropy itself, we introduce an important quantity in the context of hydrodynamic

limits.

De�nition 3.8 (Dirichlet form of the symmetric dynamics). � Let h be a cylinder function, we

introduce the Dirichlet form of the process

(3.5) Dα̂(h) = −Eα̂(hLh),

where L is the symmetric exclusion generator de�ned in equation (2.4). It can be rewritten thanks to

the invariance of µα̂ w.r.t the symmetric exclusion process as

Dα̂(h) =
1

2
Eα̂

∑
x∈T2

N

∑
| z |=1

(∇x,x+zh)
2

 .

If there is no ambiguity, we will omit the dependence in α̂ of the Dirichlet form, and simply denote it by

D . The Dirichlet form is convex and non-negative. Furthermore, any function f in its kernel is such that

f(η̂) = f(η̂′) for any pair (η̂, η̂′) of con�gurations with the same number of particles K ≤ N2− 1 and the

same family of angles. We also introduce the Dirichlet form

(3.6) D(h) = D(
√
h),

which has the same properties as D .

We now investigate the entropy production of the AEP. Let PN,λ,βt be the semi-group of the AEP

associated to the complete generator LN introduced in equation (2.2), and µNt = µNPN,λ,βt the measure

of the con�guration at time t. Thanks to the two assumptions (2.7) and (2.8), µN is absolutely continuous

with respect to the product measure µ∗α. This, and the fact that the alignment rates cx,β are bounded

from above and below uniformly in θ, guarantee that for any time t, µNt is also absolutely continuous

w.r.t. µ∗α. We therefore denote by fNt = dµNt /µ
∗
α the density of the measure at time t w.r.t. the reference

measure µ∗α. We now prove the following estimate on the entropy of the function fNt .

Proposition 3.9 (Control on the entropy and the Dirichlet form of fNt )

For any density f w.r.t. µ∗α, we denote by H(f) = E∗α(f log f) the entropy of the density f . Then, for

any time t > 0, there exists a constant K0 = K0(t, λ, β, ζ̂) such that

H

(
1

t

∫ t

0

fNs ds

)
≤ K0N

2 and D

(
1

t

∫ t

0

fNs ds

)
≤ K0.
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Proof of Proposition 3.9. � The density fNt is solution to

(3.7)

{
∂tf

N
t = L∗Nf

N
t

fN0 = dµN/dµ∗α,

where L∗N is the adjoint of LN in L2(µ∗α). To clarify the proof, we divide it in a series of steps.

Expression of the entropy production of the system. � The relative entropy of µNt with respect to the

reference measure µ∗α is given by

H(µNt | µ∗α) = H(fNt ) = E∗α
(
fNt log fNt

)
,

which is non-negative due to the convexity on [0,+∞[ of x 7→ x log x. According to equation (3.7), its

time derivative is

(3.8) ∂tH(fNt ) = E∗α
(
log fNt L

∗
Nf

N
t

)
+ E∗α

(
L∗Nf

N
t

)
.

The second term on the right-hand side is equal to

E∗α
(
L∗Nf

N
t

)
= E∗α

(
fNt LN 1̃

)
= 0,

since all constant functions are in the kernel of LN . Equation (3.8) can be rewritten, since L∗N is the

adjoint of LN in L2(µ∗α), as

∂tH(fNt ) = E∗α
(
fNt LN log fNt

)
.

Now thanks to the elementary inequality

log b− log a ≤ 2√
a

(
√
b−
√
a),

we can control LN log fNt by
2√
fNt

LN

√
fNt ,

therefore, the de�nition of LN yields

∂tH(fNt ) ≤ −2N2D
(
fNt
)

+ 2NE∗α
(√

fNt LWA
√
fNt

)
+ 2E∗α

(√
fNt LG

√
fNt

)
,

where D is the Dirichlet form de�ned in De�nition 3.8.

Integrating between the times 0 and t, we get

(3.9) H(µNt | µ∗α) + 2N2

∫ t

0

D
(
fNs
)
≤ H(µN | µ∗α) + 2

∫ t

0

E∗α
(√

fNs (NLWA + LG)
√
fNs

)
ds

Since the Dirichlet form of the symmetric exclusion process is non-negative, we now focus on showing

that the part of the entropy due to the weakly asymmetric part and Glauber part do not grow too much

in N , in order to get an upper bound on the Dirichlet form D(f) and on the entropy H(µNt | µ∗α). From

here, control over the initial relative entropy should su�ce to ensure that the measure of the AEP remains

close to a product measure.

Bound on the entropy production of the asymmetric part of the dynamics. � by de�nition of the asym-

metric dynamic,

E∗α
(√

fNs LWA
√
fNs

)
= E∗α

 ∑
x,i,δ=±1

λi(θx)δηx(1− ηδei)
√
fNs (η̂)

(√
fNs (η̂x,x+δei)−

√
fNs (η̂)

) .

Despite the extra factor N , the jump rates of the weakly asymmetric dynamics are not very di�erent

from symmetric exclusion process jump rates, which allows us to estimate the quantity above in terms of

the Dirichlet form. More precisely, thanks to the elementary inequality

E(ϕψ) ≤ γE(ϕ2)/2 + E(ψ2)/2γ

which holds for any positive constant γ, we can write with

ϕ = ηx(1− ηδei)
(√

fNs (η̂x,x+δei)−
√
fNs (η̂)

)
,
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and

ψ = λ(θx)δ
√
fNs (η̂)

that

E∗α
(√

fNs LWA
√
fNs

)
≤

∑
x,i,δ=±1

[
E∗α
(
λ(θx)2fNs

)
2γ

+
γ

2
E∗α

(
ηx(1− ηδei)

(√
fNs (η̂x,x+δei)−

√
fNs (η̂)

)2
)]

.

In right-hand side above, letting Cλ = 4λ2 the �rst term can be bounded by CλN
2/2γ, since the number

of terms in the sum is 4N2, whereas the second sum of terms is γD(fNs ). We then let γ = N to obtain

the upper bound

(3.10) 2NE∗α
(√

fNs LWA
√
fNs

)
≤ CλN2 +N2D(fNs ).

Bound on the entropy production of the Glauber part of the dynamics. � thanks to the elementary

inequality ab ≤ (a2 + b2)/2, and since the jump rates cx,β are less than e8β/2π, and ηx by 1

E∗α
(√

fNs LG
√
fNs

)
=E∗α

√fNs ∑
x∈T2

N

ηx

∫
S

cx,β(θ, η̂)

(√
fNs (η̂x,θ)−

√
fNs (η̂)

)
dθ


≤e

8β

2π

∑
x∈T2

N

E∗α
(

1

2

∫
S

fNs (η̂x,θ)dθ +
3

2
fNs (η̂)

)
.

Since E∗α
(∫

S
fNs (η̂x,θ)dθ

)
= E∗α

(
fNs
)
, the expectation can be bounded from above by 2, and we can

therefore write, letting Cβ = 2e8β/π

(3.11) 2E∗α
(√

fNs LG
√
fNs

)
≤ CβN2.

Bound on the Dirichlet form and on the entropy production. � at this point, we obtain from (3.9), (3.10)

and (3.11)

H(µNt | µ∗α) +N2

∫ t

0

D
(
fNs
)
ds ≤ H(µN | µ∗α) + t(Cλ + Cβ)N2

By assumption (2.8), the initial density ζ̂ ∈ C(T2 × S) is positive and continuous, therefore there exists

two constants c and C such that

0 < c ≤ ζ̂ ≤ C.
Furthermore, by assumption (2.7), for any u ∈ T2

N , ζ(u) =
∫
S
ζ̂(u, θ)dθ ∈]0, 1[ and is continuous in u,

thus there exists c′ and C ′ such that for any u ∈ T2,

0 < c′ ≤ ζ(u) ≤ C ′ < 1.

These two conditions yield that for some constant K = K(ζ̂), for any N ∈ N, we can estimate the relative
entropy of the initial measure µN w.r.t. µ∗α by

(3.12) H(µN | µ∗α) ≤ KN2.

We can therefore write

(3.13) H(µNt | µ∗α) +

∫ t

0

N2

2
D
(
fNs
)
≤ K(t)N2.

where K(t) = K + t(Cλ + Cβ) is a positive constant. Since H(f) = E∗α(f log f) and D(f) are both non-

negative and convex, we can deduce from (3.13), that for some time-dependent constant K0 =
∫ t

0
K(s)ds,

we have

(3.14) H

(
1

t

∫ t

0

fNs

)
≤ K0N

2 and D

(
1

t

∫ t

0

fNs ds

)
≤ K0.

This upper bound proves proposition 3.9, and will be necessary in the next Section to apply the replace-

ment Lemma 4.1 to the AEP.
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Before taking on the problem of irreducibility, we give a result that will be needed several times

throughout the proof, and comes from the entropy inequality. Let us denote by LG,β=0 the modi�ed

Glauber generator with uniform update of the angle in S, (i.e. β = 0)

LG,β=0f(η̂) =
∑
x∈T2

N

ηx
1

2π

∫
S

(f(η̂x,θ)− f(η̂))dθ

and denote in a similar fashion

(3.15) Lβ=0
N = N2LD + LG,β=0,

which is the complete generator of the AEP with random update of the angles. Then, accordingly to our

previous notations, Pλ,0µ∗α is the measure on the trajectories started from µ∗α and driven by the generator

Lβ=0
N . We can now state the following result.

Proposition 3.10 (Comparison of Pλ,β
µN

and Pλ,0µ∗α ). � There exists a constant K0 = K0(T, β, ρ̂0) >

0 such that for any function X : Σ
[0,T ]
N → R and any A > 0,

Eλ,β
µN

[
X
(
η̂[0,T ]

)]
≤ 1

A

(
K0N

2 + logEλ,0µ∗α
[
exp

(
AX

(
η̂[0,T ]

))])
,

where η̂[0,T ] is the notation already introduced at the end of Section 3.1 for a trajectory (η̂(t))t∈[0,T ].

Proof of Proposition 3.10. � The proof of this Proposition is rather straightforward thanks to the en-

tropy inequality. In a �rst step, we compare the same process starting from µ∗α. First note that for any

function X : Σ
[0,T ]
N → R, we can write

Eλ,β
µN

[
X
(
η̂[0,T ]

)]
= Eλ,βµ∗α

(
dµN

dµ∗α
(η̂(0))X

(
η̂[0,T ]

))
.

This yields that

Eλ,β
µN

[
X
(
η̂[0,T ]

)]
≤ 1

A

(
H(µN | µ∗α) + logEλ,βµ∗α

[
exp

(
AX

(
η̂[0,T ]

))])
.(3.16)

In the entropy inequality above, Eλ,β
µN

is the expectation under the measure of the process started from

µN , whereas Eλ,βµ∗α is that of the process started from the stationary measure µ∗α.

By (3.12), the �rst term in the right-hand side above is less than KN2/A for some �xed constant

K = K(ζ̂). Furthermore, the Radon-Nikodym derivative of the process with alignment (β > 0) w.r.t the

one without alignment (β = 0) can be explicitly computed. Given a càdlàg trajectory η̂[0,T ] ∈ Σ
[0,T ]
N ,

consider τ1, . . . , τR the set of angle jumps between times 0 and T , let us denote by xi the site at which

the angle changed at time τi, and by θi = θxi(τi) the new angle at site xi. Then, the density between the

measures with and without alignment is given by

dPλ,βν
dPλ,0ν

(η̂[0,T ]) =

R∏
i=1

cxi,β(θi, η̂(τi))

cxi,0(θi, η̂(τi))
≤ e8βR,

where R is the number of angle updates between times 0 and T . To establish the estimate above, we

used that cx,β(θ, η̂) can be uniformly bounded from above by e8β/2π, that cx,0(θ, η̂) = 1/2π, and that

regardless of the con�guration and the inverse temperature β, each site updates its angle at rate 1(i.e.∫
θ
cx,β(θ, η̂) = 1). We can now estimate the second term in the right-hand side of equation (3.16) by

1

A
logEλ,0µ∗α

[
e8βR exp

(
AX

(
η̂[0,T ]

))]
.

Applying the Cauchy-Schwarz inequality yields that the quantity above is less than

1

2A

(
logEλ,0µ∗α

[
e16βR

]
+ logEλ,0µ∗α

[
exp

(
2AX

(
η̂[0,T ]

))])
.

Since the spin updates happen in each site at rate 1 except when the site is empty, we can de�ne on the

same probability space as our process a family Px of i.i.d. Poisson variable with mean T , and such that
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R ≤
∑
x∈T2

N
Px. thanks to the elementary inequality

logE
[
e

16β
∑
x∈T2

N
Px
]

= T (e16β − 1)N2,

we now only have to let

K0(T, β, ζ̂) = 2K(ζ̂) + T (e16β − 1)

and replace A by 2A to conclude the proof of Proposition 3.10.

3.3. Irreducibility and control on full clusters. � Unlike the exclusion process with one type of

particles, the multi-type exclusion process is not irreducible when the number of particles is too large,

namely when the domain has less than one empty sites. When all the sites are occupied for example, the

process is stuck in its current con�guration, up to realignment, due to the exclusion rule. At high density,

we therefore lose the mixing properties we need to reach local equilibrium. To illustrate this statement,

consider a square macroscopic domain of size εN , and on it a con�guration with the bottom half �lled

with particles with angle θ, and the top half �lled with particles with angle θ′ 6= θ, and letting a �nite

number of sites be empty, the mixing time of this setup is of order larger than N2 due to the rigidity of

the con�guration. In order to reach equilibrium, an empty site needs to "fetch� a particle and transport it

in the other cluster, and so on, until the density is homogeneous for both types of particles. The scaling

of our alignment dynamics, is, furthermore, not su�cient to ensure su�ciently frequent realignment of

the particles to solve this issue.

In order to prove the scaling limit of a multi-type exclusion process, it is therefore critical to bound

the particle density away from 1. This issue was solved in [35] by using the fact that the total density of

the multi-type SSEP (the spin blind model) follows the standard SSEP dynamics (with one specie). Thus

the total density could be controlled by the classical argument on the hydrodynamic limit for SSEP. In

our case, however, the total density does not follow the SSEP dynamics. In fact, it is not even a Markov

chain due to the asymmetric parts which depend on the angles. A di�erent argument is required to control

the evolution of the total density, which is the purpose of the subsection.

In the general setup where the number of types of particles in a domain B can reach |B | (which
will often be the case when particles take their angles in S), it is known that the exclusion process with

|B |−1 particles is no longer irreducible, as a consequence of a generalization of the n-puzzle (cf. Johnson

& Story, 1879, see [26]). We therefore need to consider only the local con�gurations with two empty sites,

on which the exclusion process is irreducible regardless of the number of types of particles, as stated in

the following Lemma.

Lemma 3.11 (Irreducibility of the displacement process with two empty sites)

Consider a square domain B = Bp(x), and two con�gurations η̂, η̂′ two con�gurations with the same

types and number of particles in B, i.e. such that∑
x∈B

ηxδθx =
∑
x∈B

η′xδθ′x .

Then, there exists a sequence of con�gurations η̂0, . . . , η̂n, such that η̂0 = η̂, η̂n = η̂′, and such that for

any k ∈ J0, n− 1K, η̂k+1 is reached from η̂k by one allowed particle jump, i.e.

η̂k+1 =
(
η̂k
)xk,xk+zk

, and ηkxk+zk
= 1− ηkxk = 0 and | zk | = 1.

Furthermore, there exists a constant C such that n ≤ Cp4.

Proof of Lemma 3.11. � The proof of this statement is quite elementary. Fix a con�guration η̂ ∈ ΣN on

a rectangular domain B with two empty sites, and let a = (a1, a2) be an edge in T2
N . We are �rst going

to prove that η̂a1,a2 can be reached from η̂ using allowed particles jumps. Notice that according to the

exclusion rule, we can consider that any empty site is allowed to move freely by exchanging their place

with any site next to it.

We �rst bring ourselves back to a con�guration described in Fig. 2, where the two closest empty sites

are brought next to the edge a. More precisely, we reach a con�guration where the two empty sites and
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Initial positions of the two empty sites

New position of the two empty sites

a2a1

Figure 2. Reaching η̂a1,a2 from η .

the two sites a1 and a2 are at the vertices of a side-1 square. From here, we are able to invert the two

particles in a1 and a2 by a circular motion of the four empty sites along the edges of the square, and then

bring back the empty sites along the paths that brought them next to a to their original location. Doing

so, one reaches exactly the con�guration η̂a1,a2 from η̂ with allowed particle jumps in B.

We deduce from this last statement that for any pair of con�gurations η̂, η̂′ with the same particles in

B, η̂′ can be reached from η̂ with jumps in B since the transition can be decomposed along switches of

nearest neighbor sites. The process is thus irreducible on the sets with �xed numbers K̂ of particles, as

soon as K is smaller than |B | − 2. Furthermore, this construction guarantees that any two neighboring

particles can be switched with a number of particle exchanges of order p where we denoted by p the size

of the box. Since one needs to invert p pairs of particles at most to move one particle to its �nal position

in η̂′, this proves the last statement.

We now prove that large microscopic boxes are rarely fully occupied under the dynamics. Let us denote

by Ep,x the event

(3.17) Ep,x =

 ∑
y∈Bp(x)

ηy ≤ |Bp(x) | − 2

 ,

on which the box of size p around x contains at least two empty sites. When the site x is the origin,

we will simply write Ep instead of Ep,0. In order to ensure that full clusters very rarely appear in the

dynamics, we need the following Lemma.

Proposition 3.12 (Control on full clusters). � For any positive time T ,

(3.18) lim
p→∞

lim
N→∞

Eλ,β
µN

∫ T

0

1

N2

∑
x∈T2

N

1Ecp,x
(t)dt

 = 0.

Remark 3.13 (Scheme of the proof). � We �rst sketch the proof in a continuous idealized setup to

explain the general ideas before giving the rigorous proof.

To prove that the box of microscopic side p is not full, setting p′ = (2p+ 1)2 the cardinal of Bp, it is

enough to prove thanks to the microscopic setting that∫∫
[0,T ]×T2

ρp
′

t (u)dudt →
p′→∞

0,

where ρt(u) denotes the macroscopic density in u at time t.
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We expect the total density ρ to follow the partial di�erential equation

(3.19) ∂tρ = ∆ρ+∇.(m(1− ρ)),

where m is a random quantity representing the local direction of the asymmetry. Should (3.19) be true,

we could therefore write, letting φ(ρ) = 1/(1− ρ)

∂t

∫
T2

φ(ρt)du =

∫
T2

φ′(ρt) [∆ρt +∇.(mt(1− ρt))] du

=

∫
T2

φ′′(ρt)
[
−(∇ρt)2 +mt(1− ρt)∇ρt

]
du

≤
∫
T2

φ′′(ρt)

[
−(∇ρt)2 +

(∇ρt)2

2
+ ||mt||2∞ (1− ρt)2

]
du(3.20)

≤
∫
T2

φ′′(ρt)||mt||2∞ (1− ρt)2du = 2 ||mt||2∞
∫
T2

φ(ρt)du

One could then apply Gronwall's Lemma to obtain that for any time t,∫
T2

φ(ρt)du ≤ e2||m||2∞t
∫
T2

φ(ρ0)du.

Furthermore, for any time t,∫
T2

φ(ρt)du ≥
1

δ

∫
T2

1{ρt≥1−δ} +

∫
T2

1{ρt≤1−δ} =
1− δ
δ

∫
T2

1{ρt≥1−δ} + 1,

therefore, for any time t,

(3.21)

∫
T2

1{ρt≥1−δ} ≤
δ

1− δ

[
e2||m||2∞t

∫
T2

φ(ρ0)du− 1

]
→
δ→0

0.

As a consequence, for any time t, we could therefore write

(3.22)

∫∫
[0,T ]×T2

ρp
′

t (u)dudt ≤ T (1− δ)p
′
+

∫∫
[0,T ]×T2

1{ρt≥1−δ}.

The �rst term in the right-hand side vanishes for any �xed δ as p′ →∞, whereas the second becomes as

small as needed letting δ → 0.

Since our macroscopic density does not verify equation (3.19), however, the operations above need to

be performed in a microscopic setup. The derivation of equation (3.21) is the purpose of Proposition 3.14.

Two intermediate Lemmas 3.15 and 3.16 prove the microscopic equivalent of equation (3.20).

Before giving the proof of Proposition 3.12, which is postponed to the end of the subsection, we give

�rst the following estimate.

Proposition 3.14 (High density estimate). � For any positive 0 < δ′ < 1/2, and any time t > 0,

we have the bound

(3.23) lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

 1

N2

∑
x∈T2

N

1{τxρεN (t)>1−2δ′}

 ≤ δ′C,
where C is a �nite constant depending continuously on t, and also depending on the asymmetry λ, and

the initial pro�le ζ̂.

Proof of Proposition 3.14. � For any small δ > 0, let us denote by φδ the application

φδ : [0, 1] −→ R+

ρ 7→ 1
1+δ−ρ

.

Note that all successive derivatives of order less than k of φδ are positive (and increasing) functions, and

all are bounded by 1/δk+1.

We now �x a C1 function H : T2 → R+, and assume that
∫
T2 H(u)du = 1. For any u ∈ T2, we denote

by Hu the function

Hu : v 7→ H(u− v).
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In order to simplify the notations, for any con�guration η̂ ∈ ΣN , and given its empirical measure πN , we

shorten

(3.24) ρN,Hx (η̂) :=< πN , Hx/N >=
1

N2

∑
y∈T2

N

H

(
x− y
N

)
ηy.

We now write

(3.25) ∂tEλ,βµN

 1

N2

∑
x∈T2

N

φδ
(
ρN,Hx (η̂)

) = Eλ,β
µN

 1

N2

∑
x∈T2

N

LNφδ
(
ρN,Hx (η̂)

) ,

where LN is the generator of the complete process LN = N2L+NLWA+LG. Our goal is to apply Gronwall's
Lemma to the expectation in the left-hand side, therefore we now need to estimate the right-hand side.

Since ρN,Hx does not depend on the angles of the particles, neither does φδ
(
ρN,Hx

)
, and the contribution

of the Glauber part LG of the generator LN in the right-hand side above vanishes. The two other parts

of the generator together yield the wanted bound, and are treated in separate lemmas for the sake of

clarity. As mentioned earlier, these two lemmas are the microscopic equivalent of equation (3.20).

Lemma 3.15. � [Contribution of the symmetric part] There exists a sequence (cN (δ,H))N∈N depending

only on δ and H, vanishing as N →∞, and such that for any con�guration η̂ ∈ ΣN

(3.26)
∑
x∈T2

N

Lφδ
(
ρN,Hx

)
(η̂) ≤ −

∑
x∈T2

N
i=1,2

φ′′δ

(
ρN,Hx+ei

)
+ φ′′δ

(
ρN,Hx

)
2

(
ρN,Hx+ei − ρ

N,H
x

)2

(η̂) + cN (δ,H).

Lemma 3.16. � [Contribution of the asymmetric part] There exists a sequence (c̃N (δ,H))N∈N depend-

ing only on δ and H, vanishing as N →∞, and such that for any con�guration η̂ ∈ ΣN

(3.27)
1

N

∑
x∈T2

N

LWAφδ
(
ρN,Hx

)
(η̂)

≤
∑
x∈T2

N

[
2∑
i=1

φ′′δ
(
ρN,Hx

)
+ φ′′δ

(
ρN,Hx

)
2

(
ρN,Hx+ei − ρ

N,H
x

)2

+
2λ2φδ

(
ρN,Hx

)
N2

]
(η̂) + c̃N (δ,H).

Proof of Lemma 3.15. � By de�nition of the symmetric part of the generator L,∑
x∈T2

N

Lφδ
(
ρN,Hx (η̂)

)
=

∑
x,y∈T2

N

2∑
i=1

1{ηyηy+ei=0}
[
φδ
(
ρN,Hx (η̂y,y+ei)

)
− φδ

(
ρN,Hx (η̂)

)]
.

We now develop the gradient of φδ to the second order, to obtain that the right-hand side above is equal

to ∑
x,y∈T2

N

2∑
i=1

1{ηyηy+ei=0}

[
φ′δ
(
ρN,Hx (η̂)

) (
ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)

)
+
φ′′δ
(
ρN,Hx (η̂)

)
2

(
ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)

)2
+ o

((
ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)

)2)]
.

Note that since the successive derivatives of order less than k of φδ are uniformly bounded on [0, 1] by

1/δk, the vanishing quantity o
((
ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)

)2)
can be bounded uniformly in η̂, x, y and i

(but not uniformly in δ). Since H is a smooth function,∣∣ ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)
∣∣ =

1

N2

∣∣∣∣ Hx/N

(
y + ei
N

)
−Hx/N

( y
N

) ∣∣∣∣
is of order N−3, the contributions of the second line above are therefore at most of order N−2 and vanish

in the limit N →∞. This yields

(3.28)
∑
x∈T2

N

Lφδ
(
ρN,Hx

)
=
∑
x∈T2

N

φ′δ
(
ρN,Hx (η̂)

) ∑
y∈T2

N

2∑
i=1

1{ηyηy+ei=0}
(
ρN,Hx (η̂y,y+z)− ρN,Hx (η̂)

)
+ oN (1),
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where oN (1) is less than a vanishing sequence (c1N )N∈N depending on δ and H only.

Since for any z ∈ T2, Hu(v + z) = Hu−z(v), the de�nition of ρN,Hx yields

1{ηyηy+ei=0}
(
ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)

)
=

1

N2
(ηy − ηy+ei)

(
Hx/N

(
y + ei
N

)
−Hx/N

( y
N

))
=

1

N2
ηy

(
Hx−ei/N

( y
N

)
−Hx/N

( y
N

))
− 1

N2
ηy+ei

(
Hx/N

(
y + ei
N

)
−Hx+ei/N

(
y + ei
N

))
.

Summing the quantity above over y, one obtains exactly ρN,Hx−ei + ρN,Hx+ei − 2ρN,Hx . This is the discrete

Laplacian in the variable x of ρN,Hx , and a discrete integration by parts allows us to rewrite the �rst term

on the right-hand side of equation (3.28) as

−
∑
x∈T2

N

2∑
i=1

(
φ′δ

(
ρN,Hx+ei

)
− φ′δ

(
ρN,Hx

))(
ρN,Hx+ei − ρ

N,H
x

)
.

We now write

(
φ′δ

(
ρN,Hx+ei

)
− φ′δ

(
ρN,Hx

))
=

(φ′′δ

(
ρN,Hx+ei

)
+ φ′′δ

(
ρN,Hx

)
)

2

(
ρN,Hx+ei − ρ

N,H
x

)
+ o

(
ρN,Hx+ei − ρ

N,H
x

)
,

in which ρN,Hx+ei − ρ
N,H
x is of order 1/N because H is a smooth function, to �nally obtain that

(3.29)
∑
x∈T2

N

Lφδ
(
ρN,Hx

)
= −

∑
x∈T2

N

2∑
i=1

φ′′δ

(
ρN,Hx+ei

)
+ φ′′δ

(
ρN,Hx

)
2

(
ρN,Hx+ei − ρ

N,H
x

)2

+ oN (1),

where once again, the oN can be bounded by a vanishing sequence (cN )N depending only on δ, which

completes the proof of Lemma 3.15

Proof of Lemma 3.16. � This proof follows the exact same steps as for the previous one. We �rst obtain

by de�nition of LWA and developing the discrete gradient of φ that

(3.30)
1

N

∑
x∈T2

N

LWAφδ
(
ρN,Hx

)
= oN (1) +

1

N

∑
x,y∈T2

N

2∑
i=1

(τyj
λi
i )φ′δ

(
ρN,Hx (η̂)

) (
ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)

)
,

where jλii is de�ned according to equation (2.17) as

jλii (η̂) = λi(θ0)η0(1− ηei)− λi(θei)ηei(1− η0),

and oN (1) is less than a vanishing sequence depending only on δ and H. Once again, similar steps as in

the previous case allow us to rewrite

(τyj
λi
i )
(
ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)

)
=

1

N2
[λi(θy)ηy(1− ηy+ei) + λi(θy+ei)ηy+ei(1− ηy)]

(
Hx/N

(
y + ei
N

)
−Hx/N

( y
N

))
=

1

N2
λi(θy)ηy(1− ηy+ei)

(
Hx/N

(
y + ei
N

)
−Hx/N

( y
N

))
+

+
1

N2
λi(θy+ei)ηy+ei(1− ηy)

(
Hx/N

(
y + ei
N

)
−Hx/N

( y
N

))
=

1

N2
λi(θy)ηy(1− ηy+ei)

(
Hx/N

(
y + ei
N

)
−Hx+ei/N

(
y + ei
N

))
+

+
1

N2
λi(θy+ei)ηy+ei(1− ηy)

(
Hx−ei/N

( y
N

)
−Hx/N

( y
N

))



HYDRODYNAMIC LIMIT FOR AN ACTIVE EXCLUSION PROCESS 29

Summing once again by parts in x, we obtain that the second term in the right-hand side of equation

(3.30) is

1

N

∑
x,y∈T2

N

2∑
i=1

(τyj
λi
i )φ′δ

(
ρN,Hx (η̂)

) (
ρN,Hx (η̂y,y+ei)− ρN,Hx (η̂)

)
=

1

N3

∑
x∈T2

N

2∑
i=1

[
φ′δ

(
ρN,Hx+ei(η̂)

)
− φ′δ

(
ρN,Hx (η̂)

)]
×

∑
y∈T2

N

[
λi(θy)ηy(1− ηy+ei)Hx+ei/N

(
y + ei
N

)
+ λi(θy+ei)ηy+ei(1− ηy)Hx/N

( y
N

)]
:= S1 + S2,(3.31)

where

S1 =
1

N3

∑
x∈T2

N

2∑
i=1

[
φ′δ

(
ρN,Hx+ei(η̂)

)
− φ′δ

(
ρN,Hx (η̂)

)] ∑
y∈T2

N

[
λi(θy)ηy(1− ηy+ei)Hx+ei/N

(
y + ei
N

)]
and

S2 =
1

N3

∑
x∈T2

N

2∑
i=1

[
φ′δ

(
ρN,Hx+ei(η̂)

)
− φ′δ

(
ρN,Hx (η̂)

)] ∑
y∈T2

N

[
λi(θy+ei)ηy+ei(1− ηy)Hx/N

( y
N

)]
.

These two terms are treated in the exact same fashion, we therefore only treat in full detail the case of

S1, S2 will follow straightforwardly. First, we develop the di�erence φ′δ

(
ρN,Hx+ei(η̂)

)
− φ′δ

(
ρN,Hx (η̂)

)
to the

�rst order,

φ′δ

(
ρN,Hx+ei

)
− φ′δ

(
ρN,Hx

)
= φ′′δ

(
ρN,Hx+ei

)(
ρN,Hx+ei − ρ

N,H
x

)
+ o

(
ρN,Hx+ei − ρ

N,H
x

)
.

Once again, H being a smooth function, ρN,Hx+ei − ρ
N,H
x is of order 1/N , therefore the o

(
ρN,Hx+ei − ρ

N,H
x

)
is

also a oN (1/N), and the corresponding contribution in S1 vanishes in the limit N → ∞. Recall that φ′′δ
is a positive function, we now apply in S1 the elementary inequality ab ≤ a2/2 + b2/2 to

a =
√
φ′′δ

(
ρN,Hx+ei

)(
ρN,Hx+ei − ρ

N,H
x

)
and

b =
1

N3

√
φ′′δ

(
ρN,Hx+ei

) ∑
y∈T2

N

[
λi(θy+ei)ηy+ei(1− ηy)Hx/N

( y
N

)]
.

This yields

|S1 | ≤ oN (1) +
∑
x∈T2

N
i=1,2

φ′′δ
(
ρN,Hx+ei

)
2

(
ρN,Hx+ei − ρ

N,H
x

)2

+
φ′′δ

(
ρN,Hx+ei

)
2N6

∑
y∈T2

N

λi(θy)ηy(1− ηy+ei)Hx+ei/N

(
y + ei
N

)2
 .

The function H being non-negative, for any y, we can write

λi(θy)ηy(1− ηy+ei)Hx+ei/N

(
y + ei
N

)
≤ λ(1− ηy+ei)Hx+ei/N

(
y + ei
N

)
.

Furthermore, since we assumed that
∫
T2 H = 1, and since H is smooth, we get that

1

N2

∑
y∈T2

N

Hx/N (y/N) = 1 + oN (1),
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which yields ∣∣∣∣∣∣ 1

N2

∑
y∈T2

N

λi(θy)ηy(1− ηy+ei)Hx+ei/N

(
y + ei
N

) ∣∣∣∣∣∣ ≤ λ(1− ρN,Hx+ei) + oN (1)

This, combined with the previous bound, yields that

|S1 | ≤ oN (1) +
∑
x∈T2

N
i=1,2

φ′′δ
(
ρN,Hx+ei

)
2

(
ρN,Hx+ei − ρ

N,H
x

)2

+
λ2φ′′δ

(
ρN,Hx+ei

)
2N2

(1− ρN,Hx+ei)
2

 .
A similar bound can be achieved for S2, this time developing the di�erence φ′δ

(
ρN,Hx+ei

)
− φ′δ

(
ρN,Hx

)
in

ρN,Hx instead of ρN,Hx+ei ,

|S2 | ≤ oN (1) +
∑
x∈T2

N
i=1,2

[
φ′′δ
(
ρN,Hx

)
2

(
ρN,Hx+ei − ρ

N,H
x

)2

+
λ2φ′′δ

(
ρN,Hx

)
2N2

(1− ρN,Hx )2

]
.

Combining these two bounds with identities (3.30) and (3.31), we obtain that

1

N

∑
x∈T2

N

LWAφδ
(
ρN,Hx

)
≤
∑
x∈T2

N
i=1,2

[
φ′′δ
(
ρN,Hx

)
+ φ′′δ

(
ρN,Hx

)
2

(
ρN,Hx+ei − ρ

N,H
x

)2

+
λ2φ′′δ

(
ρN,Hx

)
2N2

(1− ρN,Hx )2

]
+ oN (1),

where the oN (1) can be bounded by a vanishing sequence (c̃N )N depending only on H and δ. One easily

obtains that for any non-negative δ and any ρ ∈ [0, 1],

(1− ρ)2φ′′δ (ρ) ≤ 2φδ(ρ),

thus concluding the proof of Lemma 3.16.

We are now ready to apply Gronwall's Lemma and complete the proof of Proposition 3.14. For that

purpose, let us de�ne

Φ(t) = Eλ,β
µN

 1

N2

∑
x∈T2

N

φδ
(
ρN,Hx (t)

) .

according to the previous Lemmas 3.15, 3.16 and to equation (3.25), there exists a sequence kN = cN + c̃N
depending only on δ and H, verifying

kN →
N→∞

0,

and such that

∂tΦ(t) ≤ 2λ2Φ(t) + kN .

Since φδ is bounded from below by 1/1 + δ, Φ(t) also is, and therefore

∂tΦ(t) ≤ (2λ2 + kN (1 + δ))Φ(t).

Gronwall's Lemma therefore yields that for any non-negative t,

Eλ,β
µN

 1

N2

∑
x∈T2

N

φδ
(
ρN,Hx (t)

) ≤ Eλ,β
µN

 1

N2

∑
x∈T2

N

φδ
(
ρN,Hx (0)

) e(2λ2+kN (1+δ))t,

where this time the right-hand side depends on the trajectory only through its initial state η̂(0).

Fix a small δ′ > 0. ϕδ being a non-decreasing function bounded from below by 1/1 + δ, one can write

for any ρ ∈ [0, 1]

φδ(ρ) ≥ 1

δ + δ′
1{ρ>1−δ′} + 1{ρ≤1−δ′}

1

1 + δ
=

1− δ′

(1 + δ)(δ + δ′)
1{ρ>1−δ′} +

1

1 + δ
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We apply this decomposition to the left-hand side of the inequality above, to obtain that

(3.32) Eλ,β
µN

 1

N2

∑
x∈T2

N

1{ρN,Hx (t)>1−δ′}


≤ (1 + δ)(δ + δ′)

1− δ′

Eλ,β
µN

 1

N2

∑
x∈T2

N

φδ
(
ρN,Hx (0)

) e(2λ2+kN (1+δ))t − 1

 .
Coming back to the de�nition (3.24) of ρN,Hx , for any smooth non-negative function H with integral equal

to 1, taking the lim sup N →∞, we thus obtain from equation (3.32)

(3.33) lim sup
N→∞

Eλ,β
µN

 1

N2

∑
x∈T2

N

1{ρN,Hx (t)>1−δ′}


≤ lim sup

N→∞

(1 + δ)(δ + δ′)

1− δ′

Eλ,β
µN

 1

N2

∑
x∈T2

N

φδ
(
ρN,Hx (0)

) e2λ2t − 1

 .
Fix a small ε > 0, and let us denote for any u, v ∈ T2

Hε(v) =
1

(2ε)2
1[−ε,+ε]2(v) and Hε

u(v) =
1

(2ε)2
1[−ε,+ε]2(v − u).

Recalling that ρεN (t) is the empirical density in a box of size εN around the origin at time t, we can

then write

τxρεN (t) =
(2εN)2

(2εN + 1)2
ρN,H

ε

x = ρN,H
ε

x + oN (1).

At this point, we want to apply equation (3.33) to H = Hε, which is an indicator function, and thus

need to be smoothed out. For that purpose, consider a sequence (Hε
l )l∈N of functions such that

� ∀l ∈ N, ∀u ∈ T2, Hε
l (u) ≥ 0 and sup

T2

Hε
l = sup

T2

Hε = 1/(2ε)2 .

� ∀l ∈ N, Hε
l ∈ C1(T2) and

∫
T2 H

ε
l (u)du = 1.

� Hε
l (u) 6= Hε(u)⇒ ε− 1/l < ||u||∞ < ε+ 1/l.

The existence of such a sequence of functions is quite clear and is left to the reader. In particular, the

last condition imposes that

Il :=

∫
T2

1Hεl (u)6=Hε(u)du ≤
16ε

l
,

which is the area of the crown on which the two functions may di�er. The sequence Hε
l converges for any

�xed ε towards Hε in L1(T2). Furthermore, notice that for any x ∈ T2
N , since both the Hε

l 's and H
ε are

bounded by 1/(2ε)2,∣∣∣ ρN,Hεlx − ρN,H
ε

x

∣∣∣ ≤ 1

N2

∑
y∈T2

N

ηy

∣∣∣ Hε
l,x/N

( y
N

)
−Hε

x/N

( y
N

) ∣∣∣
≤
(

16ε

l
+ oN (1)

)
(||Hε

l ||∞ + ||Hε||∞) =
8

εl
+ oN (1),

where the last line represents the proportion of sites of the discrete torus in the crown around u = x/N

on which Hε
l,x/N and Hε

x/N can be di�erent. The last observation yields that for any x ∈ T2
N , we can

write ∣∣∣ τxρεN (t)− ρN,H
ε
l

x (t)
∣∣∣ ≤ 8

εl
+ oN (1),

where the oN (1) can be chosen independent of η̂ and x. Fix ε > 0 and consider N0 and l0 such that for

any N ≥ N0 and any l ≥ l0, ∣∣∣ τxρεN (t)− ρN,H
ε
l

x (t)
∣∣∣ ≤ δ′

2
.

For any such pair l, N , we therefore also have

1{τxρεN (t)>1−δ′/2} ≤ 1{
ρ
N,Hε

l
x (t)>1−δ′

}.
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For any l, by our assumptions, equation (3.33) holds for H = Hε
l for any positive δ and δ′. For any

l ≥ l0, we can therefore write

lim sup
N→∞

Eλ,β
µN

 1

N2

∑
x∈T2

N

1{τxρεN (t)>1−δ′/2}


≤ lim sup

N→∞

(1 + δ)(δ + δ′)

1− δ′

Eλ,β
µN

 1

N2

∑
x∈T2

N

φδ

(
ρ
N,Hεl
x (0)

) e2λ2t − 1

 .
Since δ > 0, the dominated convergence theorem and the law of large number yield that right-hand side

above is equal to

(1 + δ)(δ + δ′)

1− δ′

[
e2λ2t

∫
T2

φδ (ζ ∗Hε
l (v)) dv − 1

]
,

where ζ is the initial density pro�le de�ned in assumption (2.7), and ” ∗ ” denotes the convolution on T2.

Since ζ is bounded away from 1 uniformly on T2, ζ ∗Hε
l is also bounded away from 1 uniformly in ε, and

therefore

φδ (ζ ∗Hε
l (v)) ≤ C∗ < 1,

where C∗ = C∗(ζ̂) is a constant which does not depend on l, ε, v or δ.

Letting now δ go to 0, we obtain that for any ε > 0 and any time t,

lim sup
N→∞

Eλ,β
µN

 1

N2

∑
x∈T2

N

1{τxρεN (t)>1−δ′/2}

 ≤ δ′

1− δ′
(e2λ2tC∗ − 1),

which concludes the proof of Proposition 3.14 since we assumed δ′ > 1/2.

With the estimate stated in Proposition 3.14, we are ready to prove Proposition 3.12.

Proof of Proposition 3.12. � First notice that in order to prove (3.18), it is su�cient to prove it both

for Fp,x and F ′p,x instead of Ecp,x, where

Fp,x =

 ∑
y∈Bp(x)

ηy = | Bp(x) |

 and F ′p,x =

 ∑
y∈Bp(x)

ηy = | Bp(x) | − 1

 .

We focus on the �rst case, the second is derived in the exact same fashion.

Unlike in [35], the spin blind process's macroscopic density does not evolve according to the heat

equation because of the weak drift. However, thanks to the bound (3.14) on the entropy of the measure

µNt w.r.t. the reference measure µ∗α and on the Dirichlet form of the density fNt , local equilibrium holds for

the angle-blind process. As a consequence, the replacement Lemma 4.1 holds for functions independent

of the angles (cf. for example [27], p77). One therefore obtains that to prove

(3.34) lim
p→∞

lim
N→∞

Eλ,β
µN

∫ T

0

1

N2

∑
x∈T2

N

1Fp,x(s)ds

 = 0,

one can replace 1Fp,x(s) by its expectation under the product measure with parameter τxρεN (s), namely

EτxρεN (s)(1Fp,x) = [τxρεN (s)]
p′
,

where p′ = (2p+ 1)2 is the number of sites in Bp.

To prove equation (3.34), it is therefore su�cient to prove that ∀t ∈ [0, T ],

(3.35) lim
p′→∞

lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

 1

N2

∑
x∈T2

N

[τxρεN (t)]
p′

 = 0.
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To prove the latter, since ρεN (t) is at most 1, one only has to write, as outlined in equation (3.22),

Eλ,β
µN

 1

N2

∑
x∈T2

N

[τxρεN (t)]
p′

 ≤ (1− δ)p
′
+ Eλ,β

µN

 1

N2

∑
x∈T2

N

1{τxρεN (t)>1−δ}

 ,

which holds for any positive δ.

For any �xed δ > 0, the �rst term on the right-hand side vanishes as p→∞, whereas the second does

not depend on p and we can therefore let δ → 0 after N → ∞, then ε → 0, then p′ → ∞. Since the

right-hand side of equation (3.23) vanishes as δ′ = 2δ goes to 0, the left-hand side also does, and (3.35)

holds for any t thanks to Proposition 3.14. This proves equation (3.34), and the equivalent proposition

with F ′p,x instead of Fp,x is proved in the exact same fashion, thus concluding the proof of Proposition

3.12.

4. Law of large number for the spin process

4.1. Replacement Lemma. � Our goal in this Section is to close the microscopic equations and

to replace in the de�nition of the martingale MH,N introduced in (2.14) any cylinder (in the sense of

De�nition 2.1) function g(η̂) by its spatial average Eρ̂εN (g), where ρ̂εN is the empirical angle measure

over a small macroscopic box of size εN . We use this Section to introduce new useful notations. The

proof of the main result of this Section, the Replacement Lemma 4.1, follows closely the usual strategy

(c.f. Lemma 1.10 p.77 of [27]), however it requires several technical adaptations due to the nature of our

canonical and grand canonical measure. In particular, we will need the topological setup and the various

results obtained in Section 3.

Consider a cylinder function g ∈ C, and l a positive integer. Recall from (2.21) that 〈g〉l0 is the average
of the translations of g over a box of side 2l + 1 centered at the origin. Recall from equation (2.22) and

De�nition 3.1 that the empirical angle measure ρ̂l over the box Bl of side 2l+ 1 is the measure on [0, 2π[

ρ̂l =
1

|Bl |
∑
x∈Bl

ηxδθx .

De�ne

(4.1) V l(η̂) = 〈g(η̂)〉l0 − Eρ̂l(g) and W l(η̂) = g(η̂)− Eρ̂l(g),

and for any smooth function G ∈ C(T2), let

(4.2) X l,N (G, η̂) =
1

N2

∑
x∈T2

N

G(x/N)τxW l.

We �rst state that under the measure of AEP, one can replace the average of g over a small macroscopic

box by its expectation w.r.t. the canonical measure with angle measure ρ̂εN .

Lemma 4.1 (Replacement Lemma). � For every δ > 0, we have with the notation (4.1)

lim sup
ε→0

lim sup
N→∞

Pλ,β
µN

∫ T

0

1

N2

∑
x∈T2

N

τx
∣∣ VεN (η̂(t))

∣∣ dt > δ

 = 0.

The proof is postponed to subsection 4.2, and requires the control of the full clusters stated in Propo-

sition 3.12. For now, we can deduce from this lemma the following result, which will allow us to replace

in (2.20) the currents by their spatial averages.

Corollary 4.2. � For every δ > 0, and any continuous function

G : [0, T ]× T2 −→ R
(t, u) 7→ Gt(u)

,
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we get with the notation (4.2)

lim sup
ε→0

lim sup
N→∞

Pλ,β
µN

[ ∣∣∣∣∣
∫ T

0

XεN,N (Gt, η̂(t))dt

∣∣∣∣∣ > δ

]
= 0.

Proof of Corollary 4.2. � Recall that ε→ 0 after N →∞, which means that the smoothness of G allows

us to replace in the limit G(x/N) by its spatial average on a box of size ε, which is denoted by

GεN (x/N) :=
1

(2Nε+ 1)2

∑
y∈BεN (x)

G(y/N).

More precisely, we can write, using notation (2.21) for the local averaging, and since g is a cylinder, hence

bounded, function,

lim sup
N→∞

∫ T

0

1

N2

∑
x∈T2

N

Gt(x/N)τxg dt = lim sup
ε→0

lim sup
N→∞

∫ T

0

1

N2

∑
x∈T2

N

GεNt (x/N)τxg dt

= lim sup
ε→0

lim sup
N→∞

∫ T

0

1

N2

∑
y∈T2

N

Gt(y/N)〈g〉εNy dt,(4.3)

where the average 〈g〉εNy is de�ned in equation (2.21).

As a consequence, τyg can be replaced by its average 〈g〉εNy . Note that

VεN (η̂) =WεN (η̂) + 〈g〉εNy − g,

and that the replacement Lemma 4.1 implies in particular that for any bounded functionG ∈ C([0, T ]×T2)

lim sup
ε→0

lim sup
N→∞

Pλ,β
µN

 ∣∣∣∣∣∣
∫ T

0

1

N2

∑
x∈T2

N

Gt(x/N)τxVεN (η̂(t))dt

∣∣∣∣∣∣ > δ

 = 0.

Therefore, thanks to equality (4.3), Corollary 4.2 follows directly from Lemma 4.1.

4.2. Proof of the replacement Lemma. � In order to prove the replacement Lemma 4.1, we will

need the two lemmas below. The �rst one states that the average of any cylinder function 〈g(η̂)〉l0 over

a large microscopic box (a box of size l which tends to in�nity after N) can be replaced by its expected

value w.r.t. the canonical measure with parameter the empirical density Eρ̂l(g).

The second guarantees that the empirical angle measure does not vary much between a large micro-

scopic box and a small macroscopic box. We state these two results, namely the one and two-blocks

estimates, in a quite general setup, because they are necessary in several steps of the proof of the hydro-

dynamic limit.

Lemma 4.3 (one-block estimate). � Consider α ∈]0, 1[ and a density f w.r.t the translation invari-

ant measure µ∗α (cf. De�nition 3.4) satisfying

i) There exists a constant K0 such that for any N

H(f) ≤ K0N
2 and D (f) ≤ K0.

ii)

(4.4) lim
p→∞

lim
N→∞

E∗α

f 1

N2

∑
x∈T2

N

1Ecp,x

 = 0.

Then, for any cylinder function g,

lim sup
l→∞

lim sup
N→∞

E∗α

f 1

N2

∑
x∈T2

N

τxV l
 = 0,

where V l was de�ned in (4.1).
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Lemma 4.4 (two-block estimate). � For any α ∈]0, 1[ and any density f satisfying conditions i)

and ii) of Lemma 4.3,

lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

sup
y∈BεN

E∗α

 1

N2

∑
x∈T2

N

||| τx+yρ̂l − τxρ̂εN |||f

 = 0,

where τz ρ̂k is the local empirical angle measure in the box of size k centered in z introduced in (2.22).

The proofs of these two lemmas will be presented resp. in Section 4.3 and 4.4. For now, let us show

that they are su�cient to prove the replacement Lemma 4.1.

Proof of Lemma 4.1. � Lemma 4.1 follows from applying the two previous lemmas to the density

f
N

T =
1

T

∫ T

0

fNt dt,

where fNt = dµNt /dµ
∗
α, de�ned in Section 3.2, is the density of the AEP at time t started from µN ,

and prove that Lemma 4.1 follows. Proposition (3.9) proved that f
N

T satis�es condition i) of Lemma 4.3.

Furthermore, f
N

T also satis�es condition ii)

lim
p→∞

lim
N→∞

E∗α

fNT 1

N2

∑
x∈T2

N

1Ecp,x

 = 0

thanks to Proposition 3.12, thus the one-block and two-blocks estimates apply to f = f
N

T .

Now let us recall that we want to prove for any δ > 0

lim sup
ε→0

lim sup
N→∞

Pλ,β
µN

∫ T

0

1

N2

∑
x∈T2

N

τx
∣∣ VεN (η̂(t))

∣∣ dt > δ

 = 0,

where

VεN (η̂) = 〈g(η̂)〉εN0 − Eρ̂εN (g).

Thanks to the Markov inequality, it is su�cient to prove that

lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

∫ T

0

1

N2

∑
x∈T2

N

τx
∣∣ VεN (η̂(t))

∣∣ dt
 = 0.

We can now express the expectation above thanks to the mean density f
N

T . Since T is �xed, to obtain

the replacement Lemma it is enough to show that

(4.5) lim sup
ε→0

lim sup
N→∞

E∗α

fNT 1

N2

∑
x∈T2

N

τx
∣∣ VεN (η̂)

∣∣  = 0.

