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HYDRODYNAMIC LIMIT FOR AN ACTIVE EXCLUSION PROCESS

by

Clément Erignoux

Abstract. — Collective dynamics can be observed among many animal species, and have given rise in the
last decades to an active and interdisciplinary field of study. Such behaviors are often modeled by active
matter, in which each individual is self-driven and tends to update its velocity depending on the one of its
neighbors.

In a classical model introduced by Vicsek & al., as well as in numerous related active matter models, a
phase transition between chaotic behavior at high temperature and global order at low temperature can be
observed. Even though ample evidence of these phase transitions has been obtained for collective dynamics,
from a mathematical standpoint, such active systems are not fully understood yet. Significant progress has
been achieved in the recent years under an assumption of mean-field interactions, however to this day, few
rigorous results have been obtained for models involving purely local interactions.

In this paper, we describe a lattice active particle system, in which particles interact locally to align their
velocities. We obtain rigorously, using the formalism developed for hydrodynamic limits of lattice gases, the
scaling limit of this out-of-equilibrium system, for which numerous technical and theoretical difficulties arise.

Résumé (Limite hydrodynamique pour un processus d’exclusion actif). — L’étude des dy-
namiques collectives, observables chez de nombreuses espéces animales, a motivé dans les derniéres décennies
un champ de recherche actif et transdisciplinaire. De tels comportements sont souvent modélisés par de la
matiére active, c’est-a-dire par des modéles dans lesquels chaque individu est caractérisé par une vitesse
propre qui tend & s’ajuster selon celle de ses voisins.

De nombreux modéles de matiére active sont liés & un modéle fondateur proposé en 1995 par Vicsek &
al.. Ce dernier, ainsi que de nombreux modéles proches, présentent une transition de phase entre un com-
portement chaotique a haute température, et un comportement global et cohérent & faible température. De
nombreuses preuves numériques de telles transitions de phase ont été obtenues dans le cadre des dynamiques
collectives. D’un point de vue mathématique, toutefois, ces systémes actifs sont encore mal compris. Plusieurs
résultats ont été obtenus récemment sous une approximation de champ moyen, mais il n’y a encore a ce
jour que peu d’études mathématiques de modéles actifs faisant intervenir des interactions purement micro-
scopiques.

Dans cet article, nous décrivons un systéme de particules actives sur réseau interagissant localement pour
aligner leurs vitesses. Nous obtenons rigoureusement, & ’aide du formalisme des limites hydrodynamiques
pour les gaz sur réseau, la limite macroscopique de ce systéme hors-équilibre, qui pose de nombreuses
difficultés techniques et théoriques.
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1. Introduction

1.1. Collective motion among biological organisms. — Collective motion is a widespread phe-
nomenon in nature, and has motivated in the last decades a fruitful and interdisciplinary field of study
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[34]. Such behavior can be observed among many animal species, across many scales of the living spec-
trum, and in a broad range of environments. Animal swarming usually needs to balance out the benefits of
collective behavior (defense against predation, protection of the young ones, increased vigilance) against
the drawback of large groups (food hardships, predator multiplication, etc.).

Despite the numerous forms of interaction between individuals, all of these self-organization phe-
nomenons present, spontaneous emergence of density fluctuations and long range correlations. This sim-
ilarity suggests some universality of collective dynamics models [25], [51]. Even though the biological
reasons for collective behavior are now well known, the underlying microscopic and macroscopic mecha-
nisms are not yet fully understood. To unveil these mechanisms, numerous aggregation models have been
put forward.

These models can be built on two distinct principles. The first approach specifies the macroscopic
partial differential equation which rules the evolution of the local density of individuals. The main upside
is that one can use the numerous tools developed for solving PDE’s. Several examples of such models
are presented in Okubo and Levin’s book, [32]. Since it represents an average behavior, this approach to
collective dynamics is, however, mainly fitted to describe systems with large number of individuals, and
does not take into account the fluctuations to which smaller systems are subject.

The second approach, called Individual-Based Models (IBM), specifies the motion of each individual
organism. If the motion of each individual was described realistically (from a biological standpoint), the
theoretical study of these models with large number of degrees of freedom would be extremely difficult.
For this reason, it is usually preferred to simplify the rules for the motion of each individual, as well
as its interaction with the group. A classical simplification is to consider that the interaction of each
individual with the group is averaged out over a large number of its neighbors. This so-called local field
simplification often allows to obtain explicit results, at the expense however of their biological accuracy
(ct. below).

In this article, we link these two approaches to collective motion, by describing a microscopic dynamics
with local interactions for particles on a lattice, for which we derive the macroscopic partial differential
equation followed by the particle density.

1.2. Microscopic active matter models. — In order to represent the direction of the motion of each
individual, as well as spatial constraints (e.g. volume of each organism), collective dynamics are often
modeled by individual-based active matter models. Active matter is characterized by an energy dissipation
taking place at the level of each individual particle, which allows it to self-propel, thus yielding an extra
degree of freedom representing the direction of its motion. One can therefore obtain a phase transition
towards collective motion when these directions align on lengths large with respect to the size of the
particles. Active matter models exhibit various behaviors, and in the context of collective motion, two
phenomena are particularly important :
— when each particle tends to align the direction of its motion to that of its neighbors, one can
observe a phase transition between order and disorder depending on the strength of the alignment.
This alignment phase transition was first observed in an influential model for collective dynamics
introduced by Vicsek et al. [50]
— When the particle’s velocity decreases with the local density, congestion effects appear : par-
ticles spend more time where their speed is lower, and therefore tend to accumulate there. This
phenomenon, called Motility-Induced Phase Separation (MIPS), was extensively studied in the
recent years [9], [21], [11].

Vicsek model and phase transition in alignment models. — Interest for self-organization phenomenons
have grown significantly in statistical physics, where the diversity of such behaviors opens numerous
modeling perspectives, and raises new questions regarding out-of-equilibrium systems. Many stochastic
models have been introduced to represent specific biological behavior using statistical physics methods
and have revealed a phase transition between high density collective motion, and disordered behavior
with short range correlations at low densities.
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FiGURE 1. Schematic representation of the phase transition in Vicsek’s model.
(A) low density and high noise intensity,
(B) high density and low noise intensity.

A pioneering model was proposed in 1995 by Vicsek et al. They introduce in [50] a general IBM (cf.
previous paragraph) to model collective dynamics. In the latter, a large number of particles move in
discrete time, and update the direction of their motion to the average direction of the particles in a small
neighborhood. The direction of their motion is also submitted to a small noise, which makes the dynamics
stochastic.

Despite its relative simplicity, the original model described in [50] is extremely rich, and has given rise
to a considerable literature (cf. the review by Viczek and Zafeiris, [51]). The first article on this model
unveiled a phase transition between a high-noise, low-density disordered phase and a low-noise high-
density ordered phase. Initially thought to be critical, this transition was later shown to be discontinuous
[12], with an intermediate region in which an ordered band cruises in a disordered background. It was
recently shown that this transition can be understood as a liquid-gas phase separation in which the
coexistence phase is organized in a smectic arrangement of finite-width bands travelling collectively [42].
Numerous extensions and variations on Vicsek’s model have been put forward, usually by considering a
continuous time dynamics, more pertinent to represent biological organisms.

Phase transitions are central to the study of collective dynamics, where coherent behavior arise when
the alignment becomes strong enough. This notion of phase transition for alignment dynamics is remi-
niscent of the Ising and XY models, two classical statistical physics models. The Ising model is known
to have a symmetry breaking phase transition leading to the emergence of a spontaneous magnetization.
Uulike the Ising model, the XY model (for which the spins are two-dimensional unit vectors parametrized
by angles 6 € [0, 27[) does not present in two dimensions this type of symmetry breaking phase transition,
according to the Mermin-Wagner Theorem. This is one of the reasons for the popularity of the Vicsek
model [50], whose alignment dynamics is reminiscent of the XY model, but unlike the latter presents a
phase transition of the magnetization due to the particle motility [47]. Both the Ising and XY models are
now well understood. These are equilibrium models and they fall within the formalism of Gibbs measures,
which relates to the thermodynamical parameters of the system.

Active matter models like Vicsek’s are out of equilibrium, and in the case of Vicsek’s model, the phase
transition is a dynamical phenomenon. The concepts developed for equilibrium models, namely Gibbs
measures and free energy, can therefore no longer be used, and despite ample numerical evidence of
spontaneous magnetization, (cf. [41]) mathematically proving a phase transition becomes significantly
harder.

Despite these issues, several exact results have been obtained for systems closely related to Vicsek’s
model. In 2007, Degond and Motsch notably introduced a continuous time version of Vicsek’s model,
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and derived the macroscopic scaling limit of the system [18], as well as its microscopic corrections [19].
Their model, which was directly inspired by that of Vicsek et al., is a locally mean-field model, where
particles interact with all other particles present in a small macroscopic neighborhood. This approximation
simplifies a number of difficulties of out-of-equilibrium systems. In their initial article [18], Degond and
Motsch assume that a law of large number holds for the microscopic system. This was later rigorously
proved in [4]. The phase transition as a function of the noise level, between disordered system and global
alignment, was shown in [16] for this model. Similar results have since been extended to more general
forms of alignment, (e.g. [3], [6], [17]) and to density dependent parameters [22]. The evolution of the
macroscopic density was also obtained in the particular case where the interaction between individuals is
driven by a Morse potential, [7], where previously the shape of animal aggregates (e.g. fish schools mills)
was only known empirically.

The Active Ising Model (AIM) is another alignment model, phenomenologically close to Vicsek’s model
[41], put forward to better understand collective dynamics. It is less demanding from a computational
standpoint, and is extensively studied both numerically and theoretically by Solon and Tailleur in [43].
This model does not rely on the mean-field approximation of the Vicsek’s model. The particles (with either
77 or ”-” spins) move independently in a discrete space domain, performing an asymmetric random walk
with drift directed according to the particle’s spin. In addition to the displacement dynamics, the particles
align their spins with the other particles on the same site as in a fully connected Ising model.

It was numerically shown in [43] that the AIM presents, as does Vicsek’s, a phase transition depend-
ing both on the temperature and the particle density. At low temperature and density, one observes a
magnetically neutral gas, whereas at strong temperature and densities, one obtains a strongly polarized
liquid. In an intermediary domain, these two phases coexist. The AIM being an out-of-equilibrium model
as well, its mathematical study is difficult, mainly because of the lack of mean-field approximation present
in Vicsek’s model. To our knowledge, there exists to this day no mathematical proof of the phase transi-
tion of the AIM. The model considered in this paper is closely related to both the Vicsek and the active
Ising models.

Motility-Induced Phase Transition (MIPS). — As previously emphasized, a second interesting phe-
nomenon can occur in active matter : when the motility of the particles decreases as the local particle
density increases, one can observe a phase separation between a low density gaseous phase, and con-
densed clusters. This separation is a direct consequence of particles slowing down in dense areas : since
they spend more time there, they tend to accumulate. This creates the congestion phenomenon called
Motility Induced Phase Transition, or MIPS, which was thoroughly studied in recent years (cf. the review
by Cates and Tailleur, [11]).

This congestion phenomenon can be observed across several types of dynamics, under the condition
that the particle’s velocities and diffusion constants depend on the local density. One of the most studied
is the run-and-tumble dynamics [8], which models the behavior of bacteria : each individual goes in a
straight line for a while, and then reorients in another random direction. However, MIPS is not specific to
run and tumble dynamics : it is shown numerically in [10], [40] that MIPS also occurs for active Brownian
particles, for which each particles motion’s direction diffuses, instead of updating at discrete times like
in the run-and-tumble dynamics. MIPS can also be observed in lattice models [46], or in models with
repulsive forces [21], for which the kinetic slowdown is a consequence of repulsive forces.

Unlike the collective dynamic models inspired by Vicsek’s, the model studied in this article (which will
from now on be referred to as Active Exclusion Process, or AEP) involves purely microscopic rather than
mean-field interactions. To illustrate the link of our model with MIPS, and as a prelude to the rest of the
introduction, let us briefly describe a simplified version of the AEP. On a two-dimensional periodic lattice,
consider two-typess of particles, denoted ”+” and ”—”, which move and update their type according to
their neighbors.

— Each particle’s type is randomly updated by a Glauber dynamics depending on its nearest
neighbors.
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— The motion of any particle is a random walk, weakly biased in one direction depending on its
type : the 74" particles will tend to move to the right, whereas the ”—” particles will tend to move
to the left.
— The vertical displacement is symmetric regardless of the particle’s type.
To model hard-core interactions, an exclusion rule is imposed, i.e. two particles cannot be present on
the same site : a particle jump towards an occupied site will be canceled. This induces the congestion
effects which can lead to motility induced phase transition (MIPS), and one can therefore hope that this
model encompasses both the alignment phase transition characteristic of the Vicsek’s and the Active
Ising models, as well as MIPS.

A first microscopic dynamics combining alignment and stirring was introduced in [13], where De Masi
et al. consider a lattice gas with two types of particles, in which two neighboring particles can swap their
positions, and can change type according to the neighboring particles. They derived the hydrodynamic
limit, as well as the fluctuations, when the stirring dynamics is accelerated by a diffusive scaling, w.r.t.
the alignment dynamics. This scale separation is crucial to have both alignment and stirring present in
the hydrodynamic limit.

In this article, we derive the hydrodynamic limit for an extension of the model briefly described above.
Generally, the strategy to obtain the hydrodynamic limit for a lattice gas depends significantly on the
microscopic features of the model, and must be adapted on a case by case basis to the considered dynamics.
For example, the exclusion rule in the AEP makes it non-gradient, thus the proof of its hydrodynamic
limit is significantly more elaborate. The end of this introduction is dedicated to describing the difficulties
occurring in the derivation of the hydrodynamic limit of our model.

1.3. Hydrodynamics limits for non-gradients systems. — The Active exclusion process (AEP)
presented above belongs to a broad class of microscopic lattice dynamics for which the instantaneous
particle currents along any edge cannot be written as a discrete gradient. This difficulty appears naturally
in exclusion systems, in particular for systems with multiple particle types, or for generalized exclusion
processes where only a fixed number x (k > 2) of particles can be present at the same site. Such systems
are called non-gradients. A considerable part of this article is dedicated to solving the difficulties posed
by the non-gradient nature the AEP.