For any function ϕ(·) on the torus T2
N , recall that we denoted in (2.21) by 〈ϕ(·)〉lx the average of the

function ϕ over a box centered in x of size l, and that τyρ̂l is the empirical angle measure in a box of size

l centered in y de�ned in (2.22). Let us add and subtract〈
〈g(η̂)〉l0 − Eρ̂l(g)

〉εN
0

=
1

(2εN + 1)2

∑
x∈BεN

 1

(2l + 1)2

∑
| y−x |≤l

τyg − Eτy ρ̂l(g)


inside

∣∣ VεN (η̂)
∣∣ . We can then write thanks to the triangular inequality∣∣ VεN (η̂)

∣∣ ≤ (Z l,εN1 + Z l,εN2 + Z l,εN3 )(η̂),

where

Z l,εN1 =

∣∣∣∣∣∣ 1

(2εN + 1)2

∑
x∈BεN

τxg − 1

(2l + 1)2

∑
| y−x |≤l

τyg

 ∣∣∣∣∣∣ ,
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is the di�erence between g and its local average,

Z l,εN2 =
1

(2εN + 1)2

∑
x∈BεN

∣∣∣∣∣∣ Eτxρ̂l(g)− 1

(2l + 1)2

∑
| y−x |≤l

τyg

∣∣∣∣∣∣ ,
is the di�erence between the local average of g and its expectation under the product measure with

parameter the local angle measure ρ̂l, and

Z l,εN3 =
1

(2εN + 1)2

∑
x∈BεN

| Eτxρ̂l(g)− Eτxρ̂εN (g) |

is the di�erence between the expectations of g under the empirical microscopic and macroscopic angle

measures ρ̂l and ρ̂εN .

Let us consider the �rst term, N−2
∑
x τxZ

l,εN
1 . All the terms in Z l,εN1 corresponding to the x's in

BεN−l vanish, since they appear exactly once in both parts of the sum. The number of remaining terms

can be crudely bounded by 4εNl, and each term takes the form τzg/(2εN + 1)2. Hence, we have the

upper bound

E∗α

fNT 1

N2

∑
x∈T2

N

τxZ l,εN1

 ≤ Kl

εN
E∗α

fNT 1

N2

∑
x∈T2

N

τx| g |

 .

Since g is a bounded function, this expression can be bounded from above by

Kl ||g||∞
εN

E∗α
(
f
N

t

)
= C(l, ε, g)oN (1),

which proves that

lim sup
ε→0

lim sup
N→∞

E∗α

 1

N2

∑
x∈T2

N

τxZ l,εN1 f
N

t

 = 0.

Now since ∑
x∈T2

N

1

(2εN + 1)2

∑
y∈BεN (x)

τyg =
∑
x∈T2

N

τxg,

the two following terms can respectively be rewritten as

(4.6) E∗α

fNT 1

N2

∑
x∈T2

N

τxZ l,εN2

 = E∗α

fNT 1

N2

∑
x∈T2

N

τx
∣∣ Eρ̂l(g)− 〈g〉l0

∣∣  ,

and

(4.7) E∗α

fNT 1

N2

∑
x∈T2

N

τxZ l,εN3

 = E∗α

fNT 1

N2

∑
x∈T2

N

τx | Eρ̂l(g)− Eρ̂εN (g) |

 .

The quantity (4.6) vanishes in the limit N →∞ then l →∞ thanks to the one-block estimate stated in

Lemma 4.3.

Finally, according to De�nition 3.2, (4.7) also vanishes thanks to the two-block estimate of Lemma 4.4

and the Lipschitz-continuity of the application

Ψg : (M1(S), ||| . |||) −→ R
α̂ 7→ Eα̂ (g)

,

which was proved in Proposition B.2. The Replacement Lemma 4.1 thus follows from the one and two-

blocks estimates.

In the next two Sections 4.3 and 4.4, we prove the one-block and two-block estimates. The strategy

for these proofs follows closely these presented in [27], albeit it requires some adjustments due to the

measure-valued nature of the parameter of the product measure µα̂ and the necessity to control the full

clusters.
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4.3. Proof of Lemma 4.3 : The one-block estimate. � The usual strategy to prove the one block

estimate is to project the estimated quantity on sets with �xed number of particles, on which the density

of f should be constant thanks to the bound on the Dirichlet form.

To prove the one-block estimate, thanks to the translation invariance of µ∗α, it is su�cient to control

the limit as N goes to ∞, then l→∞ of

E∗α

f. 1

N2

∑
x∈T2

N

τxV l
 = E∗α(V lf),

where f = N−2
∑

T2
N
τxf is the average over the periodic domain of the translations of the density f .

Before doing so, we need to eliminate the con�gurations on which the box Bl is almost full. Notice that

the average V l is bounded because g is a cylinder function. We can therefore write

E∗α(V lf) ≤ E∗α(V l1Elf) +
∣∣∣∣V l∣∣∣∣∞ E∗α(1Ecl f),

where El is the event on which at least two sites are empty in Bl, de�ned after Equation (3.17), and Ecl
is its complementary event. The second term in the right-hand side vanishes by de�nition of f , because

f veri�es (4.4), and it is therefore su�cient to prove that

lim sup
l→∞

lim sup
N→∞

E∗α(V l1Elf) = 0.

Furthermore, the convexity of the Dirichlet form and the entropy yield that condition i) of the one-block

estimate is also satis�ed by f . Since V l1El only depends on η̂ only through the η̂x's in the cube Bl+1

we can replace the density f in the formula above by its conditional expectation f l, de�ned, for any

con�guration η̂′ on Bl+1 by

f l(η̂
′) = E∗α(f | η̂x = η̂′x, x ∈ Bl+1).

For any function f depending only on spins in Bl let E∗α,l be the expectation with respect to the product

measure µ∗α over Bl. With the previous notations, and in order to prove the one-block estimate, it is

su�cient to prove that

lim sup
l→∞

lim sup
N→∞

E∗α,l
(
V l1Elf l

)
≤ 0.

In order to proceed, we need to estimate the Dirichlet form and the entropy of f l thanks to that of f ,

and prove the following Lemma

Lemma 4.5. � Regarding f l, we have the following bounds

(4.8) Dl+1

(
f l
)
≤ C(l)N−2 and H(f l) ≤ C(l).

Proof of Lemma 4.5. �

Estimate on the Dirichlet form of f l - we denote by Lx,y the symmetric part of the exclusion

generator corresponding to the transfer of a particle between x and y

Lx,yf(η̂) = (ηx − ηy) (f(η̂y,x)− f(η̂)),

and by Dx,y the part of the Dirichlet form of the exclusion process corresponding to Lx,y

Dx,y(f) = −E∗α
(√

fLx,y
√
f
)
.

With this notation, we have

D(f) =
∑

| x−y |=1

Dx,y(f),

where D is the Dirichlet form introduced in equation (3.6). We denote in a similar fashion the Dirichlet

form restricted to the box of size l + 1 for any function h depending only on the spins in Bl+1 by

Dx,y
l+1(h) = −E∗α,l+1

(√
hLx,y

√
h
)
.

Since the conditioning f 7→ fl is an expectation, and since the Dirichlet elements Dx,y
l are convex, the

inequality

Dx,y
l+1(f l) ≤ Dx,y(f)
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follows from Jensen's inequality. We deduce from the previous inequality, by summing over all edges

(x, y) ∈ Bl, thanks to the translation invariance of f , that

Dl+1(f l) ≤
∑

(x,y)∈Bl

Dx,y(f) = 2l(2l + 1)

2∑
j=1

D0,ej (f) =
(2l + 1)2

N2
D(f),

where Dl+1 is the Dirichlet form of the process restricted to the particle transfers with both the start and

end site in Bl. Up to this point, we have proved that for any function f such that D(f) ≤ D(f) ≤ K0,

we have as wanted

(4.9) Dl+1(f l) ≤ C1(l)N−2.

Estimate on the entropy of f l - recall that we de�ned the entropy H(f) = E∗α(f log f) and that

we already established H(f) ≤ K0N
2. Let us partition T2

N in q := bN/(2l + 3)c2 square boxes B1 :=

Bl+1(x1), . . . , Bq := Bl+1(xq), and B
q+1, which contains all the site that weren't part of any of the boxes.

We can thus write

T2
N =

q+1⊔
i=1

Bi.

We denote by η̂i the con�guration restricted to Bi and by ξ̂i the complementary con�guration to η̂i. In

other words, for any i ∈ J1, q+ 1K, we split any con�guration on the torus η̂ into η̂i and ξ̂i. We de�ne for

any i ∈ J1, qK the densities on the η̂i's

f
i

l(η̂
i) = E∗α

(
f(η̂i, ξ̂i)

∣∣∣ξ̂i) .
Let us denote by ϕ the product density w.r.t. µ∗α with the same marginals as f , de�ned by

ϕ(η̂) = f
1

l (η̂
1)f

2

l (η̂
2) . . . f

q+1

l (η̂q+1),

elementary entropy computations yield that

H(f) = Hϕ

(
f/ϕ

)
+

q+1∑
i=1

H
(
f
i

l

)
,

where Hϕ(f) = H(fµ∗α | ϕµ∗α). Since by construction f is translation invariant, for any i = 1, . . . , q, we

can write H
(
f
i

l

)
= H

(
f

1

l

)
= H

(
f l
)
, therefore in particular, the previous bound also yields, thanks to

the non-negativity of the entropy, that

H(f) ≥ qH
(
f l
)
.

Since q is of order N2/l2, this rewrites

(4.10) H(f l) ≤
K0N

2

q
≤ C2(l),

and proves equation (4.8).

Thanks to Lemma (4.5) we now reduced the proof of Lemma 4.3 to

(4.11) lim sup
l→∞

lim sup
N→∞

sup
Dl+1(f)≤C1(l)N−2

H(f)≤C2(l)

E∗α,l
(
V l1Elf

)
= 0.

Since the set of measures with density w.r.t. µ∗α such that H(f) ≤ C2(l) is weakly compact, to prove the

one block estimate of Lemma 4.3, it is su�cient to show that

lim sup
l→∞

sup
Dl+1(f)=0
H(f)≤C2(l)

E∗α,l
(
V l1Elf

)
.

Before using the equivalence of ensembles, we need to project the limit above over all sets with �xed

number of particles ΣK̂l de�ned in equation (3.3). Recall from De�nition 3.6 the projection of the grand

canonical measures on the sets with �xed number of particles. For any density f w.r.t. µ∗α, such that

Dl+1(f) = 0, thanks to Section 3.3 and the presence of the indicator function, f is constant on ΣK̂l for

any K̂ ∈Mε(S). We therefore denote, for any such f , by f(K̂) the value of f on the set ΣK̂l . Shortening
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l

B1

Bp

B0

Bl

2k

Figure 3. Construction of the Bi

∫
K̂∈Kl for the sum

∑
K≤(2l+1)2

∫
θ1∈S . . .

∫
θK∈S, we can write thanks to the indicator functions 1El , for any

f satisfying Dl+1(f) = 0,

(4.12) E∗α,l
(
V l1Elf

)
=

∫
K̂∈K̃l

f(K̂)El,K̂(V l)dP∗α
(
η̂ ∈ ΣK̂l

)
,

where K̃ was de�ned in (3.2).

Since
∫
K̂∈Kl f(K̂)dP∗α

(
η̂ ∈ ΣK̂l

)
= 1 and El,K̂

(
V l
)
≤ supK̂∈K̃l El,K̂

(
V l
)
, we obtain

lim sup
l→∞

lim sup
N→∞

sup
Dl+1(f)≤C2(l)N−2

H(f)≤C2(l)

E∗α,l
(
V l1Elf

)
≤ lim sup

l→∞
sup
K̂∈K̃l

El,K̂
(
V l
)
.

To conclude the proof of equation (4.11) and the one-block estimate, it is therefore su�cient to prove

that the right-hand side above vanishes.

For any K̂ ∈ Kl, recall that α̂K̂ ∈M1(S) is the angle measure

α̂K̂ =
1

(2l + 1)2

K∑
k=1

δθk ∈M1(S).

Since the expectation El,K̂ conditions the process to having K particles with angles ΘK in Bl, by

de�nition of Vl, we can write

El,K̂
(
V l
)

= El,K̂

( ∣∣∣∣∣ Eα̂K̂ (g)− 1

(2l + 1)2

∑
x∈Bl

τxg

∣∣∣∣∣
)
.

Let k be an integer that will go to in�nity after l, and let us divide Bl according to Figure 3 into q boxes

B1, . . . , Bq, each of size (2k + 1)2, with q = b 2l+1
2k+1c

2. Let B0 = Bl − ∪qi=1B
i, the number of sites in B0

is bounded for some universal constant C by Ckl.

With these notations, the triangular inequality yields

El,K̂

( ∣∣∣∣∣ Eα̂K̂ (g)− 1

(2l + 1)2

∑
x∈Bl

τxg

∣∣∣∣∣
)
≤|B

i |
|Bl |

q∑
i=0

El,K̂

( ∣∣∣∣∣ Eα̂K̂ (g)− 1

|Bi |
∑
x∈Bi

τxg

∣∣∣∣∣
)

=
(2k + 1)2

(2l + 1)2

q∑
i=1

El,K̂

( ∣∣∣∣∣ Eα̂K̂ (g)− 1

(2k + 1)2

∑
x∈Bi

τxg

∣∣∣∣∣
)

+O

(
k

l

)
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Since the distribution of the quantity inside the expectation does not depend on i, the quantity above

can be rewritten

q
(2k + 1)2

(2l + 1)2︸ ︷︷ ︸
→1

El,K̂

( ∣∣∣∣∣ Eα̂K̂ (g)− 1

(2k + 1)2

∑
x∈Bk

τxg

∣∣∣∣∣
)

+O

(
k

l

)
.

Because g is a cylinder function, and since k goes to ∞ after l, the quantity inside absolute values is a

local function for any �xed k. Letting l go to ∞, the equivalence of ensembles stated in Proposition B.1

allows us to replace the expectation above, uniformly in K̂, by

Eα̂
K̂

( ∣∣∣∣∣ Eα̂K̂ (g)− 1

(2k + 1)2

∑
x∈Bk

τxg

∣∣∣∣∣
)
.

Finally, since ∪l∈N{α̂K̂ , K̂ ∈ K̃l} ⊂ M1(S), where M1(S) is the set of angle density pro�les introduced

in De�nition 3.1,

lim sup
l→∞

sup
K̂∈Kl

El,K̂(V l) ≤ sup
α̂∈M1(S)

Eα̂

( ∣∣∣∣∣ Eα̂(g)− 1

(2k + 1)2

∑
x∈Bk

τxg

∣∣∣∣∣
)
,

whose right-hand side vanishes as k →∞ by the law of large numbers, thus concluding the proof of the

one-block estimate.

4.4. Proof of Lemma 4.4 : The two-block estimate. � This Sections follows the usual strategy for

the two-block estimate, with small adaptations to the topological setup on the space of parametersM1(S)

introduced in De�nition 3.2.

Our goal is to show that for any density f satisfying conditions i) and ii) in Lemma 4.3,

lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

sup
y∈BεN

E∗α

 1

N2

∑
x∈T2

N

||| τx+yρ̂l − τxρ̂εN |||f

 = 0.

The previous expectation can be bounded from above by triangle inequality by

E∗α

 1

N2

∑
x∈T2

N

1

(2Nε+ 1)2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ∑
z∈BNε

(τx+yρ̂l − τx+z ρ̂l)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣f
+ o(l/εN).

In this way, we reduce the proof to comparing average densities in two boxes of size l distant of less than

εN . Let us extract in the sum inside the integral the terms in z′s such that | y − z | ≤ 2l, the number

of such terms is of order at most l/εN , and this quantity is bounded from above by

E∗α

 1

N2

∑
x∈T2

N

1

(2Nε+ 1)2

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

∑
z∈BNε
| y−z |>2l

(τx+yρ̂l − τx+z ρ̂l)

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣f
+ o(l/εN).

This separation was performed in order to obtain independent empirical measures τx+yρ̂l and τx+z ρ̂l.

Regarding the expectation above, notice that we now only require to bound each term in the sum in z.

In order to prove the two-block estimate, it is thus su�cient to show that for any | y | > 2l

lim sup
l→∞

lim sup
N→∞

E∗α

 1

N2

∑
x∈T2

N

||| τx+yρ̂l − τxρ̂l |||f

 = 0.

As in the proof of the one-block estimate, the quantity above can be rewritten

E∗α
(
||| τyρ̂l − ρ̂l |||f

)
,

where f = N−2
∑
x∈T2

N
τxf is the average of the density f . As in the one-block estimate, we can introduce

the cuto� functions 1El in the expectation above, thanks to f satisfying (4.4) and ||| τyρ̂l − ρ̂l ||| being a
bounded quantity.
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Bl, η̊1

τyBl, η̊2

y

0

2l

Figure 4

Let By,l be the set Bl ∪ τyBl, the quantity under the expectation above is measurable with respect to

the spins in By,l. Before going further, let us denote, for any con�guration η̂ ∈ ΣN , η̊1 the con�guration

restricted to Bl and η̊2 the con�guration restricted to y+Bl = τyBl. We also denote by η̊ the con�guration

(η̊1, η̊2) on By,l. Let us �nally write µy,l for the projection of the product measure µ∗α on By,l, and Ey,l
the expectation with respect to the latter.

With these notations, the expectation above can be replaced by

E∗α
(
||| τyρ̂l − ρ̂l |||1Elfy,l

)
,

where for any density f , fy,l is its conditional density with respect to the spins in By,l

fy,l(η̊) =
1

Ey,l(η̊)
E∗α
(
1{η̂|By,l = η̊}.f

)
,

which is well-de�ned because the two boxes Bl and τyBl are disjoint, thanks to the condition | y | > 2l.

As in the proof of the one-block estimate, we now need to estimate the Dirichlet form of fy,l in terms

of that of f , on which we have some control. For that purpose, let us introduce with the notations of the

previous Section

Dl,y(h) = −Ey,l(h.L0,yh)−
∑

x,z∈Bl
| x−z |=1

Ey,l(h.Lx,zh)−
∑

x,z∈y+Bl
| x−z |=1

Ey,l(h.Lx,zh)

:= D0
l,y + D1

l,y + D2
l,y(4.13)

the Dirichlet form corresponding to particle transfers inside the two boxes, and allowing a particle to

tranfer from the center of one box to the center of the other, according to Figure 4. The work of the

previous Section allows us to write that

−Ey,l(fy,l.Lx,zfy,l) ≤ Dx,z(f),

which implies, if D (f) ≤ C0 that

(4.14) D1
l,y(fy,l) +D2

l,y(fy,l) ≤ 2C0
(2l + 1)2

N2
,

by translation invariance of µα̂ and f . We now only need to estimate the third term D0
l,y. Let us consider

a path x0 = 0, x1, . . . , xk = y of minimal length, such that | xi − xi+1 | = 1 for any i ∈ {0, . . . , k − 1}.
For any such path, we have k ≤ 2Nε, since | y | ≤ Nε, and we can write

D0
l,y(f) ≤ −E∗α(fL0,yf) =

1

2
E∗α
[
| η0 − ηy | (f(η̂0,y)− f(η̂))2

]
where η̂0,y here is the state where the sites in 0 and y are inverted regardless of the occupation of either

site. Since η0 − ηy vanishes whenever both sites 0 and y are occupied or both are empty, we can for

example assume that η0 = 1 and ηy = 0. For any con�guration η̂0 = η̂, we let for any i ∈ {1, . . . , k}

η̂i =
(
η̂i−1

)xi−1,xi
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Thanks to the elementary inequality  k∑
j=1

aj

2

≤ k
k∑
j=1

a2
j ,

and by de�nition of the sequence (η̂i)i=0...k (which yields in particular η̂
0 = η̂ and η̂k = η̂0,y), the previous

equation yields

E∗α
[
η0(1− ηy)(f(η̂0,y)− f(η̂))2

]
≤ k

k−1∑
j=0

E∗α
[
η0(1− ηy)(f(η̂i+1)− f(η̂i))2

]
= k

k−1∑
j=0

E∗α
[
ηixi(1− η

i
xi+1

)
[
f(
(
η̂i
)xi,xi+1

)− f(η̂i)
]2]

Since µ∗α is invariant through any change of variable η̂ → η̂i, and since we can easily derive the same kind

of inequalities with ηy(1− η0) instead of η0(1− ηy), we obtain that

(4.15) D0,y
l (f) = k

k−1∑
i=0

Dxi+1,xi(f) = k2N−2D (f) ≤ 4ε2D (f)

thanks to the translation invariance of f . Finally, equations (4.13), (4.14) and (4.15) yield

(4.16) Dl,y(fy,l) ≤ 2C0
(2l + 1)2

N2
+ 4C0ε

2,

which vanishes as N →∞ then ε→ 0. A bound on the entropy analogous to (4.8) is straightforward to

obtain. Finally, to prove the two-block estimate, as in the proof of the one-block estimate, we can get

back to proving that for any density f on By,l satisfying (4.16),

lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

sup
2l<| y |<εN

Ey,l (||| τyρ̂l − ρ̂l |||1Elf) = 0.

Any such density is ultimately constant on any set with �xed number of particles and angles in the set

By,l with at least two empty sites. The proof of the two-blocks estimate is thus concluded in the exact

same way as in the one-block estimate by projecting along these sets, and then using the equivalence of

ensembles.

5. Preliminaries to the non-gradient method

The main focus of Sections 5 and 6 is the symmetric part of the displacement process, whose generator

L requires the non-gradient method. Before engaging in the proof of the non-gradient estimates, however,

we regroup several results which will be needed throughout the proof.

5.1. An integration by parts formula in the context of particle systems. � Considering the

symmetric exclusion generator L as a discrete Laplacian, throughout the proof, we are going to need an

integration by parts formula in order to express the expectation of ψ.h in terms of the gradient of h and

the �integral� ∇L−1ψ of ψ.

We �rst extend the de�nition of the canonical measures given in De�nition 3.6 to any domain B ⊂ T2
N .

For that purpose, consider an integer K ≤ |B |, and an orderless family {θ1, . . . , θK} ∈ SK . Recall that

we denote by K̂ the pair (K, {θ1, . . . , θK}), and we let µB,K̂ be the measure such that the K particles

with �xed angles θ1, . . . , θK are uniformly distributed in the domain B. If B = Bl is the ball of radius

l, this notation is shortened as µl,K̂ in accord with De�nition 3.6. The expectation w.r.t both of these

measures is respectively denoted EB,K̂ and El,K̂ . We will, in a similar fashion, write

LBf(η̂) =
∑

x,x+z∈B
| z |=1

ηx (1− ηx+z)
(
f(η̂x,x+z)− f(η̂)

)
,
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for the generator of the symmetric exclusion process restricted to B, shortened as Ll if B = Bl.

Our focus from now on will be a class of local functions, depending only on sites within a domain

B, and with mean 0 w.r.t all canonical measures µB,K̂ . When there are less than one empty site in the

domain B, we require these functions to vanish in order to avoid classifying the irreducible subsets of ΣN
when there is only one empty site. For any cylinder function ψ ∈ C, we will denote by sψ the smallest

integer such that ψ only depends on sites in Bsψ , and recall that we already introduced in De�nition 3.6

the sets Kl and K̃l. We now de�ne

C̃0 =
{
ψ ∈ C, Esψ,K̂(ψ) = 0 ∀K̂ ∈ K̃sψ and ψ|ΣK̂l

≡ 0 ∀K̂ ∈ Ksψ r K̃sψ
}
.

In particular, any function ψ ∈ C̃0 has mean zero w.r.t any canonical measure. Note that for any ψ ∈ C̃0,
and any α̂ ∈ M1(S), conditioning w.r.t. the number of particles in Bsψ , we obtain in particular that

Eα̂(ψ) = 0.

The purpose of the non-gradient method is to prove that in the space C̃0 endowed with an H−1

discrete topology, any element can be expressed as a combination of the instantaneous currents, up to a

perturbation of the form Lψ for some ψ ∈ C̃0 (cf. Proposition 6.32). However, the crude de�nition of C̃0
regarding the almost full con�guration implies in particular that the instantaneous currents ji = η0− ηei
and jωi , de�ned in equation (2.17), are not in C̃0.

For that purpose, we therefore consider the enlarged set

(5.1) C0 = C̃0 + Jω,

where Jω is the linear span of the instantaneous currents due to the symmetric part of the generator,

de�ned in De�nition 2.8

(5.2) Jω = {aj1 + bj2 + cjω1 + djω2 , a, b, c, d ∈ R} .

Note that in particular, since the symmetric exclusion process does not create particles, for any ψ ∈ C0,
we also have Lsψψ ∈ C0.

We now have all we need to state an integration by parts formula which will be useful later on in the

proof of Theorem 6.1.

Lemma 5.1 (Integration by parts formula). � Recall that we denoted in (3.4) by ∇a the gradient

along an edge a. Let ψ ∈ C̃0 be a cylinder function, and a ⊂ Bsψ an oriented edge in its domain. Then,

ψ is in the range of the generator Lsψ , and we can de�ne the "primitive" Ia(ψ) of ψ with respect to the

gradient along the oriented edge a as

Ia(ψ) =
1

2
∇a(−Lsψ )−1ψ.

Furthermore, for any B ⊂ T2
N containing Bsψ , any K̂ = (K, (θ1, . . . , θK)) such that K ≤ |B | and

h ∈ L2(µB,K̂), we have

(5.3) EB,K̂ (ψ.h) =
∑

a⊂Bsψ

EB,K̂ (Ia(ψ).∇ah) .

This result is also true if µB,K̂ is replaced by a grand canonical measure µα̂. Note that if K = |B | − 1

or K = |B | the result is trivial because ψ vanishes.

Furthermore, this integration by parts formula can be extended to the whole C0, setting

Ia(jωi ) =


− 1

2η
ω
a1(1− ηa2) if (a1, a2) = (0, ei)

1
2η
ω
a1(1− ηa2) if (a1, a2) = (ei, 0)

0 else.

and

Ia(ji) =


− 1

2ηa1(1− ηa2) if (a1, a2) = (0, ei)
1
2ηa1(1− ηa2) if (a1, a2) = (ei, 0)

0 else.

.
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Proof of Lemma 5.1. � The proof of the previous result is quite elementary. Fix a function ψ ∈ C̃0, to
prove the integration by parts formula, we �rst show that ψ is in the range of Lsψ , by building for any K̂
a function ϕK̂ on Σ

sψ

K̂
, verifying LsψϕK̂ = ψ|Σ

sψ

K̂

. This result is well-known for the color-blind exclusion

process, but in our case where each particle has an angle, the canonical measures take an unusual form,

and we prove it for the sake of exhaustivity.

Consider the vector space EK̂ = F(Σ
sψ

K̂
,R) of real-valued functions on Σ

sψ

K̂
. The generator Lsψ can

then be seen as a linear application

Lsψ : EK̂ −→ EK̂
ϕ 7→ Lsψϕ

.

Consider ϕ ∈ KerE
K̂

(Lsψ ), we can write in particular that

EBsψ ,K̂(ϕLsψϕ) = −1

2
EBsψ ,K̂

 ∑
x,z∈Bsψ
| z−x |=1

ηx(1− ηz)(ϕ(η̂x,z)− ϕ(η̂))2

 = 0,

therefore ϕ is invariant under the allowed jump of a particle along any edge in Bsψ . Assuming now that

K̂ ∈ K̃sψ , (cf. De�nition 3.6) this means that any function ϕ ∈ KerE
K̂

(Lsψ ) must be a constant function,

because Σ
sψ

K̂
is then irreducible w.r.t. the exclusion dynamics in Bsψ , according to Section 3.3. Since

any constant function is trivially in KerE
K̂

(Lsψ ), we �nally obtain that Dim(KerE
K̂

(Lsψ )) = 1, and

elementary algebra yields

{ϕ ∈ EK̂ ,EBsψ ,K̂(ϕ) = 0} = ImE
K̂

(Lsψ ).

Let us now get back to our function ψ ∈ C̃0, by de�nition of C̃0, for any K̂ ∈ K̃sψ , ψ|Σsψ
K̂

∈ FK̂ , and there

exists a family of functions (ϕK̂)K̂∈K̃ such that ϕK̂ : Σ
sψ

K̂
→ R,

LsψϕK̂ = ψ|Σ
sψ

K̂

.

Since ψ vanishes when Bsψ has one or less empty site, we also let ϕK̂ = 0 for any K̂ ∈ Ksψ \ K̃sψ . For
any con�guration η̂ on Bsψ with K̂ particles, we now de�ne ϕ∗(η̂) = ϕK̂(η̂), and we have

ψ = Lsψϕ∗,

which proves that any function ψ ∈ C̃0 is in the range of Lsψ .
We get back to the proof of the integration by parts formula, since we can now write ψ = LsψL−1

sψ
ψ,

where L−1
sψ
ψ = ϕ∗, and

EB,K̂(h.ψ) = EB,K̂
(
h.LsψL−1

sψ
ψ
)

= −1

2

∑
a⊂Bψ

EB,K̂
(
∇aL−1

sψ
ψ.∇ah

)
=
∑
a⊂Bψ

EB,K̂ (Ia(ψ).∇ah)

which proves identity (5.3). The same is obviously true when the canonical measure is replaced by a grand

canonical measure µα̂ for some couple of densities α̂, since we only used the invariance of the measure

w.r.t the generator L, which concludes the proof of the integration by parts formula on C̃0.
Furthermore, the extension to C0 follows immediately from a simple change of variable η̂ 7→ η̂0,ei .

5.2. Spectral gap for the symmetric exclusion spin process. � As investigated in Section 3.3,

the mixing time for the exclusion dynamics on con�gurations with angles is not of order N2. We therefore

cannot consider a general class of functions as dependent on the θ′xs as wanted, and need to restrict to

a subclass of functions with low levels of correlations between particle angles, but large enough for the

non-gradient method to apply. In this Section, we prove that the spectral gap of the symmetric exclusion

process on this class of functions is of order N−2. This result is derived by Quastel in [35]. We present
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here a more detailed and slightly modi�ed version. It states that once restricted to a convenient class of

semi angle-blind functions, the spin exclusion process has a spectral gap of order N−2.

Throughout this Section, we consider the square domain

AN = J0, NK2

with closed boundaries, and denote by µANα̂ the product measure with angle measure α̂ ∈M1(S). Recall

that S was introduced in De�nition 2.1 as the set of cylinder angle-blind functions, and that ω is the

angular dependence of our test function H (cf. equation (2.15)), we de�ne the subspace of S

Tω0 =

{
f ∈ L2(µANα̂ ), f(η̂) = ϕ(η) +

∑
x∈AN

(c1η
ω
x + c2ηx)ψx(η), c1, c2 ∈ R, and ψx ∈ S, ∀x ∈ Z2, ϕ ∈ S

}(5.4)

Remark 5.2. � The purpose of the non-gradient method is to replace the instantaneous current jωi
introduced in equation (2.17) by a gradient quantity D(η0 − ηei) + d(ηω0 − ηωei), and the class Tω0 above

is the simplest set of functions, stable by L and containing both the currents and the gradients.

Remark 5.3. � One might expect, that it is not the biggest class of functions on which a spectral gap

of order N−2 can be obtained. Indeed, we believe that introducing some �nite numbered correlations

between spins might not alter too much the order of the spectral gap. It is not, however, the purpose of

this Section, and this remark is therefore left as a conjecture at this point.

Proposition 5.4 (Estimate on the spectral gap for the spin-dependent exclusion process)

For any angle measure α̂ ∈ M1(S) such that 0 < α < 1, there exists a constant C = C(α) such that

for any functions f ∈ Tω0 with Eα̂(f) = 0,

Eα̂(f2) ≤ CN2D(f),

where D(f) = Dα̂(f) = −Eα̂ (fLf) is the Dirichlet form relative to the symmetric part of the exclusion

generator on the non-periodic domain AN .

In order to prove this estimate, we need the following lemma, which states that the angle-blind process

has a spectral gap of order N−2.

Lemma 5.5 (Spectral gap for the angle-blind exclusion process)

For any angle measure α̂ ∈ M1(S) such that 0 < α < 1, there exists a constant C = C(α) such that

for any angle-blind function ψ ∈ S with Eα̂(ψ) = 0

Eα̂(ψ2) ≤ CN2D(ψ).

The proof of this result can be found in [27]. Before deriving Proposition 5.4, we de�ne for any site x ∈ Z2

(5.5) η̃x = ηωx − Eα̂(ω)ηx = [ω(θx)− Eα̂(ω)] ηx,

where we shortened Eα̂(ω) for Eα̂(ω(θ0)). This new occupation variable plays a particular role in the

proof of the spectral gap, and we state in the following Lemma two useful identities regarding η̃, which

will be used repeatedly later on.

Lemma 5.6 (Properties of η̃). � let x 6= y ∈ AN be two distinct sites, and consider an angle-blind

function ψ ∈ S, we have

Eα̂ (η̃xψ) = 0 and Eα̂ (η̃xη̃yψ) = 0.

Furthermore, assuming that ψ = ηxψ ( i.e. that ψ vanishes when the site x is empty ), we also have

Eα̂
(
η̃2
xψ
)

= C(α̂)Eα̂(ψ),

where C(α̂) = V arα̂(ω(θ0)).
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The proof of Lemma 5.6 is immediate and omitted, since under µα̂, and for any angle-blind function

ψ ∈ S and any function Φ on S, we have

Eα̂(ηΦ
x ψ) = Eα̂(Φ)Eα̂(ηxψ).

We get back to the proof of the spectral gap of the spin process.

Proof of Proposition 5.4. � First note that we can decompose any function f = f(c1, c2) in Tω0 as

f = f̃ + fsb, where

f̃ = c1
∑
x∈AN

η̃xψx(η) and fsb = (c1Eα̂(ω) + c2)
∑
x∈AN

ηxψx(η).

We �rst show that f̃ and fsb are orthogonal in L
2(µα̂). Considering a function f ∈ Tω0 with mean zero

and thanks to the decomposition above,

Eα̂
(
f̃fsb

)
= C

∑
x∈AN

Eα̂

η̃x
 ∑
y∈AN

ηyψxψy


vanishes thanks to the �rst identity in Lemma 5.6 and

Eα̂
(
f2
)

= Eα̂
(
f̃2
)

+ Eα̂
(
f2
sb

)
.

With the same reasoning, it is not hard to see that Eα̂
(
fsbLf̃

)
= Eα̂

(
f̃Lfsb

)
= 0, thus we can also

write

Eα̂ (fLf) = Eα̂
(
f̃Lf̃

)
+ Eα̂ (fsbLfsb) ,

i.e D(f) = D(f̃) + D(fsb). Thanks to Lemma 5.5, to get Proposition 5.4, it is therefore su�cient to show

the result for any function f =
∑
x∈AN η̃xψx(η). We can also assume without loss of generality that for

any x, ψx1ηx=0 = 0, since when the site is empty the corresponding contribution vanishes. For any such

f ,

Eα̂
(
f2
)

=
∑

x,y∈AN

Eα̂ (η̃xη̃yψxψy) .

Thanks to Lemma 5.6 and to our assumption on the ψx's, the expectation above vanishes whenever x 6= y.

Furthermore,

Eα̂
(
η̃2
xψ

2
x

)
= C(α̂)Eα̂

(
ψ2
x

)
,

therefore

(5.6) Eα̂
(
f2
)

= C(α̂)
∑
x∈AN

Eα̂
(
ψ2
x

)
.

We now turn our attention to Eα̂(fLf). For any site x and any angle-blind function ψ ∈ S, we can
write

L(η̃xψ) = η̃xLψ +
∑
| z |=1

1{ηxηx+z=0}ψ(η̂x,x+z)(η̃x,x+z
x − η̃x).

If we assume that ψ vanishes when the site x is empty,

1{ηxηx+z=0}ψ(η̂x,x+z) = 1{ηx=0,ηx+z=1}ψ(η̂x,x+z),

and the quantity above can be rewritten

L(η̃xψ) = η̃xLψ + h(ψ, x, ·),

where we denoted

h(ψ, x, η) =
∑
| z |=1

1{ηx=0, ηx+z=1}ψ(η̂x,x+z)η̃x+z =
∑
| z |=1

η̃x+z(1− ηx)ψ(η̂x,x+z).

It follows that

−Eα̂ (fLf) =
∑

x,y∈AN

[
−Eα̂(η̃xη̃yψxLψy)− Eα̂(η̃xψxh(ψy, y, ·))

]
.
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Since ψxLψy is still an angle-blind function, the �rst term in the right-hand side above vanishes as soon

as x 6= y, whereas if x = y, it is equal by Lemma 5.6 to

−Eα̂(η̃2
xψxLψx) = C(α̂)D(ψx),

because ψxLψx still vanishes whenever the site x is unoccupied. Furthermore, by de�nition of h,

Eα̂(η̃xψxh(ψy, y, ·)) =
∑
| z |=1

Eα̂
(
η̃xη̃y+z

function of η︷ ︸︸ ︷
(1− ηy)ψx(η̂)ψy(η̂y,y+z)

)
,

and as before, this expectation vanishes as soon as x 6= y + z. The only remaining terms are those for

which y and x are neighbors, therefore∑
x,y∈AN

Eα̂(η̃xψxh(ψy, y, ·)) =
∑

x∈AN ,| z |=1

Eα̂
(
η̃2
x(1− ηx+z)ψxψx+z(η̂

x,x+z)
)

=C(α̂)
∑

x∈AN ,| z |=1

Eα̂
(
(1− ηx+z)ψxψx+z(η̂

x+z,x)
)
.(5.7)

Since D (φ) = −Eα̂(φLφ), up to this point we have obtained that

(5.8) D(f) = C(α̂)
∑
x∈AN

D(ψx)−
∑
| z |=1

Eα̂
(
(1− ηx+z)ψxψx+z

(
η̂x,x+z

)) .
Let us introduce the Dirichlet form locally cropped in x

(5.9) D∗x(ψ) =
1

2
Eα̂

 ∑
y∈AN ,| z |=1
y,y+z 6=x

ηy(1− ηy+z)(ψ(η̂y,y+z)− ψ(η̂))2

 ,

which forbids jumps to and from the site x. Since ψx vanishes whenever the site x is empty, the quantity

ηx(1− ηx+z)(ψx(η̂y,y+z)− ψx(η̂))2 is also equal to (1− ηx+z)ψx(η̂)2, and a similar argument with ψx+z

allows us to rewrite equation (5.8)

D(f) = C(α̂)
∑
x∈AN

D∗x(ψx) +
1

2

∑
| z |=1

Eα̂
(

(1− ηx+z)
[
ψx+z

(
η̂x,x+z

)
− ψx(η̂)

]2).
To obtain Theorem 5.4, thanks to the identity above combined to (5.6) it is enough to prove that for

some constant C

(5.10)
∑
x∈AN

Eα̂
(
ψ2
x

)
≤ CN2

∑
x∈AN

D∗x(ψx) +
∑
| z |=1

Eα̂
(

(1− ηx+z)
[
ψx+z

(
η̂x,x+z

)
− ψx

]2) .
Lemma 5.7 (Spectral gap for the exclusion process with a frozen site)

Let us consider a �xed site x ∈ AN . For any α̂ ∈ M1(S) such that 0 < α < 1, there exists a constant

C = C(α) such that for any angle-blind function ψ ∈ S with Eα̂(ψ | ηx = 1) = 0

Eα̂(ψ2 | ηx = 1) ≤ CN2D∗x(ψ | ηx = 1),

where the conditioned Dirichlet form is de�ned by the conditional expectation Eα̂(. | ηx = 1) instead of

Eα̂,
D∗x(ψ | ηx = 1) = −Eα̂(ψLψ | ηx = 1).

Proof of Lemma 5.7. � We do not give the detail of this proof. It is quite similar to the proof without

the frozen site for an angle-blind function, the only di�erence being that whenever a path should go

through the site x, the path is bypassed around it, which results in a larger constant C but does not

a�ect the order N2.
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We now take a look at the left-hand side of Equation (5.10). Since ψx vanishes whenever ηx = 0 we

have Eα̂(ψx | ηx = 1) = α−1Eα̂(ψx), the previous Lemma applied to ψx − Eα̂(ψx | ηx = 1) yields

(5.11)
∑
x∈AN

Eα̂
(
ψ2
x

)
− 1

α
Eα̂ (ψx)

2 ≤ CN2
∑
x∈AN

D∗x(ψx).

Notice that since
∑
x∈AN η̃x is constant for the simple exclusion dynamic on AN , we can add or subtract

to f the function
∑
x∈AN η̃xψ, where ψ = N−2

∑
x∈AN ψx at the cost of an angle-blind function. We can

therefore safely assume that
∑
x∈AN ψx = 0. Since∑

x,y∈AN

[Eα̂ (ψx)− Eα̂(ψy)]2 =
∑

x,y∈AN

[Eα̂(ψx)2 + Eα̂(ψy)2]− 2
∑

x,y∈AN

Eα̂(ψx)Eα̂(ψy)

= 2N2
∑
x

Eα̂(ψx)2,

since the last term of the �rst line vanishes thanks to our previous assumption. Furthermore, consider

the family of paths (γx,y)x,y∈AN going from x to y, de�ned thusly : starting from x, the path γx,y starts

straight in the �rst direction, until reaching the �rst coordinate of y. then, it goes in the second direction

until reaching y. With this construction, each edge a is used at most N3 times in the γx,y's. Letting

na be the number of times the edge a is used in one of the paths γx,y, we hence have na ≤ CN3 ∀a.
Furthermore, each path γx,y has length at most 2N . With this construction, we therefore write, since

ψx − ψy =
∑

a=(a1,a2)∈γx,y

(ψa1 − ψa2),

and (
∑n
k=1 xk)2 ≤ n

∑n
k=1 x

2
k that∑

x,y∈AN

[Eα̂ (ψx)− Eα̂(ψy)]2 ≤
∑

x,y∈AN

2N
∑

(a1,a2)∈γx,y

[Eα̂ (ψa1)− Eα̂(ψa2)]2

=2N
∑

(a1,a2)⊂AN

na[Eα̂ (ψa1)− Eα̂(ψa2)]2

≤2N4
∑

(a1,a2)⊂AN

[Eα̂ (ψa1)− Eα̂(ψa2)]2

=2N4
∑

x∈AN ,| z |=1

[Eα̂ (ψx+z)− Eα̂(ψx)]2.

Using the two previous identities, we obtain that

(5.12)
∑
x∈AN

Eα̂(ψx)2 ≤ N2
∑

x∈AN ,| z |=1

[Eα̂ (ψx+z)− Eα̂(ψx)]2.

Let us consider Z(x) the empty site nearest to x, chosen arbitrarily if there are multiple candidates. We

want to reach from η a con�guration with an empty site in x + z to o�er some counterweight to the

second term h in the left-hand side above. To do so, we merely have to "move" the empty site from Z(x)

to x+ z, without crossing any edge twice, which can be done in n ≤ 2( | Z(x)− x | + 1) allowed jumps

along the edges a1, . . . , an. Furthermore, we can also assume that no such edge is of the form (x, x + z)

since to bring the empty site to x + z, one only has to go around the site x. For any integer r ≤ n let

η̂(r) = η̂a1...ar be the con�guration where the empty site has traveled along r edges. We denote η̂(0) = η,

and notice that η̂
(n)
x+z = 0. Furthermore, for any function h, since every successive jump is allowed (each

initial site is occupied, each end site is empty) we have(
1− η̂(n)

x+z

)
h
(
η̂(n)

)
= h

(
η̂(n)

)
= h(η̂) +

n∑
r=1

h
(
η̂(r)

)
− h

(
η̂(r−1)

)
= h(η̂) +

n∑
r=1

∇arh
(
η̂(r−1)

)
,

with ∇a the gradient de�ned at the start of Section 5.1. We can rewrite this identity

h(η̂) =
(

1− η̂(n)
x+z

)
h
(
η̂(n)

)
−

n∑
r=1

∇arh
(
η̂(r−1)

)
.
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Note that in the formula above, both the n and the η̂(r)'s depend on η, since they depend on the position

of the nearest empty site. From here, letting respectively h = ψx and h = ψx+z (η̂x,x+z), for which we

can choose a sequence of bonds (ar), we obtain

Eα̂ (ψx+z)− Eα̂(ψx) =Eα̂
(
ψx+z(η̂

x,x+z)− ψx
)

=Eα̂

(
n∑
r=1

[
∇arψx

(
η̂(r−1)

)
−∇arψx+z

((
η̂x,x+z

)(r−1)
)])

+ Eα̂
((

1− η̂(n)
x+z

) [
ψx+z

((
η̂x,x+z

)(n)
)
− ψx

(
η̂(n)

)])
.(5.13)

The �rst part of the quantity above can be controlled thanks to the Dirichlet form of the ψx's. Indeed,

restricting to the con�gurations η̂ with at least one empty site (if not, f = 0, and the result is trivially

true)

Eα̂

n(Z(x))∑
r=1

∇arψx
(
η̂(r−1)

) =
∑

x0∈AN

n(x0)∑
r=1

Eα̂
(
1{Z(x)=x0}∇arψx

(
η̂(r−1)

))

≤
∑

x0∈AN

n(x0)∑
r=1

Eα̂
(
1{Z(x)=x0}

)1/2 Eα̂([∇arψx (η̂(r−1)
)]2)1/2

≤
∑

x0∈AN

Pα̂
(
1{Z(x)=x0}

)1/2 n(x0)∑
r=1

Eα̂
(

[∇arψx]
2
)1/2

≤
∑
l≤N/2

∑
| x−x0 | =l

Pα̂
(
1{Z(x)=x0}

)1/2
Cl2Eα̂

 ∑
a∈Bl(x)
a6=(x,x+z)

[∇aψx]
2


1/2

,

for some universal constant C. In the last inequality, we used that
∑n
i=1

√
xi ≤ n

√∑n
i=1 xi, and the fact

that each edge in the a′is is used at most once, and that the number of edges in a box of side length 2l+ 1

edges is of order l2. Since the probability that Z(x) = x0 is bounded from above by (1− α)( | x−x0 | −1)2 ,

we �nally obtain that

(5.14) Eα̂

n(Z(x))∑
r=1

∇arψx
(
η̂(r−1)

) ≤ ∑
l≤N/2

Cl3(1− α)(l−1)2D∗x,l(ψx)1/2 ≤ C(α)D∗x(ψx)1/2,

where D∗x is the Dirichlet form deprived of the jumps between x and its neighbors de�ned in equation

(5.9), and D∗x,l is the restriction of D∗x to jumps in the box of side 2l + 1 centered in x. We obtain in a

similar fashion, using this time a sequence of bonds (ar) moving the nearest empty site to x this time,

avoiding the sites around x+ z,

(5.15) Eα̂

(
−

n∑
r=1

∇arψx+z

((
η̂x,x+z

)(r−1)
))
≤ C(α)Dx+z(ψx+z)

1/2.

Finally, we can write

Eα̂
((

1− η̂(n)
x+z

) [
ψx+z

((
η̂x,x+z

)(n)
)
− ψx

(
η̂(n)

)])
=Eα̂

(
(1− ηx+z)

[
ψx+z

((
η̂x,x+z

))
− ψx

])
≤Eα̂

(
(1− ηx+z)

[
ψx+z

((
η̂x,x+z

))
− ψx

]2)1/2

.(5.16)

The three bounds (5.14), (5.15) and (5.16) combined with (5.13) guarantee, since

(a+ b+ c)2 ≤ 3(a2 + b2 + c2),

that for some di�erent constant C depending on α̂,

N2
∑
x∈AN

Eα̂[(ψx+z)− Eα̂(ψx)]2 ≤N2
∑
x∈AN

[
CD∗x(ψx) +

∑
| z |=1

Eα̂
(
(1− ηx+z)

(
ψx+z

(
η̂x,x+z

))
− ψx

)2 ]
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≤C ′N2
∑
x∈AN

[
D∗x(ψx) +

∑
| z |=1

Eα̂
(
(1− ηx+z)

(
ψx+z

(
η̂x,x+z

))
− ψx

)2 ]
This together with (5.12) and (5.11) then yields that (5.10) holds as desired. This concludes the proof of

the spectral gap restricted to the set Tω0 .

5.3. Comparison with an equilibrium measure. � In this section, we prove a result that will

be used several times throughout the proof, and which allows to control the exponential moments of a

functional X by a variational formula involving the equilibrium measure µ∗α. This control is analogous

to the so called sector condition for asymmetric processes, which guarantees that the mixing due to the

symmetric part of the generator is su�cient to balance out the shocks provoked by the antisymmetric part.

Remark 5.8. � [Non-stationarity of µ∗α for the weakly asymmetric process] It has already been pointed

out that L is self-adjoint w.r.t any product measure µα̂, which is not in general the case of LG,β=0. How-

ever, LG,β=0 is self-adjoint w.r.t. µ∗α due to the uniformity in θ of that measure. Asymmetric generators

are usually "almost" anti-self-adjoint, in the sense that one could expect LWA∗ = −LWA. This identity
is for example true for the TASEP , for which the asymmetry is constant and does not depend on each

particle.

It is not true in our case however, due to the exclusion rule and the dependence of the asymmetry

in the angle of the particle. To clarify this statement, see the adjoint operator as a time-reversal, and

consider a con�guration with two columns of particles wanting to cross each other. This con�guration

would be stuck under LWA, however, under the time-reversed dynamics LWA∗, it starts to move. This

illustrates that in our model, the asymmetric generator LWA is not anti-self-adjoint.

Let us denote accordingly to the previous notation (2.17) and recalling the de�nition of the λ′is (2.1),

for i = 1, 2

jλii = λi(θ0)η0(1− ηei)− λi(θei)ηei(1− η0).

Elementary computations yield accordingly that the adjoint in L2(µ∗α) of LWA is in fact given by

(5.17) LWA,∗ = −LWA + 2
∑
x∈T2

N

∑
i=1,2

τxj
λi
i .

This identity will be necessary to prove the following result, which compares the measure of the process

with drift to the measure µ∗α.

Lemma 5.9. � Fix a function

X : ΣN × [0, T ] −→ R
(η̂, t) 7→ Xt(η̂)

.

For any γ > 0, we have

1

γN2
logEλ,0µ∗α

[
exp

(
γN2

∫ T

0

Xt(η̂(t))dt

)]
≤ 2Tλ2

γ
+

1

γ

∫ T

0

dt sup
ϕ

{
E∗α (ϕγXt(η̂))− 1

2
D(ϕ)

}
,

where the supremum in the right-hand side is taken on the densities w.r.t. µ∗α.

Proof of Lemma 5.9. � Let us denote by Pλ,Xt the modi�ed semi-group

Pλ,Xt = exp

[∫ t

0

Lβ=0
N + γN2Xsds

]
.

where Lβ=0
N is the alignment-free generator introduced in (3.15) and let us denote in this Section by

< ., . >α the inner product in L2(µ∗α). For any i = 1, 2, and any H, and T > 0, the Feynman-Kac

formula guarantees that

Eλ,0µ∗α

[
exp

(
γN2

∫ T

0

Xt(η̂(t))dt

)]
= < 1, Pλ,XT 1 >α ≤ < Pλ,XT 1, Pλ,XT 1 >1/2

α .(5.18)
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by de�nition of Pλ,Xt ,

(5.19)
d

dt
< Pλ,Xt 1, Pλ,Xt 1 >α=< Pλ,Xt 1, (Lβ=0

N + Lβ=0,∗
N + 2γN2Xt)P

λ,X
t 1 >α,

where M∗ stands for the adjoint in L2(µ∗α) of M . By de�nition of Lβ=0
N , we have

Lβ=0,∗
N = N2L∗ +NLWA,∗ + LG,β=0,∗.