The first proof for a non-gradient hydrodynamic limit was obtained by Varadhan in [48], and Quastel
[35] (cf. below). To illustrate the difficulty let us consider a general diffusive particle system of size N in
1 dimension, evolving according to a Markov generator £y. Such a diffusive system must be rescaled in
time by a factor N2, therefore each jump in £y should occur at rate N2. Denoting by 7, the state of the
system at the site = (e.g. number of particles, energy of the site), Ly, is a microscopic gradient,

ENnx = N2(j9371,x - jm,erl)v
where j, .41 is the instantaneous current along the edge (z,z + 1), and the N? comes from the time-
rescaling. This microscopic gradient balances out a first factor N, and acts as a spatial derivative on
a macroscopic level. In order to obtain a diffusive equation similar to the heat equation, one needs to
absorb the second factor NV in a second spatial derivative. This is the main difficulty for non-gradient
systems, for which the instantaneous current j, ,+1 does not take the form of a microscopic gradient.
The purpose of the non-gradient method developed by Varadhan is to obtain a so-called microscopic
fluctuation-dissipation relation
Jo,a+1 =2 _D('r]ac—i-l - 77;8) + LNGzs

where Lxg, is a small fluctuation which usually disappears in the macroscopic limit according to Fick’s
law for diffusive systems. Although the link to the macroscopic fluctuation-dissipation relation (cf. Section
8.8, p140-141 in [45] for more detail on this relation) is not apparent, the latter is indeed a consequence
of the microscopic identification above, as emphasized in Remark 6.36.

1.4. Multi-type lattice gases, and contributions of this article. — Numerous statistical physics
articles focus on particle systems with several particle types, and the difficulties to obtain their hydrody-
namic limit vary significantly depending on the specificities of each microscopic dynamics. Active matter
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provides natural examples of multi-type particle systems, since each possible velocity can be interpreted
as a different type. When the particles evolve in a continuous space domains, (e.g. [15], [16]) and in
the absence of hard-core interactions, the density of each type of particles can essentially be considered
independently regarding displacement, and the scaling limit usually decouples the velocity variable and
the space variable.
In the case of lattice gases, however, it becomes necessary to specify the way particles interact when

they are on the same site. Dynamically speaking, the multi-type models often allow either

— swapping particles with different types, as in [37] for a totally asymmetric system with velocity

flips.

— The coexistence on a same site of particles with different velocities, as in [14] or [39] for a model

closely related to the one investigated in this article with weak driving forces.
These simplifications allow to bypass the specific issues which arise for diffusive systems with complete
exclusion between particles, since the latter often require the non-gradient tools mentioned previously.

The first hydrodynamic limits for non-gradient microscopic systems were studied by Varadhan and

Quastel. They developed in [48] and [35] the general method to derive the hydrodynamic limit for
non-gradient systems with only requirement a sharp estimate for the Markov generator’s spectral gap.
Quastel also notably obtained in [35] an explicit expression for the diffusion and conductivity matrices
for the multi-type exclusion process, as a function of the various particle densities and of the self-diffusion
coefficient ds(p) of a tagged particle for the equilibrium symmetric simple exclusion process with density
p. This result was then partially extended to the weakly asymmetric case (in [36] as a step to obtain a
large deviation principle for the empirical measure of the symmetric simple exclusion process, and where
the asymmetry does not depend on the configuration, and in [24] for a weak asymmetry with a mean-field
dependence in the configuration), as well as a more elaborate dynamics with creation and annihilation of
particles [38].

The purpose of this article is to derive the hydrodynamic limit for an active matter lattice gas with
purely microscopic interactions. This article also provides a generalization, as well as a detailed proof of
the results derived by Quastel [35]. First, some of the specific arguments used by Quastel are only true
in the simple symmetric case. In particular, in the case of multi-type exclusion dynamics, it is crucial
to ensure that the particle density does not reach 1, because when this is the case, the system loses its
mixing properties. When the considered dynamics is a multi-type symmetric exclusion, the macroscopic
density for the total number of particles evolves according to the heat equation, and density control at any
given time is ensured by the maximum principle. In our case, the limiting equation is not diffusive, and
the density control is much harder to derive. Second, [35] was one of the first examples of hydrodynamic
limit for non-gradient systems, and to make the proof more accessible, we adapted it by using the more
recent formalism developed in [27], in which an important upside is the clear identification of the orders
of the estimates in the scaling parameter V.

We also extend the proof of the hydrodynamic limit for the multi-type exclusion process [35] to the
weakly asymmetric case when the particle types depend on a continuous parameter. The hydrodynamic
limit for lattice gases with K particle types takes the form of K coupled partial differential equations.
Extending it to a continuum of particle types therefore poses the issue of the well-posedness of the system.
One way to avoid this difficulty is to consider the scaling limit of only a finite number of macroscopic
parameters to partially characterize the system’s local equilibrium (density, local energy [33], momentum
[20], local asymmetry) which reduces the description to a finite number of coupled PDEs.

This is not the solution we chose for our model, because the equations for a finite number of velocities
found a natural extension in the continuous velocity case. We thus kept the scaling limit of each parti-
cle type, by introducing an angular variable joint to the space variable. This induced several technical
difficulties. In particular, as opposed to the previous examples, local equilibrium is not characterized
by a finite number of macroscopic parameters, which required significant adaptation of the proof of the
hydrodynamic limit.
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1.5. Active Exclusion Process and main result. — The remainder of this Section is dedicated to
a short description of our model and its hydrodynamic limit. For simplicity, we first focus on the reduced
model with only two types of particles, and then introduce the full Active Exclusion Process treated in
this article. Precisely describing the complete model, and rigorously stating its hydrodynamic limit, will
be the purpose of Section 2.

Description of a simplified process with two particle types. — For the clarity of notations, we describe
and study our model in dimension d = 2. The simplified version of the model can be considered as an
Active Ising Model [43] with an ezclusion rule : each site z of the periodic lattice T% of size N is either

— occupied by a particle of type “+” (n} = 1),

— occupied by a particle of type “—” (n, = 1),

— empty if n7 =n; =0.
Each site contains at most one particle, thus the pair (n},7n;) entirely determines the state of any
site z, and is either (1,0), (0,1) or (0,0). The initial configuration for our particle system is chosen
at local equilibrium and close to a smooth macroscopic profile {4 = C{f + ¢ ¢ T? — [0,1], where
T2 is the continuous domain [0,1]? with periodic boundary conditions, and (J (z) (resp. ¢ (x)) is the
initial probability that the site z contains a “4” particle (resp. “—”). We denote by 7 the collection
((77:> nz_))ase']l‘i,'

Each particle performs a random walk, which is symmetric in the direction i = 2, and weakly asym-
metric in the direction ¢ = 1. The asymmetry is tuned via a positive parameter A, thus a “4” (resp. “—")
particle at site x jumps towards x+e; at rate 1+ \/N (resp. 1 — A\/N) and towards « —e; at rate 1 —\/N
(resp. 1 + A/N). If a particle tries to jumps to an occupied site, the jump is canceled. In order to obtain
a macroscopic contribution of this displacement dynamics, it must be accelerated by a factor N2.

Moreover, the type of the particle at site x is updated at random times, depending on its nearest
neighbors. Typically, to model collective motion, a “—” particle surrounded by “+” particles will change
type quickly, whereas a “—” particle surrounded by “—” particles will change type slowly, to model the
tendency of each individual to mimic the behavior of its neighbors. The microscopic details of this update
dynamics is not crucial to the hydrodynamic limit (in the scaling considered here), we therefore choose
general bounded flip rates rates ¢, g(7) parametrized by an inverse temperature 3.

The complete dynamics can be split into three parts, namely the symmetric and asymmetric contri-
butions of the exclusion process, and the Glauber dynamics, evolving on different time scales. For this
reason, each corresponding part in the Markov generator has a different scaling in the parameter N : the
two-type process is driven by the generator

1 \
Ly = N? [L‘, + L‘,W*} + LS,
N
whose three elements we now define. Fix a function f of the configuration, we denote by

Nx ::U:’+’W;'€ {Oﬂl}

the total occupation state of the site z. The nearest-neighbor simple symmetric exclusion process generator
L is

LF@ =3 3 ma (U= mass) (FG™) = F@)

z€T?, | z|=1
LM encompasses the weakly asymmetric part of the displacement process,
LY@ = > M =) (L= megse) (F@"T0) = F(@)
TETZ, i=1,2, §=*1

which is not a Markov generator because of its negative jump rates, but is well-defined once added to the
symmetric part of the exclusion process. Finally, £ is the generator which rules the local alignment of
the angles

LOP@) = Y muca s (@) (FO7) = F(@)) -

2
zeT?,
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In the identities above, 7***# is the configuration where the states of z and = + 2z have been swapped in
7, and 7* is the configuration where the type of the particle at site x has been changed.

Hydrodynamic limit. — Let us denote by p; (u) (resp. p; (u)) the macroscopic density of “+” (resp.“—")
particles, and by p;(u) = p; (u) + p; (u) the total density at any point u in T2. Let us also denote by
me(u) = pi (u) — p; (u) the local average asymmetry.

Then, as a special case of our main result (with minor adjustments) the pair (p;", p;") is solution, in a
weak sense, to the partial differential system

{f)tp? = V.00 )V + ds(p)VoiT| + 2000, [ms(p;, pi) + ds(pe)pi | + T,
Oipy = V. [0(p7 s ) Vi +ds(pe)Vor | + 200w, [ms(p;, p) — ds(pe)py | — T

with initial profile

(1.2) P (u) = CE(u).

In the PDE (1.3), 0., denotes the partial derivative in the first space variable, d; is the self-diffusion
coefficient for the SSEP in dimension 2 mentioned in the introduction, the coeflicients ? and s are given
by

(1.1)

e %(1 —d(p) and  s(p".p) = %(1 —p—dy(p)),
and I'; is the local creation rate of particles with type “+”, which can be written as the expectation under
a product measure of the microscopic creation rate. Although it is not apparent, the coefficients 0, s, and
ds are solution to a Stokes-Einstein relation in a matrix form when the differential equation is written
for the vector (p;", p; ).

As mentioned previously, this simplified model is very close to the Active Ising Model [43] with a weak
driving force. The main difference is the exclusion rule : in the AIM, there is no limit to the number
of particles per site, and each particle’s type is updated depending on the other particles present at the
same site. In our two-type model, the exclusion rule creates a strong constraint on the displacement and
therefore changes the form of the hydrodynamic limit, which is no longer the one derived in [43].

Description of the Active Exclusion Process (AEP). — We now describe the Active Exclusion Process,
which is a generalization of the model presented above. Since the AEP is thoroughly introduced in section
2, we briefly describe it here, and only give a heuristic formulation for our main result. The type of any
particle is now a parameter 6 € [0, 27| which represents the angular direction of its weak driving force.
To compare with the simplified model, the “+” particles correspond to the angle 6 = 0, whereas the “—”
particles correspond to the angular direction 6 = 7.

Any site is now either occupied by a particle with angle 6 (n, = 1, 8, = 0), or empty (1, = 0,
6, = 0 by default). The initial configuration 77(0) of the system is chosen at local equilibrium, close to a
smooth macroscopic profile Z : T? x [0, 27[— R, where each site z is occupied by a particle with angle
0, € [0, 6 + df[ with probability C(xz/N,6)d6, and the site remains empty w.p. 1 — f[mﬂ C(x/N, 6)db.
Our Active Exclusion Process is driven by the Markov generator

1 )
Ly =N? [L + Nﬁ“’*} + L4,

with three parts described below. Fix a function f of the configuration. The nearest-neighbor simple
symmetric exclusion process generator £ is unchanged with respect to the two-type case, whereas L™ is
now given by

LM =3 S oNOne (L= nerse) (FE™H%) = F@))

z€T?, i=1,2, §==+1
where the asymmetry in the direction i for a particle with angle 6 is encoded by the functions \;(6),

A1(0) = Acos(9) and A2(0) = Asin().
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To fix ideas, The Glauber generator will be taken of the form
i =3 /S cas(0,7) (F(7°) - F(7) do),
z€T%,

where 7% is the configuration where 6, has been set to #, and we choose alignment rates as for the
Glauber dynamics of the XY model. More precisely, we consider

exp <6 Zny 1y cos(6y — 9))
Jiexp (ﬁ ey €0S(0,, — 9/)) i

which tends to align 6, with the 6,’s, where y is a neighbor site of z. In the jump rates above, we take the
value in [—, 7] of the angle 6, — 6. The intensity A and the inverse temperature 3 still tune the strength
of the drift and the alignment.
As mentioned before, we settle for now for a heuristic formulation of the hydrodynamic limit. Let us
denote by p{(u) the macroscopic density of particles with angle 6, and by p;(u) = [, p{(u)d6 the total
—

~

C-’Eﬁ(@’n)

density at any point u in the periodic domain T? := [0,1]2. Let us also denote by ; the local direction

of the averaged asymmetry
= cos(0)
Qi (u :/ 02 (u ( ) )d@.
() [0,27] (u) sin(0)

As expected from (1.1), the main result of this article is that p? is solution, in a weak sense, to the partial
differential equation

(1.3)  &upf = V-[o(pf,p)Vpe +ds(p) V(] +2V. [s(pf, PN + dy ()l (i;gzm +1,

with initial profile
po(u) = C(u,0).

In the PDE (1.3), d; is the self-diffusion coefficient for the SSEP in dimension 2 mentioned previously, the
coefficients 0 and s are the same as in the two-type case, and I'; is the local creation rate of particles with
angles 0, which can be written as the expectation under a product measure of the microscopic creation
rate.

Before properly stating the hydrodynamic limit, let us recall the major difficulties of the proof. The
main challenge is the non-gradient nature of the model : the instantaneous current of particles with angle
0 between two neighboring sites x and = + e; can be written

T wter = Lou=oy e (1 = Notes) = Lo, =03 wtes (1 — 1),

which is not a discrete gradient. One also has to deal with the loss of ergodicity at high densities, and with
the asymmetry affecting the displacement of each particle, which drives the system out-of-equilibrium,
and complicates the non-gradient method. Finally, the non-linearity of the limiting equation also induces
several difficulties throughout the proof.