We now work to control the weakly asymmetric contribution in the right-hand side of equation (5.19),

which does not vanish in our case, as a consequence of Remark 5.8. For that purpose, consider a function

ϕ ∈ L2(µ∗α), identity (5.17) yields

< ϕ, (LWA + LWA,∗)ϕ >α= 2
∑
x∈T2

N

∑
i=1,2

E∗α
[
ϕ2τxj

λi
i

]
.

Recall the de�nition of ∇af given in equation (3.4). A change of variable η̂ 7→ η̂x,x+ei on the second part

of τxj
λi
i yields that for any x

E∗α(ϕ2τxj
λi
i ) = −E∗α(λi(θ0)∇x,x+eiϕ

2) = −E∗α
[
λi(θ0)

(
ϕ(η̂x,x+ei) + ϕ

)
∇x,x+eiϕ

]
,

therefore applying the elementary inequality ab ≤ a2/2 + b2/2, to

a =
√
N∇x,x+eiϕ and b = −λi(θ0)√

N

(
ϕ(η̂x,x+ei) + ϕ

)
,

we obtain (since λi(θ) is either λ cos(θ) or λ sin(θ) and is less than λ)

< ϕ, (LWA + LWA,∗)ϕ >α≤
N

2

∑
x∈T2

N

∑
i=1,2

E∗α
[
(∇x,x+eiϕ)

2
]

+
λ2

2N

∑
x∈T2

N

∑
i=1,2

E∗α
[
(ϕ(η̂x,x+ei) + ϕ)2

]
.

Since (ϕ(η̂x,x+ei) + ϕ)2 is less than 2ϕ2(η̂x,x+ei) + 2ϕ2, we �nally obtain that,

< ϕ,N(LWA + LWA,∗)ϕ >α≤ −N2E∗α [ϕLϕ] + 4λ2N2E∗α
[
ϕ2
]
.

In particular, applying this identity to ϕ = Pλ,Xt 1, we deduce from equation (5.19) that

d

dt
< Pλ,Xt 1, Pλ,Xt 1 >α≤ < Pλ,Xt 1,

[
2γN2Xt +N2L+ 2LG,β=0 + 4λ2N2

]
Pλ,Xt 1 >α

≤
(
νγ(t) + 4λ2N2

)
< Pλ,Xt 1, Pλ,Xt 1 >α +2 < Pλ,Xt 1,LG,β=0Pλ,Xt 1 >α,

where νγ(t) is the largest eigenvalue of the self-adjoint operator N2L + 2γN2Xt. It is not hard to see

that the second term above is non-positive. Indeed, for any function ϕ on ΣN , by de�nition of LG,β=0

(cf. equation (2.5))

< ϕ,LG,β=0ϕ >α =
∑
x∈T2

N

E∗α
(
ηxϕ(η̂)

[
1

2π

∫
S

ϕ(η̂x,θ)dθ − ϕ(η̂)

])

= −1

2

∑
x∈T2

N

E∗α

(
ηx

[
1

2π

∫
S

ϕ(η̂x,θ)dθ − ϕ(η̂)

]2
)
≤ 0.

To establish the last identity, we only used that under µ∗α, the angles are chosen uniformly, and therefore

E∗α (ηxϕ(θx)) = E∗α(ηx)(1/2π)
∫
S
ϕ(θ′)dθ′. We thus obtain that

d

dt
< Pλ,Xt 1, Pλ,Xt 1 >α≤

(
νγ(t) + 4λ2N2

)
< Pλ,Xt 1, Pλ,Xt 1 >α,

and Grönwall's inequality therefore yields that

< Pλ,XT 1, Pλ,XT 1 >α≤ exp

(
4Tλ2N2 +

∫ T

0

νγ(t)dt

)
.

This, combined with (5.18), allows us to write

(5.20)
1

γN2
logEλ,0µ∗α

[
exp

(
γN2

∫ T

0

Xtdt

)]
≤ 2Tλ2

γ
+

∫ T

0

νγ(t)

2γN2
dt.
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The variationnal formula for the largest eigenvalue of the self-adjoint operator N2(L+ 2γXt) yields that

νγ(t) =N2 sup
ψ, E∗α(ψ2)=1

E∗α (ψ(L+ 2γXt)ψ) = 2N2 sup
ϕ

{
γE∗α (Xtϕ)− 1

2
D(ϕ)

}
,

where the second supremum is taken over all densities ϕ w.r.t. µ∗α, which together with (5.20) concludes

the proof of Lemma 5.9. To prove the last identity, one only has to note that the supremum must be

achieved by functions ψ of constant sign, so that we can let ϕ =
√
ψ.

5.4. Relative compactness of the sequence (QN )N∈N. � We prove in this Section that the se-

quence (QN )N∈N, de�ned in equation (A.4), is relatively compact for the weak topology. It follows from

two properties stated in Proposition 5.10 below. The �rst one guarantees that the �xed-time marginals

are controlled, whereas the second ensures that the time-�uctuations of the process's measure are not too

wide.

Given a function H : T2 × S→ R, we already introduced in the outline of Section 2.4 the notation

< π,H >=

∫
T2×S

H(u, θ)π(du, dθ).

The following result yields su�cient conditions for the weak relative compactness of the sequence (QN )N .

Proposition 5.10 (Characterization of the relative compactness onP(M[0,T ]))

Let PN be a sequence of probability measures on the set of trajectories M[0,T ] de�ned in (2.11), such

that

(1) There exists some A0 > 0 such that for any A > A0,

lim sup
N→∞

PN

(
sup

s∈[0,T ]

< πt, 1 > ≥ A

)
= 0

(2) For any H ∈ C(T2 × S), ε > 0,

lim
δ→0

lim sup
N→∞

PN

 sup
| t−t′ |≤δ
0≤t′,t≤T

| < πt′ , H > − < πt, H > | > ε

 = 0.

Then, the sequence (PN )N∈N is relatively compact for the weak topology.

Since this proposition is, with minor adjustments, found in [2] (cf. Theorem 13.2, page 139), we do

not give its proof, and refer the reader to the latter. For now, our focus is the case of the AEP, for which

both of these conditions are realized. The strategy of the proof follows closely that of Theorem 6.1, page

180 of [27], but requires two adjustments. First, our system is driven out of equilibrium by the drift, and

we therefore need to use the Lemma 5.9 stated in the previous section to carry out the proof. The second

adaptation comes from the presence of the angles, and since most of the proof is given for a test function

H(u, θ) = G(u)ω(θ), we need to extend it in the general case where H cannot be decomposed in this

fashion.

Proposition 5.11 (Compactness of (QN )N∈N). � The sequence (QN )N∈N de�ned in equation (A.4)

of probabilities on the trajectories of the AEP satis�es conditions (1) and (2) above, and is therefore

relatively compact.

Proof of Proposition 5.11. � The �rst condition does not require any work since the AEP only allows

one particle per site and we can thus choose A0 = 1. Regarding the second condition, recall that

(5.21) < πNt′ , H > − < πNt , H >=

∫ t

t′
LN < πNs , H > ds+MH

t −MH
t′ ,
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where MH is a martingale with quadratic variation of order N−2. For more details, we refer the reader

to appendix A of [27]. First, Doob's inequality yields uniformly in δ the crude bound

Eλ,β
µN

(
sup
t′,t≤δ

∣∣MH
t −MH

t′

∣∣ ) ≤ 2Eλ,β
µN

(
sup

0≤t≤T

∣∣MH
t

∣∣ ) ≤ C(H)N−1,(5.22)

where Eλ,β
µN

is the expectation w.r.t the measure Pλ,β
µN

introduced just after De�nition 3.4 of the complete

process η̂[0,T ] started from the initial measure µN .

Regarding the integral part of (5.21), we �rst assume like earlier that H takes the form

H(u, θ) = G(u)ω(θ),

where G and ω are both C2 functions. When this is not the case, an application of the periodic Weierstrass

Theorem will yield the wanted result. Then, following the same justi�cation as in Section 2.4 we can write∫ t

t′
LN < πNs , H > ds =

1

N2

∫ t

t′
ds
∑
x∈T2

N

τx

(
2∑
i=1

[Njωi + rωi ] (s)∂ui,NG(x/N) + τxγ
ω(s)G(x/N)

)
,

where the instantaneous currents jω, rω and γω were introduced in De�nition 2.8.

The weakly asymmetric and Glauber contributions are easy to control, since both jump rates rω and

γω can be bounded by a same constant K, and we can therefore write∫ t

t′

(
NLWA + LG

)
< πNs , H > ds ≤ K

∫ t

t′
ds

1

N2

∑
x∈T2

N

| G(x/N) | +

2∑
i=1

| ∂ui,NG(x/N) |

→N→∞ K(t− t′)
∫
T2

| G(u) | +

2∑
i=1

| ∂uiG(u) | du,

which vanishes as soon as | t′ − t | ≤ δ in the limit δ → 0. Finally,

QN

(
sup

| t−t′ |≤δ
0≤t′,t≤T

| < πt′ , H > − < πt, H > | > ε

)

≤ Pλ,β
µN

 sup
| t−t′ |≤δ
0≤t′,t≤T

∣∣∣∣ ∫ t

t′
N2L < πNs , H > ds

∣∣∣∣ > ε/3



+ Pλ,β
µN

 sup
| t−t′ |≤δ
0≤t′,t≤T

∣∣∣∣ ∫ t

t′

(
NLWA + LG

)
< πNs , H > ds

∣∣∣∣ > ε/3



+ Pλ,β
µN

 sup
| t−t′ |≤δ
0≤t′,t≤T

∣∣MH
t −MH

t′

∣∣ > ε/3

 .
The second line of the right-hand side vanishes in the limit N →∞ then δ → 0 thanks to the computation

above, whereas the third line also vanishes thanks to Markov's inequality and equation (5.22). Finally,

the �rst term vanishes accordingly to Lemma 5.12 below and the Markov inequality, thus completing the

proof in the case where H(u, θ) = G(u)ω(θ). The general case is derived just after the proof of Lemma

5.12.

Lemma 5.12. � For any function H(u, θ) = G(u)ω(θ) ∈ C2,0(T2 × S),

(5.23) lim
δ→0

lim sup
N→∞

Eλ,β
µN

 sup
| t′−t |≤δ
0≤t′,t≤T

∣∣∣∣ ∫ t

t′
N2L < πNs , H > ds

∣∣∣∣
 = 0.
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Proof of Lemma 5.12. � The proof of this Lemma follows, with minor adjustments to account for the

drift, the proof given in [27]. First, we get rid of the supremum and come back to the reference measure

with �xed parameter α ∈]0, 1[ thanks to Lemma 5.9 of Section 5.3. Let us denote

(5.24) g(t) =

∫ t

0

N2L < πNs , H > ds.

We now compare the measure of the AEP to that of the process started from equilibrium (µN = µ∗α),

and with no alignment (β = 0), according to Proposition 3.10 with A = RN2 and

X
(
η̂[0,T ]

)
= sup
| t′−t |≤δ
0≤t′,t≤T

∣∣∣∣ ∫ t

t′
N2L < πNs , H > ds

∣∣∣∣ = sup
| t′−t |≤δ
0≤t′,t≤T

| g(t)− g(t′) |.

This yields that for some constant K0 > 0, the expectation in equation (5.23) is bounded from above for

any positive R by

(5.25)
1

RN2

K0N
2 + logEλ,0µ∗α exp

RN2 sup
| t′−t |≤δ
0≤t′,t≤T

| g(t)− g(t′) |


 .

We therefore reduce the proof of Lemma 5.12 to showing that

(5.26) lim
δ→0

lim sup
N→∞

1

R(δ)N2
logEλ,0µ∗α exp

R(δ)N2 sup
| t′−t |≤δ
0≤t′,t≤T

| g(t)− g(t′) |

 = 0,

where R(δ) goes to ∞ as δ goes to 0.

Let p and ψ be two strictly increasing functions such that ψ(0) = p(0) = 0 and ψ(+∞) = +∞, we

denote

I =

∫
[0,T ]×[0,T ]

ψ

(
| g(t)− g(t′) |
p(| t′ − t |)

)
dt′dt,

the Garsia-Rodemich-Rumsey inequality [23] yields that

(5.27) sup
| t′−t |≤δ
0≤t′,t≤T

| g(t)− g(t′) | ≤ 8

∫ δ

0

ψ−1

(
4I

u2

)
p(du).

Given any positive a, we choose p(u) =
√
u and ψ(u) = exp(u/a) − 1, hence ψ−1(u) = a log(1 + u). An

integration by parts yields that∫ δ

0

ψ−1

(
4I

u2

)
p(du) = a

∫ δ

0

log

(
1 +

4I

u2

)
du

2
√
u

= a
√
δ log

(
1 + 4Iδ−2

)
+ a

∫ δ

0

8I

u3 + 4Iu

√
udu

≤ a
√
δ log

(
1 + 4Iδ−2

)
+ a

∫ δ

0

2√
u
du

= a
√
δ
[
log
(
δ2 + 4I

)
− 2 log δ + 4

]
≤ a
√
δ

[
− log δ

2
log
(
δ2 + 4I

)
− 4 log δ

]
≤ a
√
δ
[
−4 log δ log

(
δ2 + 4I

)
− 4 log δ

]
,(5.28)

since for any δ < e−2, we have − log(δ) > 2. From equations (5.27) and (5.28) we deduce that

logEλ,0µ∗α exp

RN2 sup
| t′−t |≤δ
0≤t′,t≤T

| g(t)− g(t′) |

 ≤ logEλ,0µ∗α exp
(
−32aRN2

√
δ log δ

[
1 + log

(
δ2 + 4I + 1

)])
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holds for any a > 0. For δ < 1, Let us choose a = −(32RN2
√
δ log δ)−1 > 0, we can write for the second

term of (5.25) the upper bound

1

RN2
logEλ,0µ∗α exp

RN2 sup
| t′−t |≤δ
0≤t′,t≤T

| g(t)− g(t′) |

 ≤ 1

RN2

[
1 + log

(
1 + δ2 + 4Eα̂ (I)

)]
.

By de�nition,

I =

∫
[0,T ]×[0,T ]

exp


∣∣∣ ∫ tt′ N2L < πNu , H > du

∣∣∣
a
√
| t− t′ |

 dt′dt− T 2.

Let us assume, purely for convenience, that T > 1/2, for δ su�ciently small, we have 4T 2 − 1− δ2 > 0,

and the quantity inside the limit in equation (5.26) can be estimated by

(5.29)
1

RN2
logEλ,0µ∗α exp

RN2 sup
| t′−t |≤δ
0≤t′,t≤T

| g(t)− g(t′) |


≤ 1

RN2

1 + log 4Eλ,0µ∗α

∫
[0,T ]×[0,T ]

exp


∣∣∣ ∫ tt′ N2L < πNs , H > ds

∣∣∣
a
√
| t′ − t |

 dt′dt

 .
If T ≤ 1/2, we simply carry out a constant term in the log above, which does not alter the proof.

Let us take a look at the two constants a and R. Noting the �rst bound on the entropy mentioned

earlier, in order to keep the �rst term of (5.25) in check, R = R(δ) must simply grow to∞. Furthermore,

we previously obtained that a = −(RN232
√
δ log δ)−1, we can choose a = N−2, thus R = −1/32

√
δ log δ,

which is non-negative, and goes to ∞ as δ → 0+. Therefore, the second term above can be rewritten

1

RN2
log

∫
[0,T ]×[0,T ]

4Eλ,0µ∗α exp

 ∣∣∣∣∣∣
∫ t

t′

N

| t′ − t |1/2
∑
x∈T2

N

jωx,x+ei(s)∂ui,NG(x/N)ds

∣∣∣∣∣∣ dt′dt
 .

In order to estimate the expectation above, we can get rid of the absolute value, since e| x | ≤ ex + e−x,

and since the function G is taken in a symmetric class of functions. Furthermore, Lemma 5.9, applied

with A = 1 yields that the second term in the right-hand side of (5.29) is less than

(5.30)
1

RN2
log

∫
[0,T ]×[0,T ]

exp

[
(t− t′)

2

[
4λ2N2 + νN (G, i)

]]
dtdt′,

where νN (G, i) is the largest eigenvalue in L2(µ∗α) of the self-adjoint operator

N2L+
2N

| t′ − t |1/2
∑
x∈T2

N

jωx,x+ei∂ui,NG(x/N),

which can be rewritten as the variational formula

(5.31) νN (G, i) = sup
f

 2N

| t′ − t |1/2
∑
x∈T2

N

∂ui,NG(x/N)E∗α
(
fjωx,x+ei

)
−N2D(f)

 ,

where the supremum is taken on all densities f w.r.t. µ∗α. In order to prove that the eigenvalue above is

of order N2, we now want to transform

N

| t′ − t |1/2
∑
x∈T2

N

∂ui,NG(x/N)E∗α
(
fjωx,x+ei

)
.

For any density f , since jωx,x+ei(η̂
x,x+ei) = −τxjωi , we can write

E∗α
(
fjωx,x+ei

)
∂ui,NG(x/N) =− 1

2
E∗α
[
(f(η̂x,x+ei)− f)jωx,x+ei

]
∂ui,NG(x/N)

≤ 1

4C
E∗α
(

(jωx,x+ei)
2
(√

f(η̂x,x+ei)−
√
f
)2
)
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+
C

4
(∂ui,NG(x/N))2E∗α

((√
f(η̂x,x+ei) +

√
f
)2
)
.

Since (jωx,x+ei)
2 ≤ ||ω||2∞ 1ηxηx+ei=0, and since

[√
f(η̂x,x+ei) +

√
f
]2 ≤ 2f(η̂x,x+ei) + 2f , we obtain the

upper bound

N

| t′ − t |1/2
∑
x∈T2

N

∂ui,NG(x/N)E∗α
(
fjωx,x+ei

)
≤

N ||ω||2∞
2C| t′ − t |1/2

D(f) +
N3C

| t′ − t |1/2
||∂uiG||

2
∞ ,

which holds for any positive C. We now set C = | t′ − t |−1/2 ||ω||2∞ /N so that the Dirichlet form con-

tributions in the variational formula (5.31) cancel out. We �nally obtain that for some positive constant

C1(G), independent of N ,

νN (G, i) ≤ C1(G)N2

| t− t′ |
,

which yields that (5.30) vanishes in the limit N →∞ and δ → 0, since R = R(δ) goes to ∞ as δ goes to

0. Finally, we have proved thanks to equation (5.29) that

lim
δ→0

lim sup
N→∞

1

RN2
logEλ,0µ∗α

exp

RN2 sup
| t′−t |≤δ
0≤t′,t≤T

| g(t)− g(t′) |


 = 0,

which concludes the proof of Lemma (5.12).

In order to complete the proof of Proposition 5.11, we still have to consider the case when H does not

take a product form G(u)ω(θ). In this case, since H is smooth it can be approximated by a trigonometric

polynomial in u1, u2 and θ. Each term of the approximation is then of the form G(u)ω(θ), and the previous

result can therefore be applied. More precisely, consider a smooth function H, and for any α > 0, there

exists a �nite family (pαijk)0≤i,j,k≤Mα
of coe�cients such that

sup
u∈T2,
θ∈S

∣∣∣∣∣∣ H(u, θ) −
∑

i,j,k∈J0,MK

pαijku
i
1u
j
2θ
k

∣∣∣∣∣∣ ≤ α.
Let us now �x an ε > 0, and let us take α = ε/4. Then, considering the corresponding family Pijk(u, θ) =

pαijku
i
1u
j
2θ
k we have that

∣∣ < πNt′ , H > − < πNt , H >
∣∣ ≤

∣∣∣∣∣∣ < πNt′ − πNt , H −
∑

i,j,k≤Mα

Pijk >

∣∣∣∣∣∣ +
∑

i,j,j≤Mα

∣∣ < πNt′ − πNt , Pijk >
∣∣ .

Since we allow at most 1 particle per site, and since H −
∑
i,j,k≤Mα

Pijk is smaller than ε/4, the �rst

term of the right-hand side above is less than ε/2. From this, we deduce that for the left-hand side to

be greater than ε, one of the terms
∣∣ < πNt′ , Pijk > − < πNt , Pijk >

∣∣ must be larger than ε/2M3
α. This

yields that

QN

 sup
| s−t | ≤δ
0≤t′,t≤T

| < πt′ , H > − < πt, H > | > ε


≤

∑
i,j,k≤Mα

QN

 sup
| t′−t |≤δ
0≤t′,t≤T

| < πt′ , Pijk > − < πt, Pijk > | >
ε

2M3
α

 .

Since α is �xed, we can now take the limit N → ∞ then δ → 0, in which the right-hand side vanishes

since all functions are decorrelated in u and θ. The result thus holds for any smooth function H, thus

completing the proof of Proposition 5.11.

We now prove that in the limit, the empirical measure of our process admits at any �xed time a density

w.r.t. the Lebesgue measure on T2.
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Lemma 5.13. � Any limit point Q∗ of the sequence QN is concentrated on measures π ∈ M̂T with

time marginals absolutely continuous w.r.t the Lebesgue measure on T2,

Q∗ (π, πt(du, dθ) = ρ̂t(u, dθ)du, ∀t ∈ [0, T ]) = 1.

Proof of Lemma 5.13. � For any smooth function H ∈ C(T2) con�guration η̂ in ΣN and any corre-

sponding empirical measure πN , we have

∣∣ < πN , H >
∣∣ =

∣∣∣∣∣∣ 1

N2

∑
x∈T2

N

H(x/N)ηx

∣∣∣∣∣∣ ≤ 1

N2

∑
x∈T2

N

|H(x/N) |.

The right-hand side above converges as N goes to ∞ towards
∫
T2 |H(u) |du. Since for any �xed function

H, the application

π 7→ sup
0≤t≤T

| < πt, H > |

is continuous, any limit point Q∗ of (QN )N is concentrated on trajectories π such that

sup
≤t≤T

| < πt, H > | ≤
∫
T2

|H(u) |du,

for any smooth function H on T2, and therefore is absolutely continuous w.r.t. the Lebesgue measure on

T2.

5.5. Regularity of the density and energy estimate. � In this Section we prove the regularity

of the particle densities needed for equation (2.13). The regularity of the total density is obtained quite

easily following the strategy for the proof used in [27], however the regularity of the density of each type

of particle (with angle θ) is more delicate, and requires the Replacement Lemma 4.1 as well as the tools

developed in Section 5.

Due to the non-constant di�usion coe�cients, the second derivative in equation (2.13) cannot be

applied to the test function, and we need, according to condition iii) of De�nition 2.5, to prove that

the macroscopic pro�les of our particle system are such that ∇ρ is well-de�ned. We are going to prove

a slightly stronger result than what is required, and also prove that ds(ρ)∇ρ̂(u, θ) is, once smoothed out

by a function ω, well-de�ned as well.

Recall from the irreducibility Section 3.12 the de�nition of the cuto� functions 1Ep , where Ep, de�ned

in equation (3.17), is the event on which the con�guration has at least two empty sites in the box Bp of

side length 2p+ 1. For any angle measure α̂, (cf. De�nition 3.1) we already introduced α =
∫
S
α̂(dθ), we

de�ne

(5.32) Fω,p(α̂) = Eα̂(ηω0 1Ep)

the cuto� density. Recall from Lemma 5.13 that any limit point Q∗ of (QN )N∈N is concentrated on

trajectories such that

πt(du, dθ) = ρ̂t(u, dθ)du,

and that we denote ρt(u) =
∫
S
ρ̂t(u, dθ). We can now state the following result.

Theorem 5.14. � Any limit point Q∗ of the measure sequence (QN )N is concentrated on trajectories

with ρt(u) and Fω,p(ρ̂t(u)) in H1 = W 1,2([0, T ]×T2) for any p ≥ 1. In other words, there exists functions

∂uiρt(u) and ∂uiF
ω,p(ρ̂t(u)) in L2([0, T ]× T2) such that for any smooth function H ∈ C1,2([0, T ]× T2)

(5.33)

∫∫
[0,T ]×T2

ρt(u)∂uiHt(u)dudt = −
∫∫

[0,T ]×T2

Ht(u)∂uiρt(u)dudt

and ∫∫
[0,T ]×T2

Fω,p(ρ̂t(u))∂uiHt(u)dudt = −
∫∫

[0,T ]×T2

Ht(u)∂uiF
ω,p(ρ̂t(u))dudt.
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Furthermore, there exists a constant K = K(T, λ, β, ρ̂0) such that for any limit point Q∗ of (QN ), and

for any i,

(5.34) EQ∗
(∫∫

[0,T ]×T2

[∂uiρt(u)]2dudt

)
< K.

In particular, any such limit point Q∗ is concentrated on measures satisfying condition iii) of De�nition

2.5.

Remark 5.15. � We obtain in fact throughout the proof a stronger regularity than ρ, Fω,p(ρ̂) ∈ H1.

Indeed, to prove the latter, one only requires according to Riesz representation theorem that∫
ρ∇H ≤ C

(∫
H2

)1/2

and

∫
Fω,p(ρ̂)∇H ≤ C

(∫
H2

)1/2

,

for some constant C. In our case, we are really going to prove that∫
ρ∇H ≤ C

(∫
ρ(1− ρ)H2

)1/2

and

∫
Fω,p(ρ̂)∇H ≤ C

(∫
ρH2

)1/2

,

which is obviously a stronger result since ρ ≤ 1. However, since ρ, Fω,p(ρ̂) ∈ H1 is su�cient to de�ne the

di�erential equation (2.13), we formulate the theorem above with the weaker result instead of the latter.

The proof is postponed to the end of this Section. The usual argument to prove this result is Riesz

representation theorem, that guarantees that if∫∫
[0,T ]×T2

ρt(u)∂uiHt(u)dudt ≤ C ||H||22

for any H there exists a function ∂uiρ ∈ L2([0, T ] × T2) such that (5.33) holds. We �rst prove that if

Fω,p(ρ̂) and ρ are in H1, then ds(ρ)∂uiρ
ω is properly de�ned. For that purpose, we need the estimate

given in Lemma 5.16 below. Fix a direction i ∈ {1, 2}, for any x ∈ T2
N , let (xk)k∈{0,εN} be de�ned by

xk = x + kei. Following the strategy of the energy estimate of [27], and recalling that τxρδN is the

empirical particle density in BδN (x), we let

VN,i(A, ε, δ,H, η̂) =
1

N2

∑
x∈T2

N

H(x/N)

(
1

ε
[Fω,p(τx+εNei ρ̂δN )− Fω,p(τxρ̂δN )]− AH(x/N)

εN

εN−1∑
k=0

τxkρδN

)
.

We also introduce the equivalent of VN,i for the angle-blind con�guration ηx instead of ηωx1Ep,x , and

let

WN,i(ε, δ,H, η) =
1

N2

∑
x∈T2

N

H(x/N)

(
1

ε
[τx+εNeiρδN − ρδN ]− 2H(x/N)

εN

εN−1∑
k=0

τxkρδN (1− ρδN )

)
.

Lemma 5.16. � Let {H l, l ∈ N} be a dense sequence in the separable algebra C0,1([0, T ]×T2) endowed

with the norm ||H||∞ +
∑2
i=1 ||∂uiH||∞. For any r = 1, 2 there exists two positive constants A0 = A0(p)

and K = K(T, λ, β, ρ̂0) such that for any k ≥ 1 and ε > 0,

lim sup
δ→0

lim sup
N→∞

Eλ,β
µN

(
max

1≤l≤k

∫ T

0

VN,i(A0, ε, δ,H
l
t , η̂(t))dt

)
≤ K0,

and

lim sup
δ→0

lim sup
N→∞

Eλ,β
µN

(
max

1≤l≤k

∫ T

0

WN,i(ε, δ,H
l
t , η(t))dt

)
≤ K0.

Proof of Lemma 5.16. � By the replacement Lemma 4.1, it is su�cient to show the result above without

the limit in δ, and with ṼN,i(A, ε,Ht, η̂) and W̃N,i(ε,Ht, η̂) instead of VN,i and WN,i, where

ṼN,i(A, ε,H, η̂) =
1

N2

∑
x∈T2

N

H(x/N)

(
1

ε

[
ηωx+εNei1τx+εNeiEp

− ηωx1τxEp
]
− AH(x/N)

εN

εN−1∑
k=0

ηxk

)
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=
1

N2

∑
x∈T2

N

H(x/N)
1

εN

εN−1∑
k=0

[
Nδi(η

ω
xk
1Ep,xk

)−AH(x/N)ηxk

]
,

and

W̃N,i(ε,H, η) =
1

N2

∑
x∈T2

N

H(x/N)

(
1

ε
[ηx+εNei − ηx]− AH(x/N)

εN

εN−1∑
k=0

ηxk(1− ηxk+1
)

)

=
1

N2

∑
x∈T2

N

H(x/N)
1

εN

εN−1∑
k=0

[
N(ηxk+1

− ηxk)− 2H(x/N)ηxk(1− ηxk+1
)
]
.

To obtain the second identities we merely rewrote Fω,p(τx+εNei ρ̂δN )−Fω,p(τxρ̂δN ) and τx+εNeiρδN−ρδN
as telescopic sums, and δi is the discrete derivative in the direction ei

δig(η̂) = τeig(η̂)− g(η̂).

Applying Proposition 3.10 to A = N2 and

X
(
η̂[0,T ]

)
= max

1≤i≤k

∫ T

0

ṼN,i(A, ε,Hi(t, ·), η̂(t))dt,

the contribution of the Glauber dynamics and the initial measure can be compared to the case β = 0

started from µ∗α,

Eλ,β
µN

(
max

1≤l≤k

∫ T

0

ṼN,i(A, ε,H
l
t , η̂(t))dt

)

≤ K0(T, β, ρ̂0) +
1

N2

(
logEλ,0µ∗α

[
exp

(
N2 max

1≤l≤k

∫ T

0

ṼN,i(A, ε,H
l
t , η̂(t))dt

)])
.

The max can be taken out of the log in the second term because for any �nite family (ul),

exp

(
max
l
ul

)
≤
∑

expul and lim sup
N→∞

N−2 log

(∑
l

ul,N

)
≤ max

l
lim sup
N→∞

N−2 log uN,l.

Furthermore, we apply Lemma 5.9 to γ = 1, and Xt = ṼN,i(A, ε,Ht, η̂), to obtain that

1

N2
logEλ,0µ∗α

[
exp

(
N2

∫ T

0

ṼN,i(A, ε,Ht, η̂(t))dt

)]

≤ 2Tλ2 +
1

2

∫ T

0

dt sup
ϕ

{
2E∗α

(
ϕṼN,i(A, ε,Ht, η̂)

)
−D (ϕ)

}
,

where the supremum is taken over all densities w.r.t. µ∗α. We obtain the same bound with W̃N,i instead

of ṼN,i. Letting

K(T, λ, β, ρ̂0) = K0(T, β, ρ̂0) + 2Tλ2,

to prove Lemma 5.16 it is therefore su�cient to show that the second term on the right-hand side of the

inequality above is non-positive for some constant A. This will be implied by Lemma 5.17 below, since

the time integral is now only applied to H.

Lemma 5.17. � Let p > 1 be some �xed integer, there exists a positive constant A0 depending only on

p such that for any H ∈ C1(T2), and ε > 0,

lim sup
N→∞

sup
ϕ

{
2E∗α

(
ṼN,i(A0, ε,H, η̂)ϕ

)
−D(ϕ)

}
≤ 0,

and

lim sup
N→∞

sup
ϕ

{
2E∗α

(
W̃N,i(ε,H, η̂)ϕ

)
−D(ϕ)

}
≤ 0,

where the supremums are taken over the densities ϕ w.r.t the product measure µ∗α.
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ei

τeiBp

Bp

0

yp

yp−1

y−p

zp

zp−1

z−p

Figure 5. Change of variable η̂ → T 0
i,pη̂.

Proof of Lemma 5.17. � We treat in full detail only the �rst upper bound, which requires to handle the

events Ep,x. The second can be derived in the exact same fashion, and with much less e�ort. We �rst

work on the expectation of the �rst part of ṼN,iϕ, which can be rewritten

(5.35)
2

N
E∗α

ϕ ∑
x∈T2

N

H(x/N)
1

εN

εN−1∑
k=0

(
ηωxk+ei1Ep,xk+1

− ηωxk1Ep,xk
) .

In order to transfer the gradient appearing in the expression above on ϕ, we need a speci�c change of

variable described in Figure 5. For that purpose, given x in the torus, we denote for any m ∈ J−p, pK

ym = x− pei +mei′ and zm = x+ (p+ 1)ei +mei′ ,

where i′ 6= i is the other direction on the torus. Given these, we denote for any con�guration η̂ by

T xi,p(η̂) =
((

(η̂x,x+ei)y−p,z−p
)...)yp,zp

the con�guration where the sites x and x+ ei have been inverted, as well as the boundary sites ym and

zm, according to Figure 5 : the purpose of the inversion between the ym's and zm's is to transform 1Ep,xk

into 1Ep,xk+1
.

By de�nition of T xi,p, we thus have

ηωx 1Ep,x(T xi,pη̂) = ηωx+ei1Ep,x+ei
(η̂),

therefore

E∗α
(
ϕ(ηωxk+ei1Ep,xk+1

− ηωxk1Ep,xk )
)

= E∗α
[(
ϕ(T xki,p η̂)− ϕ(η̂)

)
ηωxk1Ep,xk

]
.

Thanks to the elementary inequality

A(ϕ(η̂′)− ϕ(η̂)) ≤ A (
√
ϕ(η̂′) +

√
ϕ(η̂)) (

√
ϕ(η̂′)−√ϕ(η̂))

≤ A2γ

2
(
√
ϕ(η̂′) +

√
ϕ(η̂))

2
+

1

2γ
(
√
ϕ(η̂′)−√ϕ(η̂))

2
,

and the fact that | ηωx | ≤ ||ω||∞ ηx the quantity E∗α
(
H(x/N)ϕ(ηωxk+ei1Ep,xk+1

− ηωxk1Ep,xk )
)
can therefore

be bounded for any positive γ by

(5.36)
γ ||ω||2∞H(x/N)2

2
E∗α
((√

ϕ(T xki,p η̂) +
√
ϕ(η̂)

)2
ηxk

)
+

1

2γ
E∗α
(
1Ep,xk

(√
ϕ(T xki,p η̂)−√ϕ(η̂)

)2)
.

Since (a+ b)2 ≤ 2(a2 + b2), the expectation in the left-hand side above can be bounded from above by

γ ||ω||2∞H(x/N)2E∗α
(
ϕ(ηxk+1

+ ηxk)
)
.
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The corresponding part in (5.35) can therefore be bounded from above by

(5.37)
4γ ||ω||2∞

N

∑
x∈T2

N

H(x/N)2 1

εN

εN−1∑
k=0

E∗α (ϕηxk) + γNoN (1)

We now want to estimate the right-hand side of (5.36) by the Dirichlet form. Thanks to the cuto�

functions 1Ep,xk , for any k, according to Section 3.3 there exists a sequence of allowed jumps in Bp(xk)

allowing to reach T xki,p η̂ from η̂. More precisely, denote by (η̂l)l∈{0,...,L} the sequence of con�gurations such

that η̂0 = η̂, η̂L = T xki,p η̂, and for any l ≤ L, η̂l+1 = (η̂l)al,bl for two neighboring sites al and bl such that

the jump from al to bl is allowed in η̂l. Finally, we can choose L bounded by some constant Cp, and we

can safely assume by the construction in the Section 3.3 that each edge in Bp is used at most np times.

These notations allow us to rewrite for any �xed k ∈ {0, εN − 1}

E∗α
(

(
√
ϕ(Txk η̂)−√ϕ(η̂))

2
1Ep,xk

)
=E∗α

1τxkEp
(
L−1∑
l=0

√
ϕ
(
(η̂l)al,bl

)
−√ϕ(η̂l)

)2


≤CpE∗α

[
L−1∑
l=0

(√
ϕ
(
(η̂l)al,bl

)
−√ϕ(η̂l)

)2]

≤CpnpE∗α

 ∑
x,x+z∈Bp(xk)

(∇x,x+z
√
ϕ)2

 ≤ C̃pDBp(xk) (ϕ) ,

where DB (.) is the Dirichlet form relative to the symmetric generator L, restricted to having both

extremities of the jumps in B, and C̃p = 2Cpnp is a constant depending only on p.

Summing the expression above over x and k, since for any k∑
x∈T2

N

DBp(xk) (ϕ) = (2p+ 1)2D(ϕ),

there exists a constant C ′p = (2p+ 1)2C̃p such that

(5.38)
1

εN

∑
x∈T2

N

∑
k

E∗α
((√

ϕ(T xki,p η̂)−√ϕ
)2
1Ep,xk

)
≤ C ′pD(ϕ).

We �nally obtain, thanks to (5.36), (5.37) and (5.38), that for some constant C(ω), (5.35) can be bounded

from above by

(5.39)
γC(ω)

N

∑
x∈T2

N

H(x/N)2 1

εN

εN−1∑
k=0

E∗α (ϕηxk) + γNoN (1) +
C ′p
γN

D (ϕ) .

We then let γ = C ′p/N , and set A0 = C ′pC(ω)/2 to obtain that the �rst bound in Lemma 5.17 holds.

The second term is much easier to derive, and follows the exact same steps as the �rst. The key idea

however, is that this time

ηxk+1
− ηxk = ηxk+1

(1− ηxk)− ηxk(1− ηxk+1
),

and we only need a change of variable η̂ → η̂xk,xk+1 to make the Dirichlet form directly appear.

Lemma 5.16 allows us to complete the proof of Theorem 5.14. Once again, we only treat in full detail

the case of Fω,p(ρ̂), the proof for ρ follows directly.

Proof of Theorem 5.14. � Recall that we de�ned in Section 3.1 Pλ,β
µN

, the measure on the space

D([0, T ],T2
N ) of the AEP η̂(s) started with the measure µN , and QN is the measure on the corresponding

measure spaceM[0,T ]. Let us introduce

ϕδ(u) = (2δ)−2
1[−δ,δ]2 .
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For any trajectory (πt) in M[0,T ], we de�ne the density pro�le of the torus (in the sense of De�nition

3.1) ρ̂δt

ρ̂δt (u, dθ) =< πt(·, dθ), ϕδ(.+ u) >=

∫
T2

ϕδ(v + u)πt(dv, dθ).

The application

π 7→
∫ T

0

Fω,p(ρ̂δt (u, ·))dt,

de�ned for any trajectory π ∈ M[0,T ], is continuous for Skorohod's topology described in Section 5.4.

Letting Q∗ be a weak limit point of (QN ), Lemma 5.16 therefore yields that

lim sup
δ→0

EQ∗
(

max
1≤l≤k

∫∫
[0,T ]×T2

H l
t(u)

ε

(
Fω,p(ρ̂δt (u+ εei, ·))− Fω,p(ρ̂δt (u, ·)

)
−A0

H l
t(u)2

ε

[∫
[u,u+εei]

ρδt (v)dv

]
dudt

)
≤ K,

where ρδt (v) =< πt, ϕδ(v− .) >. Since thanks to Lemma 5.13 any limit point Q∗ of (QN ) is concentrated

on trajectories absolutely continuous w.r.t. the Lebesgue measure on T2, letting δ then ε go to 0, by

dominated convergence, we obtain that

EQ∗
(

max
1≤l≤k

∫∫
[0,T ]×T2

[
∂uiH

l
t(u)Fω,p(ρ̂t(u))−A0H

l
t(u)2ρt(u)

]
dudt

)
≤ K,

where ρ̂t is the density pro�le on torus, which exists Q∗-a.s. according to Lemma 5.13, such that

πt(du, dθ) = ρ̂t(u, dθ)du. By monotone convergence, and since the sequence (Hl) is dense in C
0,1([0, T ]×

T2), the measure Q∗ is concentrated on the trajectories ρ̂ for which there exists a constant A0, such that

for any i

(5.40) EQ∗
(

sup
H

∫∫
[0,T ]×T2

[
∂uiHt(u)Fω,p(ρ̂t(u))−A0Ht(u)2ρt(u)

]
dudt

)
≤ K,

where the supremum is taken over all functions H ∈ C0,1([0, T ] × T2). Let us �rst assume that ω is a

non-negative function, then

(G,H) =

∫
[0,T ]×T2

Gt(u)Ht(u)ρt(u)dudt,

is an inner product on C0,1([0, T ]×T2). Let L2
ρ̂ denote the resulting Hilbert space. Finally, let us denote

fi the linear operator

fi(H) =

∫∫
[0,T ]×T2

∂uiHt(u)Fω,p(ρ̂t(u))dudt,

then equation (5.40) yields that for any positive constant r, rfi(H)− r2A0(H,H) ≤ K, i.e.

fi(H) ≤ 1

r
K + rA0(H,H).

Letting r =
√
K/A0(H,H), and C0 =

√
K
(√

A0 +
√
A0
−1
)
, we obtain that for any function H ∈

C0,1([0, T ]× T2),

fi(H) ≤ C0(H,H)1/2.

Thus the operator fi is bounded in L2
ρ̂. Therefore, for any i, Riesz's representation Theorem yields that

there exists a function denoted F̃ω,pi (ρ̂t(u)) ∈ L2
ρ̂ such that for any H ∈ C0,1([0, T ]× T2),

fi(H) =

∫∫
[0,T ]×T2

∂uiHt(u)Fω,p(ρ̂t(u))dudt =

∫∫
[0,T ]×T2

Ht(u)F̃ω,pi (ρ̂t(u))ρt(u)dudt.

Letting ∂uiF
ω,p(ρ̂t(u)) = ρt(u)F̃ω,pi (ρ̂t(u)) ∈ L1([0, T ]×T2), we obtain the wanted result. We can follow

the same strategy if ω is non-positive, which we only used so that (G,H) would be positive, and �nally

also for any ω since the wanted identity is linear in ω.
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Remark 5.18. � We have proven in the previous theorem that the di�erentials ∂uiF
ω,p(ρ̂t(u)) exist.

Following the same exact strategy and replacing ηω0 1Ep by η0, it is easily derived that ρ is also in H1.

This time, there is no need for the cuto� functions, since this time the currents and gradients vanish as

soon as the con�guration is full, and the Dirichlet form appears naturally.

To any density pro�le on the torus ρ̂, we associate ρω the angle density smoothed out by ω

ρω(u) =

∫
S

ω(θ)ρ̂(u, dθ).

For any large p, and assuming that the density does not go to 1, Fω,p(ρ̂t(u)) is close to ρωt (u), and since

the gradient of Fω,p(ρ̂t(u)) is well-de�ned according to Theorem 5.14, that of ρωt (u) should also be well-

de�ned. However, when the density reaches 1, this is no longer the case, and the de�nition of ∂uiρ
ω
t (u)

becomes problematic. However, this issue can be solved, because the di�usion coe�cient relative to ρωt (u)

is ds(ρ), which vanishes as the density ρ reaches 1. This construction of ∂uiρ
ω
t (u) is given by the following

Corollary of Theorem 5.14.

Corollary 5.19. � Any limit point Q∗ of the measure sequence (QN )N is concentrated on trajectories

πt(du, dθ) = ρ̂t(u, dθ)du such that there exists functions ds(ρ)∂uiρ
ω
t in L2([0, T ]× T2), verifying for any

smooth function G ∈ C0,2([0, T ]× T2),∫
[0,T ]×T2

ρωt ∂ui [ds(ρ)Gt(u)] dudt = −
∫

[0,T ]×T2

Gt(u)ds(ρ)∂uiρ
ω
t dudt.

Proof of Corollary 5.19. � In order to obtain the functions ∂uiρ
ω
t , recall that Ẽp is the event on which

at least two sites in Bp \ {0} are empty. In order to make Ep and η0 independent, we let

Ẽp =

 ∑
x∈Bp, x 6=0

ηx ≤ (2p+ 1)2 − 3

 .

Then, Ẽp and η̂0 are independent by construction, and

(5.41) Fω,p(ρ̂t(u)) = ρωt Pρ̂t(u)(Ẽp).

Also note that Pρ̂t(u)(Ẽp) depends on ρ̂t(u) only through ρ(u),

Pρ̂t(u)(Ẽp) = 1− (ρt(u) + 4p(p+ 1)(1− ρt(u)))ρt(u)4p(p+1)−1.

For any ρ 6= 1, we can use equation (5.41), and de�ne the derivative as

ds(ρt)∂uiρ
ω
t =

ds(ρt)

Pρ̂t

(
Ẽp

) (Fω,p(ρ̂t(u))− ρωt ∂uiPρ̂t
(Ẽp)

)
.

Note that a priori this de�nition depends on p. In fact, the construction ensures that is does not, but

since this is not a crucial point of the proof, we do not develop it further. This quantity is well-de�ned

since ρ and Fω,p(ρ̂t(u)) are in H1 according to Theorem 5.14, and since ds(ρt)/Pρ̂t

(
Ẽp

)
admits a �nite

limit as ρ goes to 1, thus concluding the proof of Corollary 5.19.

6. Non-gradient estimates

6.1. Replacement of the symmetric current by a macroscopic gradient. � In this Section, we

focus on the complete exclusion process, and replace the current jωi by a quantity of the form τeih−h+Lf ,
with f a function of the con�guration with in�nite support. We then show that the perturbation Lf is

of the same order as the weakly asymmetric contribution, and they both contribute to the drift term of

equation (2.13). To obtain the non gradient estimates, we use the formalism developed in [27] rather than

that of [35]. This changes the proof substantially, with the upside that the orders in N , as well as the

studied quantities, are clearly identi�ed at any given point of the proof.
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One of the challenges in proving the non-gradient hydrodynamic limit is to replace the local particle

currents jωi by the gradient of a function of the empirical measure. Recall that we already de�ned in

equation (2.22) the empirical angle measure ρ̂l ∈M1(S),

ρ̂l =
1

(2l + 1)2

∑
x∈Bl

ηxδθx ,

and we denote by ρl the empirical density

ρl =
1

(2l + 1)2

∑
x∈Bl

ηx = ρ̂l(S).

Let

ρωl =
1

(2l + 1)2

∑
x∈Bl

ηωx ,

be the average of ηω over a box of side 2l + 1. Finally, for any function ϕ on ΣN , recall that δi is the

discrete derivative

δiϕ = τeiϕ− ϕ

(for example, δiη
ω
0 = ηωei − η

ω
0 ).

The usual strategy in the proof of the non-gradient hydrodynamic limit is to show that for some

coe�cients dω, d : [0, 1]× R→ R+,

jωi + dω (ρεN , ρ
ω
εN ) δiρ

ω
εN + d (ρεN , ρ

ω
εN ) δiρεN

vanishes as N → ∞. More precisely, the quantity above is in the range of the generator L, which is

usually su�cient when the functions of the form Lf are negligible. In our case, however, due to the

addition of a weak drift, the usual martingale estimate does not yield that Lf is negligible, but that

LDf = (L+N−1LWA)f is negligible, therefore this perturbation can be integrated to the drift part, which

is done in Section 6.9.

For this replacement, we will need further notations similar to the ones introduced in Section 4.1. In

our case, the di�usion coe�cient dω(ρ, ρω) is in fact the self-di�usion coe�cient ds(ρ), therefore we will

from now on simply write ds(ρ) for the di�usion coe�cient relative to ρω. Note that it depends on the

con�guration only through the empirical density, and not on the particle angles. For any positive integer

l, and any cylinder function f , let us thus denote

Vf,εNi (η̂) = jωi + ds (ρεN ) δiρ
ω
εN + d (ρεN , ρ

ω
εN ) δiρεN − Lf,

where d : [0, 1]× R→ R+ is the di�usion coe�cient given in (2.12).

We introduce for any smooth function G ∈ C2(T2)

(6.1) Xf,εN
i,N (G, η̂) =

1

N

∑
x∈T2

N

G(x/N)τxVf,εNi .

Our goal throughout this Section is to prove that under the measure of our process, Xf,εN
i,N (G, η̂) vanishes

for any smooth function G, i.e. that the microscopic currents can be replaced by a macroscopic average

of the gradients up to a perturbation Lf that will be dealt with later on.

The sum contains N2 terms, and the normalization is only 1/N , therefore an order N has to be gained,

and this is the major di�culty of the non-gradient dynamics. To prove this statement, we decompose

Xf,εN
i,N (G, η̂) into distinct vanishing parts. We already introduced in Equation (3.17) the set

Ep,x =

 ∑
| y−x |≤p

ηy ≤ |Bp | − 2

 ,

such that at least two sites are empty in a vicinity of x of size p. The cuto� functions 1Ep,x are crucial

in order to control the local variations of the measure of the process with the Dirichlet form.



HYDRODYNAMIC LIMIT FOR AN ACTIVE EXCLUSION PROCESS 65

We set for any integer l

(6.2) ρω,pl =
1

(2l + 1)2

∑
x∈Bl

ηωx1Ep,x and ρω,pl = ρωl − ρ
ω,p
l =

1

(2l + 1)2

∑
x∈Bl

ηωx1Ecp,x ,

where Ecp,x is the complementary event of Ep,x.

We are now ready to split Xf,εN
i,N into 4 vanishing parts. Let us denote by

W1 =Wf,l
i,1 (η̂) = jωi − 〈jωi 〉l

′

0 −
(
Lf − 〈Lf〉l−sf0

)
,

the di�erence betweenjωi − Lf and their local average, and by

W2 =WεN,p
i,2 (η̂) = ds (ρεN ) δiρ

ω,p
εN

the mesoscopic contributions of full clusters, where ρω,pεN was de�ned in equation (6.2) above. Let us also

introduce

W3 =W l,εN,p
i,3 (η̂) = ds (ρεN ) δiρ

ω,p
εN − ds (ρl) δiρ

ω,p
lp

+ d (ρεN , ρ
ω
εN ) δiρεN − d (ρl, ρ

ω
l ) δiρl′ ,

where lp = l−p−1 and l′ = l−1, which is the di�erence between the cuto� microscopic and macroscopic

gradients. Note that the cuto� functions are not needed for the total density ρ, because the gradients will

vanish on full con�gurations. Finally, we set

(6.3) W4 =Wf,l,p
i,4 (η̂) = 〈jωi 〉l

′

0 + ds (ρl) δiρ
ω,p
lp

+ d (ρl, ρ
ω
l ) δiρl′ − 〈Lf〉

l−sf
0 ,

the microscopic di�erence between currents and gradients, taking into consideration the perturbation Lf .
For any smooth function G ∈ C2(T2), we also introduce

Y1 = Y f,li,1 (G, η̂) =
1

N

∑
x∈T2

N

G(x/N)τxW1, Y2 = Y εN,pi,2 (G, η̂) =
1

N

∑
x∈T2

N

G(x/N)τxW2,

Y3 = Y l,εN,pi,3 (G, η̂) =
1

N

∑
x∈T2

N

G(x/N)τxW3 and Y4 = Y f,l,pi,4 (G, η̂) =
1

N

∑
x∈T2

N

G(x/N)τxW4.

By construction,

Xf,εN
i,N (G, η̂) =

4∑
k=1

Yk(G, η̂).