Model extensions. — Several design choices for the model have been made either to simplify the notations,
or to be coherent with the collective dynamics motivations. However, we present now some of the possible
changes for which our proof still holds with minimal adaptations.
— The model can easily be adapted to dimensions d > 2. The dimension 1, however, exhibits very
different behavior, since neighboring particles with opposite drifts have pathological behavior and
freeze the system.
— The nearest neighbor jumps dynamics can be replaced by one with symmetric transition function
p(+). This involves minor adjustments of the limiting equation, as solved by Quastel [35].
— The drift functions can be replaced by any bounded function, and can also involve a spatial
dependence, as soon as \;(u, #) is a smooth function of the space variable w.
— We chose for our alignment dynamics a jump process, however analogous results would hold for
diffusive alignment. The jump rates can also be changed to any local and bounded rates.
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1.6. Structure of the article. — Section 2 is dedicated to the full description of the model, to
introducing the main notations, and the proper formulation of the hydrodynamic limit for the Active
Exclusion Process.

Section 3 is composed of three distinct parts. In 3.1 we characterize local equilibrium for our process
by introducing the set M ($) of parameters for the grand canonical measures of our process. We also
give a topological setup for M (3), for which some elementary properties are given in Appendix B. In
Section 3.2, we prove using classical tools that the entropy of the measure of our process with respect
to a reference product measure is of order N2. The last part 3.3 of this Section tackles the problem of
irreducibility, which is specific to our model and is one of its major difficulties. The main result there is
that on a microscopic scale, large local clusters are seldom completely full, which is necessary to ensure
irreducibility on a microscopic level.

Section 4 proves a law of large numbers for our process. The Replacement Lemma stated in Section 4.1
relies on the usual one block (Section 4.3) and two blocks (Section 4.4) estimates. However, even though
we use the classical strategy to prove both estimates, some technical adaptations are necessary to account
for the specificities of our model.

Section 5 acts as a preliminary to the non-gradient method. The two main results of this section are
the spectral gap of the symmetric generator on a specific class of functions (Section 5.2), whose proof’s
strategy is due to Quastel [35], and the comparison of the AEP’s measure to that of an equilibrium
process without drift nor alignment (Section 5.3). We also prove there, adapting the classical methods, a
compactness result for the sequence of measures of our process, (Section 5.4) as well as an energy estimate
(Section 5.5) necessary for the non-gradient method.

The non-gradient estimates are obtained in Section 6. It is composed of a large number of intermediate
results which we do not describe here. The use of the non-gradient method to the AEP, however, requires
to overcome several issues specific to our model. One specific difficulty is solved in Section 6.3, where we
estimate the contributions of microscopic full clusters. In Sections 6.8 and 6.9, we prove that for our well
chosen diffusion and conductivity coefficients, the total displacement currents can be replaced by the sum
of a gradient quantity and the drift term. For the sake of clarity, we use to do so the modern formalism
for hydrodynamic limits as presented in [27] rather than the one used in [35].

All these results come together in Section 7, where we conclude the proof of the hydrodynamic limit
for our process. Some more specific work is necessary in order to perform the second integration by parts,
due to the delicate shape of the diffusive part of our limiting differential equation.

2. Notations and Main theorem

We describe an interacting particle system, where a particle follows an exclusion dynamics with a weak
bias depending on an angle associated to this particle. At the same time, each particle updates its angle
according to the angles of the neighboring particle. We study the macroscopic behavior of the corresponding
2-dimensional system with a periodic boundary condition.

2.1. Main notations and introduction of the Markov generator. — A configuration of the system
is made of two parts. The first one is the set of occupied sites, and the second the preferred direction of
the particles. More precisely, on the two dimensional discrete set

T% = {1,...,N}?

with periodic boundary conditions, we define the occupation configuration n = (1) ,cr2, € {0, 1}T% which
determines the occupied sites of the domain. We allow at most one particle per site, and 7, represents
whether the site z € T% is occupied (1, = 1) or empty (1, = 0). For any occupied site x € T4, we also
introduce 0, € [0, 27| the angle of the particle at x, which represents the mean direction of its velocity in
the plane. We will denote by
S =1[0,2n],

the periodic set of possible angles. When the site z is unoccupied, the angle of the site is set to 6, = 0
by default.
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Definition 2.1 (Configurations, cylinder & angle-blind functions)
For any site x € T%, we denote by 7). the pair (1, 0.), and by 7 = (7le)zeT2, the complete configuration.
The set of all configurations will be denoted by

Sy = {(7730’930)1611“%, € ({0,1} x 8)™ | 0, = 0 if , = o} .

We will call eylinder function any function f depending on a finite set of vertices By C T%;, and C*
w.r.t. each 0, for any € By. The set of cylinder functions on the torus will be denoted C. Note that a
cylinder function is always bounded.

We will call angle-blind function any function depending on 7 only through the occupation variables
n= (nw)xeT?V . In other words, an angle-blind function depends on the position of particles, but not on
their angles. We denote by S C C the set of cylinder angle-blind functions.

We will use on the discrete torus the notations |.| for the norm |z | =", |z;|.

Let T be a fixed time, we now introduce the process (7(t))e[0,r] on X which is central to our work.
Our goal is to combine the two dynamics present in Viscek’s model [50] : The first part of the process is
the displacement dynamic, which rules the motion of each particle. The moves occur at rates biased by
the angle of the particle, and follows the exclusion rule. Thus, for § = +1 the rate p,(de;, ) at which the
particle at site x moves to an empty site x + de;, letting e; = (1,0), ea = (0,1) be the canonical basis in
Z2, is given by

I 1+ Xocos(6,)/N if i=1
Po(96:, 1) = { 1426 sin((é)x));N if =2
where A € R is a positive parameter which characterizes the strength of the asymmetry. For convenience,
we will denote throughout the proof

(2.1) A1(0) = Acos(9) and A2(0) = Asin(6).

The previous rates indicate that the motion of each particle is biased in a direction given by its angle.
The motion follows an exclusion rule, which means that if the target site is already occupied, the jump is
canceled. Note that in order to see the symmetric and asymmetric contributions in the diffusive scaling
limit, we must indeed choose an asymmetry scaling as 1/N. Furthermore, in order for the system to
exhibit a macroscopic behavior in the limit N — oo, we need to accelerate the whole exclusion process
by N2, as discussed further later on.

The second part of the dynamic is the spin update process, which will be from now on referred to as the
Glauber part of the dynamic. A wide variety of choices is available among discontinuous angle dynamics
(jump process) and continuous angle dynamics (diffusion). We choose here a Glauber jump process with
inverse temperature 8 > 0 described more precisely below.

The generator of the complete Markov process is given by

(2.2) Ly = N2LP + L€,
where
1
D _ L v
(2.3) L —£+N£

is the generator for the displacement process (which two parts are defined below) and £€ is the generator
of the Glauber dynamics. The process can therefore be decomposed into three distinct parts, with different
scalings in N, namely the symmetric part of the motion, with generator N2£, the asymmetric contribution
to the displacement generator N £L"* with parameter A > 0, and finally the spin-alignment with generator
L8 and inverse temperature S > 0, which are defined for any function f : Y5 — R, by

(2.4) LIM) =D > e (L=masy) (FG") = f(@))

z€T?, | 2 |=1

L@ =Y > N0x)ne (1= nagse,) (FE™T) — (@)

z€T?, i=1,2, §==+1
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(2.5) o =3 n /S er 5(0,7) (F0) — F(7)) do.