We can now state the main result of this Section.

Theorem 6.1. � Let G be a smooth function in C1,2([0, T ] × T2), T ∈ R∗+, and i ∈ {1, 2}. For any

cylinder function f ,

(6.4) lim sup
l→∞

lim sup
N→∞

Eλ,β
µN

( ∣∣∣∣∣
∫ T

0

Y f,li,1 (Gt, η̂(t))dt

∣∣∣∣∣
)

= 0.

Furthermore,

(6.5) lim
p→∞

lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

( ∣∣∣∣∣
∫ T

0

Y εN,pi,2 (Gt, η̂(t))dt

∣∣∣∣∣
)

= 0.

For any integer p > 1,

(6.6) lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

( ∣∣∣∣∣
∫ T

0

Y l,εN,pi,3 (Gt, η̂(t))dt

∣∣∣∣∣
)

= 0.

Finally,

(6.7) inf
f

lim
p→∞

lim sup
l→∞

lim sup
N→∞

Eλ,β
µN

( ∣∣∣∣∣
∫ T

0

Y f,l,pi,4 (Gt, η̂(t))dt

∣∣∣∣∣
)

= 0,

where the in�mum in f is taken over the set C of cylinder functions.
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The core of this Section is dedicated to proving these four estimates. The proof of equation (6.4) is

immediate and is sketched in Section 6.2.

Equation (6.5) is quite delicate, and requires both the control on full clusters derived in equation (3.18)

and the energy estimate (5.34). It is proved in Section 6.3, in which the main challenge, as in the control

of full clusters, is to carry out the macroscopic estimate (5.34) in a microscopic setup.

The proof of equation (6.6) is given in Section 6.4. This limit is the non-gradient counterpart of the

two-block estimate stated in Lemma 4.4. It follows closely the replacement of local gradients by their

macroscopic counterparts performed in Lemma 3.1, p.156 of [27], but needs some technical adaptation

due to the presence of the cuto� functions.

The last limit (6.7) requires the tools developed by Varadhan and Quastel [48] [35] for the hydro-

dynamic limit for non-gradient systems, and therefore requires more work. It is the non-gradient of the

one-block estimate of Lemma 4.3. However, if the latter was essentially a consequence of the law of large

numbers, (6.7) is analogous to the central limit theorem, where the gradient term plays the role of −E(jωi ).

The limit (6.7) is the focus of Sections 6.5-6.8.

Finally, Section 6.9, and in particular Lemma 6.44, is dedicated to the integration of the contribution

Lf to the drift part of the scaling limit.

These four estimates are su�cient to allow the replacement of currents by macrocopic averages of

gradients, up to a perturbation Lf .

Corollary 6.2. � Let G be a smooth function in C1,2([0, T ] × T2), and T ∈ R∗+, and consider Xf,εN
i,N

introduced in (6.1). Then for i ∈ {1, 2}

(6.8) inf
f

lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

[ ∣∣∣∣∣
∫ T

0

Xf,εN
i,N (Gt, η̂(t))dt

∣∣∣∣∣
]

= 0.

Proof of Corollary 6.2. � Since

Xf,εN
i,N (G, η̂) =

4∑
k=1

Yk(G, η̂),

this Corollary follows immediately from the triangular inequality, and Theorem 6.1 above, taking the

limits N → ∞, then ε → 0 then l → ∞, then p → ∞, and �nally the in�mums over the local functions

f .

6.2. Replacement of the currents and Lf by their local average. � In this paragraph, we prove

equation (6.4), i.e. that for any i = 1, 2, any function G ∈ C1,2([0, T ]×T2), and any cylinder function f ,

lim sup
l→∞

lim sup
N→∞

Eλ,β
µN

( ∣∣∣∣∣
∫ T

0

Y1(Gt, η̂(t))dt

∣∣∣∣∣
)

= 0.

We set

Gl,N (x/N) =
1

(2l + 1)2

∑
y∈T2

N , | y−x |≤l

G(y/N),

an integration by parts guarantees that, shortening l′ = l − 1

1

N

∑
x∈T2

N

G(x/N)

jωx,x+ei −
1

(2l′ + 1)2

∑
| y−x |≤l′

jωy,y+ei


=

1

N

∑
x∈T2

N

(
G(x/N)−Gl

′,N (x/N)
)
jωx,x+ei ≤

C(G)l2

N
.

since the di�erence G(x/N)−Gl,N (x/N) is a discrete Laplacian, and is therefore of order l2/N2, and the

currents jωx,x+ei are bounded. By the same reasoning, letting lf = l − sf , we obtain a similar bound on
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z00
BεN

BεN(−ei)

yεN

yεN−1

y−εN

y1−εN

zεN

zεN−1

z1−εN

z−εN

yεN−2

y0

y2−εN

zεN−2

z2−εN

Figure 6. De�nition of the yk's and zk's.

the di�erence

1

N

∑
x∈T2

N

G(x/N)

τxLf − 1

(2lf + 1)2

∑
| y−x |≤lf

τyLf

 ≤ C ′(G, f)l2

N
,

since Lf is a bounded function (this last statement comes from the fact that f is, and depends only on

a �nite number of sites). These two bounds �nally yield that for some constant K = C(G) + C ′(G, f),

| Y1(G, η̂) | ≤ Kl2

N
,

which immediately yields equation (6.4) for any cylinder function f .

6.3. Estimation of the gradients on full clusters. � We now prove that equation (6.5) holds. Our

goal is to bound Y εN,pi,2 (G, η̂(s)) thanks to the control of full clusters functions obtained in (3.18), and to

the energy estimate (5.34). For the sake of clarity, we drop the various dependencies, and simply write

Y2 = Y εN,pi,2 .

By de�nition of Y2 and ρω,pεN (6.2),

Y2(G, η̂) =
1

N

∑
x∈T2

N

G(x/N)τx (ds (ρεN ) δiρ
ω,p
εN )

=
1

N

∑
x∈T2

N

G(x/N)τx

ds (ρεN )

 1

(2εN + 1)2

∑
y∈BεN (ei)

ηωy 1Ecp,y −
1

(2εN + 1)2

∑
y∈BεN

ηωy 1Ecp,y

 ,

and we can rewrite it by summation by parts as

(6.9)

Y2(G, η̂) =
1

N

∑
x∈T2

N

ηωx1Ecp,x
1

(2εN + 1)2
τx

 ∑
y∈BεN (−ei)

G(y/N)τyds(ρεN )−
∑

y∈BεN

G(y/N)τyds(ρεN )

 .

Most of the terms in the parenthesis above cancel out, since the boxes BεN (−ei) and BεN = BεN (0)

overlap except on the two sides (cf. Figure 6).

For any k ∈ J−εN, εNK, we let according to Figure 6

yk = −(εN + 1)ei + kei′ and zk = εNei + kei′ ,
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where i′ 6= i is the second direction on the torus, which are de�ned so that BεN (−ei)\BεN =

{y−εN , . . . , yεN} and BεN\BεN (−ei) = {z−εN , . . . , zεN}.
We thus obtain from (6.9)

(6.10) Y2(G, η̂(s))

=
1

N

∑
x∈T2

N

ηωx1Ecp,x
1

(2εN + 1)2

(
εN∑

k=−εN

G

(
x+ yk
N

)
ds(τx+ykρεN )−G

(
x+ zk
N

)
ds(τx+zkρεN )

)
.

We can now rewrite the quantity inside the parenthesis as the sum over k of[
G

(
x+ yk
N

)
−G

(
x+ zk
N

)]
ds(τx+ykρεN )−G

(
x+ zk
N

)
[ds(τx+zkρεN )− ds(τx+ykρεN )] .

Since yk and zk are distant of 2εN + 1, the �rst term in the decomposition above can be bounded in

absolute value uniformly in x and k by (2εN + 1) ||∂uiG||∞ /N . Let C(G,ω) = ||∂uiG||∞ ||ω||∞ ||ds||∞,
the corresponding contribution in (6.10) is

1

N

∑
x∈T2

N

ηωx︸︷︷︸
≤||ω||∞

1Ecp,x

1

(2εN + 1)2


εN∑

k=−εN

[
G

(
x+ yk
N

)
−G

(
x+ zk
N

)]
︸ ︷︷ ︸

≤(2εN+1)||∂uiG||∞/N

ds(τx+ykρεN )︸ ︷︷ ︸
≤||ds||∞

 ,

and can therefore be bounded by
C(G,ω)

N2

∑
x∈T2

N

1Ecp,x
.

Furthermore, since ds is C
∞ on [0, 1], it is Lipschitz-continuous on [0, 1] with lipschitz constant c, we

let C ′(G,ω) = c ||G||∞ ||ω||∞ /2. We can now write thanks to the previous considerations that

|Y2 | ≤
C(G,ω)

N2

∑
x∈T2

N

1Ecp,x
+
C ′(G,ω)

N2

∑
x∈T2

N

1

(2εN + 1)

εN∑
k=−εN

1Ecp,x

| τx+ykρεN − τx+zkρεN |
ε

.

For any positive γ, we have the elementary bound

1Ecp,x

| τx+ykρεN − τx+zkρεN |
ε

≤ γ1Ecp,x +
1

γ

(τx+ykρεN − τx+zkρεN )
2

ε2
,

and �nally, for any positive γ,

|Y2 | ≤
C + γC ′

N2

∑
x∈T2

N

1Ecp,x
+

C ′

γN2

∑
x∈T2

N

1

(2εN + 1)

εN∑
k=−εN

(
τx−(εN+1)eiρεN − τx+εNeiρεN

)2
ε2

=
C + γC ′

N2

∑
x∈T2

N

1Ecp,x
+

C ′

γN2

∑
x∈T2

N

(
τx−(εN+1)eiρεN − τx+εNeiρεN

)2
ε2

.(6.11)

Recall that we want to prove (6.5), i.e.

lim
p→∞

lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

(∫ T

0

| Y2(Gt, η̂(t)) | dt

)
= 0.

The contribution of the �rst term in the bound for |Y2 | in equation (6.11) vanishes for any γ as N then

p goes to ∞, thanks to Proposition 3.12.

Furthermore, we can replace τx−(εN+1)eiρεN by τx−εNeiρεN in (6.11) since the di�erence between these

two quantities is of order 1/N and vanishes in the limit N →∞. This replacement allows us to work only

with quantities that can be expressed in terms of the empirical measure of the process. Equation (6.5)

therefore holds according to Lemma 6.3 below, letting γ go to ∞ after N →∞ then ε→ 0 then p→∞.

�
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ϕ̃ε(., υ)

| υ | > ε+ ε3
| υ | ≤ ε

ϕε

ε

ui

ε+ ε3

1/4ε2

−ε−(ε+ ε3)

(a)

∇εiϕε

hε = ∇εi ϕ̃ε(., v)

−ε3

1/4ε3

ε ε+ ε3

−(ε+ ε3)−ε ui

ε3

(b)

Figure 7. (a) Representations of ϕ̃ε(·, v) depending on the value of v.

(b) Representation of hε(·, v) = ∇εϕ̃ε(·, v) depending on the value of v.

Lemma 6.3. � There exists a positive constant K such that

lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

∫ T

0

1

N2

∑
x∈T2

N

(τx−εNeiρεN (t)− τx+εNeiρεN (t))
2

ε2
dt

 ≤ K.
Proof of Lemma 6.3. � This Lemma states that the di�erence of macroscopic densities between two

points distant from 2ε is also of order ε, and is a consequence of the energy estimate (5.34). We are going

to prove this macroscopic estimate in the topological setup of the space of càdlàg trajectories of measures

on T2 × S . Recall from Section 5.4 thatM(T2 × S) is the space of positive measures on the continuous

con�guration space,

M[0,T ] = D
(
[0, T ]×M(T2 × S)

)
is the space of right-continuous, left-limit trajectories on the set of measures on T2 × S, and that QN is

the law onMT (T2 × S) of the process empirical measure πN . We have proved in Proposition 5.11 that

the sequence (QN )N∈N is relatively compact for the weak topology. Let Λε = [ε, ε]2 ⊂ T2 be the cube of

size ε, and (ϕε)ε>0 be a family of localizing functions on T2

ϕε(·) =
1

(2ε)2
1Λε(·),

we then have

τxρεN (t) =
(2εN)2

(2εN + 1)2
< πNt , ϕε(.+ x/N) > .

For any u ∈ T2 we de�ne the mesoscopic gradient

∇ε
iϕ(·) = ε−1(ϕ(.− εei)− ϕ(.+ εei)),

represented in Figure 7b. Note that ∇ε
iϕε is at most of order ε

−3 since ϕε is of order ε
−2. We can rewrite

the left-hand side in Lemma 6.3 as

EQN

∫ T

0

1

N2

∑
x∈T2

N

< πt,∇ε
iϕε(.+ x/N) >2 dt

+ oN (1).(6.12)

Furthermore, since for any two sites x, x′ ∈ T2 distant from less than 1/N ,

| < πt,∇ε
iϕε(.+ x/N) > − < πt,∇ε

iϕε(.+ x′/N) > | ≤ C(ε)
1

N
,

we can replace the sum above by the integral over the continuous torus.
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However, regarding the weak topology onM(T2×S), it will be convenient later on to consider smooth

functions instead of ϕε. We therefore introduce for any ε a function ϕ̃ε, represented in Figure 7a verifying

� ϕ̃ε = ϕε on Λε and on T2\Λε+ε3 .
� ||ϕ̃ε||∞ = ||ϕε||∞.
� ϕ̃ε is in C

1(T2).

Since ϕ̃ε and ϕε coincide everywhere except on Λε+ε3\Λε, and since ||ϕ̃ε||∞ = (2ε)−2 we can write for

any x ∈ T2
N∣∣ < πNt , ϕε(.+ x/N) > − < πNt , ϕ̃ε(.+ x/N) >

∣∣ ≤ 1

(2ε)2
< πNt ,1Λε+ε3\Λε(.+ x/N) >︸ ︷︷ ︸

≤4ε×ε3

.

≤ Cε2,

for some positive constant C. This bound immediately yields∣∣ < πNt ,∇
ε
iϕε(.+ x/N) > − < πNt ,∇

ε
i ϕ̃ε(.+ x/N) >

∣∣ ≤ Cε,
which allows us to replace in equation (6.12), in the limit N →∞ then ε→ 0, ϕε by ϕ̃ε.

To prove Lemma 6.3 it is therefore su�cient to prove that

(6.13) lim sup
ε→0

lim sup
N→∞

EQN

(∫∫
[0,T ]×T2

< πt, hε(.+ u) >2 dudt

)
≤ K,

where hε = ∇ε
i ϕ̃ε, is a continuous bounded function, represented in Figure 7b. Let us denote by Π the

subset ofM[0,T ]

Π =

{
π ∈M[0,T ], sup

t∈[0,T ]

< πt, 1 >≤ 1

}
of trajectories with mass less than one at all times, which is compact w.r.t Skorohod's topology introduced

in Section 5.4.

Consider a weakly convergent subsequence QNk → Q∗, in order to substitute Q∗ to QN in the limit

above, we want to prove that for any �xed ε > 0, the application

Iε : π 7→
∫∫

[0,T ]×T2

< πt, hε(.+ u) >2 dudt

is bounded, and continuous on Π w.r.t. Skorohod's topology.

Note that this application is bounded on Π by construction, we now prove the following Lemma.

Lemma 6.4. � Fix ε > 0, the application Iε is continuous on (Π, d), where d is the Skorohod metric

de�ned in Equation (A.3).

Proof of Lemma 6.4. � For any two trajectories π and π′ in Π, and some continuous strictly increasing

function κ from [0, T ] into itself, such that κ0 = 0 and κT = T , we can write

Iε(π)− Iε(π′) =

∫∫
[0,T ]×T2

du < π′t + πt, hε(.+ u) >< π′t − πκt + πκt − πt, hε(.+ u) > dt.

The �rst factor < π′t + πt, hε(.+ u) > can be crudely controlled by 2 ||hε||∞, which yields

| Iε(π)− Iε(π′) | ≤2 ||hε||∞
∫∫

[0,T ]×T2

| < π′t − πκt , hε(.+ u) > + < πκt − πt, hε(.+ u) > | dudt.

(6.14)

Note that by de�nition of ||κ||, one easily gets that for any t ∈ [0, T ], | t− κt | ≤ T (e||κ|| − 1),

therefore, κt → t uniformly on [0, T ] as ||κ|| → 0. Let us �x π ∈ Π, and assume that d(π, πn) → 0

for some sequence of trajectories (πn)n ∈ ΠN, there exists a sequence (κn)n∈N such that ||κn|| → 0

and limn→∞ supt∈[0,T ] δ(π
n
t , πκnt ) = 0. This last statement yields in particular that for any t ∈ [0, T ],

δ(πnt , πκnt )→ 0, therefore for any t ∈ [0, T ], and for any u ∈ T2,

lim
n→∞

< πnt − πκnt , hε(.+ u) >= 0,
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1/4ε2 + 0ε(1)

Φε,i(., υ)

| υ | > ε+ ε3
| υ | ≤ ε

−(ε+ ε3) ε+ ε3−ε εε3−ε3

Figure 8. Representation of Φε,i(·, v) depending on v.

since hε(.+u) is a continuous bounded function, and δ is a metric of the weak convergence. Furthermore,

since κnt converges uniformly towards t on [0, T ] and since t→ πt is weakly continuous almost everywhere

on [0, T ] by de�nition ofM[0,T ], we also have that for any (t, u) ∈ [0, T ]× T2,

lim
n→∞

< πκnt − πt, hε(.+ u) >= 0.

Since π and the πn's are in Π, both of these quantities are crudely bounded in absolute value by 2 ||h∞||,
which is naturally integrable on [0, T ] × T2. One �nally obtains by dominated convergence, from (6.14)

applied to π′ = πn and κ = κn, that

| Iε(π)− Iε(πn) | →
n→∞

0.

Lemma 6.4 is complete.

We have now proved that the application Iε is continuous for any �xed ε, therefore the left-hand side

of (6.13) is less than

lim sup
ε→0

sup
Q∗

EQ∗
(∫∫

[0,T ]×T2

du < πt, hε(.+ u) >2 dt

)
,

where the supremum is taken over all limit points Q∗ of the sequence QN . Since by de�nition hε = ∇ε
i ϕ̃ε

does not depend on θ, we drop the dependence of π on θ and consider simply for any u ∈ T2
N , ρ(t, u) =∫

S
ρ̂t(u, dθ), where ρ̂t(u, dθ) is the density of πt(·, dθ) w.r.t. the Lebesgue measure T2, which exists Q∗-a.s.

according to Lemma 5.13. We can write

(6.15)

EQ∗
(∫∫

[0,T ]×T2

du < πt, hε(.+ u) >2 dt

)
= EQ∗

(∫∫
[0,T ]×T2

(∫
v∈T2

ρ(t, v)∇ε
i ϕ̃ε(v + u)dv

)2

dudt

)
.

We can now express ∇ε
i ϕ̃ε as a gradient, by writing

∇ε
i ϕ̃ε(u) = ∂ui

∫ ui

−1/2

∇ε
i ϕ̃ε(υei + ui′ei′)dυ = ∂uiΦε,i,

where i′ 6= i still denotes the second direction on the torus.

Furthermore, Φε,i, represented in Figure 8, is in C2(T2
N ) because ϕ̃ε is C

1, and the various integrals

can be freely swapped since all quantities are bounded at any �xed ε. Since Q∗-a.s. ρ ∈W 1,2([0, T ]×T2)

according to Theorem 5.14, the right-hand side in equation (6.15) is therefore equal to

(6.16) EQ∗
(∫∫

[0,T ]×T2

(∫
v∈T2

Φε,i(v + u)∂uiρ(t, v)dv

)2

dudt

)
.
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In order to conclude, we adapt the proof of Young's Inequality, and apply Cauchy-Schwarz inequality to

f = (Φε,i(v + u))
1/2

and g = (Φε,i(v + u))
1/2

∂uiρ(t, v), to �nally obtain that

EQ∗
(∫∫

[0,T ]×T2

du < πt, hε(.+ u) >2 dt

)
≤ EQ∗

(∫∫
[0,T ]×T2

||Φε,i||1

[∫
v∈T2

Φε,i(v + u)(∂uiρ(t, v))2dv

]
dudt

)

= ||Φε,i||21 EQ∗
(∫∫

[0,T ]×T2

(∂uiρ(t, u))2dudt

)
,

where the last identity was obtained by integrating �rst w.r.t. u, then w.r.t. v. Since ||Φε,i||1 = 1 + oε(1),

Lemma 6.3 follows from equation (5.34).

6.4. Replacement of the macroscopic gradients by their local counterparts. � We now prove

equation (6.6), i.e. that the macroscopic average of the gradients can be replaced by a local average. To

simplify the notations, throughout this Section, we drop the various dependencies of Y l,εN,pi,3 and simply

denote it by Y3.

Recall that LG,β=0 stands for the modi�ed Glauber generator without alignment of the spins, where

each angle is updated uniformly in S,

LG,β=0f(η̂) =
∑
x∈T2

N

ηx

∫
S

(f(η̂x,θ)− f(η̂))

2π
dθ,

and

Lβ=0
N = N2LD + LG,β=0.

Recall that Pλ,0µ∗α is the measure on the trajectories starting from the equilibrium measure µ∗α and driven

by the generator Lβ=0
N , and that the expectation w.r.t the latter is denoted by Eλ,0µ∗α . We �rst apply

Proposition 3.10 to the positive functional

X
(
η̂[0,T ]

)
=

∣∣∣∣∣
∫ T

0

Y3(Gt, η̂(t))dt

∣∣∣∣∣ ,
letting A = γN2, and obtain that for some constant K0 = K0(T, β, ρ̂0),

Eλ,β
µN

( ∣∣∣∣∣
∫ T

0

Y3(Gt, η̂(t))dt

∣∣∣∣∣
)
≤ K0

γ
+

1

γN2
logEλ,0µ∗α

[
exp

(
γN2

∣∣∣∣∣
∫ T

0

Y3(Gt, η̂(t))dt

∣∣∣∣∣
)]

.

Letting γ go to ∞ after N , to prove (6.6) it is therefore enough to show that for any integer p > 1

(6.17) lim
γ→∞

lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

1

γN2
logEλ,0µ∗α

[
exp

(
γN2

∣∣∣∣∣
∫ T

0

Y3(Gt, η̂(t))dt

∣∣∣∣∣
)]

= 0.

We now get rid of the absolute value by using both of the elementary inequalities

e| x | ≤ ex + e−x

and

lim sup
N→∞

1

N2
log(aN + bN ) ≤ max

(
lim sup
N→∞

1

N2
log aN , lim sup

N→∞

1

N2
log bN

)
.

Both of these imply that the limit in equation (6.6) is bounded up by the maximum of the limits of

1

γN2
logEλ,0µ∗α

[
exp

(
γN2

∫ T

0

Y3(Gt, η̂(t))dt

)]
and

1

γN2
logEλ,0µ∗α

[
exp

(
−γN2

∫ T

0

Y3(Gt, η̂(t))dt

)]
.



HYDRODYNAMIC LIMIT FOR AN ACTIVE EXCLUSION PROCESS 73

Since −Y3(G, η̂) = Y3(−G, η̂), and since the identity above must be true for any function G, to obtain

the wanted result it is su�cient to show that for any γ and any G ∈ C1,2([0, T ]× T2)

(6.18) lim
γ→∞

inf
f

lim sup
ε→0

lim sup
N→∞

1

γN2
logEλ,0µ∗α

[
exp

(
γN2

∫ T

0

Y3(Gt, η̂(t))dt

)]
≤ 0.

We now get back to a variational problem, since Lemma 5.9 yields

1

γN2
logEλ,0µ∗α

[
exp

(
γN2

∫ T

0

Y3(Gt, η̂(t))dt

)]
≤ 2Tλ2

γ
+

1

γ

∫ T

0

sup
ϕ

{
E∗α (ϕγY3(Gt, η̂))− 1

2
D(ϕ)

}
.

The �rst term in the right-hand side above vanishes as γ goes to ∞. Furthermore, the time integral is

now only applied to the function Gt, therefore to obtain equation (6.6), it is su�cient to prove that for

any γ and any function G ∈ C2(T2),

(6.19) lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

sup
ϕ
{2γE∗α (ϕY3(G, η̂))−D(ϕ)} ≤ 0.

Since this must be true for any G and any γ, we can safely assume that γ = 1/2, and equation (6.19)

follows from Lemma 6.5 below. Thus this completes the proof of (6.6).

In order to avoid repeating a similar proof twice, we forget for the moment that dω (ρ, ρω) = ds(ρ)

only depends on the total particle density, and present the proof of the following Lemma in the most

di�cult case where the gradient is on ρω,p and where the di�usion coe�cient depends on both ρ and

ρω. We simply assume throughout this proof that the di�usion coe�cient dω is a uniformly continuous

function of ρ and ρω on the set{
(α, αω) ∈ [0, 1]× [− ||ω||∞ , ||ω||∞], |αω | ≤ ||ω||∞ α

}
.

Lemma 6.5. � Let us �x 1 ≤ i, j ≤ 2, we shorten

Dk = dω (ρk, ρ
ω
k ) and vk = δiρ

ω,p
k .

For any G ∈ C2(T2)

(6.20) lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

sup
ϕ

∑
x∈T2

N

[
1

N
G(x/N)E∗α

(
ϕτx(DεNvεN −Dlvlp)

)]
−D(ϕ)

 ≤ 0,

where as before lp = l − p − 1, and the supremum is taken over all probability densities with respect to

µ∗α. The same result is true for the gradients vk = δiρk instead of δiρ
ω,p
k , d instead of dω, and l′ = l − 1

instead of lp.

Proof of Lemma 6.5. � The di�culty of this Lemma comes from the extra factor N , which prevents us

from using directly the replacement Lemma 4.1. We hence need to get some precise control over each

term to ensure that they are small enough. We start by splitting in two parts the quantity in Lemma 6.5

by noticing that

(6.21) DεNvεN −Dlvlp = DεN (vεN − vlp) + (DεN −Dl)vlp .

Both terms are treated in the same fashion due to the continuity of the di�usion coe�cients (which follows

directly from their explicit expression). More precisely, we intend to show that the di�erence between

the average over a microscopic and macroscopic box is of order 1/N , and hence yields the extra factor

N needed to use the replacement Lemma. Let us thus consider the �rst term appearing in the Lemma,

namely

1

N
E∗α

ϕ ∑
x∈T2

N

G(x/N)τxDεN (vεN − vlp)

 .

Recall that we denoted Bl = {x ∈ T2
N , |x | ≤ l}, and |Bl | = (2l+ 1)2. Since both vεN and vlp are merely

spatial averages of the gradients δi(η
ω
0 1Ep), a �rst summation by parts yields that the quantity above is

equal to
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1

N
E∗α

(
ϕ
∑
x∈T2

N

(ηωx+ei1Ep,x+ei
− ηωx1Ep,x)

[
1

|BεN |
∑

| y−x |≤εN

G(y/N)τyDεN

− 1

|Blp |
∑

| y−x |≤lp

G(y/N)τyDεN

])
.

Now let us denote Sx(η̂) the quantity inside braces, i.e

Sx(η̂) =
1

|BεN |
∑

| y−x |≤εN

G(y/N)τyDεN −
1

|Blp |
∑

| y−x |≤lp

G(y/N)τyDεN .

We are now going to prove that

(6.22) lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

sup
ϕ

 1

N
E∗α

ϕ ∑
x∈T2

N

Sx(ηωx+ei1Ep,x+ei
− ηωx1Ep,x)

− 1

2
D(ϕ)

 ≤ 0.

In order to transfer the gradient appearing in the expression above on ϕ and Sx, we need the same change

of variable as the one already introduced in Figure 5 of Section 5.5. For any direction i ∈ {1, 2}, let i′ 6= i

be the second direction on the torus. Given x in the torus, we denote for any k ∈ J−p, pK (See Figure 6)

yk = x− pei + kei′ ∈ Bp(x) and zk = x+ (p+ 1)ei + kei′ ∈ Bp(x+ ei).

Given these, recall that we denote, for any con�guration η̂, by

T xi,p(η̂) =
((

(η̂x,x+ei)y−p,z−p
)...)yp,zp

the con�guration where the sites x and x+ ei have been swapped, as well as the boundary sites yk and

zk.

By de�nition, we have

ηωx 1Ep,x(T xi,pη̂) = ηωx+ei1Ep,x+ei
(η̂)

The �rst term in the left-hand side of (6.22) can be rewritten as

1

N
E∗α

ϕ ∑
x∈T2

N

Sx(ηωx+ei1Ep,x+ei
− ηωx1Ep,x)

 =− 1

N
E∗α

∑
x∈T2

N

ηωx1Ep,x
(
(ϕSx)(T xi,pη̂)− ϕSx

)
=− 1

N

∑
x∈T2

N

E∗α
(
ηωx1Ep,x

[
ϕ(T xi,pη̂)

(
Sx(T xi,pη̂)− Sx

)
+
(
ϕ(T xi,pη̂)− ϕ

)
Sx
])
.(6.23)

We are going to show that the contribution of the �rst term of the right-hand side in (6.23) vanishes

in the limit N →∞, whereas the second term can be controled with the Dirichlet form D(ϕ). Recall that

Sx is de�ned as

Sx(η̂) =
1

|BεN |
∑

| y−x |≤εN

G(y/N)τyDεN −
1

|Blp |
∑

| y−x |≤lp

G(y/N)τyDεN .

Since the only dependence of Sx in η̂ lies in DεN , which is the di�usion coe�cient evaluated in the

macroscopic empirical density ρ̂εN , in order to control the �rst term in the right-hand side of (6.23), we

can write

(6.24) Sx(T xi,pη̂)− Sx =

1

|BεN |
∑

| y−x |≤εN

G(y/N)τy
[
DεN (T xi,pη̂)−DεN (η̂)

]
− 1

|Blp |
∑

| y−x |≤lp

G(y/N)τy
[
DεN (T xi,pη̂)−DεN (η̂)

]
.

Recall that τyDεN (η̂) = dω(τyρεN , τyρ
ω
εN ). Since it depends on the con�guration through an average over

BεN (y), τyDεN (η̂) is invariant under any exchange of a pair of sites with both ends in BεN (y). We deduce

from this remark that for any | y − x | ≤ lp, the quantity

τy
[
DεN (T xi,pη̂)−DεN (η̂)

]
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vanishes, since all the exchanges happen between sites at a distance at most p of x, and therefore at a

distance at most p+ lp of y. This yields that the second term in the right-hand side of (6.24) vanishes.

We now consider the �rst term in the right-hand side of (6.24). For the same reason as before, for

any y in BεN−p−1(x), all the exchanges in T xi,p have both ends in BεN (y), and τy
[
DεN (T xi,pη̂)−DεN (η̂)

]
vanishes. We can �nally rewrite (6.24) as

(6.25) Sx(T xi,pη̂)− Sx =
1

|BεN |
∑

y∈BεN (x)\BεN−p−1(x)

G(y/N)τy
[
DεN (T xi,pη̂)−DεN (η̂)

]
.

We now take a closer look at each of the remaining term. By de�nition, the con�guration T xi,pη̂ can be

obtained fom η̂ by inverting 2p+ 2 pair of sites in η̂. Furthermore, �x a y in the sum above, and consider

any inversion η̂z1,z2 with z1 ∈ BεN (y) and z2 /∈ BεN(y), we wan write by de�nition of ρεN and ρωεN

| τyρεN (η̂z1,z2)− τyρεN (η̂) | ≤ 1

|BεN |
and | τyρωεN (η̂z1,z2)− τyρωεN (η̂) | ≤

2 ||ω||∞
|BεN |

.

By assumption, dω(α, αω) is uniformly continuous on the set{
(α, αω) ∈ [0, 1]× [− ||ω||∞ , ||ω||∞], |αω | ≤ ||ω||∞ α

}
.

We deduce from this that

τy (DεN (η̂z1,z2)−DεN (η̂)) = oN (1),

therefore ∣∣ τy (DεN (T xi,pη̂)−DεN (η̂)
) ∣∣ ≤ oN (1),

where this time oN (1) stands for a constant depending on p which vanishes as N → ∞. We inject the

latter identity in equation (6.25), to obtain that

Sx(T xi,pη̂)− Sx =
| BεN (x) \BεN−p−1(x) |

|BεN |
oN (1) =

1

N
oN (1),

where the last oN (1) depends on p and ε, but vanishes as N →∞. This allows us to get back to equation

(6.23), in which the �rst term in the right-hand side can be rewritten∣∣∣∣∣∣ 1

N

∑
x∈T2

N

E∗α
(
ηωx1Ep,xϕ(T xi,pη̂)

(
Sx(T xi,pη̂)− Sx

)) ∣∣∣∣∣∣ ≤ ||ω||∞N2

∑
x∈T2

N

E∗α
(
ϕ(T xi,pη̂)

)
oN (1) = oN (1),

since µ∗α is invariant under the change of variable T xi,pη̂, and therefore E∗α
(
ϕ(T xi,pη̂)

)
= E∗α(ϕ) = 1.

We now work on the contribution of the second part of (6.23), namely

(6.26) E∗α

N−1
∑
x∈T2

N

ηωx1Ep,xSx(η̂)
[
ϕ
(
T xi,pη̂

)
− ϕ

] ,

that we wish to estimate by the Dirichlet form D(ϕ). The elementary bound

cd (a− b) ≤ Ac2

2

(√
a−
√
b
)2

+
d2

2A

(√
a+
√
b
)2

,

which holds for any positive constant A, applied to

a = ϕ
(
T xi,pη̂

)
, b = ϕ, c = ηωxSx and d = 1Ep,x

yields that the quantity above (6.26) can be bounded from above for any positive A by

(6.27)
1

N

∑
x∈T2

N

E∗α
(
A

2
(ηωxSx)

2 (√
ϕ
(
T xi,pη̂

)
+
√
ϕ
)2

+
1

2A
1Ep,x

(√
ϕ
(
T xi,pη̂

)
−√ϕ

)2)
.

Since we already established that Sx
(
T xi,pη̂

)
= Sx+ (εN)−1oN (1), since ηωx can be bounded by C(ω) > 0,

and since 1Ep,x ≤ 1Ep+1,x the sum above is less than

(6.28)
AC2

N

∑
x∈T2

N

E∗α(ϕS2
x) +

1

2AN

∑
x∈T2

N

E∗α
(
1Ep+1,x

(√
ϕ
(
T xi,pη̂

)
−√ϕ

)2)
+ oN (1).
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According to Section 3.3, on the event Ep+1,x on which there are two empty sites in Bp+1, there exists

a sequence of allowed jumps permitting to reach T xi,pη̂ from η̂. However, this sequence is random, which

we avoid by crudely bounding

1Ep+1,x
≤

∑
z1,z2∈Bp+1

(1− ηz1)(1− ηz2),

since the right-hand side only vanishes when there are less than one empty site in Bp+1. Given two �xed

empty sites z1 and z2 there exists an integer np(z1, z2) bounded by a constant Cp, and a sequence of

edges ((am, bm))m∈J0,npK such that

η̂ = η̂(0), T xi,pη̂ = η̂(np), and η̂(m+ 1) = η̂(m)am,bm ∀m ∈ J0, np − 1K,

where am and bm are neighboring sites in Bp+1(x) and ηam(η̂(m)) = 1−ηbm(η̂(m)) = 1. We can therefore

write

E∗α
(
1Ep,x

(√
ϕ
(
T xi,pη̂

)
−√ϕ

)2) ≤ ∑
z1,z2∈Bp+1

E∗α

(
np

np−1∑
m=0

1Ep,x (
√
ϕ (η̂(m+ 1))−√ϕ(η̂(m)))

2

)
≤ KpDN,p+1(ϕ),

since η̂(m + 1) is reached from η̂(m) by an allowed particle jump, where DN,p+1(ϕ) is the contribution

of edges in Bp+1 in D(ϕ).

The sum in the second term of (6.28) can therefore be bounded by C∗pD (ϕ), where C∗p = (2p+ 1)2Kp.

Finally, (6.26) can be bounded, for any positive A by

AC2

N

∑
x∈T2

N

E∗α(ϕS2
x) +

C∗p
2AN

D (ϕ) + oN (1).

We can now set A = C∗p/N , to obtain that

E∗α

N−1
∑
x∈T2

N

ηωx1Ep,xSx(η̂)
[
ϕ
(
T xi,pη̂

)
− ϕ

] ≤ C(p, ω)

N2

∑
x∈T2

N

E∗α(ϕS2
x) +

1

2
D (ϕ) + oN (1).

The �rst term in the right-hand side above vanishes as a consequence of the two-block estimate stated

in Lemma 4.3, since the di�usion coe�cients are continuous according to their explicit expression. This

concludes the proof of equation (6.22).

The contribution of the second part of equation (6.21) is treated in a similar fashion. Denoting by

S′x(η̂) =
1

|Blp |
∑

| y−x |≤lp

G(y/N)(τyDεN − τyDl).

As before, the corresponding contribution in the left-hand side of (6.20) can be written as

− 1

N

∑
x∈T2

N

E∗α
(
ηωx1Ep,x

(
ϕ(T xi,pη̂)− ϕ

)
S′x
)
,

since this time, S′x is invariant under the action of T xi,p by de�nition of lp, whereas the second term can

be controlled in the limit N →∞ as well by D(ϕ)/2. This completes the proof of Lemma 6.5 in the case

where Dk = dω (ρk, ρ
ω
k ) and vk = δiρ

ω,p
k .

In the case where Dk = d (ρk, ρ
ω
k ) and vk = δiρk, the proof is easier and no longer requires indicator

functions, since unlike δiη
ω
x , δiηx vanishes when there is no empty site. We do not give a detailed proof,

which would be an easier version of the previous case. We will instead just give a brief outline and the

equivalent quantities to the previous ones. The same summation by parts allows us to rewrite

1

N
G(x/N)E∗α

(
ϕτx(DεNvεN −Dlvlp)

)
=

1

N
E∗α

ϕ ∑
x∈T2

N

(Sx + S′x)(ηx+ei − ηx)

 ,



HYDRODYNAMIC LIMIT FOR AN ACTIVE EXCLUSION PROCESS 77

where

Sx =
1

|BεN |
∑

| y−x |≤εN

G(y/N)τyDεN −
1

|Bl′ |
∑

| y−x |≤l′
G(y/N)τyDεN ,

and

S′x(η̂) =
1

|Bl′ |
∑

| y−x |≤l′
G(y/N)(τyDεN − τyDl).

We can now rewrite ηx+ei − ηx = ηx+ei(1− ηx)− ηx(1− ηx+ei), to obtain that the quantity above is

1

N

∑
x∈T2

N

E∗α
(
ηx(1− ηx+ei) ((Sx + S′x)ϕ) (η̂x,x+ei)− (Sx + S′x)ϕ

)
.

The gradients of Sx and S′x still vanish, whereas the average of the gradients ϕ(η̂x,x+ei) − ϕ can be

controlled by the sum of a vanishing term and the Dirichlet form of ϕ, since this time the jump rates

ηx(1− ηx+ei) are already present. This concludes the proof of Lemma 6.5.

6.5. Projection on non-full sets and reduction to a variance problem. � We now prove the

limit (6.7), which states that in a local average, the current can be replaced by gradients, up to a

perturbation Lf . Following the exact same steps as in Section 6.4, up until the statement of Lemma

6.5, where we reduced the proof of equation (6.6) to (6.19), we reduce the proof of equation (6.7) to the

variational formula

(6.29) inf
f

lim
p→∞

lim sup
l→∞

lim sup
N→∞

sup
ϕ
{E∗α (ϕY4(G, η̂))−D(ϕ)} ≤ 0,

where we shortened

Y4(G, η̂) = Y f,l,pi,4 (G, η̂) =
1

N

∑
x∈T2

N

G(x/N)τxWf,l,p
i,4 ,

and Wf,l,p
i,4 was introduced in equation (6.3). Since this step is performed in the exact same way as in

the beginning of Section 6.4, we do not detail them here and refer the reader to the latter. To simplify

notations, we shorten

W l
i =Wf,l,p

i,4

for the local average of the di�erence between gradients and currents in the direction i.

We will now work to get an estimate of the largest eigenvalue of the small perturbation L+ Y4 of L.
The strategy is close to the one used in the one-block estimate of Section 4.3. To do so, we break down

the process on �nite boxes with a �xed number of particles, where the generator L has a positive spectral

gap. In order to introduce this restriction, we adopt once again the notations introduced in Section 4.3,

which we brie�y recall here. Let Bl = J−l, lK2 be the box of size l, K̂ = (K, {θ1, . . . , θK}) be some particle
number and angles. Recall that Kl is the set of K̂'s such that K ≤ (2l+ 1)2, and denote by α̂K̂ the angle

measure

α̂K̂ =
1

(2l + 1)2

K∑
k=1

δθk ∈M1(S).

Recall that we already de�ned in (3.3)

ΣK̂l =
{
η̂ ∈ ΣN , ρ̂l = α̂K̂

}
the set of con�gurations with K particles in Bl with angles θk's. Also recall that µl,K̂ is the canonical

measure µ∗α( . | ΣK̂l ) conditioned to particle con�gurations of the form K̂ in Bl.

We denote for any site x ϕx = τ−xϕ, and by ϕx
l,K̂

the density induced by ϕx on ΣK̂l . It can be de�ned

for any con�guration ζ̂ on Bl by

ϕx
l,K̂

(ζ̂) =
E∗α(ϕx | η̂|Bl = ζ̂)

E∗α(ϕx | ΣK̂l )
.

Let us now get back to the quantity of interest,

(6.30) E∗α (ϕY4(G, η̂)) =
1

N

∑
x∈T2

N

G(x/N)E∗α
(
ϕτxW l

i

)
=

1

N

∑
x∈T2

N

G(x/N)E∗α
(
W l
iϕ
x
)
.
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Because W l
i only depends on the vertices in Bl, we can replace the expectation under µ∗α by the integral

over Kl of the expectation under µl,K̂ . More precisely, let us denote

mx(dK̂) = E∗α
(
ϕx1

ΣdK̂l

)
,

the in�nitesimal probability of being on the set ΣK̂l under the measure with density ϕx w.r.t µ∗α. Thanks

to (6.30), letting E∗l,α be the conditional expectation of E∗α w.r.t the spins inside of Bl, we can write

E∗α (ϕY4(G, η̂)) =
1

N

∑
x∈T2

N

G(x/N)E∗l,α
(
W l
iϕ
x
)

=
1

N

∑
x∈T2

N

G(x/N)

∫
K̂∈Kl

El,K̂
(
W l
iϕ
x
l,K̂

)
mx(dK̂).(6.31)

Let us now decompose in a similar fashion the Dirichlet form. For ϕ some density with respect to µα̂,

let Dl,K̂ be the Dirichlet form on ΣK̂l

Dl,K̂(ϕ) =
1

2

∑
x,y∈Bl
| x−y |=1

El,K̂

[
ηx(1− ηy)

(√
ϕ (η̂x,y)−√ϕ

)2
]
.

We have with the same tools as in the proof of Lemma 4.3

(6.32)
∑
x∈T2

N

∫
K̂∈Kl

Dl,K̂

(
ϕx
l,K̂

)
m(dK̂) ≤ (2l + 1)2D(ϕ).

From the previous considerations, we can localize the quantity inside braces in equation (6.29), which

is bounded above thanks to (6.31) and (6.32) by

E∗α (ϕY4(G, η̂))−D(ϕ) =
∑
x∈T2

N

∫
K̂∈Kl

m(dK̂)

(
1

N
G(x/N)El,K̂

(
W l
iϕ
x
l,K̂

)
− (2l + 1)−2Dl,K̂

(
ϕx
l,K̂

))

≤κ1

∑
x∈T2

N

sup
K̂∈Kl

[κ2

N
El,K̂

(
W l
iϕ
x
l,K̂

)
−Dl,K̂

(
ϕx
l,K̂

)]
≤κ1

∑
x∈T2

N

sup
K̂∈Kl

sup
ψ

[κ2

N
El,K̂

(
W l
iψ
)
−Dl,K̂ (ψ)

]
,(6.33)

since
∫
K̂∈Kl m(dK̂) = 1, where

κ1 = (2l + 1)−2 and κ2 = G(x/N)(2l + 1)2,

and the supremum is taken over all densities ψ with respect to µl,K̂ .

We now wish to exclude in the supremum over K̂ above the con�gurations with one or less empty

sites since on the corresponding sets, the exclusion process is not irreducible as investigated in Section

3.3. First note that for any K̂ such that K = |Bl |, W l
i vanishes. Indeed, thanks to our cuto� functions

1Ep , and since l goes to ∞ before p, in that case, the currents, the gradients as well as the Lf 's in W l
i

all vanish as well as Dl,K̂ (ψ).

We now consider the case where K = |Bl | − 1, i.e. when there is one empty site in Bl. We state the

corresponding estimate as a separate lemma for the sake of clarity.

Lemma 6.6. � There exists a constant C = C(G,ω, f) such that for any K̂ such that K = |Bl | − 1,

κ2

N
El,K̂

(
W l
iψ
)
≤ Dl,K̂ (ψ) +

C

N2
.

Proof of Lemma 6.6. � First note that all the gradients δiη
ω,p vanish in the expression ofW l

i due to the

cuto� functions. We can therefore write, for any con�guration with one or less empty site, that

W l
i =

1

(2l′ + 1)2

∑
x∈Bl′

(
jωx,x+ei + dK̂jx,x+ei

)
− 1

(2lf + 1)2
Llf,
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where we denoted by dK̂ the value on ΣK̂l of d (ρl, ρ
ω
l ), which does not depend on the con�guration, and

f =
∑
x∈Blf

τxf . The quantity we want to estimate can therefore be rewritten

κ2

N
El,K̂

(
W l
iψ
)

=
κ2

N(2l′ + 1)2
El,K̂

ψ ∑
x∈Bl′

(
jωx,x+ei + dK̂jx,x+ei

)− κ2

N(2lf + 1)2
El,K̂

(
ψLlf

)
.

Since κ2, (2l′ + 1)2, and (2lf + 1)2 are of order (2l + 1)2, and since the sign of f is arbitrary, to prove

Lemma 6.6 it is su�cient to prove both

(6.34)
1

N
El,K̂

ψ ∑
x∈Bl′

(
jωx,x+ei + dK̂jx,x+ei

) ≤ Dl,K̂ (ψ)

2
+
C(ω)

N2

and
1

N
El,K̂

(
ψLlf

)
≤
Dl,K̂ (ψ)

2
+
C(f)

N2
.

The two inequalities above are proven in the same way. We treat in detail the second, which is the

most delicate, and simply sketch the adaptations to obtain the �rst. Using the elementary inequality

(6.35) ab ≤ γa2

2
+
b2

2γ
,

which holds for any positive γ, we �rst write

El,K̂
(
ψLlf

)
=

∑
x,x+z∈Bl

El,K̂
(
ψ∇x,x+zf

)
= −1

2

∑
x,x+z∈Bl

El,K̂
(
∇x,x+zψ∇x,x+zf

)
≤

∑
x,x+z∈Bl

γ

4
El,K̂

(
(∇x,x+z

√
ψ)2
)

+
1

4γ
El,K̂

(
(∇x,x+zf)2(

√
ψ +

√
ψ(η̂x,x+z))2

)

=
γ

2
Dl,K̂ (ψ) +

1

4γ
El,K̂

 ∑
x,x+z∈Bl

ηx(1− ηx+z)(f − f(η̂x,x+z))2(
√
ψ +

√
ψ(η̂x,x+z))2

 .

One only has now to carefully account for the order of the di�erent quantities in the second term. Since

f is a bounded local function, by de�nition of f , it is invariant under particle jumps with both ends

outside of its domain. There hence exists a constant C(f) such that for any x and x+ z, f − f(η̂x,x+z) ≤
C(f). In particular, the constant C(f) does not depend on l. We can also crudely bound ηx by 1 and

(
√
ψ +
√
ψ(η̂x,x+z))2 by 2ψ + ψ(η̂x,x+z). These bounds and a change of variable η̂ → η̂x,x+z �nally yield

that for any positive γ,

El,K̂
(
ψLlf

)
≤ γ

2
Dl,K̂ (ψ) +

C(f)

2γ
El,K̂

 ∑
x,x+z∈Bl

(2− ηx − ηx+z)ψ

 .

Furthermore, since there is only one empty site in Bl,∑
| y |≤l−1

(2− ηy − ηy+ei) = |Bl−1 | −
∑

y∈Bl−1

ηy︸ ︷︷ ︸
≤1

+ | τeiBl−1 | −
∑

y∈τeiBl−1︸ ︷︷ ︸
≤1

ηy ≤ 2,

therefore, since ψ is a probability density, and setting γ = N proves the second identity of (6.34).

The second identity is obtained in the same way, since

1

N
El,K̂

ψ ∑
x∈Bl′

(
jωx,x+ei + dK̂jx,x+ei

) =
1

N

∑
| y |≤l−1

El,K̂
(
(ω(θy) + dK̂)∇y,y+eiψ

)
,

we also obtain



80 C.ERIGNOUX

1

N
El,K̂

ψ ∑
x∈Bl′

(
jωx,x+ei + dK̂jx,x+ei

)
≤ γ

2
Dl,K̂ (ψ) +

(||ω||∞ + ||d||∞)
2

2γ
El,K̂

 ∑
x,x+ei∈Bl

(2− ηx − ηx+ei)ψ

 .

The last estimate, in turn, yields the �rst inequality in (6.34), which concludes the proof of Lemma

6.6.

In the limit N → ∞ then l → ∞, Lemma 6.6 guarantees, since κ1 vanishes as l → ∞, and since all

quantities vanish when K = |Bl |, that

κ1

∑
x∈T2

N

sup
K̂∈Kl

K≥|Bl |−1

sup
ψ

[κ2

N
El,K̂

(
W l
iψ
)
−Dl,K̂ (ψ)

]
→ 0.

We can therefore restrict the supremum over K̂ to those satisfying K ≤ |Bl | − 2. Recall that we

denoted in equation (3.2) by K̃l the set of such K̂, the left-hand side of (6.29) is bounded by

(6.36) inf
f

lim
p→∞

lim sup
l→∞

lim sup
N→∞

κ1

∑
x∈T2

N

sup
K̂∈K̃l

sup
ψ

[κ2

N
El,K̂

(
W l
iψ
)
−Dl,K̂ (ψ)

]
,

where the supremum is taken over all densities ψ w.r.t. µl,K̂ . On all the sets ΣK̂l considered, Ll is invertible
and the supremum over ψ is a variational formula for the largest eigenvalue of the operator Ll+κ2W l

i/N .

Proposition A.6 then allows us to bound the quantity whose limit is taken in (6.36) by

sup
K̂∈K̃l

κ1κ
2
2

1− 2γl
∣∣∣∣W l

i

∣∣∣∣
∞ κ2N−1

El,K̂
(
W l
i(−Ll)−1W l

i

)
≤ (2l + 1)2 sup

K̂∈K̃l
El,K̂

(
W l
i(−Ll)−1W l

i

)
,

where κ̃2 = ||G||∞ (2l + 1)2. To obtain the last inequality, we denoted by γl the spectral gap of the local

generator Ll, which is positive, and used that
∣∣∣∣W l

i

∣∣∣∣
∞ is �nite, and κ1κ

2
2 is of order (2l+ 1)2. In order to

obtain inequality (6.29), and conclude the proof of equation (6.7), it is therefore su�cient to prove the

following result.