2
zeT%,

Note that £" alone is not a Markov generator due to the negative jump rates, but considering the
complete displacement generator £ + N 1L solves this issue. In the expressions above, we denoted
n%®*+* the configuration where the occupation variables 7, and 7),,. at sites x and x + z have been

exchanged in 7

Mt if y=2a,
ﬁg’ﬁz = N if y=1x+2,
My otherwise,

and 7% the configuration where the angle 6, in 7 has been updated to @

~r,0 _ { (nyae) if y=ux,

Y Ty otherwise.

We choose for ¢, 5 the jump rates
exp (5 Dy Ty €O8(6y — 9))
Jiexp (ﬁ 3y Ty COS(6, — 9/)) i

which tend to align the angle in z with the neighboring particles according to XY-like jump rates with
inverse temperature (. Note that by construction, for any non-negative 3, [, ¢, 3(0,7)df = 1 and that
the jump rates c; g(0,7) can be uniformly bounded from above and below by two positive constants

01’5(9, ﬁ) =

depending only on f.
The process defined above will be referred to as Active Exclusion Process, shortened as AEP.

2.2. Measures associated to a smooth profile and definition of the Markov process. — We
now introduce the important measures and macroscopic quantities appearing in the expression of the
hydrodynamic limit. Let us denote by T? the periodic domain in dimension 2,

T = [0, 1]°.
Definition 2.2 (Density profile on T?). — We call density profile on the torus any function
p: (u,df) — p(u,dd)

such that

— for any u € T?, p(u,.) is a positive measure on $.

— For any u € T?, the total mass p(u) of p(u,.) is in [0,1].
For any density profile p on the torus, p(u,df) represents the local density in u of particles with angle in
df, and p represents the total density of particles in u.

Definition 2.3 (Measure associated to a density profile on the torus)
To any density profile on the torus p, we associate pg , the product measure on Xy such that the law
of 7, is given for any = € T%, by

1y (e = 0) =1—p(z/N),
(2.6) py (e = 1) = p(z/N),

i (0, € do | n, = 1) = B(w/N,d8) /p(x/N),
and such that 7,7, are independent as soon as x # y.

In other words, under ,ug an occupied site in z € T3 has probability p(z/N) = f[o;%[ﬁ(m/Nﬁ)dQ,
the angle of an empty site is 0, and the angle of an occupied site z is distributed according to p(z/N,-).
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Definition of the process. — Let EE?,’T] := D([0,T],Xy) denote the space of right-continuous and left-
limited (cadlag) trajectories 7j : t — 7j(t). We will denote by 7l%7] the elements of ZES’T]. For any initial
measure v on T%, any non-negative drift A > 0, and any 3 > 0, we write P)-# for the measure on E[IS’T]
starting from the measure 7(0) ~ v, and driven by the Markov generator Ly = Ly (A, ) described
earlier. We denote by E)# the expectation w.r.t. P)#. In the case A = 8 = 0, there is no drift and the
angle of the particles are chosen uniformly in $. In this case, we will omit A and [ in the previous notation
and write P, for the measure and E, for the corresponding expectation. Let us now define the initial
measure from which we start our process. Let Z € C(T? x $) be a continuous function on T? x $, which
will define the initial macroscopic state of our particle system. We assume that for any u € T?,

(2.7) 0 < C(u) = /SE(U, 0)do < 1,

i.e. that the initial density is less than one initially everywhere on T?, as well as for any 6 € S,

~

(2.8) C(u,0) > 0.

We can now define the initial density profile on the torus p, by

~

(2.9) polu, d8) = C(u, 6)do.
We start our process from a random configuration

(2.10) 7(0) ~ p™ = pl

fitting the profile p,, according to Definition 2.3. Given this initial configuration, we define the Markov

(0,77
N

process 7071 € ¥ ~ Piﬁ driven by the generator Ly introduced in (2.2), starting from p'.

Topological setup. — Let us denote by M(T? x §) the space of positive measures on the continuous
configuration space, and

(2.11) MOT = D ([0,T] x M(T? x 3))

the space of right-continuous and left-limited trajectories of measures on T? x $. Each trajectory 707

of the process admits a natural image in M[*7] through its empirical measure

. 1
ﬂ-iv (n[O,T]> = N2 Z nx(t)(s(w/N,@w(t))'
zeT?,

We endow M%7 with Skorohod’s metric defined in Appendix A.1, and the set P(M!%T1) of probability
measures on M) with the weak topology. We now define QN € P(M[®T) the law of the empirical

measure 7" (71%71) of our process 771 ~ Pz,f

2.3. Hydrodynamic limit. —

Self-diffusion coefficient. — The hydrodynamic limit for our system involves the diffusion coefficient of a
tagged particle for symmetric simple exclusion process (SSEP) in dimension 2. Let us briefly remind here
its definition. On Z?2, consider a infinite equilibrium SSEP with density p and a tagged particle placed
at time 0 at the origin. e keep track of the position X (t) = (X1 (t), X2(t)) € Z? of the tracer particle at
time ¢ and denote by @}, the measure of the process starting with measure 4, on 72\ {0} and a particle
at the origin.

Definition 2.4 (Self-Diffusion coefficient). — The self-diffusion coeflicient ds(p) is defined as the
limiting variance of the tagged particle
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From a mathematical standpoint, this result is a consequence of [28]. A variational formula for d, has
been obtained later by Spohn [44]. The regularity of the self-diffusion coefficient was first investigated in
[49], where Varadhan shows that the self-diffusion matrix is Lipschitz-continuous in any dimension d > 3.
Landim, Olla and Varadhan since then proved in [30] that the self-diffusion coefficient is in fact of class
C* in any dimension. The matter of self-diffusion being treated in full detail in Section 6, p199-240 of
[29], we do not develop it further here. We summarize in appendix A.2 some useful results on the matter.

Diffusion, conductivity and alignment coefficients. — Given a density profile on the torus p(u, df), recall
from Definition 2.2 that p(u) = [4 p(u,df) is the local density. We introduce the coefficients
p(u,do) p(u,dd)

(2.12)  (p,p)(u,df) =

(1 =ds(p(w))),  s(p,p)(u,d0) = (1 = p(u) — ds(p(u)))

)

p(u)

N
where ds is the self-diffusion coefficient described in the previous paragraph. We also define Q(p), the
vector representing the mean direction of the asymmetry under p,

= ~ cos(6")
Q = do’ .
@ = [ plwa (50
as well as T'(p) the local creation rate of particles with angle 0
L(p)(u,dd) = p(u,dd) [Epeu,.)(co,s(6,7) — 1],
where under Ej(, ), each site is occupied independently w.p. p(u), and the angle of each particle is

chosen according to the probability law p(u, -)/p(u). The exact definition of E5,,.) is given just below in
Definition 3.4.

pu)

Weak solutions of the PDE. — 1In order to state the hydrodynamic limit of our system, we need to
describe the notion of weak solutions in our case, which is quite delicate because of the angles.

Definition 2.5 (Weak solution of the differential equation). — Any trajectory of measures
(7t )eeiom) € MIUOT] will be called a weak solution of the partial differential equation

(2.13)
=N =N =N =N — =N 9 R N —~
Oipr = V. [0(pr, pe)Vpe + ds(pe)Ve] + 20V |5(De, pe) Q4 + prds(pr) (;?jgeiﬂ +T'(p) and po =,

if the following four conditions are satisfied :

i) mo(du,dl) = ((u,0)dudd

ii) for any fixed time ¢t € [0, T], the measure 7; is absolutely continuous in space w.r.t. the Lebesgue
measure on T2, i.e. there exists a density profile on the torus (in the sense of Definition 2.2) p,, such
that

¢ (du, df) = p,(u, df)du.

iii) Letting p¢(u) = [ py(u,df), pis in H'([0,T] x T?), i.e. there exists a family of functions 9, p¢
in L2([0,T] x T?) such that for any smooth function G € C%*([0,T] x T?),

/ pt(1)0y,; Gy (u)dtdu = —/ G (uw)Oy, pr(u)dtdu
(0,7]xT? [0,T]xT2

iv) For any function H € C1*1([0,7] x T? x $),

T
<7TT,HT>—<7T0,H0 >:/ <7rt,8th>dt
0

T 2
-] [Z (00 Hi. ) 0051 ) — 1)) (0 00)01 1) — 02, i 0)d ()P, 0

0, Hy(u,0) [m(ﬁt, P93 + 2Ai<9>d8<pt>ﬁt} (u, d9>) ~ Hy(u, 0)T(3,) (u, d0) | dudr,

where the various coefficients are those defined just before, and the functions A; are defined in (2.1).



16 C.ERIGNOUX

Note that in this Definition, the only quantity required to be in H' is the total density p : indeed, the
term ds(p)Vp; is rewritten as

ds(pe) Ve = V(ds(pe)pr) — di(pe) e Ve,

and the first term in the right-hand side above allows another derivative to be applied to the test function
H, whereas the second term only involves the derivative of p as wanted.
We are now ready to state our main theorem :

Theorem 2.6. — The sequence (QN)yen defined at the end of Section 3.1 is weakly relatively compact,
and any of its limit points Q™ is concentrated on trajectories (m¢)ic(o, 1) which are weak solution of equation
(2.13) in the sense of Definition 2.5.

Remark 2.7 (Uniqueness of the weak solutions of equation (2.13))

One of the reasons for our weak formulation of the scaling limit of the Active Exclusion Process is the
lack of proof for the uniqueness of weak solutions of equation (2.13). Several features of equation (2.13)
make the uniqueness difficult to obtain : First, our differential equation does not really take the form of
an autonomous differential equation : the variation of p;(u, ) involves the total density p, therefore the
differential equation is in fact a differential system operating on the vector (p;(u, ), p:(u)). Cross-diffusive
systems can exhibit pathological behavior when the diffusion matrix has negative eigenvalues, but in our
case, both eigenvalues are non-negative and this issue does not appear.

However, although cross-diffusive systems are quite well understood (cf. for example [1]), our equation

involves a drift term which factors in via the vector B(ﬁt) the whole profile (p;(u,0))sc[o,25- One of
the consequences of this drift term, which is the main obstacle to prove uniqueness, is that even the
uniqueness of the total density p;(u) is not well established. Indeed, contrary to [35], in which the total
density evolves according to the heat equation, the total density in our case is driven by the Burgers-like
equation
Iepr(u) = Apy(u) + V.(me(u) (1 — pe(u)))

where m is a quantity which depends on the whole profile (p;(u,0))ge[0,2x], and for which uniqueness is
hard to obtain.

2.4. Instantaneous currents. — In order to get a grasp on the delicate points of the proof, and to
introduce the particle currents on which rely the proof of Theorem 2.6, we need a few more notations.

Throughout the proof, for any function ¢ : ¥x — R and = € T%, we will denote by 7,¢ : ¥x — R
the function which associates to a configuration 7 the value ¢(7_,17), where 7_,7 is the translation of the
configuration 7] by a vector —z.

For any function

H: [0,T]xT?x8§ — R
(t,u,0) —  Hi(u,0)’

and any measure 7 on T2 x 8, let us denote

<m H >= Hy(u,0)dn(u,0)
T2x$

the integral of H with respect to the measure m. We consider the martingale MtH N
T

(2.14) MPN =< 2N H, > — <z}, Hy > —/ (0 4+ Ly) < 7N, H, > ds,
0

where 72 is the empirical measure of the process

1
N
Ts = N2 > 12(8)0(a N0, (5))-

2
zeT%,

It is well known that the quadratic variation of this martingale can be explicitly computed, and is of
order O(N~2) (cf. Appendix 1.5 of [27]) and therefore vanishes as N goes to infinity. The martingale
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thus vanishes uniformly in time, in probability under IP’;;]? Now let us recall that

Ly =N?(L+N7'L™) + L%,
and that 7, represents the translation of a function by x. Assume that the function H takes the form
(2.15) H, (z,0) = G, (2)w(0),

where GG and w are respectively functions on [0, T[xT? and $. From now on, for any function ® : $ — R,
any configuration 7 and any z € T3, we will shorten

n® = ®(0,)n,.
With these notations, we can write the generator part of the integral term of (2.14) as
g N e 2 1
(2.16) /0 Ly <a¥,Hy > ds= ﬁ/o > Gu(a/N) (N?[Ln (s) + N7 () + L9972 (s)]ds.
wET%

Let us introduce accordingly the three instantaneous currents in our active exclusion process (AEP).

Definition 2.8. — Given a site x € T%;, each part of the generator Ly’s action over ¥ can be written
2
(2.17) Loy = (remed —mj)  with  GE@) = ng (1—ne,) =02 (1—m0),
i=1
2
(2.18) LY = (rpey —mory)  with v (@) = 5™ (1= ne,) + 02 (1= o),
i=1
and
(2.19) LY =1,7%  with @) = [ cos(0,0)(w(0) —w(By))do.
3

For e; € {1,i} we will at times write j&, .. = 72j§" (vesp. 1% . ..

instantaneous current with intensity w in the direction i along the edge (x, z +¢;) of the symmetric (resp.
weakly asymmetric) part of the process. The last quantity 7,v* is the local alignment rate.

When considering the time process (7(t)):cjo,r] we will, for the sake of concision, write ji’(t) for
J¢(M(t)), and in the same fashion 7Y (¢) instead of 7 (7(t)), and ~v*(¢) instead of v (7(¢)).

Finally, in the case where w = 1, we will denote by

= 7,r¥), which is interpreted as the

Ji =38 =m0 = 7e,-

Performing a first integration by parts on the exclusion part of the right-hand side of (2.16), we obtain
thanks to equations (2.17), (2.18) and (2.19)
(2.20)

T 1 /7
/ Ln <N H, > ds = ﬁ/ S 7 |30 (NI (6) + 1290w Cila/N) + G/ N)y(5) | ds,

0 U P

where 0, v is the discrete partial derivative

(Ou, NG)(x/N) = N [G((x + €;)/N) = G(z/N)].