Proposition 6.7 (Estimate of the local covariance). � Recall that W l
i is the local average of the

di�erence between currents and gradients up to Lf , namely

W l
i = 〈jωi 〉l

′

0 + ds (ρl) δiρ
ω,p
lp

+ d (ρl, ρ
ω
l ) δiρl′ − 〈Lf〉

lf
0 ,

where d is given by equation (2.12). Recall that K̃l only takes into account con�gurations with two empty

sites in Bl. Then,

(6.37) inf
f

lim
p→∞

lim sup
l→∞

sup
K̂∈K̃l

(2l + 1)2El,K̂
(
W l
i(−Ll)−1W l

i

)
= 0.

We now take a step back from that result in order to introduce the concept of discrete di�erential

forms, which is essential to prove that the quantity above vanishes.

6.6. Discrete di�erential forms in the context of particles systems. � We introduce in this

Section the concept of discrete di�erential forms in the context of particle systems. The key point of the

non-gradient method is that any translation-invariant closed form can be decomposed as the sum of a

gradient of a translation-invariant function and the currents. This result is stated in Proposition 6.14,

and directly rewrites as an approximation (in the sense of equation (6.37)) of any function in C0 by a

linear combination of the currents up to an elements of LC0.

Let us denote by Σ∞ the set of con�gurations on Z2

Σ∞ =
{

(ηx, θx)x∈Z2 ∈ ({0, 1} × S)Z
2

, θx = 0 if ηx = 0
}
.
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η̂x,x+eiui,x

uj,x

η̂x,x+ej

η̂x,x+ei+ej

ui,x+ej (η̂
x,x+ej )

uj,x+ei(η̂
x,x+ei)η̂

uj,y

η̂y,y+ej

ui,x(η̂y,y+ej )

uj,y(η̂x,x+ei)

(η̂x,x+ei)
y,y+ej

Figure 9. Representation of a di�erential form u on the graph G : if u is closed, the weight of

both green paths is identical, and the weight of both red path also is.

We consider here the graph G = (Σ∞, E) with edge set

(6.38) E =
{

(η̂, η̂′) ∈ Σ2
∞ | η̂′ = η̂x,x+ei and ηx(1− ηx+ei) + ηx+ei(1− ηx) = 1

}
.

In other words, two vertices η̂ and η̂′ are connected if and only if one can be reached from the other

with exactly one allowed particle jump. We endow G with the usual distance on graphs, i.e. d(η̂, η̂′) is the

minimal number of particle jumps necessary to go from one con�guration to the other. Note that this

graph is not connected, since for example a con�guration η̂ with no particles is not accessible from any

con�guration η̂′ with any number of particles. This is also the case for two con�gurations with di�erent

angle distributions. In such a case where there is no path between η̂′ and η̂, we will adopt the usual

convention d(η̂, η̂′) = ∞. By abuse of notation, we also denote by µα̂ (cf. De�nition 3.4) the grand

canonical measure measure on Z2 with parameter α̂, and write Eα̂(·) for the expectation w.r.t µα̂, which

will not be a problem since we only consider cylinder functions.

In order to illustrate the notion of closed form of the graph G, let us start �rst consider the following
example. For any edge a = (a1, a2) ⊂ Z2, we de�ned the gradient of a cylinder function f ∈ C along the

edge a as

∇af = ηa1(1− ηa2)(f(η̂a1,a2)− f(η̂)),

and shortened ∇i = ∇0,ei .

Let us now �x a cylinder function F ∈ C. For any x ∈ Z2, i ∈ {1, 2}, we de�ne

(6.39) uFi,x(η̂) = ∇x,x+eiF (η̂) = ηx(1− ηx+ei)(F (η̂x,x+ei)− F (η̂)).

uFi,x can be interpreted as the �cost� for the function F to transfer a particle from x to x + ei. For any

con�guration η̂ with ηx = 1− ηx+ei = 1, to each edge (η̂, η̂x,x+ei) ∈ E (cf. equation (6.38)) in our graph

G we therefore associate the �cost� uFi,x. The collection (uFi,x)i,x is a particular type of closed form, called

an exact form, because it can be written as the gradient of a local function, in the sense of equation

(6.39). However, we do not need a function F to de�ne such a collection of variables, and the idea of

closed forms is to generalize this notion of gradient on the graph G.
We will now de�ne the notions of exact and closed forms on the metric space (G, d), which will be

necessary in order to prove Theorem 6.25.

De�nition 6.8 (Di�erential forms on (G, d)). � A di�erential form on (G, d) is a collection of func-

tions (ui,x)i∈{1,2},x∈Z2 , with

ui,x(η̂) = ηx(1− ηx+ei)vi,x(η̂) ∈ L2(µα̂),

and vi,x : Σ∞ → R.
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As outlined before, ui,x(η̂) can be interpreted as the �cost� of a particle's transfer from x to x+ ei in

the con�guration η̂. A di�erential form is closed if the �cost� of a path only depends on its endpoints.

It is easy to see that a form is closed if and only if the previous property is true for any two-edge path.

Since a two-edge path consists either in a particle moved twice or in two particles moved once each, we

can give the following de�nition.

De�nition 6.9 (Closed forms on (G, d)). � A di�erential form (ui,x)i∈{1,2},x∈Z2 is closed if both of

the following equalities hold for any x, y ∈ Z2, i, j ∈ {1, 2} :

(6.40) ui,x(η̂) + uj,x+ei

(
η̂x,x+ei

)
= uj,x(η̂) + ui,x+ej

(
η̂x,x+ej

)
(6.41) ui,x(η̂) + uj,y

(
η̂x,x+ei

)
= uj,y(η̂) + ui,x

(
η̂y,y+ej

)
for any η̂ such that both paths are allowed, i.e whenever ηx = 1, ηx+ei = ηx+ej = ηx+ei+ej = 0 in the �rst

case, ηx = ηy = 1, ηx+ei = ηy+ej = 0 in the second. The �rst identity states that transferring a particle

from x to x + ei then to x + ei + ej creates the same cost as transferring it �rst to x + ej and then to

x+ ej + ei. The second states that transferring a particle in x to x+ ei then another from y to y + ej is

the same as transferring a particle from y to y + ej then the other from x to x+ ei.

Given two con�gurations η̂, η̂′ such that d(η̂, η̂′) =2, the two properties above ensure in particular that

the cost of any �nite path on G from η̂ to η̂′ is the same.

In particular, we easily see that for a closed form, the �cost� for a particle to jump from x to x − ei
is −ui,x−ei(η̂x,x−ei) : making the particle in x jump in the direction ei, then make it jump back in the

direction −ei should have no cost :

ui,x−ei(η̂)− ui,x−ei(η̂
x,x−ei) = 0.

As outlined in the introductory example, for any cylinder function F , the di�erential form (ui,x) de�ned

for any i and x by ui,x = uFi,x is a particular type of closed form.

De�nition 6.10 (Exact forms on (G, d)). � A di�erential form (ui,x)i∈{1,2},x∈Z2 is exact if there ex-

ists a function F : Σ∞ → R such that for any x ∈ Z2, i ∈ {1, 2}

ui,x(η̂) = ∇iF (x) = ηx(1− ηx+ei)(F (η̂x,x+ei)− F (η̂)).

We now investigate further the case of translation invariant closed forms.

De�nition 6.11 (Germs of a closed form). � A pair u = (u1,u2) of functions on Σ∞ is a germ of

a closed form if (τxui)i∈{1,2},x∈Z2 is a closed form. We endow the set of germs of closed forms with its

L2(µα̂) norm

(6.42) ||u||α̂,2 =
[
Eα̂(u2

1 + u2
2)
]1/2

We denote by C the vector space of germs of closed forms, and by Cα̂ its weak closure in L2(µα̂). Note

that in the Banach L2(µα̂), and since C is a vector space, the weak and strong closure coincide, and

therefore Cα̂ is also the strong closure of C in L2(µα̂).

De�nition 6.12 (Germs of an exact form). � A pair u = (u1,u2) will be called germ of an exact

form if we can write

(u1,u2) = ∇Σh = (∇1Σh,∇2Σh)

for some cylinder function h, where Σh is de�ned as the formal sum Σh =
∑
x∈Z2 τxh. We denote by E

the vector space of germs of exact forms, and by Eα̂ its weak (and also strong, cf. De�nition 6.11) closure

in L2(µα̂).

Remark 6.13. � Since the function Σh is ill-de�ned as a series, one could argue that the de�nition of

a germ of an exact form is also ill-de�ned. However, for any given direction i and since the functions h

have �nite support, ∇iΣh is well-de�ned as a �nite sum. Also note that the collection of translations of

a germ of an exact form does not necessarily yield an exact form. We will see later on, though, that it

produces at least a closed form.
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In order to investigate the structure of the set of germs of closed forms, let us expand brie�y on some

of its noteworthy subsets. The �rst such subset is the set of germs of exact forms. Indeed, it is easily

veri�ed that if the germ is the gradient of some "translation-invariant" function, the cost for a path only

depends on its endpoints, and therefore

Eα̂ ⊂ Cα̂.
Before introducing the second particular subset, let us �rst describe the closed forms representing the

particle currents. Let us consider the closed form de�ned by

j1i,x = 1i=1ηx(1− ηx+e1).

This di�erential form is trivially closed, since the cost of any path is the algebraic number of particle

jumps to the left along the trajectory de�ned by this path, which does not depend on the trajectory but

only on the �rst and last con�gurations. This di�erential form is translation invariant with germ

(6.43) j1 =
(
j11, j

1
2

)
= (η0(1− ηe1) , 0) ,

and it can be interpreted as the gradient of the formal function F1(η̂) =
∑
x∈Z2 x1ηx, which gains 1

when a particle jumps to the right, and decreases by the same amount when a particle jumps to the left.

However, since F1 is not a well-de�ned function, the closed form associated with j1 is not an exact form.

We can de�ne in a similar fashion the germ of the closed form representing the particle current in the

second direction, namely

(6.44) j2 = (0 , η0(1− ηe2)) ,

whose associated closed form is the gradient of the formal sum F2(η̂) =
∑
x∈Z2 x2ηx, which gains 1 when a

particle jumps up, and loses 1 when a particle jumps down. Regarding the angle-blind exclusion process,

these two forms would be su�cient to account for the particle currents on Z2. In our case however,

consider for example the germs

j1,θ =
(
ηθ0(1− ηe1) , 0

)
, j2,θ =

(
0 , ηθ0(1− ηe2)

)
,

where we de�ned ηθx = 1θx=θηx. These germs represent the current of particles with spin θ, and cannot

be expressed by a combination of j1 and j2. It is not hard to see that these are also germs of closed forms,

since the corresponding di�erential forms count the algebraic number of left-wise particle jumps with

angle θ, in the corresponding direction.

Any germ of a closed form in the context of particle systems can usually be expressed as the sum of a

germ of an exact form and of the macroscopic currents. In our case, this would mean that any θ-dependent

germ of a closed form can be expressed as a combination of all the j1,θ and j2,θ, up to the germ of an

exact form ∇Σf .

Recall that Cα̂ and Eα̂ are introduced in De�nitions 6.11 and 6.12. The main result of this Section is

that any closed form in Cα̂ is a combination of the forms ji and ji,θ, with a perturbation in Eα̂. However,

the proof of this decomposition requires a sharp estimate of the spectral gap of the generator of the

symmetric exclusion process, which we do not have in our case because of the angles, as outlined in

Section 5.2. Furthermore, we do not need to understand each current of particles with angle θ, but rather

an observable current weighted by ω. For this reason, one can restrict to the class of semi angle-blind

functions, with no correlations between angles. More precisely, recall that we already introduced in (5.4)

Tω0 the subspace of L2(µ∗α)

Tω0 =

{
f ∈ L2(µα̂), f(η̂) = ϕ(η) +

∑
x∈Z2

(c1η
ω
x + c2ηx)ψx(η), c1, c2 ∈ R, and ψx ∈ S ∀x ∈ Z2, ϕ ∈ S

}
.

For i = 1, 2, let Ei be the space

Ei =
{
f, Eα̂

(
1{η0ηei=0}f

2
)
<∞

}
⊂ L2(µα̂)

and Tωi the closure in Ei of T
ω
0 (Once again, strong closure and weak closure coincide, and we therefore

do not need to specify which one we consider). Let Tω⊥i be its orthogonal in Ei, and let us denote by Tω
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the set of pairs of random variables with each coordinate in Tωi

(6.45) Tω =
{
t ∈

(
L2(µα̂)

)2
, ti ∈ Tωi ∀i ∈ {1, 2}

}
.

The embedding in Ei is performed for purely technical reasons. Essentially, it allows Tωi as well as Tω⊥i
to be stable under the action of the symmetric generator L, but since this is not a crucial point of the

proof, we do not give more detail here.

Finally, we de�ne the germs of closed forms

(6.46) j1,ω = (ηω0 (1− ηe1) , 0) , j2,ω = (0 , ηω0 (1− ηe2)) ,

and let Jω be the linear span of the four germs of closed forms described through equations (6.43), (6.44)

and (6.46)

Jω =
{
a1j

1 + a2j
2 + b1j

1,ω + b2j
2,ω, (a1, a2, b1, b2) ∈ R4

}
Proposition 6.14 (Structure of Cα̂). � For any angle measure α̂ ∈M1(S), with the notations above

we have the decomposition

Cα̂ ∩Tω = (Eα̂ ∩Tω) + Jω.

Remark 6.15. � Notice that the ji and ji,ω are in Tω, therefore we do not need to restrict jω to Tω.

Finally, we can safely assume that the total density α is in ]0, 1[. If not, the graph G is trivial since its

edge set is empty. This assumption will be made throughout the rest of this Section.

Before turning to the proof of the last proposition, we investigate the case of a �nite domain con-

�guration. Considering the graph Gn with vertices the non-periodic con�gurations η̂ on the box Bn =

{−n, . . . , n}2, and connected in the same way as on the in�nite graph if one can be reached from the

other with one allowed jump. We de�ne the sets Cα̂,n and Eα̂,n the closure of the sets of closed and exact

forms on the graph Gn in L2(µα̂). On this graph, we have the following result.

Proposition 6.16. � For any density parameter α̂, with the notations above we have the decomposition,

Cα̂,n = Eα̂,n.

i.e. on a �nite set, all closed forms are exact forms.

Proof of Proposition 6.16. � It is important to consider only a non-periodic domain, because in the

periodic case, the di�erential form associated to any of the germs in jω are not closed. In particular, in a

non-periodic domain, it is not true that a di�erential form is closed if and only if the cost of any path of

length 2 only depends on its end points.

We simply sketch the proof, and refer the reader to appendix 3 of [27] for the detailed proof. The

basic idea is quite simple. For any given closed form u = (ui,x)i,x and any given particle number K̂

such that K < (2l + 1)2, choose a reference con�guration η̂K̂ with K̂ particles in Bn, for which we set

F (η̂K̂) = 0. Then, for any con�guration η̂′ with K̂ particles in Bn which is reachable from η̂ (in particular,

any con�guration is if K < (2n+ 1)2− 1, cf. Section 3.3), choose a path of neighbor con�gurations in Gn,
γ = (η̂i)i=1...l between η̂1 = η̂K̂ and η̂l = η̂′. We then let

F (η̂′) =

l−1∑
i=1

u(η̂i, η̂i+1),

where u(η̂i, η̂i+1) is the cost, according to the di�erential form (ui,x)i,x of the jump from η̂i to η̂i+1. It is

then easy to see that this de�nes a function F , whose gradient is the closed form u.

We now turn to the proof of the decomposition of germs of closed forms on the in�nite con�gurations.

Proof of Proposition 6.14. � We have seen previously that the elementary currents ji, ji,ω are all germs

of closed forms, hence their linear span is included in Cα̂. Let u = ∇Σh be the germ of an exact form,

with h some cylinder function in L2(µα̂), let us show that u is the germ of a closed form. The di�erential

form associated to u is

ui,x(η̂) = ηx(1− ηx+ei)
[
Σh(η̂x,x+ei)− Σh(η̂)

]
,
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which is the form associated to the formal function Σh. Since it is not a proper function, u is not exact,

however when the particle jumps are allowed, the variation of u only depends on the trajectory through

its endpoints, since this di�erential form restricted to any �nite subset of Z2 is the gradient of a function.

The form (τxui)i∈{1,2},x∈Z2 is therefore closed, and by de�nition u is a germ of a closed form.

We have now proven that

Cα̂ ⊃ Eα̂ +
{
ji, ji,ω, i ∈ {1, 2}

}
.

We now come to the main part of this result, namely the reverse inclusion. The strategy of the proof is

rather straightforward, let us give a brief outline right now. Given a germ of closed form u = (u1,u2), the

main idea of the proof is to project the associated closed form (τxui)i,x on large �nite cubes, on which it

is exact according to Proposition 6.16. This will allow us to write ui as the gradient of a local average, up

to a boundary term. The gradient will converge towards the germ of an exact form after local averaging,

whereas the boundary term is ultimately in jω .

Let u be the germ of a closed form in the subspace Tω de�ned in (6.45), and (ui,x)i,x = (τxui)i,x the

associated closed form. For any �xed integer n, let Fn be the σ-algebra generated by the spins inside Bn

Fn = σ
(
η̂x, x ∈ J−n, nK2

)
.

Furthermore, let uni,x be the conditional expectation

uni,x = Eα̂(ui,x | Fn).

Note in particular that uni,x is also in Tω.

Recall that the gradient of a local function ϕ when a particle jumps from x to x+ ei is de�ned as

∇x,x+eiϕ(η̂) = ηx(1− ηx+ei)
(
ϕ(η̂x,x+ei)− ϕ(η̂)

)
Since according to Proposition 6.16, any closed form on a �nite box is exact, there exists a family of

Fn-measurable function ϕn ∈ L2(µα̂) such that

(6.47) uni,x = ∇x,x+eiϕn = τx∇0,eiτ−xϕn.

Furthermore, since the gradient of any constant vanishes, we can safely assume that for any n, Eα̂(ϕn) = 0.

Let us �x n ∈ N, and consider the germ of an exact form 1
(2n)2∇0,eiΣϕn

1

(2n)2
∇0,eiΣϕn =

1

(2n)2
∇0,ei

∑
x∈Z2

τxϕn =
1

(2n)2

∑
x∈Z2

τ−x∇x,x+eiϕn.

Since ϕn is Fn-measurable, ∇x,x+eiϕn vanishes as soon as both x and x + ei are not in Bn. Hence, the

previous quantity is equal to

(6.48)
1

(2n)2
∇0,eiΣϕn =

1

(2n)2

∑
−n−1≤xi≤n
| xj | ≤n, j 6=i

τ−x∇x,x+eiϕn = Rn,i +
1

(2n)2

∑
−n≤xi≤n−1

x∈Bn

τ−x∇x,x+eiϕn,

where the boundary term Rn,i is

Rn,i =
1

(2n)2

 ∑
xi=−n−1
| xj | ≤n, j 6=i

τ−x∇x,x+eiϕn +
∑
xi=n
x∈Bn

τ−x∇x,x+eiϕn

 .
Since ϕn is supported in Bn, the exchanges at the boundary act as reservoirs with creation (�rst term in

Rn,i) at the sites x with xi = −n, and annihilation of particles (second term in Rn,i) at the sites x such

that xi = n.

Let us focus on the resulting equation and its behavior as n goes to in�nity :

1

(2n)2
∇0,eiΣϕn = Rn,i +

1

(2n)2

∑
−n≤xi≤n−1

x∈Bn

τ−x∇x,x+eiϕn.

For any n, the left-hand side is the germ of an exact form as introduced in De�nition 6.12, and the limit

is therefore in Eα̂. We will see that the second term of the right-hand side converges in L2(µα̂) as n goes

to in�nity towards ui. Hence to prove Proposition 6.14 it will be su�cient to show that the boundary
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R+
n,i

Bϕn

R−n,i

2n
Particle
creation

Particle
annihilation

0

Figure 10. Description of the boundary terms R̃n,i in equation (6.51).

term term Rn,i remains in a compact set, and that any of its limit points is in the linear span of the

elementary currents. In order to do that, we must �rst obtain some control over the boundary term, i.e.

to estimate it by the Dirichlet form of the ϕ′ns. The di�culty here is that the Dirichlet form records only

the displacements of particles, whereas the boundary term involves creation and annihilation of particles.

Let us brie�y illustrate that statement : consider one element in the boundary term Rn,i, say x ∈ Bn
such that xi = n, and consider the gradient ∇x,x+eiϕn. For any con�guration η̂ with a particle in x, let

us denote η̂ − δx the con�guration equal to η̂ everywhere except in x where the site is now empty. Since

ϕn is Fn-measurable, the previous gradient is equal to

(6.49) ∇x,x+eiϕn(η̂) = ηx(1− ηx+ei) (ϕn(η̂ − δx)− ϕn(η̂)) .

Creation and annihilation of particles cannot be directly estimated by the Dirichlet form. In order to

circumvent this problem, we need to smooth out ϕn on a larger domain and consider

ϕ̃n = Eα̂(ϕ3n| Fn).

Rewrite (6.48) with ϕ̃n instead of ϕn

(6.50)
1

(2n)2
∇0,eiΣϕ̃n =

1

(2n)2

∑
−n≤xi≤n−1

x∈Bn

τ−x∇x,x+ei ϕ̃n + R̃n,i,

where this time

(6.51) R̃n,i =
1

(2n)2

 ∑
xi=−n−1
| xj | ≤n, j 6=i

τ−x∇x,x+ei ϕ̃n +
∑
xi=n
x∈Bn

τ−x∇x,x+ei ϕ̃n

 .
We are going to show that

� the bulk term converges as n goes to in�nity to ui.

� the limiting boundary terms are all in the linear span of the currents.

For the sake of clarity, we state both of these results as separate lemmas, and we will prove them

afterwards.
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Lemma 6.17 (Convergence of the bulk term towards ui). � For any i ∈ {1, 2}, the convergence

1

(2n)2

∑
−n≤xi≤n−1

x∈Bn

τ−x∇x,x+ei ϕ̃n −−−−→
n→∞

ui

holds in L2(µα̂).

Let us state the second part of the convergence before giving the proofs.

Lemma 6.18 (Limit of the boundary term). � For any i ∈ {1, 2}, we split the boundary term ac-

cording to Figure 10 as

R̃n,i = R̃−n,i + R̃+
n,i,

where

(6.52) R̃−n,i =
1

(2n)2

∑
xi=−n−1
| xj | ≤n, j 6=i

τ−x∇x,x+ei ϕ̃n, and R̃+
n,i =

1

(2n)2

∑
xi=n
x∈Bn

τ−x∇x,x+ei ϕ̃n,

which will be referred to respectively as negative and positive boundary terms. With the previous notations,

both sequences (R̃−n,i)n∈N and (R̃+
n,i)n∈N are bounded in L2(µα̂). Furthermore, for any weakly convergent

subsequence R̃−kn,i → R−i , there exists ai, bi ∈ R such that

R−i = aiη
ω
0 (1− ηei) + biη0(1− ηei).

The same is true for the positive boundary term.

Before giving the proof of the two Lemmas 6.17 and 6.18, we conclude the proof of Proposition 6.14.

Recall from equation (6.50) that

1

(2n)2

∑
−n≤xi≤n−1

x∈Bn

τ−x∇x,x+ei ϕ̃n =
1

(2n)2
∇0,eiΣϕ̃n − R̃n,i,

Lemma 6.17 guarantees that the left-hand side converges in L2(µα̂) towards ui, whereas the �rst term

in the right-hand side is the limit of a sequence of germs of exact forms. Finally, Lemma 6.18 guarantees

that

lim
n→∞

(R̃n,1, R̃n,2) =

2∑
i=1

aij
i + bij

i,ω,

where ji and ji,ω were de�ned in (6.43), (6.44) and (6.46). This yields, as wanted, that

Cα̂ ∩Tω ⊂ (Eα̂ ∩Tω) + Jω,

which proves Proposition 6.14.

The proof of Lemma 6.17 is simple, we treat it right now before turning to the proof of Lemma 6.18,

which is a little more elaborate.

Proof of Lemma 6.17. � We want to prove that the convergence

lim
n→∞

1

(2n)2

∑
−n≤xi≤n−1

x∈Bn

τ−x∇x,x+ei ϕ̃n = ui,

holds in L2(µα̂). By construction, for any x, x+ ei ∈ Bn,

∇x,x+ei ϕ̃n = ∇x,x+eiEα̂(ϕ3n | Fn) = Eα̂(∇x,x+eiϕ3n | Fn),

since both x and x+ ei are in Bn. Since by de�nition of ϕn, u
n
i,x = ∇x,x+eiϕn we deduce that

∇x,x+ei ϕ̃n = Eα̂(u3n
i,x | Fn) = Eα̂(ui,x | Fn).

The random variable uni,0 = Eα̂(ui,0 | Fn) converges in L2(µα̂) to ui,0 = ui. Therefore, consider ε > 0,

there exists some integer n0 such that

Eα̂
( ∣∣ un0

i,0 − ui
∣∣ 2
)
≤ ε,
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and it is easy to see that for any n ≥ n0 and x ∈ Bn−n0
, we also have

Eα̂
( ∣∣ τ−xuni,x − ui

∣∣ 2
)
≤ ε

since Eα̂ is translation invariant. Now we have some control over the convergence of uni,x for any x ∈ Bn−n0
,

we can prove Lemma 6.17. For any n ≥ n0,

Eα̂

((
1

(2n)2

∑
−n≤xi≤n−1

x∈Bn

τ−xu
n
i,x − ui

)2)

≤ 1

(2n)2

∑
−n≤xi≤n−1

x∈Bn

Eα̂
((
τ−xu

n
i,x − ui

)2)

=
1

(2n)2

∑
x∈Bn−n0

Eα̂
((
τ−xu

n
i,x − ui

)2)
+

1

(2n)2

∑
−n≤xi≤n−1
x∈Bn−Bn−n0

Eα̂
((
τ−xu

n
i,x − ui

)2)

≤ (2(n− n0) + 1)2

(2n)2
ε+

4nn0

(2n)2
Ci

≤ ε+ on(1),

where Ci is a crude bound on

Eα̂
((
τ−xu

n
i,x − ui

)2) ≤ 2Eα̂
((

uni,0
)2)

+ 2Eα̂
(
ui

2
)
≤ 4Eα̂

(
ui

2
)

:= Ci,

thanks to the conditional Jensen inequality. Finally, for any ε > 0, we can write

lim
n→∞

Eα̂


 1

(2n)2

∑
−n≤xi≤n−1

x∈Bn

τ−xu
n
i,x − ui


2 ≤ ε,

and we have shown Lemma 6.17.

We now prove the second Lemma, i.e. that the limiting boundary term is in the linear span of the

currents, which is the main di�culty of this Section.

Proof of Lemma 6.18. � The proof of this Lemma being long, we split it into three steps.

� We �rst control the L2(µα̂) norm of the ϕ̃n's.

� Thanks to this control, we prove that the boundary terms R̃±n,i are bounded in L2(µα̂), and

therefore weakly compact.

� Finally, we prove that the limiting boundary terms R±i can only depend on the con�guration

through η̂0 and η̂ei , and that they can be written as a combination of the ji and ji,ω.

The scheme follows closely that of Theorem 4.14 in Appendix 3 of [27] however adjustments are needed

in the second and third step to take into account the presence of the angles.

First step : Control on the L2 norm of the ϕn's.

We proved in Section 5.2 that, even though we do not have a su�ciently sharp spectral gap on the

set C0 de�ned in (5.1), we could circumvent this di�culty by restricting ourselves to a convenient class

of functions not too dependent on the spins. This spectral gap estimate is needed to control the norm

of the ϕ′ns. This is one of the reasons for limiting the result to closed forms in Tω de�ned in (6.45). We

state this step as a separate lemma for the sake of clarity.

Lemma 6.19. � There exists a constant K depending only on α̂, such that ϕn, introduced in (6.47)

veri�es for any n ∈ N,
Eα̂(ϕ2

n) ≤ Kn4 ||u||22,α̂ .
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Proof of Lemma 6.19. � For f a function in Tωi , one can check that the symmetric gradient

∇̃if := 1{η0ηei=0}(f(η̂0,ei)− f)

is also in Tωi . Furthermore, a simple change of variables shows that for any functions f, g ∈ Ei, this

modi�ed gradient is symmetric indeed, i.e.

Eα̂(f∇̃ig) = Eα̂(g∇̃if).

This implies that Tω⊥i is invariant by the action of ∇̃i, therefore for any function such that ∇̃iϕ ∈ Tωi ,
we also have ϕ ∈ Tωi . With that in mind, note that for any function ϕ, we have the identity

∇̃iϕ(η̂) = ∇iϕ(η̂)−∇iϕ(η̂0,ei).

In our case, τ−xu
n
i,x = ∇0,eiτ−xϕn hence

∇̃iτ−xϕn = τ−xu
n
i,x(η)− τ−xuni,x(η̂0,ei).

Now since the right-hand side of the identity above is in Tωi , we obtain that ∇̃iτ−xϕn ∈ Tωi , which yields

thanks to the observation above τ−xϕn ∈ Tωi and ϕn ∈ Tωi . We can now use the estimate of the spectral

gap obtained in Proposition 5.4, which yields since we assumed that the ϕn's have mean 0 w.r.t. µα̂,

Eα̂(ϕnLnϕn) ≤ − C
n2

Eα̂(ϕ2
n)

hence

Eα̂(ϕ2
n) ≤ C−1n2Dn(ϕn),

where Dn(f) = −Eα̂(fLnf) is the Dirichlet form relative to the symmetric exclusion process restricted

to Bn. Recall from the de�nition of Dn that

Dn(ϕn) =
1

2

2∑
i=1

∑
δ∈{−1,1}

∑
x,x+δei∈Bn

Eα̂
[
(∇x,+δeiϕn)2

]
.

Since ∇x,x+eiϕn = uni,x and ∇x,x−eiϕn = −uni,x−ei(η̂
x,x−ei), Jensen's inequality yields

(6.53) Dn(ϕn) =

2∑
i=1

∑
x,x+ei∈Bn

Eα̂
[
(uni,x)2

]
≤

2∑
i=1

∑
x,x+ei∈Bn

Eα̂
[
(ui)

2
]
≤ Cn2 ||u||22,α̂ ,

for some constant C, thanks to a change of variable η → η̂x,x+ei under which µα̂ is invariant. We obtain

as wanted, thanks to the spectral gap,

(6.54) Eα̂(ϕ2
n) ≤ Kn4 ||u||22,α̂ ,

where K is a constant depending only on α̂.

Second step : Control on the L2 norm of the boundary terms.

Recall that in order to control the boundary terms, we have to deal with creation and annihilation of

particles. We now prove thanks to Lemma 6.19 that the boundary terms are bounded in L2(µα̂), which

is the main di�culty of the proof of Lemma 6.18.

Lemma 6.20. � Given the de�nition in equation (6.52) of both boundary terms R̃−n,i and R̃
+
n,i, there is

a constant C = C(α̂), such that uniformly in n

Eα̂
([
R̃−n,i

]2)
≤ C ||u||22,α̂ and Eα̂

([
R̃+
n,i

]2)
≤ C ||u||22,α̂ .

Proof of Lemma 6.20. � We will treat in full detail only the case of the negative boundary term

R̃−n,i =
1

(2n)2

∑
xi=−n−1
| xj | ≤n, j 6=i

τ−x∇x,x+ei ϕ̃n,
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since the positive boundary term is treated in a similar fashion. The elementary inequality

(6.55)

(
n∑
i=1

ai

)2

≤ n
n∑
i=1

a2
i ,

yields

Eα̂
([
R̃−n,i

]2)
≤ 2n

(2n)4

∑
xi=−n−1
| xj | ≤n, j 6=i

Eα̂
(

(τ−x∇x,x+ei ϕ̃n)
2
)

=
1

8n3

∑
xi=−n−1
| xj | ≤n, j 6=i

Eα̂
(

(∇x,x+ei ϕ̃n)
2
)
,

by translation invariance of µα̂. At this point, we reduced our control over the boundary term to a sum of

L2 bounds on ∇x,x+ei ϕ̃n, which we wrote explicitly in equation (6.49) for any x in the negative boundary

(xi = −n− 1, | xj | ≤ n),

(6.56) ∇x,x+ei ϕ̃n(η̂) = ηx(1− ηx+ei)
(
ϕ̃n(η̂ + δθx+ei)− ϕ̃n(η̂)

)
,

where η̂ + δθx+ei is the con�guration equal to η̂ everywhere except in x + ei, where the site contains a

particle with angle θ distributed as α̂/α independently of η̂. Note that in the expectation Eα̂, we will also
take the expectation w.r.t. θ, but still denote it by Eα̂ for the sake of concision. Since ϕn is independent

of η̂x for any x in the negative boundary term, the L2 norm of the gradient can be rewritten thanks to

equation (6.56)

Eα̂(ηx)Eα̂
(

(1− ηx+ei)
(
ϕ̃n(η̂ + δθx+ei)− ϕ̃n(η̂)

)2)
= αEα̂

(
(1− ηx+ei)

(
ϕ̃n(η̂ + δθxx+ei)− ϕ̃n(η̂)

)2
)
,

and the L2 norm of the boundary term can bounded from above by

(6.57) Eα̂
([
R̃−n,i

]2)
≤ α

8n3

∑
xi=−n−1
| xj | ≤n, j 6=i

Eα̂
(

(1− ηx+ei)
[
ϕ̃n(η̂ + δθx+ei)− ϕ̃n(η̂)

]2)
,

where the expectation w.r.t θ is taken under the law α̂/α. Thanks to the identity above, and since the

number of terms in (6.57) is of order n, Lemma 6.20 follows from Lemma 6.21 below.

Lemma 6.21. � There exists a constant C depending only on α̂, such that for any x ∈ Bn such that

xi = −n− 1,

Eα̂
(

(1− ηx+ei)
[
ϕ̃n(η̂ + δθx+ei)− ϕ̃n(η̂)

]2) ≤ Cn2 ||u||22,α̂ .

Proof of Lemma 6.21. � Let us �x x, xi = −n−1 in the negative boundary. To make the Dirichlet form

appear, we are going to force an occupied site in a neighborhood of x, and transform the creation process

into a particle transfer. For the sake of clarity, any con�guration η̂ on B3n will be considered as the pair

of an interior con�guration ζ̂ on Bn (which is hence Fn-measurable), and an exterior con�guration ξ̂

on B3n − Bn. With the previous notations in mind, and since ϕ̃n = E(ϕ3n | Fn) we have the following

equalities for ϕ̃
(
ζ̂ + δθx+ei

)
which appears in (6.57) :

ϕ̃n

(
ζ̂ + δθx+ei

)
= Eα̂(ϕ3n | Fn)

(
ζ̂ + δθx+ei

)
= Eα̂(ϕ3n(ζ̂ ′, ξ̂) | ζ̂ ′ = ζ̂ + δθx+ei).

where in last term, the expectation is only taken w.r.t B3n −Bn.
We compute now ϕ̃n

(
ζ̂ + δθx+ei

)
− ϕ̃n(ζ̂). For any y ∈ B3n − Bn, we rewrite using the identity

(1− α)−1[1− ξ + ξ − α] = 1

ϕ̃n

(
ζ̂ + δθx+ei

)
=

1

1− α

(
Eα̂
(

(1− ξy)ϕ3n | Fn
)

+ Eα̂
(

(ξy − α)ϕ3n | Fn
))(

ζ̂ + δθx+ei

)
,

where ξy is the occupation variable in y, and is either 1 or 0 depending on whether the site y is empty or

not.

The �rst part of this decomposition will be controlled by the Dirichlet form, as the existence of an

empty site in y (thanks to 1 − ξy) will allow us to reconstruct a particle transfer from y to x + ei. The

second term will be estimated after a spatial averaging over a large microscopic box. This box must be
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measurable with respect to the spins in B3n−Bn, in order to be able to introduce it inside the expectation.
For any x in the negative boundary, consider the set

Bxn−1,i = x− nei +Bn−1,

which is the box of radius n− 1 centered in x− nei. Remark that the cardinal of Bxn−1,i is (2n− 1)2, so

that averaging the previous identity over the y's in Bxn−1,i allows us to write

(6.58)

ϕ̃n

(
ζ̂ + δθx+ei

)
=

1

(2n− 1)2

∑
y∈Bxn−1,i

(
Eα̂
(

1− ξy
1− α

ϕ3n

∣∣∣∣ Fn)+ Eα̂
(
ξy − α
1− α

ϕ3n

∣∣∣∣ Fn))(ζ̂ + δθx+ei

)
.

Let us consider the �rst term of the previous equality. For any y in the boundary, thanks to the factor

1− ξy the site y is empty. By the change of variable ξ̂ → ξ̂− δy where ξ̂− δy is the con�guration identical

to ξ̂ everywhere except in y where the site is now empty, so that

Eα̂
(

1− ξy
1− α

ϕ3n

∣∣∣∣Fn)(ζ̂ + δθx+ei

)
=Eα̂

(
ξy
α
ϕ3n

(
ξ̂ − δy

) ∣∣∣∣ Fn)(ζ̂ + δθx+ei

)
=Eα̂

(
ξy
α

[
ϕ3n

(
ζ̂ + δθx+ei , ξ̂ − δy

)
− ϕ3n

(
ζ̂, ξ̂
)] ∣∣∣∣Fn)+ Eα̂

(
ξy
α
ϕ3n

(
ζ̂, ξ̂
) ∣∣∣∣ Fn) .

We deduce from the last identity and equation (6.58) that we can write ϕ̃n

(
ζ̂ + δθx+ei

)
as

ϕ̃n

(
ζ̂ + δθx+ei

)
=

1

(2n− 1)2

∑
y∈Bxn−1,i

[
Eα̂
(
ξy
α

[
ϕ3n

(
ζ̂ + δθx+ei , ξ̂ − δy

)
− ϕ3n

(
ζ̂, ξ̂
)] ∣∣∣∣ Fn)

+ Eα̂
(
ϕ3n

(
ζ̂, ξ̂
) ∣∣∣ Fn)+ Eα̂

(
ξy − α
1− α

ϕ3n

(
ζ̂ + δθx+ei , ξ̂

) ∣∣∣∣ Fn)
]
.

We are therefore able to rewrite the di�erence ϕ̃n

(
ζ̂ + δθx+ei

)
− ϕ̃n(ζ̂) as

(6.59)

ϕ̃n

(
ζ̂ + δθx+ei

)
− ϕ̃n(ζ̂) =

1

(2n− 1)2

∑
y∈Bxn−1,i

[
Eα̂
(
ξy
α

[
ϕ3n

(
ζ̂ + δθx+ei , ξ̂ − δy

)
− ϕ3n

(
ζ̂, ξ̂
)] ∣∣∣∣ Fn)

+ Eα̂
(
ξy − α
α

ϕ3n

(
ζ̂, ξ̂
) ∣∣∣∣ Fn)+ Eα̂

(
ξy − α
1− α

ϕ3n

(
ζ̂ + δθx+ei , ξ̂

) ∣∣∣∣ Fn)
]
.

using the elementary bound (6.55) as well as Jensen's inequality yields

Eα̂
(

(1− ηx+ei)
(
ϕ̃n(η̂+δθx+ei)− ϕ̃n(η̂)

)2)
≤ 3

(2n− 1)2

 ∑
y∈Bxn−1,i

Eα̂
(
ηy(1− ηx+ei)

α2

[
ϕ3n

(
η̂ + δθx+ei − δy

)
− ϕ3n (η̂)

]2)
+ 3Eα̂

Eα̂

 1

(2n− 1)2

∑
y∈Bxn−1,i

ηy − α
α

 ϕ3n

∣∣∣∣∣∣ Fn
2


+ 3Eα̂

Eα̂

 (1− ηx+ei)

(2n− 1)2

∑
y∈Bxn−1,i

ηy − α
1− α

ϕ3n

(
η̂ + δθx+ei

) ∣∣∣∣∣∣ Fn
2
 .(6.60)

From now on, the strategy to prove Lemma 6.21 is straightforward. We are going to prove that each of

the three terms in the right-hand side above is of order n2 :



92 C.ERIGNOUX

� The second and third line above are controlled thanks to the spatial averaging by the L2 norm

of the ϕn's.

� In the �rst line, the angle of the particle deleted in y is not necessarily the same as the one

of the particle created in x + ei, because the angle θ above is distributed according to α̂/α and

independent of the con�guration. However, since the ϕn are in Tω0 their dependence in the angles

can be sharply estimated. Once this di�culty is dealt with, the remaining quantity will be controlled

by the Dirichlet form.

We �rst treat the �rst step above. Thanks to the Cauchy-Schwarz inequality, we can estimate the second

line

Eα̂

Eα̂

 1

(2n− 1)2

∑
y∈Bxn−1,i

ηy − α
α

 ϕ3n

∣∣∣∣∣∣ Fn
2

≤ 1

α2
Eα̂


 1

(2n− 1)2

∑
y∈Bxn−1,i

ηy − α

2
Eα̂

(
ϕ2

3n

)
=

V arα̂(η0)

α2(2n− 1)2
Eα̂
(
ϕ2

3n

)
,

since under µα̂, the ηy's are i.i.d. variables. We can now use the bound obtained in Lemma 6.19, which

yields that for some constant C1 = C1(α̂),

(6.61) Eα̂

Eα̂

 1

(2n− 1)2

∑
y∈Bxn−1,i

ηy − α

 ϕ3n

∣∣∣∣∣∣ Fn
2
 ≤ C1n

2 ||u||22,α̂ .

We obtain in the exact same fashion, since

Eα̂
(

(1− ηx+ei)ϕ3n

(
η̂ + δθx+ei

)2)
= Eα̂(ηx+eiϕ

2
3n) ≤ Eα̂(ϕ2

3n),

that

(6.62) Eα̂

Eα̂

 1

(2n− 1)2

∑
y∈Bxn−1,i

ηy − α

 (1− ηx+ei)ϕ3n

(
η̂ + δθx+ei

) ∣∣∣∣∣∣ Fn
2
 ≤ C2n

2 ||u||22,α̂

We now turn to the second step, and obtain an estimate on the �rst line of the right-hand side of

(6.60), namely

(6.63)
1

(2n− 1)2

∑
y∈Bxn−1,i

Eα̂
(
ηy(1− ηx+ei)

α2

[
ϕ3n

(
η̂ + δθx+ei − δy

)
− ϕ3n (η̂)

]2)
.

We �rst deal with the fact that the deleted and created particles do not have the same angle. Recall that

η̂y,θ is the con�guration where the angle of the particle at the site y has been set to θ, we can thus write

η̂ + δθx+ei − δy =
(
η̂y,θ

)y,x+ei
,

therefore(
ϕ3n

(
η̂ + δθx+ei − δy

)
− ϕ3n (η̂)

)2 ≤ 2
[
ϕ3n

((
η̂y,θ

)y,x+ei
)
− ϕ3n

(
η̂y,θ

)]2
+ 2

[
ϕ3n

(
η̂y,θ

)
− ϕ3n (η̂)

]2
,

Since θ is distributed according to α̂/α, η̂y,θ has the same distribution as η̂ under µα̂, and we can therefore

control (6.63) by

(6.64)
2

α2(2n− 1)2

∑
y∈Bxn−1,i

[
Eα̂
(
ηy(1− ηx+ei)

[
ϕ3n

(
η̂y,x+ei

)
− ϕ3n (η̂)

]2)
+ Eα̂

(
ηy
[
ϕ3n

(
η̂y,θ

)
− ϕ3n (η̂)

]2)]
.

Once again, we are going to prove that the contributions of both terms in the right-hand side above are

of order n2.
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We �rst need to decompose, as in the proof of the two-block estimate of Lemma 4.4, the particle

jumps appearing in the �rst term into nearest neighbor jumps. More precisely, there exists a �nite family

x0, . . . , xp such that x0 = y, xp = x and for any k ∈ J0, p − 1K, |xk − xk+1 | = 1. Furthermore, we can

safely assume that p = | y − x |. With this construction, for any y ∈ Bxn−1,i, we can write

Eα̂
[
ηy(1− ηx+ei)

(
ϕ3n(η̂y,x+ei)−ϕ3n(η̂)

)2
]

≤ | y − x |
| y−x |∑
k=1

Eα̂
[
ηxk(1− ηxk+1

)
(
ϕ3n(η̂xk,xk+1)− ϕ3n(η̂)

)2
]

≤ | y − x |
| y−x |∑
k=1

Eα̂
([
∇xk,xk+1

ϕ3n(η̂)
]2)

,(6.65)

since (
∑p
k=1 ak)2 ≤ p

∑p
k=1 a

2
k. Furthermore, by de�nition of ϕ3n, assume that xk+1 = xk + ej in which

case ∇xk,xk+1
ϕ3n(η̂) = u3n

xk,j
, we obtain by Jensen's Inequality that

Eα̂
([
∇xk,xk+1

ϕ3n(η̂)
]2) ≤ Eα̂

(
τxk (uj)

2
)
≤ ||u||22,α̂ .

The same bound holds if xk+1 = xk − ej for some j, and we can �nally rewrite (6.65) as

Eα̂
[
ηy(1− ηx+ei)

(
ϕ3n(η̂y,x+ei)− ϕ3n(η̂)

)2
]
≤ | y − x |

| y−x |∑
k=1

||u||22,α̂ = | y − x |2 ||u||22,α̂ .

We now get back to the �rst term in (6.64). It is not hard to see that
∑
y∈Bxn−1,i

| y − x |2 is of order n4,

and we obtain as wanted that for some constant C3 depending only on α̂,

(6.66)
2

α2(2n− 1)2

∑
y∈Bxn−1,i

Eα̂
(
ηy(1− ηx+ei)

[
ϕ3n

(
η̂y,x+ei

)
− ϕ3n (η̂)

]2) ≤ C3n
2 ||u||22,α̂ .

We now estimate the second contribution in (6.64). The only di�erence between ϕ3n

(
η̂y,θ

)
and ϕ3n (η̂)

is the angle of the particle at site y. We proved along with Lemma 6.19 that ϕn ∈ Tωi , therefore the

variation of ϕn when an angle is changed can be precisely estimated. For the sake of simplicity, we

assume that ϕn is in the set Tω0 we de�ned in (5.4), but if it is not the case, the estimate we are going

to obtain still holds, once ϕn is replaced by a sequence in Tω0 which converges towards ϕn. If ϕn ∈ Tω0 ,
for any n, there exists two constants a1,n and a2,n, a family of angle-blind functions (ψn,x)x∈Z2 , and an

angle-blind function ψ∗n ∈ S, such that

ϕ3n = ψ∗n +
∑
x∈Z2

(a1,nηx + a2,nη
ω
x )ψn,x.

Since the only di�erence between η̂y,θ and η̂ is in the angle present at the site y, we can write

ϕ3n

(
η̂y,θ

)
− ϕ3n (η̂) = a2,n(ω(θ)− ω(θy))ηyψn,y(η),

therefore the second line in (6.64) can be rewritten

(6.67)
2

α2(2n− 1)2

∑
y∈Bxn−1,i

Eα̂
(
ηy(ω(θ)− ω(θy))2ψ2

n,y

)
≤ 4a2,nV arα̂(ω)

α2(2n− 1)2

∑
y∈Z2

Eα̂
(
ηyψ

2
n,y

)
,

where we shortened V arα̂(ω) = V arα̂(ω(θ0)), since the angles are independent of the con�guration

conditionally to the presence of a particle. Recall from Section 5.2 that we can write

ϕn = ϕsbn + ϕωn ,

where

ϕsbn = ψ∗n +
∑
x∈Z2

b1,nηxψn,x and ϕωn =
∑
x∈Z2

a2,n(ω(θx)− Eα̂(ω)ηxψn,x,

where b1,n = a1,n + Eα̂(ω) and Eα̂(ω) stands for Eα̂(ω(θ0)). Furthermore, one obtains

Eα̂(ϕ2
n) = Eα̂((ϕsbn )2) + Eα̂((ϕωn)2),
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as well as

Eα̂((ϕωn)2) = a2,nV arα̂(ω)
∑
x∈Z2

Eα̂(ηxψ
2
n,x).

The two previous identities �nally yield that

a2,nV arα̂(θ0)
∑
x∈Z2

Eα̂(ηxψ
2
n,x) ≤ Eα̂(ϕ2

n).

We now use the previous identity as well as (6.67) and Lemma 6.19 to obtain that for some constant C4

depending only on α̂

(6.68)
2

α2(2n− 1)2

∑
y∈Bxn−1,i

Eα̂
(
ηy
[
ϕ3n

(
η̂y,θ

)
− ϕ3n (η̂)

]2) ≤ C4n
2 ||u||22,α̂ .

This is the estimate we wanted for the second line of (6.64).

Letting C = 3(C1 + C2 + C3 + C4), we now use the four bounds (6.61), (6.62), (6.66) and (6.68) in

equation (6.60), to obtain that

Eα̂
(

(1− ηx+ei)
(
ϕ̃n(η̂ + δθx+ei)− ϕ̃n(η̂)

)2) ≤ Cn2 ||u||22,α̂
as wanted, which concludes the proof of Lemma 6.21.

We have now �nished the second step, and proven that the boundary terms (R̃+
n,i)n∈N and (R̃−n,i)n∈N

are bounded in L2(µα̂). To conclude the proof of Lemma 6.18 we still have to prove that all limiting

points R−i of (R̃−n,i) are in the linear span of the currents. The main di�culty is to prove that any limit

point only depends on η̂0 and η̂ei , which we state as a separate lemma.

Third step : Proof that R−i only depends on η̂ through η̂0 and η̂ei

Let us denote

Z2
+,i = {xi > 0} ∩ Z2 \ {ei},

we �rst prove the following intermediate result.

Lemma 6.22. � Any weak limit point R−i of the sequence (R̃−n,i) is measurable w.r.t. the sites in

Z2 ∩ {xi > 0} ∪ {0}. Furthermore, for any edge (z, z ± ej) with both ends in the set Z2
+,i, the gradient

∇z,z±ejR−i vanishes in L2(µα̂).

Proof of Lemma 6.22. � In order to avoid taking subsequences, let us also assume that (R̃−n,i) weakly

converges towards R−i . We �rst prove the �rst statement, which is elementary. For any x in the boundary,

τ−xϕ̃n is measurable with respect to the half plane {xi > 0}, therefore ∇0,eiτ−xϕ̃ is measurable with

respect to the sites in {xi > 0} ∪ {0}. We deduce from the last remark that for any n, R̃−n,i is measurable

for any n w.r.t. the sites in {xi > 0} ∪ {0}, therefore R−i also is.

We now show that for any edge {z, z ± ej} ⊂ Z2
+,i, the gradient ∇z,z±ejR−i vanishes. Fix an edge

(z, z ± ej) with both ends in Z2
+,i. We are going to prove that the sequence

(
∇z,z±ej R̃−n,i

)
n∈N

vanishes

in L2(µα̂). By de�nition,

∇z,z±ej R̃−n,i =
1

(2n)2

∑
xi=−n−1

∇z,z±ejτ−x∇x,x+ei ϕ̃n

=
1

(2n)2

∑
xi=−n−1

∇z,z±ej∇0,eiτ−xϕ̃n.

Because z, z + ej are di�erent from 0 and ei, the two gradients in the formula above commute, therefore

using once again (
∑n
i=1 ai)

2 ≤ n
∑n
i=1 a

2
i , as well as the crude bound Eα̂((∇af)2) ≤ 4Eα̂(f2), yields

Eα̂
[
(∇z,z±ej R̃−n,i)

2
]
≤ 2n

(2n)4

∑
xi=−n−1

Eα̂
[
(∇0,ei∇z,z±ejτ−xϕ̃n)2

]
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≤ 1

(2n)3

∑
xi=−n−1

Eα̂
[
(∇0,eiτ−x∇z+x,z+x±ej ϕ̃n)2

]
≤ 4

(2n)3

∑
xi=−n−1

Eα̂
[
(∇z+x,z+x±ej ϕ̃n)2

]
.(6.69)

There are three cases to consider to estimate Eα̂
[
(∇z+x,z+x±ej ϕ̃n)2

]
.

(1) The �rst one is the case where both x+ z and x+ z ± ej are in Bcn, the complementary set of Bn. In

that case,

Eα̂
[
(∇z+x,z+x±ej ϕ̃n)2

]
= 0,

because ϕ̃n is Fn- measurable.

(2) The second case when both x+ z and x+ z + ej are in Bn. in that case, we can write

∇z+x,z+x±ej ϕ̃n = ∇z+x,z+x±ejEα̂(ϕ3n | Fn) = Eα̂(∇z+x,z+x±ejϕ3n | Fn)

= Eα̂(uj,z+x | Fn),(6.70)

therefore Jensen's inequality yields

Eα̂
[
(∇z+x,z+x±ej ϕ̃n)2

]
≤ 4 ||u||22,α̂ .

(3) The last case to consider is if x+ z and x+ z ± ej link Bn and Bcn. Then, an elementary adaptation

of Lemma 6.21 yields that

Eα̂
[
(∇z+x,z+x±ej ϕ̃n)2

]
≤ Cn2 ||u||22,α̂ .

We treat separately the two cases for j. Fix an edge (z, z± ej) with both ends in Z2
+,i. If j = i, for any

n large enough (more precisely as soon as 2n+ 2 ≥ zi), for any x such that x1 = −n− 1, either x+ z and

x+ z± ei are both in Bn or both are in its complementary set Bcn. We are therefore either in the �rst or

in the second case above, and since the number of terms in the sum is O(n), equation (6.69) yields

Eα̂
[
(∇z,z±ej R̃−n,i)

2
]
≤ K

n2
||u||22,α̂ →

n→∞
0,

for some constant K depending only on α̂.

If now j 6= i, there can be only two terms in the sum over x for which x+ z and x+ z± ei link Bn and

Bcn (third case above), whereas all the others are either in the �rst or the second case. We deduce from

this that in this case, equation (6.69) yields

Eα̂
[
(∇z,z±ej R̃−n,i)

2
]
≤ K ′

n2
+
K ′′n2

n3
||u||22,α̂ →

n→∞
0,

where K ′ and K ′′ are di�erent constants depending only on α̂. This proves that the sequence(
∇z,z±ej R̃−n,i

)
n
vanishes in L2(µα̂) for any edge (z, z ± ej) with both ends in Z2

+,i. Since the gra-

dient ∇z,z±ej is a continuous functional, ∇z,z±ejR−i vanishes for any edge (z, z ± ej) with both ends in

Z2
+,i. This concludes the proof of Lemma 6.22

Lemma 6.23. � Any weak limit point R−i of the sequence (R̃−n,i)n∈N only depends on the con�guration

through η̂0 and η̂ei . The same is true for the limit points of the positive boundary terms (R̃+
n,i)n∈N.

Proof of Lemma 6.23. � This Lemma is a consequence of Lemma 6.22. Consider the localization R−i,n =

Eα̂(R−i | Fn), then R−i,n also has the two previous properties : the measurability with respect to the sites

in {xi > 0} ∪ {0} is trivial. The fact that its gradient vanish is easily obtained as well, since

∇z,z+ejR−i,n = ηz(1− ηz+ej )Eα̂(R−i (η̂z,z+ej )−R−i (η̂) | Fn),

which vanishes since R−i (η̂z,z+ej )−R−i (η̂) vanish by assumption as soon as ηz(1− ηz+ej ) 6= 0. Let

B+
i,n = Bn ∩ Z2

+,i,
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since the gradients of R−i vanish for any edge in B+
i,n, on the event on which there are at least two empty

sites in B+
i,n, R

−
i only depends on the η̂x, x ∈ B+

i,n through the empirical measure on B+
i,n

ρ̂B+
i,n

:=
1

|B+
i,n |

∑
B+
i,n

ηxδθx .

Indeed, for two con�gurations η̂ and η̂′ with the same number of particles, and with the same angles in

B+
i,n, we can reach one from the other with a combination of the previous gradients, hence the di�erence

R−i,n(η̂) −R−i,n(η̂′) vanishes. This is not true whenever there is one or less empty site in B+
i,n, but since

we are under the product measure, this happens with exponentially small probability and will not be an

issue.

Let us denote by E∗n the event �there are at least two empty sites in B+
i,n�, the previous statement

rewrites as

R−i,n1E∗n = Eα̂

(
R−i,n1E∗n

∣∣∣∣∣ η̂0, η̂ei , ρ̂B+
i,n

)
.

For any cylinder function f , we are going to prove that Eα̂(f.R−i ) = Eα̂
[
f. E(R−i | η̂0, η̂ei)

]
. Let

fn = E (f | η̂x, x ∈ {xi > 0} ∪ {0})

be the conditional expectation with respect to the sites in {xi > 0} ∪ {0}. Since f is a cylinder function,

so is fn, therefore for any su�ciently large integer n, we can write

Eα̂(f.R−i 1E∗n) = Eα̂(f.R−i,n1E∗n)

= Eα̂

(
Eα̂

(
f.R−i,n1E∗n

∣∣∣∣∣ η̂0, η̂ei , ρ̂B+
i,n

))

= Eα̂

(
R−i,n1E∗nEα̂

(
f

∣∣∣∣∣ η̂0, η̂ei , ρ̂B+
i,n

))

= Eα̂

(
R−i,n1E∗nEα̂

(
fn

∣∣∣∣∣ η̂0, η̂ei , ρ̂B+
i,n

))

= Eα̂

(
R−i,nEα̂

(
fn

∣∣∣∣∣ η̂0, η̂ei , ρ̂B+
i,n

))
+ Eα̂

(
R−i,n1E∗cn Eα̂

(
fn

∣∣∣∣∣ η̂0, η̂ei , ρ̂B+
i,n

))

=Eα̂
(
R−i Eα̂

(
fn

∣∣∣ η̂0, η̂ei

))
+ on(1),(6.71)

since

Eα̂

(
fn

∣∣∣∣∣ η̂0, η̂ei , ρ̂B+
i,n

)
L2(µα̂)−→
n→∞

Eα̂
(
fn

∣∣∣ η̂0, η̂ei

)
,

because ρB+
i,n

converges µα̂ a.s. as n→∞ towards α̂. and

Eα̂

(
R−i,n1E∗cn Eα̂

(
fn

∣∣∣∣∣ η̂0, η̂ei , ρ̂B+
i,n

))
−→
n→∞

0,

because fn is a bounded function, and R−i,n is in L2(µα̂). For the same reason, the left-hand side in (6.71)

converges as n goes to ∞ towards Eα̂(f.R−i ), and therefore

Eα̂
(
R−i Eα̂

(
fn

∣∣∣ η̂0, η̂ei

))
= Eα̂(f.R−i ) + on(1).

We �nally obtain

Eα̂(f.R−i ) = Eα̂
(
R−i Eα̂

(
fn

∣∣∣ η̂0, η̂ei

))
+ on(1) = Eα̂

(
fnEα̂

(
R−i

∣∣∣ η̂0, η̂ei

))
+ on(1),

from which we deduce what we wanted, since the previous is true for any cylinder function f , i.e. that

R−i = Eα̂
(
R−i

∣∣∣ η̂0, η̂ei

)
.



HYDRODYNAMIC LIMIT FOR AN ACTIVE EXCLUSION PROCESS 97

This concludes the proof of Lemma 6.23.

To complete the proof of Lemma 6.18, now that we have proven that all limit points of the boundary

terms are function of η̂0 and η̂ei , we still have to show that such limit points can be expressed as linear

combination of the currents. To do so, �rst notice that any limit point of the negative boundary R−i
veri�es

(6.72) ηeiR
−
i = (1− η0)R−i = 0.

Indeed,

ηeiR
−
i = lim

n→∞

1

(2n)2

∑
xi=−n−1
| xj | ≤n, j 6=i

ηeiτ−x∇x,x+ei ϕ̃n = lim
n→∞

1

(2n)2

∑
xi=−n−1
| xj | ≤n, j 6=i

ηei∇0,eiτ−xϕ̃n,

since τx∇af = ∇τxaτxf . Now the latter obviously vanishes since ηei∇0,ei = 0. The second identity is

proven in the same way.

Since the ϕ̃n's are in T
ω
0 , R

−
i also is, and can therefore be expressed as

R−i (η̂) =
∑
x

(c1η
ω
x + c2ηx)ψx(η).

Injecting in this identity that R−i only depends on η̂0 and η̂ei yields ψx = 0 for any x 6= 0, ei. Furthermore,

since ηeiR
−
i vanishes, we also obtain that ψei = 0. Finally, we can write

R−i (η̂) = (c1η
ω
0 + c2η0)ψ0(η0, ηei).

Since we must also have

ηeiψ0(η0, ηei) = (1− η0)ψ0(η0, ηei) = 0,

we obtain that ψ0(η0, ηei) is proportional to η0(1− ηei), and �nally,

R−i (η̂) = (c1η
ω
0 + c2η0)(1− ηei).

The previous equation states that the limiting boundary terms are in Jω, which is what we wanted to

show. The proof of Lemma 6.18 is thus complete.

6.7. Space-time covariance limit. � In Section 6.5, we reduced our problem to a local covariance

problem. The �rst part of this section introduces several notations as well as the limiting covariance

� .�α̂ which is the focus of the next section. Although it does not constitute a proof, the second part of

this section provides some heuristic insight on the correspondence between closed forms and functions in

C0, as well as on the de�nition of � . �α̂. We will also use this section to introduce several notations

that will be useful later.

In Section 6.5 we reduced the proof of equation (6.7) to proving Proposition 6.7, i.e. that

inf
f

lim
p→∞

lim sup
l→∞

sup
K̂∈K̃l

(2l + 1)2El,K̂
(
W l
i(−Ll)−1W l

i

)
= 0,

where

W l
i = 〈jωi 〉l

′

0 + ds (ρl) δiρ
ω,p
lp

+ d (ρl, ρ
ω
l ) δiρl′ − 〈Lf〉

lf
0

is the local average of the di�erence between gradients and currents, d is given by (2.12), Ll is the

symmetric exclusion generator restricted to Bl,

(6.73) δih = τeih− h

is the discrete derivative in the direction ei, and K̃l was de�ned in (3.2) and only takes into account

con�gurations with at least two empty sites.

To prove Proposition 6.7, we are now going to investigate the limit as l → ∞ and α̂K̂l → α̂ (cf

De�nition 3.2) of

(6.74)
1

(2l + 1)2
El,K̂l

L−1
l

∑
x∈Blψ

τxψ .
∑
x∈Blψ

τxψ

 := � ψ �α̂,
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where ψ is supported by Bdψ and lψ = l − dψ − 1 is chosen such that
∑
x∈Blψ

τxψ is measurable w.r.t.

sites in Bl. There are therefore two important steps to prove (6.37) :

� Prove that the limit (6.74) is well-de�ned for any function ψ in a convenient class of functions

containing at least the currents, the gradients and the functions of the type Lf .
� Prove that, letting

(6.75) d(α̂) =
Eα̂(ηω0 )

α
(1− ds(α)),

we have

(6.76) inf
f

sup
α̂
� jωi + ds(α)δi(η

ω
0 1Ep) + d(α̂)δiη0 − Lf �α̂= 0.

where the in�mum is taken w.r.t. local functions with mean 0 w.r.t. all canonical measures.

Introduction of the limiting covariance. � In order to properly introduce the limiting covariance� .�α̂,

which we are going to de�ne by a variational formula, let us recall some notations and introduce some

others. Recall from equation (5.1) that we denote by C0, the space of cylinder functions with mean zero

w.r.t. every canonical measure and vanishing for any con�guration with strictly less than two empty sites

in their support, and by

Tω0 =

∑
x∈T2

N

(c1η
ω
x + c2ηx)ψx(η), c1, c2 ∈ R, and ψx ∈ S ∀x ∈ T2

N

 .

Furthermore, we introduce

(6.77) T ω0 = Tω0 ∩ C0.

Note in particular that these three sets are stable by the symmetric exclusion generator L. This is trivial,
since L does not introduce correlations between angles.

For i = 1, 2, and x ∈ T2
N , j

ω
x,x+ei is the instantaneous symmetric currents with angle dependency ω

along the edge (x, x+ ei) introduced in equation (2.17), where we want to replace the current

jωi = ηω0 (1− ηei)− ηωei (1− η0)

by the gradient quantity

dω(ηωei − η
ω
0 ) + d(ηei − η0).

Let jω and j denote the two-dimensional random vectors

jω = (jω1 , j
ω
2 ) and j = (j1, j2) ,

where ji = η0 − ηei is the total current along the edge (0, ei). Finally, for any a = (a1, a2) and b =

(b1, b2) ∈ R2, we will write

(6.78) ja,b = a · jω + b · j ∈ Jω,

where ” · ” is the usual scalar product in R2 and Jω is the linear span of the currents already introduced

in equation (5.2). We introduce analogous notations for germs of closed forms, and let

(6.79) ja,b =

2∑
i=1

aij
i,ω + bij

i ∈ Jω,

where ji and ji,ω were introduced in (6.43), (6.44) and (6.46).

For g ∈ C0, recall that Σg is the formal sum Σg =
∑
x∈Z2 τxg. This formal function's gradient along

any particle jump is well-de�ned, as well as its expectation against any cylinder (therefore local) function

in C0. Finally, recall that ∇i = ∇0,ei stands for the derivative in the direction ei in the sense of equation

(3.4),

∇if(η̂) = η0 (1− ηei)
(
f
(
η̂0,ei

)
− f(η̂)

)
,

we denote by ∇f = (∇1f,∇2f) the two dimensional gradient vector of f .
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We now have all the notations needed to introduce the limiting covariance � .�α̂.

De�nition 6.24 (De�nition of � .�α̂). � Let α̂ ∈ M1(S) be an angle measure, and consider f ∈
C0, where C0 was de�ned in (5.1). In particular, f is a local function, and has mean 0 w.r.t. any grand

canonical measure µα̂, and we can de�ne

(6.80) � f �α̂= sup
g∈T ω0
a,b∈R2

2Eα̂

f.
Σg +

∑
y∈Z2

(y · a)ηωy + (y · b)ηy

− ∣∣∣∣∣∣∇Σg + ja,b
∣∣∣∣∣∣2

2,α̂

 ,

where ||.||2,α̂ is the norm with which we provided the space of germs of closed forms (cf. De�nition 6.11).

For any cylinder function ψ, recall that sψ is the smallest �xed integer such that ψ is measurable with

respect to Fsψ , and let lψ = l− dψ − 1 for any integer l large enough. The following result states that the

quantity � .�α̂ introduced in the previous De�nition 6.24 is indeed the limit of (6.74) for any function

ψ ∈ T ω0 .

Theorem 6.25. � Consider α̂ ∈M1(S), and a sequence (K̂l)l∈N such that K̂l ∈ Kl and
∣∣∣∣∣∣∣∣∣ α̂K̂l − α̂ ∣∣∣∣∣∣∣∣∣→

0, where α̂K̂l ∈M1(S) is the angle measure de�ned in (3.7). Then, for any function ψ ∈ T ω0 , we have

(6.81) lim
l→∞

1

(2l + 1)2
El,K̂l

−L−1
l

∑
x∈Blψ

τxψ .
∑
x∈Blψ

τxψ

 =� ψ �α̂ .

Furthermore, for any function ψ ∈ T ω0 , the application α̂ →� ψ �α̂ is continuous in α̂, and the

convergence above is uniform in α̂. In particular, for any ψ ∈ T ω0 ,

(6.82) lim
l→∞

sup
K̂∈K̃l

1

(2l + 1)2
El,K̂l

−L−1
l

∑
x∈Blψ

τxψ .
∑
x∈Blψ

τxψ

 = sup
α̂∈M1(S)

� ψ �α̂ .

Remark 6.26. � Although it is not clear from its de�nition, � .�1/2
α̂ is a norm on T ω0 /Ker� .�α̂.

This is shown in Proposition 6.27. Assuming it is, however, we can de�ne the corresponding inner product

� ϕ,ψ �α̂=
1

4
(� ϕ+ ψ �α̂ − � ϕ− ψ �α̂) ,

and for any functions ϕ,ψ ∈ T ω0 , the previous theorem then also yields that

lim
l→∞

1

(2l + 1)2
El,K̂l

 ∑
x∈Blϕ

τxϕ .(−Ll)−1
∑
y∈Blψ

τyψ

 =� ϕ,ψ �α̂ .

The proof of Theorem 6.25 follows very closely the proof given in [27], we recall it in our case only for

the sake of exhaustivity in Appendix C. The key to the proof is to divide Bl into boxes of size k which

goes to in�nity after l, in order to be able to replace the expectation w.r.t the canonical measure by the

expectation w.r.t µα̂. The rest of this section is dedicated to giving heuristic insight regarding the shape

of � .�α̂, and why Theorem 6.25 should hold.

Heuristic insight on De�nition 6.24 and Theorem 6.25. � The purpose of the second part of this Section

is to explain the variational formula for the limiting covariance � ψ �α̂. Given the generator L of the

SSEP on Z2, for any function f ∈ C0, consider the linear application

(6.83) F : f 7→ ∇L−1Σf =

(
∇1L−1Σf
∇2L−1Σf

)
.

This de�nition raises a few questions. First of all, notice that it is not well-de�ned for any function f in

C0 : indeed, even though f is a local cylinder function, L−1f is no longer local, therefore it is not sure that

∇L−1Σf only involves a �nite number of non-zero contribution. Second, the gradient in this expression,

assuming that f is such that∇L−1Σf is well-de�ned, would indicate thanks to the "translation invariance"
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of Σf and L−1, that F(f) is the germ of a closed form as introduced in Section 6.6. To illustrate this last

remark, we describe the e�ect of this application over two particular subsets of C0, namely LC0 and Jω

introduced in (5.2).

We �rst investigate the action of F on the linear span of the currents Jω. Consider an in�nite con�g-

uration η̂ with no particles outside of some large compact set K. For the sake of concision, we will call

such a con�guration bounded. Then, we can write∑
x∈Z2

xiLηωx =
∑
x∈Z2

τxj
ω
i = Σjωi .

Since the con�guration was assumed bounded, both of the sums above are �nite, and the identity above

is well posed. Coming back to our application F, the previous identity yields that

F(jωi ) =

(
∇1L−1Σjωi
∇2L−1Σjωi

)
=

(
∇1

∑
x∈Z2 xiη

ω
x

∇2

∑
x∈Z2 xiη

ω
x

)
.

Since the only positive contributions in the right hand side above are for x ∈ {0, ei}, elementary calcula-

tions yield

F(jωi ) = ji,ω,

where the ji,ω's are the germs introduced in equation (6.46). For any bounded con�guration, we can

generalize this identity according to the notations (6.78) and (6.79), and obtain

(6.84) F(ja,b) = ja,b,

which once again holds for any bounded con�guration. We can therefore expect that F maps Jω into Jω.

We now investigate the action of F on LC0. Another way to write F is F(f) = ∇ΣL−1f , and therefore

F(Lf) = ∇
∑
x∈Z2

τxL−1Lf = ∇Σf .

This allows us to de�ne F on LC0 as well, by

(6.85) F(Lf) = ∇Σf ,

which is the germ of an exact form associated to f , and we can thus expect F to map LC0 into the set of

germs of exact forms E introduced in De�nition 6.12.

The two constructions above allow us to de�ne the bijective application

F : LC0 + Jω −→ E+ Jω

Lf + ja,b 7→ ∇Σf + ja,b
.

Taking the closure of both spaces in L2(µα̂) and restricting to the subset T ω0 ⊂ C0, we obtain that the

application F is a one-to-one mapping between LT ω0 + Jω and Eα̂ ∩Tω + Jω, where LT ω0 is the closure

w.r.t. � . �1/2
α̂ of LT ω0 . Note that taking the closure and restriction of Jω is not necessary, being a

�nite-dimension space included in Tω0 . Furthermore, we proved in Proposition 6.14 that

Eα̂ ∩Tω + Jω = Cα̂ ∩Tω.

We can therefore build an isomorphism

(6.86) F : LT ω0 + Jω −→ Cα̂ ∩Tω.

Thanks to the isomorphism described in (6.86), this one-to-one mapping therefore gives T ω0 /Kerα̂(F)

the same structure as Cα̂ ∩ Tω. Denoting by Kerα̂(F) the kernel of F w.r.t || . ||2,α̂ this mapping yields

the decomposition
T ω0

Kerα̂(F)
=

LT ω0
Kerα̂(F)

⊕ Jω,

which is strictly analogous to the one stated in Proposition 6.14. However, this construction is purely

heuristic, and its rigorous derivation is given a bit later in Proposition 6.32. This decomposition, however,

is the reason why (6.76) should hold : δi(η
ω
0 1Ep) is a function in T ω0 , and can therefore be written as a

combination of the currents δiη0 = ji and j
ω
i , up to a perturbation Lf . The rigorous derivation of (6.76),
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and the derivation of the explicit form of the conductivity and di�usion coe�cients is the purpose of

Section 6.8.

We now explain further the variational formula for the limiting covariance � . �α̂ introduced in

De�nition 6.24. Let us now admit for a moment that F is well-de�ned on all T ω0 , and takes its value in

the set of germs of closed forms. F is now a surjective linear application T ω0 → Cα̂ ∩Tω. Recall that we

endowed Cα̂ with its L2 norm

||u||2,α̂ =
[
Eα̂
(
u2

1 + u2
2

)]1/2
.

It can be rewritten for any closed form u = (u1,u2) ∈ Cα̂ ∩Tω, as

(6.87) ||u||22,α̂ = sup
g∈T ω0
a,b∈R2

{
2Eα̂

(
u · (∇Σg + ja,b)

)
−
∣∣∣∣∣∣∇Σg + ja,b

∣∣∣∣∣∣2
2,α̂

}
,

since

inf
g∈T ω0
a,b∈R2

∣∣∣∣∣∣u− (∇Σg + ja,b)
∣∣∣∣∣∣2

2,α̂
= 0

according to Proposition 6.14.

Since Kerα̂(F) is the kernel of F w.r.t || . ||2,α̂, F is an isomorphism between T ω0 /Kerα̂(F) and Cα̂∩Tω,

and we can therefore equip T ω0 /Kerα̂(F) with the norm � .�1/2
α̂ induced by the mapping F, de�ned as

� f �1/2
α̂ = ||F(f)||2,α̂ .

Since F(f) was assumed to be the germ of a closed form, we can rewrite thanks to (6.87)

� f �α̂= sup
g∈T ω0
a,b∈R2

{
2Eα̂

(
F(f) · (∇Σg + ja,b)

)
−
∣∣∣∣∣∣∇Σg + ja,b

∣∣∣∣∣∣2
2,α̂

}
.

This expression for � . �α̂ is in fact identical to that given in De�nition 6.24, once admitted that the

correct expression in a general setting for F is (6.83), and that the integration by parts formula of Section

5.1 can be generalized. However, once again, this construction is not rigorous, and the correct de�nition

for � .�α̂ is the one given in De�nition 6.24.

We now brie�y carry on with our heuristics and explain why Theorem 6.25 holds, which is rigorously

proven in Appendix C. The proof is based on the integration by parts obtained in subsection 5.1. Applying

it to
∑
x∈Blψ

τxψ yields that the quantity in the right-hand side of (6.81) can be rewritten

lim
l→∞

1

(2l + 1)2
El,K̂l

1

2

∑
x∈Bl
| z |=1

∇x,x+zL−1
l

∑
x∈Blψ

τxψ

2
 .

Assuming that one is able to replace µl,K̂l by the translation invariant grand canonical measure µα̂, and

all quantities being ultimately translation invariant, this limit should be the same as

lim
l→∞

1

(2l + 1)2
Eα̂

1

2

∑
x∈Bl
| z |=1

∇x,x+zL−1
l

∑
x∈Blψ

τxψ

2
 = lim

l→∞
Eα̂

∑
i=1,2

∇0,eiL−1
l

∑
x∈Blψ

τxψ

2


= ||F(ψ)||22,α̂
=� ψ �α̂ .

The rigorous proof of this result, however, is complicated due to the delicate nature of L−1. In the next

section, we derive the di�usion and conductivity matrices, by investigating the properties of � .�α̂.
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6.8. Di�usion and drift coe�cients. � In this Section we derive the di�usion and conductivity

coe�cients given in Theorem 2.6, and conclude the proof of the limit (6.7). To do so, we investigate the

properties of the semi-norm � .�1/2
α̂ , and the structure of the quotient of the set T ω0 de�ned in equation

(6.77) by the kernel of � .�α̂.

In Section 6.5 we reduced the proof of equation 6.7 to proving Proposition 6.7, namely

inf
f

lim
p→∞

lim
l→∞

sup
K̂∈K̃l

(2l + 1)2El,K̂
(
W l
i(−Ll)−1W l

i)
)

= 0,

where

W l
i =Wf,l

i,p = 〈jωi 〉l
′

0 + ds (ρl) δiρ
ω,p
lp

+ d (ρl, ρ
ω
l ) δiρl′ − 〈Lf〉

lf
0 .

Thanks to equation (6.82) of Theorem 6.25, we can also write

lim
l→∞

sup
K̂

(2l + 1)2El,K̂
(
Wf,l
i,p (−Ll)−1Wf,l

i,p

)
= sup
α̂∈M1(S)

� Vfi,p(α̂)�α̂,

with

(6.88) Vfi,p(α̂) = jωi + ds(α)δiη
ω,p
0 + d(α̂)δiη0 + Lf,

and d(α̂) is given by (6.75). The main result of this section is the estimate

(6.89) inf
f∈C0

lim
p→∞

sup
α̂∈M1(S)

� Vfi,p(α̂)�α̂= 0,

which is stated at the end of the section in Proposition 6.38 and concludes the proof of equation (6.7),

and thus the proof of Theorem 6.1.

Keeping the notations introduced in Section 6.7, we �rst investigate the properties of � . �α̂ intro-

duced in De�nition 6.24.

Proposition 6.27. � norm and inner product of the currents and Lg in Hα̂ The quantity � . �1/2
α̂

de�ned in (6.80) is a semi-norm on the space T ω0 (cf. (6.77)), and thus extends via the polarization identity

into a semi-inner product on T ω0 . Furthermore, let g and h be two functions in T ω0 , and a, b ∈ R2. We

have the following identities :

(6.90) � Lg, h�α̂= −Eα̂ (Σg.h) ,

(6.91) � ja,b, h�α̂= −
∑
x∈Z2

[(a · x)Eα̂ (h.ηωx ) + (b · x)Eα̂ (h.ηx)] ,

and

(6.92) � Lg + ja,b �α̂=
∣∣∣∣∣∣∇Σg + ja,b

∣∣∣∣∣∣2
2,α̂

.

where (a · x) is the canonical scalar product on R2, and ja,b = a · jω + b · j was de�ned in (6.78).

Remark 6.28. � The following identities immediately derive from (6.92), and will be used numerous

times throughout the proof :

� ji �α̂= α(1− α), � jωi �α̂= Eα̂(ω2)α(1− α) and � ji, j
ω
i �α̂= Eα̂(ω)α(1− α).

Proof of Proposition 6.27. � Although this result is expected from the heuristic derivation of the vari-

ational formula for � . �α̂, its proof comes from Theorem 6.25. The fact that � . �α̂ is a semi-norm

is rather straightforward. Its positivity directly results from Theorem 6.25, as well as the homogeneity.

The triangular inequality follows directly from the positivity.

We �rst prove equation (6.90). Let g, h ∈ T ω0 , Theorem 6.25 yields

� Lg, h�α̂= lim
l→∞

1

(2l + 1)2
El,K̂l

(−L−1
l )

∑
x∈Blg

τxLg .
∑
y∈Blh

τyh

 .
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Given the de�nition of lg, for any x ∈ Blg , we have τxLg = Lτxg = Llτxg, therefore the expectation in

the right-hand side above is equal to

El,K̂l

 ∑
x∈Blg

τxg .
∑
y∈Blh

τyh

 =
∑
x∈Blg

El,K̂l

τx
g . ∑

y∈Blh

τy−xh

 .

Now let us �x some x ∈ Z2, El,K̂l
(
τx

[
g .
∑
y∈Blh

τy−xh
])

is equal for l large enough to El,K̂l(τx[g.Σh]).

Therefore, it converges thanks to the translation invariance of µα̂ and the equivalence of ensembles stated

in Proposition B.1 towards Eα̂(gΣh) uniformly in x, which completes the proof of identity (6.90). Note

that at no point did we use that g and h are in T ω0 , we only used that g and h are in C0.

We now turn to equation (6.91), which is proved in the same way. Thanks to the elementary identities

Ll
∑
x∈Bl

xiη
ω
x =

∑
x,x+ei∈Bl

jωx,x+ei and Ll
∑
x∈Bl

xiηx =
∑

x,x+ei∈Bl

jx,x+ei ,

we obtain

� jωi , h�α̂ = lim
l→∞

1

(2l + 1)2
El,K̂l

(−L−1
l )

∑
x,x+ei∈Bl

jωx,x+ei .
∑
x∈Blh

τxh

(6.93)

= lim
l→∞

1

(2l + 1)2
El,K̂l

∑
x∈Bl

xiη
ω
x .

∑
x∈Blh

τxh

 ,(6.94)

therefore once again using the equivalence of ensembles �nally yields

� jωi , h�α̂= −
∑
x∈Z2

xiEα̂ (h.ηωx ) .

An analogous identity holds for ji, which proves equation (6.91).

We now prove (6.92). Equations (6.90) and (6.91) yield

(6.95) � Lg + ja,b �α̂= −Eα̂

(
(Lg + ja,b).

[
Σg +

∑
x∈Z2

(a · x)ηωx + (b · x)ηx

])
,

we split the right-hand side above in two parts.

First, recall that we introduced in (6.79) the notation ja,b, we can rewrite for any l ≥ sg + 1

Eα̂

(
Lg.
[
Σg +

∑
x∈Z2

(a · x)ηωx + (b · x)ηx

])

= −1

2

∑
(y,y+z)∈Bl
| z |=1

Eα̂

(
∇y,y+zg.∇y,y+z

[
Σg +

∑
x∈Z2

(a · x)ηωx + (b · x)ηx

])

(i)
= −

2∑
i=1

∑
(y,y+ei)∈Bl

Eα̂

(
∇y,y+eig.∇y,y+ei

[
Σg +

∑
x∈Z2

aixiη
ω
x + bixiηx

])

(ii)
= −

2∑
i=1

Eα̂

∇i
 ∑

(y,y+ei)∈Bl

τ−yg

 .(∇iΣg + ja,bi

)
= −

2∑
i=1

Eα̂
(
∇iΣg.

(
∇iΣg + ja,bi

))
(6.96)

with the following justi�cations :
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(i) The change of variable η̂ 7→ η̂y,y+ei transforms ∇y+ei,y into −∇y,y+ei , therefore∑
(y,y+z)∈Bl
| z |=1

Eα̂ (∇y,y+zf∇y+z,yg) = 2
∑

y,y+ei∈Bl

Eα̂ (∇y,y+eif∇y,y+eig) .

Finally, for any i 6= j,

∇y,y+ei

∑
x∈Z2

xjη
ω
x = ∇y,y+ei

∑
x∈Z2

xjηx = 0.

(ii) translation invariance of µα̂, as well as the elementary identities

τ−x∇x,x+eig = ∇iτ−xg,

∇0,ei

∑
x∈Z2

xiη
ω
x = ηω0 (1− ηei) = jω,ii and ∇0,ei

∑
x∈Z2

xiηx = η0(1− ηei) = jii.

Regarding the second part of (6.95), for any function h, a change of variable η̂ 7→ η̂0,ei in the second

part of jωi yields

Eα̂(jωi h) = −Eα̂
(
ηω0 (1− ηei)(h(η̂0,ei)− h(η̂))

)
= −Eα̂(jω,ii .∇0,eih).

Using the latter with h = Σg +
∑
x∈Z2(a · x)ηωx + (b · x)ηx, and since ∇i

∑
x∈Z2 xiη

ω
x = ηω0 (1 − ηei), we

obtain

Eα̂
(
jωi .(Σg +

∑
x∈Z2

(a · x)ηωx + (b · x)ηx)
)

= −Eα̂
(
jω,ii .

(
∇iΣg + ja,bi

))
.

A similar identity holds for ji, therefore for any a and b in R2,

Eα̂
(
ja,b.(Σg +

∑
x∈Z2

(a · x)ηωx + (b · x)ηx)
)

= −Eα̂
(
ja,b ·

(
∇Σg + ja,b

))
.

This last identity, together with (6.95) and (6.96), proves (6.92) and concludes the proof of Lemma

6.27.

Remark 6.29. � Let us denote by L(i) the part of the generator L representing jumps in the i-th

direction

L(i)f =
∑
x

∑
δ=±1

ηx(1− ηx+δei)(f(η̂x,x+δei)− f(η̂)).

Performing computations as in the proof of equation (6.96) yield

� L(i)f,Lf �α̂= Eα̂
[
(∇iΣf )

2
]
,

which means that for any given function f, g ∈ T ω0 , and any a, b, c, d ∈ R we can write thanks to (6.92)

and to the de�nition of ||.||22,α̂ (which splits the coordinates)

� ajωi + bji + L(i)f, cjωk + djk + L(k)g �α̂= 1i=kEα̂
([
ajii + bji,ωi +∇iΣf

] [
cjkk + djk,ωk +∇kΣg

])
,

Since the right-hand side above vanishes if i 6= k, we have for any i 6= k

(6.97) � L(i)f,L(k)g �α̂= 0.

Remark 6.30. � Proposition 6.27 allows us, for any function h ∈ T ω0 , to rewrite � h �α̂, according

to its De�nition 6.24 as

(6.98) � h�α̂= sup
g∈T ω0
a,b∈R2

{
2� h , Lg + ja,b �α̂ − � Lg + ja,b �α̂

}
.

therefore for any h ∈ T ω0 , we have

inf
g∈T ω0
a,b∈R2

� h− (Lg + ja,b)�α̂= 0.

Denote

(6.99) Nα̂ = { h ∈ T ω0 , � h�α̂= 0 } ,
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one can therefore expect that in the space T ω0 /Nα̂, any function h can be ultimately written as Lg+ ja,b.

However, proving that this decomposition is unique requires Corollary 6.31 below, we therefore postpone

it for now.

Before carrying on with the proof, we set some more notations. We shorten

Eα̂(ω) := Eα̂(ω(θ0) | η0 = 1) and V arα̂(ω) := V arα̂(ω(θ0) | η0 = 1),

as well as αω = Eα̂(ηω0 ) = αEα̂(ω). We also denote by

χω = Eα̂
(
(ηω0 )2

)
− Eα̂(ηω0 )2 = αω2 − (αω)2

the variance of ηω0 w.r.t µα̂.

In the rest of the section, it will be convenient to express di�erently the gradient part of Vfi,p, de�ned
in (6.88) : on the one hand, we want a term which is constant in θ and on the other hand a mean 0 term

which �uctuates in θ. For this purpose, we de�ne

ξpx =
(
ω(θx)1τxEp − Eα̂(ω)

)
ηx.

where

Ep =

∑
x∈Bp

ηx ≤ |Bp | − 2


is the event on which at least two sites are empty in Bp. Recall that

δiη
ω,p
0 = ηωei1τeiEp − η

ω
0 1Ep .

The quantity ξpx is de�ned so that

(6.100) δiξ
p
0 = δiη

ω,p
0 + Eα̂(ω)ji,

therefore elementary computations and the expression (2.12) of d allow us to rewrite in (6.88)

(6.101) Vfi,p(α̂) = jωi + ds(α)δiξ
p
0 + Eα̂(ω)δiη0 + Lf.

Note that ξp depends on α̂ as well as ω, but for the sake of clarity, we drop this dependence in our

notation. The reason for this change of variable is explained later on in Remark 6.34.

We now state the following Corollary of Proposition 6.27.

Corollary 6.31. � Denote p′ = (2p+ 1)2 and

Pp(α) = 1− αp
′−1 − (p′ − 1)(1− α)αp

′−2,

the probability for a binomial distribution with parameters p′ − 1 and 1 − α to be strictly more than 1.

Recall that we introduced in (6.100) the gradient δiξ
p
0 , for any integer p and any α̂ inM1(S),

(6.102) � δiξ
p
0 , j

a,b �α̂= −aiαV arα̂(ω)Pp(α) + (Eα̂(ω)ai + bi)Eα̂(ω)(1− α)αp
′−1.

Furthermore, for any function g ∈ T ω0 , and any cylinder function h ∈ Tω0 ,

(6.103) � Lg, δih�α̂ = 0.

In other words, the last identity states that any gradient expression is orthogonal to any Lg w.r.t.

� ., .�α̂. In particular, for any function g ∈ T0,

� Lg, δiξp0 �α̂ = 0 and � Lg, δiη0 �α̂ = − � Lg, ji �α̂ = 0.

Proof of Corollary 6.31. � The proof follows from Proposition 6.27. We �rst treat the case where α̂ is

such that α = 0 or α = 1. In this case, all quantities vanish and the two identities are trivially true. We

now assume that α ∈]0, 1[.

We start with (6.103), which is a direct consequence of (6.85) : for any g ∈ T0,

� Lg, δih�α̂= −Eα̂ ((τeih− h)Σg) ,

which vanishes thanks to the translation invariance of µα̂ and Σg.
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Thanks to Proposition 6.27, proving identity (6.102) is a matter of careful computation, and poses no

special di�culty. First, equation (6.91) yields

� δiη
ω,p
0 , jωk �α̂=−

∑
x∈Z2

xkEα̂ (δiη
ω,p
0 .ηωx )

=
∑
x∈Z2

xkEα̂
([
ηω0 1Ep − ηωei1τeiEp

]
ηωx
)

If x 6= 0, ei, under the product measure µα̂, we have

Eα̂
(
ηω0 1Epη

ω
x

)
= Eα̂

(
ηωei1τeiEpη

ω
x

)
,

and the corresponding contribution vanishes, and the contribution in ei vanishes if i 6= k for the same

reason. The contribution for x = 0 also vanishes because of the factor xk. Finally, we can write

� δiη
ω,p
0 , jωk �α̂= 1i=kEα̂

([
ηω0 1Ep − ηωei1τeiEp

]
ηωei
)
.

Writing 1Ep = 1− 1Ecp , this identity now becomes

(6.104) � δiη
ω,p
0 , jωk �α̂= 1i=k

(
Eα̂
([
ηω0 − ηωei

]
.ηωei
)
− Eα̂

([
ηω0 1Ecp − η

ω
ei1τeiE

c
p

]
ηωei

))
.

Following the same steps, we can also write

� Eα̂(ω)ji, j
ω
k �α̂= −1i=kEα̂(ω)Eα̂

(
[η0 − ηei ] .ηωei

)
.

Since by de�nition δiξ
p
0 = δiη

ω,p
0 + Eα̂(ω)ji and Eα̂(ηωx ) = Eα̂(ω)Eα̂(ηx), taking the sum of those two

identities �nally yields

(6.105) � δiξ
p
0 , j

ω
k �α̂= −1i=kαV arα̂(ω)− 1i=kEα̂

([
ηω0 1Ecp − η

ω
ei1τeiE

c
p

]
ηωei

)
.

Furthermore, since the expectations is taken w.r.t. the product measure µα̂, the second term can be

explicitly computed, and it is straightforward to obtain that

(6.106)

Eα̂
([
ηω0 1Ecp − η

ω
ei1τeiE

c
p

]
ηωei

)
= −αV arα̂(ω)

(
αp
′−1 + (p′ − 1)(1− α)αp

′−2
)
− Eα̂(ω)2(1− α)αp

′−1.

We denote as stated in Corollary 6.31

Pp(α) = 1− αp
′−1 − (p′ − 1)(1− α)αp

′−2,

which is the probability for a binomial distribution with parameters p′ − 1 and 1− α to be strictly more

than 1 and vanishes uniformly as soon as α̂ is bounded away from 1. With this notation and equations

(6.105) and (6.106), we obtain as wanted

(6.107) � δiξ
p
0 , j

ω
k �α̂= 1i=k

[
−αV arα̂(ω)Pp(α) + Eα̂(ω)2(1− α)αp

′−1
]
.

We can derive in the same way

� δiη
ω,p
0 , jk �α̂= 1i=k(−αω(1− α) + Eα̂(ω)(1− α)αp

′−1),

and

� Eα̂(ω)ji, jk �α̂= 1i=kEα̂(ω)αω(1− α),

therefore, we also have

� δiξ
p
0 , jk �α̂= 1i=k

[
Eα̂(ω)(1− α)αp

′−1
]
.

This, together with (6.107), concludes the proof of equation (6.102).

Now that we have derived the main properties of � .�α̂, we are ready to investigate the structure of

T ω0 with respect to this semi-norm. Let us denote

Nα̂ = Ker � .�α̂,

� . �1/2
α̂ is therefore a norm on T ω0 /Nα̂. Letting Hα̂ be the completion of T ω0 /Nα̂ with respect to

� .�1/2
α̂ , we can now state the following result :
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LT ω0

δiT ω0

jω · R2

Figure 11. Representation of the di�erent subspaces of Hα̂ : LT ω0 is orthogonal to the set of

microscopic gradients δiT ω0 , but not to the set of currents jω · R2.

Proposition 6.32 (Structure of Hα̂). � For any α̂ ∈M1(S), (Hα̂,� .�1/2
α̂ ) is a Hilbert space, and

the following decomposition holds :

Hα̂ =
LT ω0
Nα̂

⊕ Jω,

where LT ω0 /Nα̂ is the closure of LT ω0 /Nα̂ w.r.t. � . �α̂ and Jω = jω · R2 + j · R2 ⊂ T ω0 is the linear

span of the currents de�ned in equation (5.2).

This decomposition is represented in Figure 11

Proof of Proposition 6.32. � First note that if α = 0 or 1,� .�α̂≡ 0 and therefore Hα̂ = {0} is trivial.
We now assume that α̂ is such that α ∈]0, 1[.

Since we took the quotient by Nα̂, the fact that (Hα̂,� .�1/2
α̂ ) is a Hilbert space is immediate. The

�rst inclusion

Hα̂ ⊃
LT ω0
Nα̂

⊕ Jω

is immediate, since LT ω0 ⊂ T ω0 and since the currents are also in T ω0 . Regarding the reverse inclusion,

since
LT ω0
Nα̂ ⊕ J

ω is a closed linear subspace of Hα̂, we have

Hα̂ =

(
LT ω0
Nα̂

+ Jω
)
⊕
(
LT ω0
Nα̂

+ Jω
)⊥

,

therefore we only need to prove that
(
LT ω0 /Nα̂ + Jω

)⊥
= {0}. To do so, assume that there exists a

function h ∈ T ω0 such that � h,Lg + ja,b �α̂= 0, then by (6.98), we obtain that � h�α̂= 0, therefore

h = 0 in Hα̂. The reverse inclusion thus holds.

To prove that the sum is direct, consider a function h in the intersection. Assume that

h = ja
h,bh = Lgh

for some cylinder function gh ∈ T ω0 and ah, bh ∈ R2. Thanks to equation (6.103), we can thus write

� δiξ
p
0 , h�α̂ =� δiξ

p
0 , j

ah,bh �α̂ =� δiξ
p
0 ,Lgh �α̂ = 0.

Since we assumed that 0 < α < 1, this identity together with (6.102) yields in the limit p→∞

(6.108) ahi αV arα̂(ω) = 0.

� If V arα̂(ω) = 0, in Hα̂, jω = Eα̂(ω)ji, therefore J
ω = R2 · j in Hα̂, which is orthogonal to LT ω0

according to (6.103), and the sum is direct.
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� If V arα̂(ω) 6= 0, and since we assumed α 6= 0, (6.108) yields ahi = 0, therefore h = Lgh = bh · j.
According to (6.103), h is thus self-orthogonal, and vanishes.

In both cases, the sum is direct, which concludes the proof of Proposition 6.32.

The next Proposition states that we can indeed write the currents jωi as combination of gradients, up

to a function which takes the form Lg, and that the coe�cients converge as p → ∞ to those given in

(6.101).

Proposition 6.33 (Decomposition of the currents). � Fix i ∈ 1, 2 and α̂ ∈ M1(S). For any p ∈
N∗, there exists two coe�cients cp(α̂) and dp(α̂) ∈ R, such that

(6.109) inf
g∈T ω0

� jωi + cp(α̂)δiξ
p
0 + dp(α̂)δiη0 + Lg �α̂= 0.

Furthermore,

(6.110) cp(α̂) −→
p→∞

ds(α) and dp(α̂) −→
p→∞

Eα̂(ω),

and for any positive ε, this convergence is uniform on

Mε(S) := { α̂ ∈M1(S), α < 1− ε} .

Finally, any sequence (gm)m ultimately realizing (6.109) can be chosen independently of p, and also

ultimately realizes

(6.111) inf
g∈T ω0

� jωi + Lg �α̂ .

Remark 6.34. � We can now explain the reason behind the change of variable δiη
ω,p
0 7→ δiξ

p. The basic

idea is that even when ω is not degenerate, for an in�nite number of angle measures α̂ ∈M1(S), we may

have V arα̂(ω) = 0. To justify this statement, assume for example that for some arbitrary angles θ and θ′,

we have ω(θ) = ω(θ′). Then, for any α and α′ such that α+α′ ≤ 1, any measure α̂ = αδθ+α′δθ′ ∈M1(S)

will verify V arα̂(ω) = 0. Note that for any such α̂, we can write in Hα̂

jω = Eα̂(ω)j,

because ω is constant w.r.t α̂. Assuming then that there exists a decomposition

δiη
ω,p
0 + aji + bjωi + Lf = 0

in Hα̂, this decomposition is by no means unique if V arα̂(ω) = 0. This degenerate case poses some issues

to invert this decomposition and obtain equation (6.109). More precisely, without the change of variable,

writing

inf
g∈T ω0

� jωi + c̃p(α̂)δiη
ω,p
0 + d̃p(α̂)δiη0 + Lg �α̂= 0,

both coe�cients d̃p(α̂) and d̃p(α̂) can diverge as V arα̂(ω) → 0. In fact, however, these two in�nite

coe�cients cancel out, and the system does not really degenerate as V arα̂ → 0. To circumvent this

(apparent) issue, the �right� way to obtain coe�cients cp(α̂) and dp(α̂) which are continuous in α̂ even

when V arα̂(ω)→ 0 is to perform the change of variable δiη
ω,p
0 7→ δiξ

p, which expresses jωi as a constant

term in θ, namely Eα̂(ω)ji, and a �uctuating term ds(α)δiξ
p
0 with mean 0 in θ, up to a perturbation Lf .

Proof of Proposition 6.33. � We start by proving the last statement, which is immediate and will be

needed later on. Since the gradients are orthogonal to the Lg's, we can rewrite for any g ∈ T0 the

quantity in (6.109) as

� jωi + cp(α̂)δiξ
p
0 + dp(α̂)δiη0 + Lg �α̂ =� jωi + Lg �α̂

+ 2� jωi , cp(α̂)δiξ
p
0 + dp(α̂)δiη0 �α̂ +� cp(α̂)δiξ

p
0 + dp(α̂)δiη0 �α̂ .

The second line does not depend on g, therefore any sequence which ultimately realizes the in�mum of

the �rst line of the right-hand side above also realizes the in�mum of the left-hand side, and vice-versa,

and such a sequence can be chosen independently of p, which proves the last statement.
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We now turn to the main identity, namely (6.109). Once again, we start by clearing out the trivial

cases when α̂ is such that α = 0 and α = 1. In those, all quantities vanish and (6.109) and (6.110) are

trivially true for cp(α̂) = ds(α) and dp(α̂) = Eα̂(ω). We now consider α̂ ∈M1(S) such that α ∈]0, 1[.

Fix p ∈ N, we now prove that (6.109) holds for some well-chosen coe�cients cp and dp. The function

δiξ
p
0 is in Hα̂, therefore according to Proposition 6.32, there exists ap and bp in R2 such that,

(6.112) inf
g∈T ω0

� δiξ
p
0 + ja

p,bp + Lg �α̂= 0.

In order to clarify the proofs, we will sometimes assume that the in�mum in g is reached, i.e. that there

exists a function gp ∈ T ω0 such that

(6.113) � δiξ
p
0 + ja

p,bp + Lgp �α̂= 0.

This assumption is purely for convenience, and we can substitute at any time to gp a sequence of functions

(gpm)m∈N such that the previous identity holds in the limit m→∞.

We �rst want to prove that the contribution of the currents in the direction k 6= i in the decomposition

(6.113) vanishes. Consider some index k 6= i, we now show that apkj
ω
k +bpkjk = 0. Recall that we introduced

in Remark 6.29 the generator L(i) with jumps only in the direction i. We now take the inner product

of the quantity in (6.113) with apkj
ω
k + bpkjk + L(k)gp, with respect to which δiξ

p
0 , j

ω
i , ji and L(i)gp are

orthogonal according to Remark 6.29 and Corollary 6.31, and because i 6= k. This yields

� δiξ
p
0 + ja

p,bp + Lgp , apkj
ω
k + bpkjk + L(k)gp �α̂ =� apkj

ω
k + bpkjk + L(k)gp �α̂ = 0.

In the last identity, we obtained that some quantity of the form Lf is equal to a combination of currents.

We can repeat the proof given in Proposition 6.32 that the sum of the two spaces was direct, to obtain

that apkj
ω
k + bpkjk = 0, which is what we wanted to prove.

We now drop our assumption that the in�mum was reached. Since we proved that the currents in the

direction k 6= i vanish, Equation (6.112) becomes

(6.114) inf
g∈T ω0

� δiξ
p
0 + api (α̂)jωi + bpi (α̂)ji + Lg �α̂ = 0.

We �rst consider the possibility that api (α̂) = 0, and prove that it implies V arα̂(ω) = 0. In this case, since

both δiξ
p
0 and ji = −δiη0 are orthogonal to Lg in Hα̂ by equation (6.103), we could write

� δiξ
p
0 + bpi (α̂)ji �α̂= 0.

Taking the inner product of this quantity w.r.t. jωi and ji, we obtain according to Proposition 6.27 and

Corollary 6.31 the two identities

−αV arα̂(ω)Pp(α̂) + αω
2(1− α)αp

′−3 + bpi (α̂)αω(1− α) = 0 and αω(1− α)αp
′−2 + bpi (α̂)α(1− α).

Multiplying the second identity by Eα̂ and subtracting it to the �rst, we obtain that api (α̂) = 0 if and

only if

αV arα̂(ω)Pp(α̂) = 0.

We already cleared out the special cases α = 0 and α = 1, thus the only remaining possibility to have

api = 0 is V arα̂(ω) = 0. We show at the end of the proof that if this is the case, the decomposition (6.109)

is not unique, but one can choose the coe�cients cp and dp so that (6.110) holds uniformly onMε(S).

We can therefore assume that api 6= 0 and since ji = −δiη0, we can rewrite (6.114)

(6.115) inf
g∈T ω0

� jωi +
1

api (α̂)
δiξ

p
0 −

bpi (α̂)

api (α̂)
δiη0 + Lg �α̂= 0.

Denoting cp(α̂) = 1/api and dp(α̂) = −bpi /a
p
i proves equation (6.109).

We now prove that the coe�cients cp and dp converge. Once again, we assume for convenience that

the in�mum in (6.109) is reached by a function gp which allows us in particular to write

� jωi + cpδiξ
p
0 + dpδiη0 + Lgp , jωi + Lgp �α̂ = 0,
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which is a restatement in Hα̂ of � 0 , jωi + Lgp �α̂= 0. Since by equation (6.109), the gradients are

orthogonal to the currents, this identity can be rewritten

� jωi + Lgp �α̂= −cp � δiξ
p
0 , j

ω
i �α̂ −dp � δiη0, j

ω
i �α̂ .

Taking now the inner product of jωi + cpδiξ
p
0 + dpδiη0 + Lgp with ji, we also obtain

� jωi + Lgp, ji �α̂=� jωi , ji �α̂= −cp � δiξ
p
0 , ji �α̂ −dp � δiη0, ji �α̂ .

These two identities can be written in matrix form, since we already established that the functions

realizing the in�mums (6.109) and (6.111) coincide,

(6.116)

(
infg∈T ω0 � jωi + Lg �α̂

� jωi , ji �α̂

)
= Ap(α̂)

(
cp(α̂)

dp(α̂)

)
,

where

Ap(α̂) = −
(
� δiξ

p
0 , j

ω
i �α̂ � δiη0, j

ω
i �α̂

� δiξ
p
0 , ji �α̂ � δiη0, ji �α̂

)
.

Each coe�cient of the matrix Ap(α̂) is explicitly known, according to Proposition 6.27 and Corollary

6.31, and we can therefore write

Ap(α̂) =

(
αV arα̂(ω)Pp(α)− Eα̂(ω)2(1− α)αp

′−1 αω(1− α)

−Eα̂(ω)(1− α)αp
′−1 χ = α(1− α)

)
.

Elementary computations also yield

(6.117) Det(Ap(α̂)) = α2(1− α)V arα̂(ω)Pp(α),

which is non-zero as soon as α 6= 0, 1 and V arα̂(ω) 6= 0. If α̂ meets these two conditions, we can then

rewrite equation (6.116) as

(6.118)

(
cp(α̂)

dp(α̂)

)
= A−1

p (α̂)

(
infg∈T ω0 � jωi + Lg �α̂

� jωi , ji �α̂

)
.

The matrix A−1
p (α̂) is explicitly known, as well as � jωi , ji �α̂= αω(1−α), therefore the only missing

coe�cient to compute cp and dp is infg∈T ω0 � jωi + Lg �α̂, which is given by the following Lemma.

Lemma 6.35. � For any α̂ ∈M1(S),

inf
g∈T ω0

� jωi + Lg �α̂= sω(α̂),

where the conductivity coe�cient sω is given by

(6.119) sω(α̂) = Eα̂(ω)αω(1− α) + αV arα̂(ω)ds(α).

The proof of Lemma 6.35 is postponed for now, in order to complete the proof of Lemma 6.33.

Thanks to Lemma 6.35, we can now rewrite (6.118) as(
cp(α̂)

dp(α̂)

)
=

1

Det(Ap(α̂))

(
α(1− α) −αω(1− α)

Eα̂(ω)(1− α)αp
′−1 αV arα̂(ω)Pp(α)− Eα̂(ω)2(1− α)αp

′−1

)
×
(

Eα̂(ω)αω(1− α) + αV arα̂(ω)ds(α)

αω(1− α)

)
.

Using (6.117) for Det(Ap(α̂)), computing the matrix product above �nally yields

(6.120) cp(α̂) =
ds(α)

Pp(α)
and dp(α̂) = Eα̂(ω)

[
1 +

ds(α)αp
′−1

Pp(α)

]
.

In the cases where α = 0 or V arα̂(ω) = 0, the matrix Ap is no longer invertible. However, we leave to the

reader to verify that the coe�cients cp and dp given by (6.120) are still solution of (6.116), even though

this solution is not unique. In those cases, we can therefore choose cp and dp as in (6.120). This continuity

as V arα̂(ω) vanishes is, as explained in Remark 6.34, the reason for the change of variable δiη
ω,p
0 7→ δiξ

p
0 .

Since Pp(α) converges uniformly to 1 if α is bounded away from 1, cp and dp converge uniformly on

Mε(S) := { α̂ ∈M1(S), α < 1− ε} ,
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towards ds(α) and Eα̂(ω), which completes the proof of Proposition 6.33.

Remark 6.36 (Stokes-Einstein Relation). � Letting p go to ∞, equation (6.116) becomes the

Stokes-Einstein relation

(6.121)

(
infg∈T ω0 � jωi + Lg �α̂

infg∈T ω0 � ji + Lg �α̂

)
= X

(
ds(α̂)

Eα̂(ω)

)
,

where X is the compressibility of the system, and can be written as the limit p → ∞ of the matrix Ap,

ds(α̂) and Eα̂(ω) are the di�usion coe�cients, and infg∈T ω0 � jωi +Lg �α̂ and infg∈T ω0 � jωi +Lg �α̂=

α(1 − α) are the conductivity coe�cients. Note that the di�usion and conductivity coe�cients are not

those presented in equation (2.12) because of our change of coordinates(
δiη

ω,p
0

δiη0

)
7→
(
δiξ

p
0

δiη0

)
.

Note that the Stokes-Einstein relation is a matrix identity, and not a vector identity like (6.121). In fact,

the matrix identity also holds, however we only wrote the part of the relation which was relevant in our

context, the omitted part being trivial.

Before proving Lemma 6.35, we state the following elementary Corollary of Proposition 6.33.

Corollary 6.37. � There exists a constant C depending only on ω, such that for any α̂ ∈ M1(S) and

any integer p,

� δiξ
p �α̂ ≤ C.

Proof of Corollary 6.37. � The proof of this result follows directly from that of Proposition 6.33. We

obtained in the latter that

(6.122) inf
g∈T ω0

� δiξ
p
0 + ap(α̂)jωi + bp(α̂)ji + Lg �α̂ = 0,

and by construction, cp = 1/ap and dp = −bp/ap, where cp and bp are given for any α̂ such that α 6= 1

by (6.120).

Thanks to (6.120), this yields

ap(α̂) =
Pp(α)

ds(α)
and bp(α̂) = Eα̂(ω)

[
Pp(α)

ds(α)
+ αp

′−1

]
.

Elementary computations show that Pp(α) = oα→1(1−α), and ds(α) is bounded from below by c(1−α)

according to Proposition A.3. We therefore obtain that if α 6= 1 both ap(α̂) and bp(α̂) are bounded

uniformly in α̂ and p by some constant C ′ depending only on ω.

Once again, we assume for the sake of clarity that the in�mum (6.122) is reached by a function gp.

Since by (6.103) δiξ
p
0 is orthogonal to Lgp, we can write

� δiξ
p
0 �α̂ +� Lgp �α̂ =� δiξ

p
0 + Lgp �α̂ =� ap(α̂)jωi + bp(α̂)ji �α̂ .

Since the coe�cients ap and bp are bounded uniformly in α̂, all quantities above being non-negative, we

�nally obtain that for any α̂ such that α 6= 1

� δiξ
p
0 �α̂ ≤ ap(α̂)2 � jωi �α̂ +bp(α̂)2 � ji �α̂(6.123)

≤ C(ω).(6.124)

Since when α = 1, � δiξ
p �α̂= 0, this concludes the proof of the Lemma.

We now prove Lemma 6.35, whose proof was postponed.

Proof of Lemma 6.35. � Once again, we �rst consider the trivial case α = 0 or 1. Since ds(1) = 0, in

the latter case, Lemma 6.35 is trivially true, because both sides of the identity vanish.

We now assume that α ∈]0, 1[. Denote

ω0 = ω − Eα̂(ω),
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and consider the mean-zero current

jω0
i = (ω(θ0)− Eα̂(ω))η0(1− ηei)− (ω(θei)− Eα̂(ω))ηei(1− η0),

we have � ji, j
ω0
i �α̂= 0. This last statement is a consequence of Proposition 6.27, which yields

� ji, j
ω0
i �α̂ = Eα̂(ω0)︸ ︷︷ ︸

=0

� ji �α̂= 0.

Note that ω0 depends on α̂, but since in this proof α̂ is �xed in M1(S), it is not an issue. Since jωi =

jω0
i + Eα̂(ω)ji, we can now write

sω = inf
g∈T ω0

� jωi + Lg �α̂ = inf
g∈T ω0

� Eα̂(ω)ji + jω0
i + Lg �α̂

=� Eα̂(ω)ji �α̂ + inf
g∈T ω0

� jω0
i + Lg �α̂

= Eα̂(ω)αω(1− α) + inf
g∈T ω0

� jω0
i + Lg �α̂ .(6.125)

Note that the computation above guarantees that any sequence of functions gm ultimately realizing

infg � jωi + Lg �α̂ also realizes infg � jω0
i + Lg �α̂.

In order to prove Lemma 6.35, it is therefore su�cient to show that

inf
g∈T0

� jω0
i + Lg �α̂= αV arα̂(ω)ds(α).

Recall from Proposition 6.27 that

� ja,b + Lg �α̂=
∣∣∣∣∣∣ja,b +∇Σg

∣∣∣∣∣∣2
2,α̂

,

therefore, since jω0
i is indeed of the form ja,b for a = ei and b = −Eα̂(ω)ei (here, we identi�ed for the

convenience of notations a and b with vectors of R2),

� jω0
i + Lg �α̂ = Eα̂

 2∑
i=1

[
ηω0

0 (1− ηei) +∇i
∑
x∈Z2

τxg

]2
 .

We now need to replace the gradient in the expression above by its symmetric counterpart. The right-

hand side above rewrites

Eα̂

[ηω0
0 (1− ηei) +∇i

∑
x∈Z2

τxg

]2
 =Eα̂

(
η0(1− ηei)

[
ηω0

0 + Σg(η̂
0,ei)− Σg

]2)
=

1

2
Eα̂
(
η0(1− ηei)

[
ηω0

0 + Σg(η̂
0,ei)− Σg

]2)
+

1

2
Eα̂
(
ηei(1− η0)

[
ηω0
ei + Σg − Σg(η̂

0,ei)
]2)

,

since Eα̂(f) =
[
Eα̂(f) + Eα̂

(
f
(
η̂0,ei

))]
/2. Furthermore, considering that only one of η0(1 − ηei) and

ηei(1− η0) can be non-zero, and replacing η0(1− ηei) + ηei(1− η0) by 1{η0ηei=0} we can rewrite,

(6.126) � jω0
i + Lg �α̂=

1

2
Eα̂
(
1{η0ηei=0}

[
ηω0
ei − η

ω0
0 + Σg(η̂

0,ei)− Σg
]2)

.

Note that Tω0 can also be de�ned as

Tω0 =

{∑
x∈Z2

(C1η
ω0
x + C2ηx)ψx(η), C1, C2 ∈ R, and ψx ∈ S, ∀x ∈ T2

N

}
,

therefore taking the in�mum over g ∈ T ω0 is equivalent to taking the in�mum over C1, C2, and the family

of angle-blind functions (ψx)x∈T2
N
∈ (S ∩ C0)T

2
N . Letting ∇̃i denote the symmetric gradient

∇̃if = 1η0ηei=0

(
f(η̂0,ei)− f

)
,

(6.126) thus yields
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inf
g∈T ω0

� jω0
i + Lg �α̂=

1

2
inf

C1,C2,ψx
Eα̂


1{η0ηei=0}(η

ω0
ei − η

ω0
0 ) + C1∇̃i

∑
x,y∈Z2

τyη
ω0
x ψx(η)

2


+ Eα̂


C2∇̃i

∑
x,y∈Z2

τyηxψx(η)

2
 .

To split the two parts, we simply used that for any α̂ ∈M1(S), any x ∈ T2
N , and any angle-blind function

Ψ, Eα̂(ηω0
x Ψ) = 0 because the angular dependence of ηω0 in θx has mean 0.

We now simply have to chose C2 = 0, and notice that
∑
x,y∈Z2 τyη

ω0
x ψx(η) =

∑
z∈Z2 ηω0

z τzψ
′(η) for the

angle-blind formal sum ψ′ =
∑
y∈Z2 ψy ∈ S (which is well-de�ned since only a �nite number of terms are

non-zero), to get that

inf
g∈T ω0

� jω0
i + Lg �α̂=

1

2
inf
ψ′

Eα̂

[1{η0ηei=0}(η
ω0
ei − η

ω0
0 ) + ∇̃i

∑
z∈Z2

ηω0
z τzψ

′(η)

]2
 .

We take the terms z = 0 and z = ei out of the sum, the right-hand side above is equal to

(6.127)
1

2
inf
ψ′

Eα̂


1{η0ηei=0}(η

ω0
ei − η

ω0
0 ) + ∇̃iηω0

0 ψ′ + ∇̃iηω0
ei τeiψ

′ + ∇̃i
∑

z∈Z2\{0,ei}

ηω0
z τzψ

′

2
 .

For any z ∈ Z2 \ {0, ei}, ∇̃iηω0
z τzψ

′ is equal to ηω0
z ∇̃iτzψ′. Furthermore,

∇̃iηω0
0 ψ′ = 1η0ηei=0

(
ηω0
ei ψ

′ (η̂0,ei
)
− ηω0

0 ψ′
)
,

and

∇̃iηω0
ei τeiψ

′ = 1η0ηei=0

(
ηω0

0 τeiψ
′ (η̂0,ei

)
− ηω0

ei τeiψ
′) .

Regrouping the terms in ηω0
ei and ηω0

0 , (6.127) is equal to

1

2
inf
ψ′

Eα̂

(
1{η0ηei=0}

(
ηω0
ei

[
1 + ψ′

(
η̂0,ei

)
− τeiψ′

]
+ ηω0

0

[
−1 + τeiψ

′ (η̂0,ei
)
− ψ′

]
+

∑
z∈Z2\{0,ei}

ηω0
z ∇̃iτzψ′

)2
)
.

For any z 6= z′ and any angle-blind function ψ ∈ S, we have already established in Section 5.2 that

Eα̂(ηω0
z ηω0

z′ ψ(η)) = 0.

The previous quantity now rewrites

inf
g∈T ω0

� jω0
i + Lg �α̂=

1

2
inf
ψ′

∑
i

Eα̂

(
(1− η0)ηω0

ei
2 [1 + ψ′

(
η̂0,ei

)
− τeiψ′

]2)

+ Eα̂
(

(1− ηei)η
ω0
0

2 [−1 + τeiψ
′ (η̂0,ei

)
− ψ′

]2)
+

∑
z∈Z2\{0,ei}

Eα̂
(
1{η0ηei=0}η

ω0
z

2
[
∇̃iτzψ′

]2)
.

We translate the �rst term by −ei, thanks to the translation invariance of Eα̂, the former is equal to

1

2
inf
ψ′

Eα̂
(

(1− η−ei)η
ω0
0

2 [1 + τ−ei
[
ψ′
(
η̂0,ei

)]
− ψ′

]2)
+ Eα̂

(
(1− ηei)η

ω0
0

2 [−1 + τeiψ
′ (η̂0,ei

)
− ψ′

]2)
+

∑
z∈Z2\{0,ei}

Eα̂
(
1{η0ηei=0}η

ω0
z

2
[
∇̃iτzψ′

]2)
.

Notice that with respect to ψ, we only place on the event ηω0
0 6= 0, (since the last term is translated

by z), we can hence only consider the functions ψ independent of η0. With that condition, ψ′
(
η̂0,ei

)
is

independent of ηei , therefore τ−ei
[
ψ′
(
η̂0,ei

)]
is independent of η0. We also have τeiψ

′ is independent of ηei ,
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and τeiψ
′ (η̂0,ei

)
is also independent of η0. Finally, ∇̃iτzψ′ is independent of ηz. Elementary computations

yield

E((ηω0
0 )2) = αV arα̂(ω),

and because the two directions i = 1 and i = 2 are orthogonal in Hα̂ and play identical roles, the previous

quantity now becomes

inf
f∈T ω0

� jω0
i + Lf �α̂=

1

2
inf
f∈T ω0

�
2∑
k=1

jω0

k + Lf �α̂

=
αV arα̂(ω)

4
inf
ψ′

{∑
i

Eα̂
(

(1− η−ek)
[
1 + τ−ek

[
ψ′
(
η̂0,ek

)]
− ψ′

]2)
+ Eα̂

(
(1− ηek)

[
−1 + τekψ

′ (η̂0,ek
)
− ψ′

]2)
+

∑
z∈Z2\{0,ek}

Eα̂
(
1

2
{η0ηek=0}

[
∇̃kτzψ′

]2)}
= αV arα̂(ω)ds(α),

where ds is the self-di�usion coe�cient for which a variational formula is given in Proposition A.2. This

completes the proof of Lemma 6.35.

We now prove equation (6.89), and thus concludes the proof of Theorem 6.1.

Proposition 6.38 (Uniform bound on the local covariance of Vfi,p)
Identity (6.89) holds, in the sense that

inf
g∈C0

lim
p→∞

sup
α̂∈M1(S)

� jωi + ds(α)δiξ
p
0 + Eα̂(ω)δiη0 + Lg �α̂= 0.

Proof of Proposition 6.38. � There are two important steps to prove Proposition 6.38. First, for any

density α̂ ∈M1(S), according to Proposition 6.33, a local function gα̂ ∈ T ω0 such that

� jωi + cp(α̂)δiξ
p
0 + dp(α̂)δiη0 + Lgα̂ �α̂ ≤ δ.

However, since this function depends on α̂, we still need to construct a cylinder function independent of

α̂ which satis�es (6.89).

Furthermore, the di�usion coe�cients are not those wanted in Proposition 6.38, and cp(α̂) and dp(α̂)

do not converge uniformly towards ds(α) and Eα̂(ω) onM1(S). This won't be an issue, however, because

the quantity above vanishes as α goes to 1 regardless of the di�usion coe�cients, and because according

to Proposition 6.33, the convergence is uniform on

Mε(S) = {α̂ ∈M1(S), α < 1− ε},

for any ε.

The proof being a little bit intricate due to the degenerate case α→ 1, we split it in two Lemmas.

Lemma 6.39. � For any δ > 0 there exists a cylinder function fδ ∈ C0 such that for any ε > 0

lim
p→∞

sup
α̂∈Mε(S)

� jωi + cp(α̂)δiξ
p
0 + dp(α̂)δiη0 + Lfδ �α̂ ≤ 3δ.

Furthermore, there exists a constant C such that for any α̂ ∈M1(S),

(6.128)

∣∣∣∣� jωi + Lfδ �α̂ − inf
g∈T ω0

� jωi + Lg �α̂

∣∣∣∣ ≤ Cδ.
Lemma 6.40. � For any δ > 0, consider the cylinder function fδ de�ned by Lemma 6.39, there exists

ε = εδ > 0 such that

lim
p→∞

sup
α̂∈M1(S)\Mε(S)

� jωi + ds(α)δiξ
p
0 + Eα̂(ω)δiη0 + Lfδ �α̂ ≤ 4δ.
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Before proving these two Lemmas, we show that they are su�cient to obtain Proposition 6.38. Fix

δ > 0, and consider the ε = εδ given by Lemma 6.40 and fδ given by Lemma 6.39, we have

(6.129) sup
α̂∈M1(S)

� jωi + ds(α)δiξ
p
0 + Eα̂(ω)δiη0 + Lfδ �α̂

≤ sup
α̂∈Mε(S)

� jωi + ds(α)δiξ
p
0 + Eα̂(ω)δiη0 + Lfδ �α̂

+ sup
α̂∈M1(S)\Mε(S)

� jωi + ds(α)δiξ
p
0 + Eα̂(ω)δiη0 + Lfδ �α̂ .

In the limit p→∞, the second term in the right-hand side is bounded by 4δ according to Lemma 6.40.

Regarding the �rst term in the right hand side, we write by triangular inequality

(6.130) sup
α̂∈Mε(S)

� jωi + ds(α)δiξ
p
0 + Eα̂(ω)δiη0 + Lfδ �α̂

≤ sup
α̂∈Mε(S)

� jωi + cp(α̂)δiξ
p
0 + dp(α̂)δiη0 + Lfδ �α̂

+ sup
α̂∈Mε(S)

� (cp(α̂)− ds(α))δiξ
p
0 + (dp(α̂)− Eα̂(ω))δiη0 �α̂

The limit p → ∞ of the �rst term in the right-hand side is less than 3δ according to Lemma 6.39. By

triangular inequality, the second term is less than

sup
α̂∈Mε(S)

� (cp(α̂)− ds(α))δiξ
p
0 + (dp(α̂)− Eα̂(ω))δiη0 �α̂

≤ sup
α̂∈Mε(S)

{
(cp(α̂)− ds(α))2 � δiξ

p
0 �α̂ +(dp(α̂)− Eα̂(ω))2 � δiη0 �α̂

}
.

As a consequence of Proposition 6.33 and Corollary 6.37, both � δiξ
p
0 �α̂ and � δiη0 �α̂ are bounded

uniformly in α̂ ∈ M1(S) and p, whereas cp and dp converge uniformly on Mε(S), as p → ∞, to ds and

Eα̂(ω). Therefore, as p→∞, the second term in the right-hand side of (6.130) vanishes, and

(6.131) lim
p→∞

sup
α̂∈Mε(S)

� jωi + ds(α)δiξ
p
0 + Eα̂(ω)δiη0 + Lfδ �α̂ ≤ 3δ.

This, combined with (6.129), �nally yields that

lim
p→∞

sup
α̂∈M1(S)

� jωi + ds(α)δiξ
p
0 + Eα̂(ω)δiη0 + Lfδ �α̂ ≤ 7δ,

which proves Proposition 6.38.

We now prove both Lemmas 6.39 and 6.40.

Proof of Lemma 6.39. � For any δ > 0, we want to build a cylinder function fδ ∈ C0 such that

lim
p→∞

sup
α̂∈Mε(S)

� jωi + cp(α̂)δiξ
p
0 + dp(α̂)δiη0 + Lfδ �α̂ ≤ δ.

By Theorem 6.25 the application α̂ 7→� ψ �α̂ is continuous onM1(S), and thanks to equation (6.89),

for any parameter α̂0, there exists a function gα̂0
∈ T ω0 and a neighborhood Nα̂0

of α̂0 such that for any

α̂ ∈ Nα̂0
,

� jωi + cp(α̂0)δiξ
p
0 + dp(α̂0)δiη0 + Lgα̂0

�α̂ ≤ 2δ.

Furthermore, thanks to the last statement in Proposition 6.33, this function is an approximation of the

one realizing infg∈T ω0 � jωi + Lg �α̂0
, and can be chosen independently of p.

We prove in Proposition B.3 that M1(S) is compact, it therefore admits a �nite covering M1(S) ⊂
∪mj=1Nα̂j . We can build a C2 interpolation of the gα̂j 's, and therefore obtain a function (α̂, η) 7→ Φ(α̂, η)

which coincides in α̂ = α̂j with gα̂j , with the two following properties :

� let B be a �nite set of edges in Z2 containing the support of all the gα̂j 's, Φ(α̂, . ) is a cylinder

function in T ω0 with support included in B for any α̂ ∈M1(S).

� For any �xed con�guration η̂, Φ( . , η̂) is in C2(M1(S)).
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Furthermore, by construction of Φ and thanks to the continuity in α̂ of the di�usion coe�cients and ξp0 ,

for any α̂ ∈M1(S)

(6.132) � jωi + cp(α̂)δiξ
p
0 + dp(α̂)δiη0 + LΦ(α̂, ·)�α̂ ≤ 2δ.

Recall that we introduced in (2.22) the empirical angle measure

ρ̂r =
1

|Br |
∑
x∈Br

ηxδθx

the empirical angle measure in the box of side (2r+ 1) around the origin. For some �xed large integer r,

let us now consider the function

fr(η̂) = Φ(ρ̂r, η̂),

which is a function in C0 as soon as the support B of the Φ(α̂, η)'s are contained in Br which happens for

r large enough. Note that fr is not necessarily in T0, therefore, � Lfr �α̂ should a priori be ill-de�ned.

In fact, it is not, because for any f ∈ C0, we can de�ne

� Lf �α̂=
∑
i

Eα̂((∇iΣf )2), and � Lf, g �α̂= Eα̂(g.Σf),

which is consistent with our prior de�nition of � .�α̂ on LT ω0 . This problem being purely cosmetic, we

therefore keep the same notations as if Lfr was in Hα̂.
By triangle inequality,

(6.133) sup
α̂∈Mε(S)

� jωi + cp(α̂)δiξ
p
0 + dp(α̂)δiη0 + Lfr �α̂ ≤ 2δ + sup

α̂∈Mε(S)

� L(fr − Φ(α̂, ·))�α̂ .

The second term in the right-hand side above is explicitly known thanks to Proposition 6.27, and is

equal to ∑
i

Eα̂

(∇i ∑
x∈Z2

τx [fr − Φ(α̂, ·)]

)2
 =

∑
i

Eα̂

(∑
x∈Z2

∇x,x+ei [fr − Φ(α̂, ·)]

)2
 ,

by translation invariance of µα̂, and because ∇iτx = τx∇−x,−x+ei . We extend B by 1 in such a way that

for any edge a outside of B, ∇aΦ(α̂, .) vanishes. Therefore, the only contributions outside of B in the

sums above are at the boundary of Bl, where fr has a variation in its �rst argument of order (2r+ 1)−2.

Thanks to the regularity of Φ in α̂, and since the number of corresponding edges is roughly 4(2r+ 1), the

contribution of all these jumps is of order r−1 in the whole sum.

Then, since the number of edges in B depends only on Φ, and since Eα̂
(
(∇af)2

)
≤ 4Eα̂(f2), we obtain

by the de�nition of fr that

(6.134) sup
α̂∈Mε(S)

� L(fr − Φ(α̂, ·))�α̂ ≤ sup
α̂∈Mε(S)

C(Φ)Eα̂
[
(Φ(ρ̂r, .)− Φ(α̂, ·))2

]
+O(r−2),

whose right-hand side vanishes as r goes to in�nity by the law of large numbers.

Let us �x rδ such that the right-hand side of (6.134) is less than δ, and let fδ = frδ , (6.133) �nally

yields

(6.135) sup
α̂∈Mε(S)

� jωi + cp(α̂)δiξ
p
0 + dp(α̂)δiη0 + Lfδ �α̂ ≤ 3δ,

as wanted. The last statement of the Lemma is a direct consequence of the construction of fδ and of

Proposition 6.33. This concludes the proof of Lemma 6.39.

Proof of Lemma 6.40. � We now prove that given δ > 0 and the function fδ built in Lemma 6.39, there

exists a constant C such that

lim
p→∞

sup
α̂∈M1(S)\Mε(S)

� jωi + ds(α)δiξ
p
0 + Eα̂(ω)δiη0 + Lfδ �α̂ ≤ Cε+ 3δ,

which proves Lemma 6.40. We �rst write by triangular inequality
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� jωi + ds(α)δiξ
p
0 + Eα̂(ω)δiη0 + Lfδ �α̂

≤ � Lfδ − LΦ(α̂, ·)�α̂ +� jωi + ds(α)δiξ
p
0 + Eα̂(ω)δiη0 + LΦ(α̂, ·)�α̂

where Φ(α̂, ·) is the function built in the proof of Lemma 6.39. The �rst term in the right hand side being

less than δ by construction of fδ, we focus on the second term. Using once again the triangular inequality,

we can bound it from above by

(6.136) � jωi + LΦ(α̂, ·)�α̂ +ds(α)2 � δiξ
p
0 �α̂ +Eα̂(ω)2 � δiη0 �α̂ .

For any α̂ such that α > 1− ε, � δiη0 �α̂= α(1− α) < ε, and for some constant C,

ds(α) ≤ C(1− α) ≤ Cε

according to Proposition A.3. This yields, � δiξ
p
0 �α̂ being bounded according to Corollary 6.37, that

the two last terms in equation (6.136) are bounded from above by Cε for some constant C depending

only on ω.

We now turn to the �rst term in (6.136). For any function f , we can write by triangular inequality

� jωi + LΦ(α̂, . )�α̂ ≤ � jωi + Lf �α̂ +� jωi + cp(α̂)δiξ
p
0 + dp(α̂)δiη0 + Lf �α̂

+� jωi + cp(α̂)δiξ
p
0 + dp(α̂)δiη0 + LΦ(α̂, . )�α̂ .

We now let f ultimately realize both of the in�mums (6.109) and (6.111). The �rst term above converges

according to Lemma 6.35 towards Eα̂(ω)αω(1−α) +αV arα̂(ω)ds(α). The second term vanishes, whereas

the last term is less than 2δ by equation (6.132). Finally, we obtain

� jωi + LΦ(α̂, . )�α̂≤ αV arα̂(ω)ds(α) + 2δ ≤ C ′ε+ 2δ

for some constant C ′ depending only on ω.

Finally, choosing εδ = δ/(C + C ′) concludes the proof of Lemma 6.40.

6.9. Drift part of the hydrodynamic limit. � Recall that LN = N2L+NLWA+LG is the complete

generator of our process introduced in (2.2). In the previous section, we proved that the symmetric currents

can be replaced by a gradient, up to a perturbation Lf . In our case, this perturbation is not negligible,

and must be added to the asymmetric currents induced by the asymmetric generator LWA to complete the

drift term in equation (2.13). This is the purpose of this Section.

To achieve that goal, we need notations similar to the ones introduced in Section 4.1. For any positive

integer l, and any smooth function G ∈ C([0, T ]× T2), let us introduce

Rf,li (η̂) = rωi + LWAf − Eρ̂l(r
ω
i + LWAf),

and

Y f,li,N (G, η̂) =
1

N2

∑
x∈T2

N

G(x/N)τxRf,li ,

where rωi is the asymmetric current introduced in (2.18). According to Theorem 6.1, for any i, there exists

a family of cylinder functions (fδ)δ>0 introduced in Lemma 6.39 such that

lim
γ→∞

lim
δ→0

lim sup
ε→0

lim sup
N→∞

1

γN2
logEλ,βµ∗α

[
exp

(
γN2

∣∣∣∣∣
∫ T

0

Xfδ,εN
i,N (Gt, η̂(t))dt

∣∣∣∣∣
)]

= 0,

where Xf,εN
i,N was de�ned in equation (6.1). Furthermore, we also established in equation 6.128 that this

sequence satis�es for any α̂ ∈M1(S)

(6.137) lim
δ→0
� jωi + Lfδ �α̂= inf

f∈T ω0
� jωi + Lf �α̂ .

The replacement Lemma 4.1 applied to g(η̂) = rωi + LWAf yields the following result.
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Lemma 6.41. � Let G be some smooth function in C1,2([0, T ] × T2), and T ∈ R∗+, then for i ∈ {1, 2}
we have

lim
δ→0

lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

[ ∣∣∣∣∣
∫ T

0

Y fδ,εNi,N (G, η̂)ds

∣∣∣∣∣
]

= 0.

Furthermore, we now prove the following result, which states that any function of the form NLDf
vanishes in the hydrodynamic limit, where LD = L+N−1LWA is the generator of whole exclusion process.

Lemma 6.42. � For any function G : [0, T ]× T2 → R in C1,2, and any cylinder function f ,

lim sup
N→∞

EµN

 ∣∣∣∣∣∣
∫ T

0

1

N

∑
x∈T2

N

G (s, x/N) τxLDf(η̂(s))ds

∣∣∣∣∣∣
 = 0.

Proof of Lemma 6.42. � For any such smooth function H and cylinder function f , let us denote

FG(s, η̂(s)) = N−2
∑
x∈T2

N

G(s, x/N)τxf(η̂(s)).

The time process

MG(t) = FG(t, η̂(t))− FG(0, η̂(0))−
∫ T

0

∂sFG(s, η̂(s))ds−
∫ T

0

LNFG(s, η̂(s))ds

is a martingale, where LN is the complete generator of our process, introduced in (2.2). Since f is bounded,

the �rst three terms are of order 1, it remains to control
∫ T

0
LNFGds. The quadratic variation of this

martingale is given by

[MG(·, η̂(·))]t =

∫ T

0

LNFG(s, η̂(s))2 − 2FG(s, η̂(s))LNFG(s, η̂(s))ds

=

∫ T

0

dsN2
∑
x∈T2

N

δ=±1,i∈{1,2}

τλx,z,i,δ
[
FG(s, η̂x,x+δei(s))− FG(s, η̂(s))

]2

+

∫ T

0

ds
∑
x∈T2

N

ηx

∫
S

cx,β(θ, η̂)
[
FG(s, η̂x,θ(s))− FG(s, η̂(s))

]2
dθ

=
1

N2

∫ T

0

ds
∑
x∈T2

N

δ=±1,i∈{1,2}

τλx,z,i,δ(η̂(s))

 ∑
y∈T2

N

G(s, y/N)
(
τyf(η̂x,x+z(s))− τyf(η̂(s))

)2

+
1

N4

∫ T

0

ds
∑
x∈T2

N

ηx

∫
S

cx,β(θ, η̂)

 ∑
y∈T2

N

G(s, y/N)
(
τyf(η̂x,x+z(s))− τyf(η̂(s))

)2

dθ,

where

τλx,z,i,δ(η̂) =

(
1 +

δλi(θx)

N

)
ηx(1− ηx+z)

is the total displacement jump rate.

Since f is a local function, all but a �nite number of terms in the y sum vanish, and the quadratic

variation is hence of order N−2. (For a reference on the quadratic variation, cf. Appendix 1.5, Lemma

5.1 in [27]). We deduce from the estimate of the quadratic variation of MG and the order of the three

�rst terms in the expression of MG that

EµN

( ∣∣∣∣∣
∫ T

0

N−1LNFG(s, η̂(s))ds

∣∣∣∣∣
)
≤ N−1

EµN ([MG(t, η̂(t))])
1/2︸ ︷︷ ︸

O(N−1)

+ON (1)

 →
N→∞

0.
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The previous martingale estimate shows that EµN
( ∣∣∣ ∫ T0 N−1LNFG(s, η̂(s))ds

∣∣∣ ) vanishes in the limit

N →∞. Furthermore, elementary computations yield a crude bound on the contribution of the Glauber

generator of order N−1. Finally, since LN = N2LD + LG, we obtain

EµN

( ∣∣∣∣∣
∫ T

0

NLDFG(s, η̂(s))ds

∣∣∣∣∣
)
→

N→∞
0,

which completes the proof of Lemma 6.42.

We now use these two Lemmas to prove that the total displacement current can be replaced by the

wanted averages. More precisely, let

Uf,li (η̂) = jωi +
1

N
rωi + ds (ρl) δiρ

ω
l + d (ρl, ρ

ω
l ) δiρl −

1

N
Eρ̂l(r

ω
i + LWAf),

we can state the following result.

Corollary 6.43. � Let G be some smooth function in C1,2([0, T ]×T2), and T ∈ R∗+, then for i ∈ {1, 2}
we have

lim
δ→0

lim sup
ε→0

lim sup
N→∞

Eλ,β
µN

 ∣∣∣∣∣∣
∫ T

0

1

N

∑
x∈T2

N

G(x/N)Ufδ,εNi (G, η̂)ds

∣∣∣∣∣∣
 = 0.

Proof of Corollary 6.43. � Adding and substracting (1/N)LWAfδ to the de�nition of Ufδ,εNi , we can split

it into three parts,

jωi + ds (ρεN ) δiρ
ω
εN + d (ρεN , ρ

ω
εN ) δiρεN + Lfδ,

1

N
(rωi + LWAfδ)−

1

N
Eρ̂εN (rωi + LWAfδ), and − LDfδ.

The contribution of the �rst quantity vanishes in the limit of Corollary 6.43, according to Corollary

6.2. The second contribution also does thanks to Lemma 6.41, as well as the third due to Lemma 6.42,

thus completing the proof of the Corollary.

We now derive an explicit expression for the quantity Eρ̂εN (rωi + LWAfδ) as δ goes to 0, which is the

main result of this section.

Lemma 6.44. � For any angle measure α̂ ∈Mε(S),

(6.138) lim
δ→0

Eα̂
(
rωi + LWAfδ

)
= 2ds(α)αωλi + 2

αωαλi
α

(1− α− ds(α)),

where for any function Φ : S→ R, we de�ned αΦ = Eα̂(Φ(θ0)η0).

Remark 6.45 (extension of � .�α̂). � For any function Φ, we denoted

jΦ
i = Φ(θ0)η0(1− ηei)− Φ(θei)ηei(1− η0).

Note that our de�nition of Hα̂ is intrinsically dependent on ω. In order to move forward with the proof

and state the proof of Lemma 6.44 in a form as simple as possible, we need to enlarge the space Hα̂, to
functions and currents depending on the λi's. For this purpose, we set η

a,b,c,d
x = aηωx + bηλ1

x + cηλ2
x + dηx,

T̃0 = C0 ∩

∑
x∈T2

N

ηa,b,c,dx ψx(η), a, b, c, d ∈ R, and ψx ∈ S, ∀x ∈ T2
N

 ,

� f �α̂= sup
g∈T̃0

a,b,c,d∈R2

2Eα̂

f.
Σg +

∑
y∈Z2

y1η
a1,b1,c1,d1
x + y2η

a2,b2,c2,d2
x

− ∣∣∣∣∣∣∇Σg + ja,b,c,d
∣∣∣∣∣∣2

2,α̂

 ,

where

ja,b,c,d = a1U
ω + a2V

ω + b1U
λ1 + b2V

λ1 + c1U
λ2 + c2V

λ2 + d1U + d2V.
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One easily proves that � . �α̂ thus de�ned is a semi-norm, and, letting Nα̂ be its kernel, we still have

the decomposition

T̃0

Nα̂
=
LT̃0

Nα̂
⊕ J,

where J = jω.R2 + jλ1 .R2 + jλ2 .R2 + j.R2 ⊂ T ω0 is the linear span of the currents. We can also state a

result similar to Proposition 6.27 in this new space Hα̂.

Proof of Lemma 6.44. � The proof of the previous Lemma is mainly based on Proposition 6.27. First

note that by de�nition of rωi = λi(θ0)ω(θ0)η0(1− ηe1) + λi(θei)ω(θei)ηei(1− η0), we can write

(6.139) Eα̂(rωi ) = 2Eα̂(λi(θ0)ω(θ0))Eα̂(U) = 2� jλii , j
ω
i �α̂ .

For any cylinder function f , with equation (6.90) and the translation invariance of the product measure,

as well as η → η̂x,x+δe1 changes of variable, setting respectively Φ(θ) = λ1(θ) and λ2(θ), we can write

�
2∑
i=1

jλii ,Lf �α̂ =�
2∑
i=1

λi(θ0)η0(1− ηei)− λi(θei)ηei(1− η0),Lf �α̂

=− Eα̂

 ∑
x∈T2

N ,i∈{1,2}

[λi(θ0)η0(1− ηei)− λi(θei)ηei(1− η0)] τxf


=− Eα̂

 ∑
x∈T2

N ,i∈{1,2}

[λi(θx)ηx(1− ηx+ei)− λi(θx+ei)ηx+ei(1− ηx)] f


=Eα̂

 ∑
x∈T2

N ,i∈{1,2}

λi(θx)ηx(1− ηx+ei)(f(η̂x,x+ei)− f)


=

1

2
Eα̂

( ∑
x∈T2

N ,i∈{1,2}

λi(θx)ηx(1− ηx+ei)(f(η̂x,x+ei)− f)

− λi(θx)ηx(1− ηx−ei)(f(η̂x,x−ei)− f)

)

=
1

2
Eα̂(LWAf)

i.e.

(6.140) Eα̂(LWAf) = 2� jλ1
1 + jλ2

2 ,Lf �α̂ .

Combining the two identities (6.139) and (6.140), we can therefore write,

Eα̂(rωi + LWAf) = 2� jλii , j
ω
i + Lf �α̂ .(6.141)

By de�nition of fδ = fωδ (cf. Lemma 6.39) jωi +Lfδ being ultimately, as δ → 0, a combination of gradients

and therefore orthogonal to any Lf according to equation (6.109). This yields

lim
δ→0
� jλii , j

ω
i + Lfωδ �α̂ = lim

δ→0
� jλii + Lfλiδ , jωi + Lfωδ �α̂

= lim
δ→0

1

2

[
� jλi+ωi + Lfλi+ωδ �α̂ − � jλii + Lfλiδ �α̂ − � jωi + Lfωδ �α̂

]
.(6.142)

In the identity above, we used that fωδ + fλiδ = fω+λi
δ , in the sense that if Lfωδ (resp. Lfλiδ ) ultimately

realize the di�erence between the currents and gradients with angular dependence ω (resp. λi). Indeed,

if we can write both

� jωi + dωp δiη
ω,p
0 + dpδiη

p
0 + Lfωδ �α̂ →

p→∞,δ→0
0

� jλii + dλip δiη
λi
0 + dpδiη

p
0 + Lfλiδ �α̂ →

p→∞,δ→0
0,
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then we can write

� jλi+ωi + dλi+ωp δiη
λi+ω
0 + dpδiη

p
0 + L(fλiδ + fωδ )�α̂ →

p→∞,δ→0
0,

which is to say that

� jλi+ωi + L(fλiδ + fωδ )�α̂= inf
f
� jλi+ωi + Lf �α̂ .

Equation (6.142) thus holds, and the three parts of the right-hand side respectively converge towards

sλi+ω(α̂), sλi(α̂) and sω(α̂), where sω was introduced in equation (6.119). Since αω+λi = αω + αλi and

ηω+λi
0 = ηω0 + ηλi0 , the second line of (6.142) thus rewrites

lim
δ→0
� jλii , j

ω
i + Lfωδ �α̂= 2

[αωαλi
α

(1− α− ds(α)) + Eα̂(ηω0 η
λi
0 )ds(α)

]
,

which is what we wanted to show.

7. Proof of the hydrodynamic limit

We now have all the pieces to prove Theorem 2.6. The last remaining di�culty is to perform the second

integration by parts, since even the gradients obtained in Section 6 are not exactly microscopic gradients

due to the non-constant di�usion coe�cient. This is not a problem when the variations only depend on

one quantity, the density for example, since we can then simply consider a primitive of the di�usion

coe�cient and obtain at the highest order in N a discrete gradient. This is not the case here, and we need

some more work to obtain the wanted gradient.

Let us recall from Section 2.4 that for any smooth function H ∈ C1,2,2([0, T ]×T2×S), that we denoted

by MH,N
t the martingale

(7.1) MH,N
t =< πNt , Ht > − < πN0 , H0 > −

∫ t

0

[
< πNs , ∂sHs > +LN < πNs , Hs >

]
ds,

where

πNs =
1

N2

∑
x∈T2

N

ηx(t)δ(x/N)× δθx(s)

is the empirical measure of the process on T2 × S.

Proof of Theorem 2.6. � The quadratic variation [MH,N ]t of M
H,N
t (cf. A1.5. Lemma 5.1 in [27]) is

[MH,N ]t =

∫ t

0

LN < πNs , Hs >
2 −2 < πNs , Hs > LN < πNs , Hs > ds

=

∫ t

0

1

N4

∑
x∈T2

N

 ∑
| z |=1

A1(η̂, x, z)Hs(x/N)Hs((x+ z)/N) +A2(η̂, x)Hs(x/N)2

 ds
≤
∫ t

0

1

N4

∑
x∈T2

N

C ||H||2∞ ds ≤ 1

N2
tC ||H||2∞ ,

where C, A1(η̂, x, z) and A2(η̂, x) are �nite quantities independent of N . The quadratic variation [MH,N ]t
is therefore of order N−2, and vanishes as N goes to in�nity. The Doob's inequality hence gives us for

any T > 0, δ > 0

lim
N→∞

Pλ,β
µN

(
sup

0≤t≤T

∣∣∣MH,N
t

∣∣∣ ≥ δ) = 0,

and in particular

(7.2) lim
N→∞

Pλ,β
µN

( ∣∣∣MH,N
T

∣∣∣ ≥ δ) = 0.

We �rst consider the case of a function H such that

Ht(u, θ) = Gt(u)ω(θ),
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the general case will be a simple consequence of a periodic version of the Weierstrass approximation

Theorem. For any such H, we can write∫ T

0

LN < πNt , Ht > dt =
1

N2

∫ T

0

dt
∑
x∈T2

N

τx

[
2∑
i=1

[Njωi + rωi ](t)∂ui,NGt(x/N) +Gt(x/N)γω(t)

]
,(7.3)

where jωi , r
ω
i and γω were introduced in De�nition 2.8, and

∂ui,NG(x/N) = N(G(x+ ei/N)−G(x/N))

is a microscopic approximation of the spatial derivative ∂uiG.

Thanks to Sections 4 and 6, we can perform the following replacements, in the expectation of the

expression above, and in the limit N →∞ then ε→ 0:

� Thanks to Corollary 6.43, we can replace, jωi by

(7.4) − [ds(ρεN )δiρ
ω
εN + d(ρεN , ρ

ω
εN )δiρεN ] ,

where d is given by equation (6.75),

d(ρ, ρω) = ρω(1− ds(ρ))/ρ,

� Thanks to Corollary 6.43 and Lemma 6.44, rωi can be replaced by

Rωi (ρ̂εN ) := 2

[
ds(ρεN )Eρ̂εN (ηωλi0 ) +

Eρ̂εN (ηω0 )Eρ̂εN (ηλi0 )

ρεN
(1− ρεN − ds(ρεN ))

]
.

� Finally, the Replacement Lemma 4.1 yields that γω can be replaced by Eρ̂εN (γω).

In other words, thanks to equation (7.2), for any Hs(u, θ) = Gs(u)ω(θ), we can write

(7.5) lim sup
ε→0

lim
N→∞

Pλ,β
µN

( ∣∣∣ M̃H,N,ε
T

∣∣∣ ≥ δ) = 0,

where

(7.6) M̃H,N,ε
T =< πNT , HT > − < πN0 , H0 > −

∫ T

0

< πNt , ∂tHt > dt

+

∫ T

0

dt

[
1

N2

∑
x∈T2

N

τx

2∑
i=1

[N (ds(ρεN )δiρ
ω
εN + d(ρεN , ρ

ω
εN )δiρεN ) +Rωi (ρ̂εN )] ∂ui,NGt(x/N)

+Gt(x/N)Eρ̂εN (γω)

]
(t),

In order to give a clear scheme, we divide the end of the proof in a series of steps.

Performing the second integration by parts. � Due to the presence of the di�usion coe�cients, one

cannot switch directly the last discrete derivatives δiρεN and δiρ
ω
εN onto the smooth function G. In one

dimension, one would consider a primitive d(ρ) of the di�usion coe�cient D(ρ), and write that

D(ρεN )δiρεN = δid(ρεN ) + oN (δiρεN ).

However, our case cannot be solved that way because the di�erential form

(ρ, ρω) 7→ ds(ρ)dρω + d(ρ, ρω)dρ,

is not closed, and therefore not exact either, which means that we cannot express (7.4) as

δiF (ρεN , ρ
ω
εN ) + oN (1/N).

We thus need another argument to obtain the di�erential equation (2.13).

First, we get rid of the part with δiρ
ω. To do so, notice that

δi [ds(ρεN )ρωεN ] = ds(ρεN )δiρ
ω
εN + ρωεNδids(ρεN ) + oN (1/N)

= ds(ρεN )δiρ
ω
εN + ρωεNd

′
s(ρεN )δiρεN + oN (1/N).
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We can therefore write

(7.7) ds(ρεN )δiρ
ω
εN = δi [ds(ρεN )ρωεN ]− ρωεNd′s(ρεN )δiρεN + oN (1/N).

Let us denote for any x ∈ T2
N

DεN
x = τx (d(ρεN , ρ

ω
εN )− ρωεNd′s(ρεN )) .

We perform a second integration by parts in the contribution of the �rst term in the right-hand side

of (7.7), whereas the left-hand side is added to the existing contribution of δiρεN , with the modi�ed

di�usion coe�cient DεN
x de�ned above. We can now rewrite M̃H,N,ε

T as

(7.8) < πNT , HT > − < πN0 , H0 > −
∫ T

0

< πNt , ∂tHt > dt−
∫ T

0

I1(t, η̂t)− I2(t, η̂t)dt+ oN (1),

where

I1(t, η̂) =
1

N2

∑
x∈T2

N

τx

[
2∑
i=1

ds(ρεN )ρωεN∂
2
ui,NGt(x/N)−Rωi (ρ̂εN )∂ui,NGt(x/N) +Gt(x/N)Eρ̂εN (γω))

]
and

I2(t, η̂) =
1

N2

∑
x∈T2

N

τx

2∑
i=1

NDεN
0 δiρεN∂ui,NGt(x/N)

=
1

N2

∑
x∈T2

N

2∑
i=1

NDεN
x (τx+eiρεN − τxρεN )∂ui,NGt(x/N).

In I1, we regrouped all the terms for which taking the limit N →∞ is not a problem, whereas I2 is the

term where the extra factor N still has to be absorbed in a spatial derivative.

Replacement of the microscopic gradient by a mesoscopic gradient. � Since we cannot switch the deriva-

tive on the smooth function G due to the di�usion coe�cient, we need to obtain the gradient of ρ in

another way. For this purpose, we need to replace the microscopic gradient τx+eiρεN − τxρεN by a meso-

scopic gradient, and make the derivative (in a weak sense) of ρ appear directly. More precisely, let us

de�ne

Ĩ2(t, η̂) =
1

N2

∑
x∈T2

N

2∑
i=1

DεN
x

τx+ε3NeiρεN − τx−ε3NeiρεN
2ε3

∂ui,NGt(x/N).

We are going to prove that for any con�guration η̂,

(7.9)
∣∣∣ I2(t, η̂)− Ĩ2(t, η̂)

∣∣∣ ≤ oN (1) + oε(1),

uniformly in η̂. To prove the latter, for any k ∈ J−ε3N, ε3NK, let us denote by xk = x+ kei,

τx+ε3NeiρεN − τx−ε3NeiρεN =

k=ε3N−1∑
k=−ε3N

τxk+1
ρεN − τxkρεN .

A summation by parts therefore allows us to rewrite Ĩ2 as

Ĩ2(t, η̂) =
1

N2

∑
x∈T2

N

2∑
i=1

 1

2Nε3

k=ε3N−1∑
k=−ε3N

DεN
xk
∂ui,NGt(xk/N)

N(τx+eiρεN − τxρεN ).

Furthermore, we can write for any x ∈ T2
N∣∣∣∣∣∣ DεN

x ∂ui,NGt(x/N)− 1

2ε3N

k=ε3N−1∑
k=−ε3N

DεN
xk
∂ui,NGt(xk/N)

∣∣∣∣∣∣
≤ 1

2ε3N

k=ε3N−1∑
k=−ε3N

∣∣ DεN
x (∂ui,NGt(x/N)− ∂ui,NGt(xk/N))

∣∣ +
∣∣ ∂ui,NGt(xk/N)(DεN

x −DεN
xk

)
∣∣ .
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Since the di�usion coe�cients are bounded and Gs is C
2, and since x and the xk's are distant of ε

3N ,

we can write ∣∣ DεN
x (∂ui,NGt(x/N)− ∂ui,NGt(xk/N))

∣∣ ≤ C(Gt)ε
3.

Since DεN
xk

depends on the macroscopic density ρ̂εN , and since the di�usion coe�cients can be extended

as C1 functions due to their explicit expression, we also have∣∣ ∂ui,NGt(xk/N)(DεN
x −DεN

xk
)
∣∣ ≤ C ′(Gt) ( | τxρεN − τxkρεN | + | τxρωεN − τxkρωεN | )

≤ C ′′(Gt, ω)
ε3N

εN
.

These two bounds �nally yield that

(7.10)

∣∣∣∣∣∣ DεN
x ∂ui,NGt(x/N)− 1

2ε3N

k=ε3N−1∑
k=−ε3N

DεN
xk
∂ui,NGt(xk/N)

∣∣∣∣∣∣ ≤ C(Gt)ε
3 + C ′′(Gt, ω)ε2 = oε(ε).

By de�nition of I2 and Ĩ2, the triangular inequality yields

| I2 − Ĩ2 | ≤

1

N2

∑
x∈T2

N

2∑
i=1

∣∣∣∣∣∣ DεN
x ∂ui,NGt(x/N)− 1

2ε3N

k=ε3N−1∑
k=−ε3N

DεN
xk
∂ui,NGt(xk/N)

∣∣∣∣∣∣ N(τx+eiρεN − τxρεN ).

The quantity inside the absolute values in the right-hand side above is oN (1) + oε(ε), thanks to (7.10),

whereas N(τx+eiρεN−τxρεN ) is of order at most 1/ε, whereas the quantity inside absolute values is oε(ε),

therefore their product vanishes as ε → 0, which proves equation (7.9). We therefore have obtained as

wanted that

(7.11) lim sup
ε→0

lim sup
N→∞

I2(t, η̂)− Ĩ2(t, η̂) = 0,

uniformly in η̂. We can now replace in equation (7.8) I2 by Ĩ2.

Embedding in the space of trajectories of measures M[0,T ]. � Recall that QN is the distribution of

the empirical measure of our process. We now wish to express the martingale M̃H,N,ε
t introduced after

equation (7.5) as an explicit function of the empirical measure πN in order to characterize the limit points

Q∗ of the compact sequence QN . For that purpose, let (ϕε)ε→0 be a family of localizing functions on T2,

ϕε(·) = (2ε)−2
1[−ε,ε]2(·),

and recall that we de�ned the empirical measure as

πNt =
1

N2

∑
x∈T2

N

ηx(t)δx/N,θx(t).

Then, for any function Φ : S→ R, and any u ∈ T2 we denote by ϕΦ
ε,u the function

ϕΦ
ε,u : T2 × S −→ R

(v, θ) 7→ ϕε(v − u)Φ(θ)
.

With this notation, we can therefore write

Eτxρ̂εN (ηΦ
0 ) =

1

(2εN + 1)2

∑
||y−x||∞≤εN

ηΦ
y =

(2εN)2

(2εN + 1)2
< πN , ϕΦ

ε,x/N > .

In the particular case where Φ ≡ 1, (resp. Φ = ω), the above reads as

τxρεN =
(2εN)2

(2εN + 1)2
< πN , ϕ1

ε,x/N >

(
resp.τxρ

ω
εN =

(2εN)2

(2εN + 1)2
< πN , ϕωε,x/N >

)
.

Since (2εN)2/(2εN + 1)2 = 1 + oN (1), we can replace in the limit N → ∞ the quantity Eτxρ̂εN (ηΦ
0 )

(resp. τxρεN , τxρ
ω) by the function of the empirical measure < πN , ϕΦ

ε,x/N > (resp. < πN , ϕ1
ε,x/N >,

< πN , ϕωε,x/N >).



HYDRODYNAMIC LIMIT FOR AN ACTIVE EXCLUSION PROCESS 125

We deduce from equations (7.5), (7.8) and (7.11) and what precedes that for any positive δ,

(7.12) lim sup
ε→0

lim sup
N→∞

QN
( ∣∣∣ NH,N

T

(
π[0,T ]

) ∣∣∣ ≥ δ) = 0.

where NH,N
T is de�ned as

NH,N
T

(
π[0,T ]

)
=< πT , HT > − < π0, H0 > −

∫ T

0

< πt, ∂tHt > dt

(7.13)

−
∫ T

0

 1

N2

∑
x∈T2

N

2∑
i=1

d̃x/N,ε(πt)∂
2
ui,NGt(x/N)− R̃x/N,ε,i(πt)∂ui,NGt(x/N) + Γωx/N,ε (πt)Gt(x/N)

 dt
+

∫ T

0

 1

N2

∑
x∈T2

N

2∑
i=1

D̃x/N,ε(πt) < πt,
ϕ1
ε,x/N+ε3ei

− ϕ1
ε,x/N−ε3ei

2ε3
> ∂ui,NGt(x/N)

 dt.
In the identity above, we denoted

d̃x/N,ε(π) = ds(< π,ϕ1
ε,x/N >) < π,ϕωε,x/N >

D̃x/N,ε(π) = d(< π,ϕ1
ε,x/N >,< π, ϕωε,x/N >)− < π,ϕωε,x/N > d′s(< π,ϕ1

ε,x/N >)

R̃x/N,ε,i(π) = ds

(
< π,ϕ1

ε,x/N >
)
< π,ϕωλiε,x/N >

+
< π,ϕωε,x/N >< π,ϕλiε,x/N >

< π,ϕ1
ε,x/N >

[
1− < π,ϕ1

ε,x/N > −ds
(
< π,ϕ1

ε,x/N >
)]
,

and Γωu,ε (π) = Eα̂x/N,ε(π)(γ
ω), where α̂x/N,ε(π) ∈M1(S) is the measure on S

α̂x/N,ε(π)(dθ) =

∫
T2

ϕε(.− x/N)π(du, dθ).

Limit N →∞. � We can now let N go to∞ in (7.12). Since G is a smooth function, one can replace in

(7.13) the discrete space derivatives ∂ui,N by the continuous derivative ∂ui , the sums N
−2
∑
x∈T2

N
by the

integral
∫
T2 du, and the variables x/N by u. Since the quantity inside the absolute values is a continuous

function (for Skorohod's topology de�ned in Appendix A.1) of π[0,T ], the whole event is an open set, we

obtain that for any weak limit point Q∗ of (QN ), and any positive δ,

lim sup
ε→0

Q∗

(∣∣∣∣∣ < πT , HT > − < π0, H0 > −
∫ T

0

< πt, ∂tHt > dt

−
∫ T

0

∫
T2

2∑
i=1

[
d̃u,ε(πt)∂

2
uiGt(u)− R̃u,ε,i(πt)∂uiGt(u) + Γωu,ε (πt)Gt(u)

]
dudt

+

∫ T

0

∫
T2

2∑
i=1

[
D̃u,ε(πt) < πt,

ϕ1
ε,u+ε3ei

− ϕ1
ε,u−ε3ei

2ε3
> ∂uiGt(u)

]
dudt.

∣∣∣∣∣ > δ

)
= 0(7.14)

Limit ε→ 0. � In order to consider the limite ε→ 0, we need to express

< πt,
ϕ1
ε,u+ε3ei

− ϕ1
ε,u−ε3ei

2ε3
>

in the third line above as an approximation of the gradient of the density ∂uiρt(u). As in the proof of

Lemma 6.3, consider a smooth function hε,i,u such that

(7.15)

∫
T2

∣∣∣∣∣ ϕ1
ε,u+ε3ei

− ϕ1
ε,u−ε3ei

2ε3
(v)− hε,i,u

∣∣∣∣∣ dv = oε(1).
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Since such a function is very similar to the one already presented in Lemma 6.3, we do not give a detailed

construction here. Then, we can build a smooth antiderivative Hε,u of hε,i,u, and we can write for any

u ∈ T2, and any density ρ in H1,∫
T2

ρ(v)hε,i,u(v)dv =

∫
T2

∂uiρ(v)Hε,u(v)dv.

Regarding the third line of (7.14), this yields

< πt,
ϕ1
ε,u+ε3ei

− ϕ1
ε,u−ε3ei

2ε3
>=

∫
T2

∂uiρ(v)Hε,u(v)dv + oε(1),

where Hε,u is a smooth approximation of a Dirac in u and oε(1) is uniform in u. According to (5.34),

∂uiρ is in L
2([0, T ]× T2) Q∗-a.s, therefore

(7.16)

∫
T2

∂uiρt(v)Hε,u(v)dv
L2([0, T ]× T2)

−−−−−−−−−−−−−−−→
ε→0

∂uiρt(u),

Q∗-a.s. (see, for example, Theorem 4.22, p.109 in [5]).

By Lemma 5.13 any limit point Q∗ of (QN ) is concentrated on measures absolutely continuous w.r.t.

the Lebesgue measure on T2. For any such measure π[0,T ], we denote by ρ̂t(u, dθ) its corresponding density

pro�le on the torus at time t, and let

ρωt (u) =

∫
S

ω(θ)ρ̂t(u, dθ).

We also shorten ρ(u) = ρ1(u). Thanks to this last remark and using both (7.16) and the dominated

convergence theorem for the second line of (7.14), we can now let ε go to 0 in equation (7.14), to obtain

that for any limit point Q∗ of (QN ) and any δ > 0,

(7.17) Q∗

(∣∣∣∣∣ < πT , HT > − < π0, H0 > −
∫ T

0

< πt, ∂tHt > dt

−
∫ T

0

∫
T2

2∑
i=1

ds(ρt)ρ
ω
t ∂

2
uiGt(u)−2

[
ds(ρt)ρ

λiω
t +

ρωt
ρt

(1− ρt − ds(ρt))ρλit
]
∂uiGt(u)+Eρ̂t(γ

ω)Gt(u)

)
dudt

+

∫ T

0

∫
T2

2∑
i=1

[
d(ρt, ρ

ω
t )− d′s(ρt)ρωt

]
(∂uiρt)∂uiGt(u)dudt

∣∣∣∣∣ > δ

)
= 0.

Conclusion. � As expected, all the quantities above are linear in ω, and elementary computations yield

that

Eρ̂t(u,·)(γ
ω) =

∫
S

ω(θ)[Eρ̂t(u,·)(cu,β(θ, η̂))− 1]ρ̂t(u, dθ).

Furthermore, since Ht(u, θ) = Gt(u)ω(θ), we can write for k = 1, 2

ρωt ∂
k
uiGt(u) =

∫
S

ω(θ)∂kuiGt(u)ρ̂t(u, dθ) =

∫
S

∂kuiHt(u, θ)ρ̂t(u, dθ).

Similar identities can be obtained when ω is replaced for example by ωλi. Using in Equation (7.17) the

identities above �nally yield, as wanted, that for any δ > 0

Q∗

(∣∣∣∣∣ < πT , HT > − < π0, H0 > −
∫ T

0

< πt, ∂tHt > dt

+

∫ T

0

∫
T2×S

[
2∑
i=1

(
∂uiHt(u, θ)

[
d(ρ̂t, ρt)− d′s(ρt)ρ̂t

]
(u, dθ)∂uiρt(u)− ∂2

uiHt(u, θ)ds(ρt)ρ̂t(u, dθ)

+ ∂uiHt(u, θ)

[
2λs(ρ̂t, ρt)

→
Ω(ρ̂t) + 2λi(θ)ds(ρt)ρ̂t

]
(u, dθ)

)
−Ht(u, θ)Γt(ρ̂)(u, dθ)

]
dudt

∣∣∣∣∣ > δ

)
= 0.

As in the proof of Proposition 5.11, this last identity can be extended in the case where Ht(u, θ) does

not take the form Gt(u)ω(θ) by using a periodic version of the Weierstrass Theorem, thus letting δ → 0

completes the proof of Theorem 2.6.



HYDRODYNAMIC LIMIT FOR AN ACTIVE EXCLUSION PROCESS 127

Appendix A

General tools

This appendix regroups a general de�nitions and results that we will be used throughout the proof.

A.1. Topological setup. � This paragraph de�nes the topological setup we endow the trajectories

space for our process with. Denoting by M(T2 × S) the space of positive measures on the continuous

con�guration space, and

M[0,T ] = D
(
[0, T ]×M(T2 × S)

)
the space of right-continuous and left-limited trajectories of measures on T2 × S. Each trajectory η̂[0,T ]

of our process admits a natural image inM[0,T ] through its empirical measure

(A.1) πNt

(
η̂[0,T ]

)
=

1

N2

∑
x∈T2

N

ηx(t)δ(x/N,θx(t)).

Let (fk)k∈N be a dense family of functions in C∞(T2 × S), and assume that f0 ≡ 1. The weak topology

onM(T2 × S) is metrisable, by letting

(A.2) δ(π0, π
′
0) =

∞∑
k=0

1

2k
| < π0, fk > − < π′0, fk > |

1 + | < π0, fk > − < π′0, fk > |
.

Given this metric,M[0,T ] is endowed with Skorohod's metric, de�ned as

(A.3) d(π, π′) = inf
κ∈F

max

{
||κ|| , sup

[0,T ]

δ(πt, π
′
κt)

}
,

where F is the set of strictly increasing continuous functions from [0, T ] into itself, such that κ0 = 0 and

κT = T , equipped with the norm

||κ|| = sup
s,t∈[0,T ]

{
log

[
κs − κt
s− t

]}
.

Now, (M[0,T ], d) is a metric space, and we endow the set P(M[0,T ]) of probability measures on M[0,T ]

with the weak topology.

Given the empirical measure πNt of the process at time t, de�ned in equation (A.1), de�ne the appli-

cation

πN : Σ
[0,T ]
N −→ M[0,T ]

η̂[0,T ] 7→
(
πNt
(
η̂[0,T ]

))
t∈[0,T ]

,

we de�ne

(A.4) QN = Pλ,β
µN
◦
(
πN
)−1 ∈ P(M[0,T ])

the pushforward of Pλ,β
µN

by πN .

A.2. Self-di�usion coe�cient. � We regroup in this paragraph some useful results regarding the

self-di�usion coe�cient. Consider on Z2, an initial con�guration where each site is initially occupied w.p.

ρ ∈ [0, 1], and with a tagged particle at the origin. Each particle then follows a symmetric exclusion

process with �nite range transition matrix p(·), verifying
∑
z zp(z) = 0, and p(z) = 0 outside of a �nite

set of vertices B.

De�nition A.1 (Self-Di�usion Coe�cient). � Given Xt = (X1
t , . . . , X

d
t ) the position at time t of

the tagged particle, the d-dimensional self-di�usion matrix Ds = Ds(ρ) is de�ned as

(A.5) yDsy
∗ = lim

t→∞

E((y.Xt)
2)

t
∀y ∈ Rd,

where y∗ is the transposed vector of y and ( . ) is the usual inner product in Rd.
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This result follows from [28]. Our system being invariant through coordinates inversions, it is shown

in [31] that the matrix Ds is diagonal, and can therefore be written

Ds(ρ) = ds(ρ)I.

The following Lemma gives a variational formula for ds and was obtained in Spohn [44].

Proposition A.2 (Variational formula for the self-di�usion coe�cient)

The self-di�usion coe�cient ds(ρ) is given by the variational formula

ds(ρ) = inf
f


∑

i∈{1,2}
δ∈{−1,1}

Eρ
(

(1− ηδei) [δ − (f(τδeiη)− f(η))]
2

+
∑

x∈Z2\{0,ei}

ηx(1− ηx+δei)
[
f(ηx,x+δei)− f(η)

]2 .

Finally, the regularity of the self-di�usion coe�cient follows from [30], and a lower and upper bound

was derived by Varadhan in all dimensions by Varadhan in [49].

Proposition A.3 (Regularity of the self-di�usion coe�cient). � in any dimension d ≥ 1, the

self-di�usion coe�cient ds is C
∞([0, 1]), and for some constant C > 0, we can write

1

C
(1− ρ) ≤ ds(ρ) ≤ C(1− ρ).

A.3. Entropy. � Given two measures on a space E, let us denote

H(µ | ν) = Eν
(
dµ

dν
log

dµ

dν

)
the relative entropy of µ w.r.t ν.

Proposition A.4 (Entropy inequality). � Let π be a reference measure on some probability space

E. Let f be a function E → R, and γ ∈ R+. Then, for any positive measure µ on E, we have∫
fdµ ≤ 1

γ

[
log

(∫
eγfdπ

)
+H(µ|π)

]
,

where H(µ|π) is the relative entropy of µ with respect to π.

Proof of Proposition A.4. � The proof is omitted, it can be found in Appendix 1.8 of [27].

Remark A.5 (Utilization throughout the proof). � This inequality is used throughout this proof

with µNs the marginal at time s of the measure of the process started from an initial pro�le µN , and with

π = µα̂ the equilibrium measure of a symmetric simple exclusion process with angle measure α̂. Then,

for any �xed time s and for any function f and any positive γ

EµNs (f) ≤ 1

γ

[
logEα̂

(
eγf
)

+H(µNs |µα̂)
]
.

This inequality will be our main tool to bound expectation w.r.t the measure of our process of vanishing

quantities .

A.4. Bound on the largest eigenvalue of a perturbed Markov generator. �

Proposition A.6 (Largest eigenvalue for a small perturbation of a markov generator)

Let us consider a Markov Generator L with positive spectral gap γ and a bounded function V with

mean 0 with respect to the equilibrium measure µα̂ of the Markov process. Then, for any small ε > 0, the

Largest eigenvalue of the operator L+ εV can be bounded from above by

sup
f

{
εEα̂(V f2) + Eα̂(fLf)

}
≤ ε2

A− 2εγ ||V ||∞
Eα̂
(
V (−L)−1V

)
,

where the supremum in the variational formula is taken among the probability densities f w.r.t µα̂.
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The proof of this result is omitted, it is given in Theorem A3.1.1, p.375 in [27].

Appendix B

Space of parameters M1(S)

In this appendix, we prove some useful results regarding the space of parameters (M1(S), ||.||) intro-
duced in Section 3.1.

B.1. Equivalence of ensembles. �

Proposition B.1 (Equivalence of ensembles). � Let f be a cylinder function (in the sense of Def-

inition 2.1), we have

lim sup
l→∞

sup
K̂∈Kl

∣∣∣ El,K̂(f)− Eα̂
K̂

(f)
∣∣∣ → 0,

where the �rst measure is the projection along sets with K̂ particles in Bl, whereas the second is the grand

canonical measure with parameter α̂ = α̂K̂ introduced in De�nition 3.7.

Proof of Proposition B.1. � The proof of this result is quite elementary, and is a matter of carefully

writing expectations for a random sampling with (grand canonical measures) and without (canonical

measures) replacement.

The proof of this problem can be reduced to the following : Consider two sampling of M integers,

chosen among L. The �rst sampling is made without replacement, and the sampled numbers will be

denoted X1,. . . ,, XM . The second sampling is made with replacement, and will be denoted Y1, . . . , YM .

Then, for any function

g : {1, . . . , L}M → R,
we have

| E(g(X1, . . . , XM ))− E(g(Y1, . . . , YM )) | = ||g||∞ oL(1),

where the oL(1) only depends on L. The proof of the last statement is elementary, and is therefore omitted

here.

To come back to our Proposition, M represents the number of sites on which depends the cylinder

function g, L = (2l + 1)2 represents the number of sites in Bl, the Xi's are the possible values for the

η̂x's (x ∈ Bl) under the canonical measure µl,K̂ , and the Yi's are the possible values for the η̂x's (x ∈ Bl)
under the grand canonical measure µα̂

K̂
.

B.2. Dependency of the grand canonical measures µα̂ in α̂. �

Proposition B.2. � Consider the set of local pro�les M1(S) equipped with the norm ||| . ||| de�ned in

De�nition 3.2. Then, given a function g ∈ C, the application

Ψ : (M1(S), ||| . |||) −→ R
α̂ 7→ Eα̂(g)

is Lipschitz-continuous with Lipschitz constant depending on the function g.

Proof of Proposition B.2. � Let us consider a cylinder function g depending only on vertices x1, . . . , xM ,

and let us start by assuming that g vanishes as soon as one of the sites x1, . . . , xM is empty. We can then

rewrite g(η̂) as ηx1
. . . ηxM g(θx1

, . . . , θxM ), and

Eα̂(g) =

∫
θ1

. . .

∫
θM

g(θx1 , . . . , θxM )dα̂(θx1) . . . dα̂(θxM ).

We can now proceed by recurrence on M . Given a function g depending only on a site x1, and for any

two angle measures α̂ and α̂′ we can write

Eα̂(g)− Eα̂′(g) = ||g||∗
∫
θx1

g(θx1
)

||g||∗
d(α̂− α̂′)(θx1) ≤ ||g||∗ ||| α̂− α̂′ |||
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Assuming now that the proposition is true for any function depending on M − 1 sites, and considering a

function g depending on M vertices, we can write

Eα̂(g)− Eα̂′(g) = Eα̂ (Eα̂(g | η̂x2 , . . . , η̂xM ))− Eα̂′ (Eα̂′(g | η̂x2 , . . . , η̂xM )) .(B.1)

Fix any angle θ, and let gθ be the function gθ(η̂) = g(θ, θx2,...,θxM
), we can write thanks to the recurrence

hypothesis that ∣∣ Eα̂(gθ)− Eα̂′(gθ)
∣∣ ≤ Cθ||| α̂− α̂′ |||,

which, integrated in θ against α̂′, yields

| Eα̂′ (Eα̂′(g | η̂x2
, . . . , η̂xM ))− Eα̂′ (Eα̂(g | η̂x2 , . . . , η̂xM )) | ≤ C1||| α̂− α̂′ |||,

On the other hand, we can also write

| Eα̂ (Eα̂(g | η̂x2 , . . . , η̂xM ))− Eα̂′ (Eα̂(g | η̂x2 , . . . , η̂xM )) | ≤ C2||| α̂− α̂′ |||,

therefore (B.1) yields that

| Eα̂(g)− Eα̂′(g) | ≤ (C1 + C2)||| α̂− α̂′ |||,

which is what we wanted to show.

To complete the proof of Proposition B.2, we now only need to extend the result to functions g which

do not necessarily vanish when one site in their domain is empty. This case is easily derived, since any

function g depending on vertices x1,. . . ,, xM can be rewritten

(B.2) g(η̂x1
, . . . , η̂xM ) =

∑
B⊂{1,...,M}

gB(θxi , i ∈ B),

where gB(θxi , i ∈ B) is de�ned in the following fashion : recall that η̂x = (ηx, θx), with θx = 0 if ηx = 0,

and let us assume that B is the set of increasing indexes i1, . . . , ip, then gB is de�ned as

gB(θxi1 , . . . , θxip ) = ηxi1 . . . ηxip g((0, 0), . . . , (0, 0), (1, θxi1 ), (0, 0), . . . , (0, 0), (1, θxip ), (0, 0), . . . , (0, 0)).

These functions all vanish whenever one of their depending sites is empty, therefore according to the

beginning of the proof, there exists a family of constants CB such that for any B ⊂ {1, . . . ,M} we have

| Eα̂(gB)− Eα̂′(gB) | ≤ CB ||| α̂− α̂′ |||.

We now only need to let C =
∑
B⊂{1,...,M} CB to obtain thanks to the decomposition (B.2) that

| Eα̂(g)− Eα̂′(g) | ≤ C||| α̂− α̂′ |||

as intended. This completes the proof of Proposition B.2.

B.3. Compactness (M1(S), ||| . |||). �

Proposition B.3 (Compactness of (M1(S), ||| . |||)). � The metric space (M1(S), ||| . |||) introduced

in De�nition 3.2 is totally bounded and Cauchy complete, and is therefore compact.

Proof of Proposition B.3. � The proof of the Cauchy-completeness is almost immediate, we treat it �rst.

Consider a Cauchy sequence (α̂k)k∈N ∈M1(S)N, then by de�nition of ||| . |||, for any g ∈ B∗, the sequence
(
∫
S
g(θ)α̂k(dθ))k is a real Cauchy sequence and therefore converges, and we can let∫

S

g(θ)α̂∗(dθ) = lim
k→∞

∫
S

g(θ)α̂k(dθ).

This de�nition can be extended to any C1(S) function g by letting∫
S

g(θ)α̂∗(dθ) = max(||g||∞ , ||g′||∞) lim
k→∞

∫
S

g(θ)

max(||g||∞ , ||g′||∞)
α̂k(dθ).

This de�nes a measure α̂∗ on S, whose total mass is given by∫
T2

α̂∗(dθ) = lim
k→∞

∫
T2

α̂k(dθ) ∈ [0, 1],

which proves the Cauchy completeness of (M1(S), ||| . |||).
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We now prove that (M1(S), ||| . |||) is totally bounded. For any integer n, we are going to construct a

�nite set M1,n ⊂M1(S) such that

sup
α̂∈M1(S)

inf
α̂′∈M1,n

||| α̂− α̂′ ||| ≤ 1

n
.

For any n ∈ N and any j ∈ J0, n− 1K, we denote θj,n = 2πj/n, and θn,n = θ0,n = 0. We can now de�ne

M1,n =


n−1∑
j=0

kj
n2
δθj,n , kj ∈ J0, n2K,

∑
j

kj ≤ n2

 .

The inclusionM1,n ⊂M1(S) is trivial thanks to the condition
∑
j kj ≤ n2, andM1,n is �nite since the

kj 's can each take only a �nite number of values. we now prove that any angle measure α̂ ∈M1(S) is at

distance at most 1/n of an element α̂n ∈M1,n.

Fix an angle measure α̂ ∈M1(S), and let

kj = bn2α̂([θj,n, θj+1,n[)c.

Since α̂ ∈ M1(S), its total mass is in [0, 1], and the conditions kj ∈ J0, n2K and
∑
j kj ≤ n2 are trivially

veri�ed. We now let

α̂n =

n−1∑
j=0

kj
n2
δθj,n ,

and prove that ||| α̂− α̂n ||| ≤ 2/n. Fix a function g ∈ C1(S) such that max(||g||∞ , ||g′||∞) ≤ 1, we can

write∫
S

g(θ)(α̂− α̂n)(dθ) =

n−1∑
j=0

∫ θj+1,n

θj,n

g(θ)α̂(dθ)− kj
n2
g(θj,n)

=

n−1∑
j=0

α̂([θj,n, θj+1,n[)g(θj,n)− kj
n2
g(θj,n) +

n−1∑
j=0

∫ θj+1,n

θj,n

(g(θ)− g(θj,n))α̂(dθ)

≤
n−1∑
j=0

||g||∞

∣∣∣∣ α̂([θj,n, θj+1,n[)− kj
n2

∣∣∣∣︸ ︷︷ ︸
≤1/n2

+

n−1∑
j=0

||g′||∞ | θj+1,n − θj+1,n |︸ ︷︷ ︸
≤1/n

∫ θj+1,n

θj,n

α̂(dθ)

≤
||g||∞ + ||g′||∞

n
≤ 2/n.

Finally, we have proved that

||| α̂− α̂n ||| ≤ 2/n,

which proves thatM1(S) is totally bounded. This, together with the Cauchy completeness, immediately

yields the compactness, and concludes the proof of Proposition B.3.

Appendix C

Proof of Theorem 6.25 : Limiting space-time covariance

In this Appendix we give for the sake of exhaustivity the proof of Theorem 6.25. The strategy of the

proof, whose heuristics has been given just after the theorem, follows the same scheme as in Section 7.4

of [27].

Recall that we denoted

� f �α̂= sup
g∈T ω0
a,b∈R2

2Eα̂

f.
Σg +

∑
y∈Z2

(y.a)ηωy + (y.b)ηy

− ∣∣∣∣∣∣∇Σg + ja,b
∣∣∣∣∣∣2

2,α̂

 .
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We �rst want to prove that for any sequence (K̂l)l such that

α̂K̂l −→l→∞ α̂,

in the sense of De�nition 3.2, and any cylinder function ψ, we have

lim
l→∞

1

(2l + 1)2
El,K̂l

(−Ll)−1
∑
x∈Blψ

τxψ .
∑
x∈Blψ

τxψ

 =� ψ �α̂ .

In the left-hand side above, the integer lψ is de�ned in such a way that
∑
x∈Blψ

τxψ is measurable with

respect to the spins in Bl. We are going to prove the previous identity as two separate inequalities, stated

as distinct Lemmas.

Lemma C.1. � Under the assumptions of Theorem 6.25,

lim sup
l→∞

1

(2l + 1)2
El,K̂l

(−Ll)−1
∑
x∈Blψ

τxψ .
∑
x∈Blψ

τxψ

 ≤ � ψ �α̂ .

Proof of Lemma C.1. � The �rst step to prove the inequality above is the replacement of the canonical

measure µK̂l,l by the grand canonical measure µα̂ thanks to the equivalence of ensembles stated in

Proposition B.1. The main obstacle in doing so is that the support of the function whose expectation we

want to estimate grows with l. To circumvent this obstacle, we split the sum of translations of ψ in �nite

boxes with respect to l and bound the di�erence.

Since the Dirichlet form is non-negative, the application (f, g)→ −El,K̂(f$genelg) is an inner product

on the subspace of C0 of functions measurable w.r.t. Fl. We proved along with the integration by parts

formula of Lemma 5.1, any such f is in the range of Ll, and can be rewritten f = −Llg, thus

EK̂,l(f(−Ll)−1f)1/2 = E(g(−Ll)g)1/2

is a norm and de�nes via polarization identities another inner product. We are therefore able to write

the variational formula

El,K̂l

(−Ll)−1
∑
x∈Blψ

τxψ .
∑
x∈Blψ

τxψ

 = sup
h∈T ω0

2El,K̂l

 ∑
x∈Blψ

τxψ .h

− El,K̂l (h.(−Llh))


The second term in the right-hand side is the Dirichlet form of the exclusion process restricted ΣK̂ll ,

which we denote by D(µl,K̂l , h). Regarding the �rst part, thanks to the integration by parts formula

stated in Lemma 5.1 and to the elementary inequality 2ab ≤ γ−1a2 + γb2, we can write

2El,K̂l

 ∑
x∈Blψ

τxψ .h

 =2
∑
x∈Blψ

∑
a∈Bψ(x)

El,K̂l (Ia(τxψ).∇ah)

≤
∑
x∈Blψ

∑
a∈Bψ(x)

1

γ
El,K̂l

(
Ia(τxψ)2

)
+ γEl,K̂l

(
(∇ah)

2
)

which holds for any positive constant γ. The �rst term γ−1
∑
a∈Bψ(x) El,K̂l

(
Ia(τxψ)2

)
does not depend

on x, and since ψ is a local function, El,K̂l
(
Ia(τxψ)2

)
is bounded by some constant depending only on

ψ. The �rst part of the whole sum above is therefore bounded by γ−1(2l + 1)2|Bψ |C1(ψ). Regarding the

second term, the number of time each edge a appears can be crudely bounded by 2|Bψ |, which means

that

γ
∑
x∈Blψ

∑
a∈x+Bψ

El,K̂l
(

(∇ah)
2
)
≤ 2γ|Bψ |D(µl,K̂l , h),

therefore for some well chosen constant γ

(C.1) 2El,K̂l

 ∑
x∈Blψ

τxψ .h

 ≤ (2l + 1)2C3(ψ) +
1

2
D(µl,K̂l , h)
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and we have the upper bound

El,K̂l

(−Ll)−1
∑
x∈Blψ

τxψ .
∑
x∈Blψ

τxψ

 ≤ sup
h∈T ω0

{
(2l + 1)2C3(ψ)− 1

2
D(µl,K̂l , h)

}
.

The left-hand side is non-negative, whereas the quantity inside braces is negative for any function h with

Dirichlet form D(µl,K̂l , h) greater than 2(2l+ 1)2C3(ψ). Regarding the variational formula above, we can

therefore restrict ourselves to functions h with Dirichlet form bounded by 2(2l + 1)2C3(ψ).

As in the proof of the one-block-estimate, let k be an integer that will go to ∞ after l, and let us

divide Bl into disjoint boxes B
0, . . . , Bp, where p = b (2l+1)2

(2k+1)2 c, and B
0 = Bl − ∪pi=1B

i, whose cardinal is

bounded by Ckl for some constant C. Recall that sψ is the smallest integer such that ψ is measurable

with respect to the spins in Bsψ , Let us denote by B̊
i and ∂Bi the interior and the frontier of Bi, de�ned

as

B̊i = {x ∈ Bi, d(x,Bi,c) ≥ sψ} and ∂Bi = Bi − B̊i.
Finally, let us denote

B̊l = ∪pi=1B̊
i and ∂Bl = Bl − B̊l.

Let h be a function in T ω0 , we can split

(C.2)
∑
x∈Blψ

El,K̂l (τxψ .h) =
∑
x∈B̊l

El,K̂l (τxψ .h) +
∑

x∈∂Bl∩Blψ

El,K̂l (τxψ .h) .

With the same method we used to get equation (C.1), we obtain that the second part of the right-hand

side of the equation above can be bounded up by

C4(ψ) min
γ>0
{γ−1| ∂Bl |+ γl2}

for any h with Dirichlet form bounded by C5(ψ)l2. This minimum is obtained for γ =
√
| ∂Bl |l−2. The

number of boundary sites in | ∂Bl | can also be bounded by the number of sites in the boundaries of the

Bi's added to the number of terms in B0, hence | ∂Bl | ≤ C6(ψ)(l2k−1 + kl) this yields that∑
x∈∂Bl∩Blψ

El,K̂l (τxψ .h) = C7(ψ)
√
| ∂Bl |l2 ≤ C8(ψ)l2

√
k−1 + kl−1

Regarding the �rst part of the right-hand side in equation (C.2), we de�ned the B̊i's in such a way that

for any x ∈ B̊i, τxψ is measurable with respect to the spins in Bi. In that prospect, for any function h,

let us denote hi = El,K̂l(h|ηx, x ∈ B
i) the conditional expectation of h with respect to the spins in Bi.

We hence have for any x ∈ Bi that El,K̂l(hτxψ) = El,K̂l(hiτxψ). For any �nite set B, let DB(µl,K̂l , h) be

the restriction of the Dirichlet form to edges with both ends in B. Because we lost the edges between the

Bi's, and thanks to the convexity of the Dirichlet form already used, we have

D(µl,K̂l , h) ≥
p∑
i=1

DBi(µl,K̂l , h) ≥
p∑
i=1

DBi(µl,K̂l , hi),

therefore 2El,K̂l
(∑

x∈Blψ
τxψ .h

)
− EK̂,l (h.(−Llh)) is less than

p∑
i=1

2
∑
x∈B̊i

El,K̂l (τxψ .hi)−DBi(µl,K̂l , hi)

+ C8(ψ)l2
√
k−1 + kl−1.

Let Mk be the space of functions in T ω0 measurable with respect to the spins in Bk, the supremum of

the expression above over all functions h can be bounded from above, since all the terms in the sum in i

above are identically distributed, by

p. sup
f∈Mk

2
∑
x∈B̊k

El,K̂l (τxψ .f)−DBk(µl,K̂l , f)

+ C(ψ)(2l + 1)2
√
k−1 + kl−1.
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Now since p is roughly equal to (2l + 1)2(2k + 1)−2, the quantity of interest to prove Lemma C.1

lim sup
l→∞

1

(2l + 1)2
El,K̂l

L−1
l

∑
x∈Blψ

τxψ .
∑
x∈Blψ

τxψ


is bounded from above for any k by

1

(2k + 1)2
lim sup
l→∞

sup
f∈Mk

2
∑
x∈B̊k

El,K̂l (τxψ .f)−DBk(µl,K̂l , f)

+ C(ψ)
√
k−1

=
1

(2k + 1)2
lim sup
l→∞

El,K̂l

 ∑
| x |≤k−sψ

τxψ

 (−Lk)−1

 ∑
| x |≤k−sψ

τxψ

+ C(ψ)
√
k−1

thanks to the variational formula for the variance introduced at the beginning of the proof. Thanks to

the equivalence of ensembles stated in Proposition B.1, since the function inside the expectation now has

�nite support, we can replace in the limit l goes to in�nity and K̂l(2l+ 1)−2 → α̂ the expectation above

by the grand canonical measure µα̂. Finally, taking the limit as k →∞,

lim sup
l→∞

1

(2l + 1)2
El,K̂l

(−Ll)−1
∑
x∈Blψ

τxψ .
∑
x∈Blψ

τxψ


≤ lim sup

k→∞

1

(2k + 1)2
Eα̂

(−Lk)−1
∑

x∈Bkψ

τxψ .
∑

x∈Bkψ

τxψ

 .

Now that we have replaced the canonical measure by the grand canonical measure, we are ready to

complete the proof of Lemma C.1, which is reduced to showing that

(C.3) lim sup
k→∞

1

(2k + 1)2
Eα̂

(−Lk)−1
∑

x∈Bkψ

τxψ .
∑

x∈Bkψ

τxψ

 ≤ � ψ �α̂ .

The left-hand side in the equation above is equal thanks to the variational formula for the variance to

1

(2k + 1)2
sup
f∈Mk

2
∑

x∈Bkψ

Eα̂ (τxψ .f)−DBk(µα̂, f)

 .

For the same reason as before, for some constant C(ψ), the quantity above is negative for any f σ(Fk)-

measurable with Dirichlet form with respect to µα̂ not bounded by C(ψ)k2. Using once again the inte-

gration by parts formula of Lemma 5.1 yields

Eα̂ (τxψ .f) =
∑

x∈Bψ(x)

Eα̂(Ia(τxψ)∇af),

where Ia(ψ) = (1/2)∇a(−Lsψ )−1ψ. For any edge a, let us denote Bψ(a) the set of sites x ∈ Z2 such that

a is in Bψ(x), and B̃ψk (a) = Bψ(a) ∩ Bkψ . Note that for any edge a ∈ Bkψ−sψ , these two sets coincide.

The integration by parts formula then allows us to write∑
x∈Bkψ

Eα̂ (τxψ .f) =
∑
a∈Bk

∑
x∈B̃ψk (a)

Eα̂(Ia(τxψ)∇af)

=
∑
a∈Bk

∑
x∈Bψ(a)

Eα̂(Ia(τxψ)∇af)−
∑
a∈Bk

∑
x∈Bψ\B̃ψk (a)

Eα̂(Ia(τxψ)∇af)

=
∑
a∈Bk

∑
x∈Bψ(a)

Eα̂(Ia(τxψ)∇af)−
∑

a∈Bk\Bkψ−sψ

∑
x∈Bψ\B̃ψk (a)

Eα̂(Ia(τxψ)∇af).
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By Schwarz inequality, the second sum in the right-hand side is smaller than∑
a∈Bk\Bkψ−sψ

∑
x∈Bψ\B̃ψk (a)

Eα̂(Ia(τxψ)∇af)

≤ Eα̂


 ∑
a∈Bk\Bkψ−sψ

 ∑
x∈Bψ\B̃ψk (a)

Ia(τxψ)

2


1/2 ∑
a∈Bk\Bkψ−sψ

(∇af)
2

1/2


≤ Eα̂

 ∑
a∈Bk\Bkψ−sψ

 ∑
x∈Bψ\B̃ψk (a)

Ia(τxψ)

2


1/2

Eα̂

 ∑
a∈Bk\Bkψ−sψ

(∇af)
2

1/2

≤ Eα̂

 ∑
a∈Bk\Bkψ−sψ

∑
x∈Bψ

CkIa(τxψ)2

1/2

[DBk(µα̂, f)]
1/2

,

≤

(
Ck

∑
a∈Bk\Bkψ−sψ

Eα̂

 ∑
x∈Bψ

Ia(τxψ)2


︸ ︷︷ ︸

≤C(ψ)

)1/2

[D(f)]
1/2

.

The latter is of order kd/2, and therefore vanishes in the limit k →∞. Letting Ia(ψ) =
∑
x∈Bψ(a) Ia(τxψ),the

left-hand side of equation (C.3) is therefore smaller in the limit k →∞ than

1

(2k + 1)2
sup
f∈Mk

{
2
∑
a∈Bk

Eα̂(Ia(ψ)∇af)−DBk(µα̂, f)

}
.

Let (fk)k be a family of functions such that fk is FBk -measurable function in T0, such that the limsup

of the quantity above veri�es

(C.4) lim sup
k→∞

1

(2k + 1)2
sup
f∈Mk

{
2
∑
a∈Bk

Eα̂(Ia(ψ)∇af)−DBk(µα̂, f)

}

= lim
k→∞

1

(2k + 1)2

{
2
∑
a∈Bk

Eα̂(Ia(ψ)∇afk)−DBk(µα̂, fk)

}
.

Thanks to the translation invariance of µα̂, and since τyIa(ψ) = Iτya(ψ), letting y = a1 be the �rst site

of the edge a = (a1, a2), we have

Eα̂(Ia(ψ)∇afk) = Eα̂
(
I(0,a2−a1)(ψ)∇(0,a2−a1)τ−a1fk

)
.

A seen before, a simple change of variable yields that Eα̂ (∇af.∇ag) = Eα̂ (∇−af.∇−ag), from which we

deduce

2
∑
a∈Bk

Eα̂(Ia(ψ)∇afk) = 4

2∑
i=1

Eα̂

I(0,ei)(ψ).∇(0,ei)

∑
x

x,x+ei∈Bk

τ−xfk

 .

Let us introduce

uki =
1

(2k + 1)2
∇(0,ei)

∑
x

x,x+ei∈Bk

τ−xfk ∈ Tωi ,

where Tωi = Tω0 is the closure of Tω0 in Ei

Ei =
{
f, Eα̂

(
1{η0ηei=0}f

2
)
<∞

}
.
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The L2 norm of the di�erential form uk can be bounded since (
∑n
i=1 ai)

2 ≤ n
∑n
i=1 a

2
i by

2∑
i=1

Eα̂((uki )2) ≤2k(2k + 1)

(2k + 1)4

∑
x

x,x+ei∈Bk

Eα̂
((
∇(x,x+ei)fk

)2)

=
2k

(2k + 1)3
DBk(µα̂, fk)

Thanks to this inequality, equation (C.4) yields

(2k + 1)−2Eα̂

(−Lk)−1
∑

x∈Bkψ

τxψ .
∑

x∈Bkψ

τxψ

 ≤ lim
k→∞

{
4

2∑
i=1

Eα̂(I(0,ei)(ψ).uki )−
2∑
i=1

Eα̂((uki )2)

}

The inequality above and the control over the Dirichlet form of the fk's guarantee that the sequence of

di�erential forms (uk)k∈N is bounded in L2(µα̂). Let u = (u1,u2) be a limit point of the sequence, thanks

to the gradient in the expression of the uk's, u is in Cα̂ ∩ Tω, as introduced in Section 6.6. Proposition

6.14 thus yields the estimate

lim
k→∞

{
4

2∑
i=1

Eα̂(I(0,ei)(ψ).uki )−
2∑
i=1

Eα̂((uki )2)

}

≤ sup
g∈T ω0
a,b∈R2

{
4

2∑
i=1

Eα̂(I(0,ei)(ψ).(ja,bi +∇(0,ei)Σg))−
2∑
i=1

Eα̂((ja,b +∇Σg)
2)

}

= sup
g∈T ω0
a,b∈R2

2Eα̂

ψ.
Σg +

∑
y∈Z2

(y.a)ηωy + (y.b)ηy

− ∣∣∣∣∣∣∇Σg + ja,b
∣∣∣∣∣∣2

2,α̂

 .

The last identity is easily checked and is a direct consequence of the integration by parts formula (cf.

Proof of Proposition 6.27 in Section 6.8). The right-hand-side above is � . �α̂ as de�ned in Theorem

6.25, which concludes the proof of the �rst Lemma.

The second inequality is more straightforward, since this time the supremum works in our favor.

Lemma C.2. � Under the assumption of Theorem 6.25,

(C.5) lim sup
l→∞

1

(2l + 1)2
El,K̂l

(−L−1
l )

∑
x∈Blψ

τxψ .
∑
x∈Blψ

τxψ

 ≥ � ψ �α̂ .

Proof of Lemma C.2. � We start once again with the variational formula

−El,K̂l

L−1
l

∑
x∈Blψ

τxψ .
∑
x∈Blψ

τxψ

 = sup
h∈L2(µ

l,K̂l
)∩T0

2El,K̂l

 ∑
x∈Blψ

τxψ .h

− EK̂,l (h.(−Llh))


≥ sup
h∈F

2El,K̂l

 ∑
x∈Blψ

τxψ .h

− EK̂,l (h.(−Llh))

 ,(C.6)

where F is the subspace of L2(µl,K̂l) ∩ T0

F = Fl =

hg,a,b,l =
∑
x∈Blg

τxg +
∑
x∈Bl

((a.x)ηωx + (b.x)ηx), g ∈ T ω0 , a, b ∈ R2

 .

We �rst show that in the variational formula above, we can replace in the limit l → ∞ the canonical

measures by the grand canonical measure µα̂. Regarding the �rst term, for any hg,a,b ∈ F ,
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1

(2l + 1)2
El,K̂l

 ∑
x∈Blψ

τxψ .hg,a,b,l


=

1

(2l + 1)2

∑
x∈Blψ

El,K̂l

τxψ
 ∑
| y |≤lg

τyg +
∑
y∈Bl

((a.y)ηωy + (b.y)ηy)

 .

This time, for some �xed x ∈ Blψ , the function inside the expectation is local because τxψ is, and

Proposition B.1 guarantees that in the limit of the quantity above as l→∞, we can replace µl,K̂l by µα̂.

The translation invariance of µα̂, then yields

lim
l→∞

1

(2l + 1)2
El,K̂l

 ∑
x∈Blψ

τxψ .hg,a,b,l

 = Eα̂

ψ ∑
y∈Z2

[
τyg +

2∑
i=1

((a.x)ηωy + (b.y)ηy)

] .

Let us now switch to the second part of (C.6). For any h = hg,a,b,l ∈ F , we have, since∑
| x |≤l

xiLlηωx =
∑

x,x+ei∈Bl

jωx,x+ei ,

that

1

(2l + 1)2
EK̂,l (h.(−Llh)) =

1

(2l + 1)2

−El,K̂l
 ∑
| x |≤lg

τxg

Ll
 ∑
| x |≤lg

τxg


− 2.El,K̂l

 ∑
| x |≤lg

τxg

 .
 ∑
x,x+ei∈Bl

τx(a.jω) + (b.j)


−El,K̂l

∑
y∈Bl

((a.y)ηωy + (b.y)ηy)

 .
 ∑
x,x+ei∈Bl

τx(a.jω) + (b.j)


Since there is no L−1

l , the functions are all still cylinder, and the equivalence of ensembles allows us to

replace µl,K̂l by µα̂. The �rst term in the right-hand side above can be rewritten thanks to the integration

by parts formula as

1

2(2l + 1)2

∑
a⊂Bl

El,K̂l


∇a ∑

| x |≤lg

τxg

2
 =

1

(2l + 1)2

∑
x,x+ei∈Bl

El,K̂l


∇x,x+ei

∑
| y |≤lg

τyg

2
 .

For any x ∈ Bl−sψ−2, we have ∇x,x+ei

∑
| y |≤lg τyg = ∇x,x+eiΣg, and since the number of terms in the

crown Bl −Bl−sψ−2 is a o(l
2), the previous quantity rewrites by translation invariance, in the limit l→∞

as Eα̂
(
(∇Σg)

2
)
. Elementary computation and the translation invariance of µα̂ yield that the second term

− 2

(2l + 1)2
El,K̂l

 ∑
| x |≤lg

τxg

 .
 ∑
x,x+ei∈Bl

τx(a.jω) + (b.j)

 →
l→∞

−2Eα̂ ([(a.jω) + (b.j)] Σg) .

Let us consider only the contribution of jω1 in the right-hand side in the identity above. The corresponding

contribution is

Eα̂ (jωi Σg) = Eα̂ (ηω0 (1− ηei)Σg(η̂))− Eα̂
(
ηωei(1− η0)Σg(η̂)

)
= −Eα̂ (ηω0 (1− ηei)∇iΣg) ,

which is equal to −Eα̂(ji · ∇Σg). We deduce from this the identity

Eα̂ ([(a.jω) + (b.j)] Σg) = −Eα̂(ja,b.∇Σg).

Finally, elementary computations allow us to write regarding the last term

1

(2l + 1)2
−El,K̂l

∑
y∈Bl

((a.y)ηωy + (b.y)ηy)

 .
 ∑
x,x+ei∈Bl

τx(a.jω) + (b.j)
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→
l→∞

Eα̂
(
||a||2 ηω0 (1− ηe1) + ||b||2 η0(1− ηe1)

)
,

which is equal to Eα̂((ja,b)2). These three limits �nally yield

lim
l→∞

1

(2l + 1)2
EK̂,l (hg,a,b,l.(−Ll)hg,a,b,l) =

∣∣∣∣∣∣∇Σg + ja,b
∣∣∣∣∣∣2

2,α̂
,

and equation (C.6) holds, which gives inequality (C.5) and concludes the proof of the Lemma.

In order to complete the proof of Theorem 6.25, we still need to prove that the convergence is uniform

in α̂, which will yield identity (6.82). Let us denote

Vl,ψ(K̂(2l + 1)−2)) =
1

(2l + 1)2
El,K̂l

−L−1
l

∑
x∈Blψ

τxψ .
∑
x∈Blψ

τxψ

 ,

and let us extend smoothly the domain of de�nition of Vl,ψ toM1(S). The two previous Lemmas guarantee

that Vl,ψ(K̂l(2l+ 1)−2)) converges as l goes to∞ to� ψ �α̂ as soon as K̂l converges towards the pro�le

α̂, hence in particular, Vl,ψ(α̂l) converges as l goes to ∞ towards � ψ �α̂ as soon as α̂l goes to α̂. For

that reason, � . �α̂ is continuous, and Vl,ψ(α̂) converges uniformly in α̂ towards � ψ �α̂ as l goes to

∞. This, combined with the two lemmas C.1 and C.2, completes the proof of Theorem 6.25.
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