The spatial averaging is of great importance throughout the proof of the hydrodynamic limit, we need
some convenient notation to represent this operation. For any site z € T4 and any integer [, we denote
by

Bi(z)={yeTk, lly—allo<l}
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the box of side length 2] 4+ 1 around z. In the case where x = 0 is the origin, we will simply write
By := By(0). For any finite subset B C T%;, we will denote | B| the number of sites in B. Given ¢ a
function on X, we denote by

1
(2.21) (o), = B Z Ty
| Bi() |
yEBi(x)
the average of the function ¢ over B;(x). In the case where () = 1§, (resp. ¢(7) = 1n0), we will write
0¥ = (p)} (resp. 7,p;) for the empirical average of ¢ (resp. 1) over the box centered in z of side length
204 1.
We will also denote for any integer [ by p; the empirical angle measure defined by

1
= @ Z Nz, € M1 (9),

x€DB;

(2.22) i

where M;($) is the set of non-negative measures on $ with total mass in [0, 1] (cf. Definition 3.1 below).
Finally, to simplify notations throughout the proof, we will write e N instead of the integer part [eN |.

3. Canonical measures, entropy and irreducibility

3.1. Definition of the canonical measures. — Due to the presence of angles, the canonical product
measures for the AEP are not parameterized by the local density « € [0, 1] like the SSEP, but rather by
a measure & on [0, 27| whose total mass [ a(df) is the local density.

Definition 3.1 (Angle profile). — Recall that T? is the 2-dimensional continuous torus (R/Z)?, and
let M(S) be the set of non-negative measures on $. We will call angle measure any measure & € M(9)
with total mass a := [ a(df) < 1. We denote by

(3.1) Mi(B)={aeM($), acl01]},
the set of angle measures.

We now define a topological setup on M;(3$). Let us consider on C1(8), the set of differentiable
functions, the norm ||g||* = max(||g|| . ,|l¢'l|..), and let B* be the unit ball in (C*($), ||.||").

Definition 3.2. — We endow M (), the vector space of finite mass signed measures on $, with the

o Il = sup { / g(e)da@} |

and with the corresponding distance

d(@,a’) := sup {/g(ﬁ)d@(@ —/g(ﬁ)da’(ﬁ)}-

geB* 3 S
We then endow M; ($) with the topology induced by ||| . |||- This distance is in fact a generalization of
the Wasserstein distance to measures which are not probability measures.

Remark 3.3. — This topology is the simplest to verify that
— for any cylinder function %, the application & — E5(v) is Lipschitz-continuous (cf. Proposition
B.2).
— any continuous profile @ is the limit of combinations of Dirac measures.
— if 0k — 9, then |H 59k — 59 ||| — 0.
It is therefore the natural choice for our problem. For example, the last condition would not be verified
by the weak topology on $, since for any 6 # ¢’ one can find a continuous function g such that g() =0
and g(¢') = 1.

We now introduce the canonical measures of our process, which are translation-invariant particular
cases of measures associated to a density profile, introduced in Definition 2.3.
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Definition 3.4 (Grand canonical measures). — Consider a translation invariant density profile on
the torus p, i.e. such that for any u € T?,

p(u, df) = a(do)

for some angle measure & € M;(%) independent of u. We will write ugz for the product measure ug ,
and E; will denote the corresponding expectation. This class of measures will be referred to as grand
canonical measures. Furthermore, for any o € [0, 1], the measure pg associated with the uniform density
profile on the torus

plu,dd) = adf /2,

where the angle of each particle is chosen uniformly in $, will be denoted by u}, and the corresponding
expectation will be denoted by E.

Note that these measures are dependent on N, but due to their translation invariant nature, we will
omit this dependence in our notation.

Remark 3.5. — For any density a € [0,1], the measure p’, on Xy is not invariant for our dynamic,
because although it is invariant for the symmetric part of the exclusion, the weakly asymmetric part (as
well as the Glauber part as soon as 8 # 0) breaks this property. We will however prove in Section 3.2 that
due to the scaling in IV, the stationary measure of our dynamics is locally close to a product measure p,.

Definition 3.6 (Canonical measures). — Consider ! € N* and let K be an integer bounded up by
(21 +1)? and O = {#y,...,0k} an orderless family of angles, we shorten by K the pair (K,Ox). We
will denote by K; the set of all possible K,

K, = {K = (K,Ok), K < (20 +1)%}.

Since our process is not irreducible when there is only one or less empty site (Cf Section 3.3 below), we
also introduce

(3.2) K ={KeK;, K< (20+1)*-2},
the set of K for which the exclusion process on By is irreducible. Furthermore, for any fixed K e K;, we
denote by
R K
(3.3) = = {776 SNy Y Mede, = Z%k} ;
rEB); k=1

the set of configurations with K particles of angles O in B;.
Let p7, ; denote the measure 7, on By, for any density a €]0, 1, we will denote by y, » the conditioning

of P tO Elf(, and by E, » the corresponding expectation

E (o) =i (g | nexf).
These measures will be referred to as canonical measures of the process.
Definition 3.7. — Fix | € N, we associate to any K € K, the angle measure

~

1 K
a[?,l = (2l + 1)2 ;5(#

When there is no ambiguity, we will drop the dependence in [ and simply write ap = ay .

Several results regarding the metric space (M1(9), ||| . |||) are stated in Appendix B : The equivalence
of ensembles is briefly proved in Section B.1, the Lipschitz-continuity of the expectation w.r.t. uz in the
parameter @ is proven in Section B.2, and finally, the compactness of the set (M1(3), ]| . |||) is proved in

Section B.3.
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3.2. Entropy production and local equilibriumm. — The proof of the replacement Lemma is based
on the control of the entropy production of the process. The difficulty here is that the invariant measures of
the process are not known, and the decay of the relative entropy w.r.t. these measures cannot be computed
directly. Thus we consider approzimations of these measures, and for a fized non-trivial density o €]0, 1],
our goal is to get an estimate of the entropy of the process’s time average with respect to the reference
measure p, introduced in Definition 3./.

Let us fix a €]0,1[, we are going to prove that regardless of the initial density profile, the entropy
of the AEP w.r.t the measure of a process started from p} and following a symmetric simple exclusion
process can be controlled by CN? for some constant C.

The choice of u} among the p*,, o/ €]0,1] is not important, since for any different angle density
o’ €]0, 1], the relative entropy between the two product measures p’ and u, is of order N? as well.

For some cylinder function h € C, and some edge a = (a1, az), we denote by V, the gradient repre-
senting the transfer of a particle from site a; to site as under the exclusion process

(3.4) Vaf () = 1ay (1= 1a,) (f (") = f(7)) -

We will shorten this notation in the case where a = (0,e;) by writing V; := V(0,¢,;)- Before turning
to the control of the entropy itself, we introduce an important quantity in the context of hydrodynamic
limits.

Definition 3.8 (Dirichlet form of the symmetric dynamics). — Let h be a cylinder function, we
introduce the Dirichlet form of the process

(3.5) Da(h) = —Ea(hLh),

where £ is the symmetric exclusion generator defined in equation (2.4). It can be rewritten thanks to
the invariance of pg w.r.t the symmetric exclusion process as

Zah) = 3Ba [ 3 3 (Vawreh)?

z€T% | z|=1

If there is no ambiguity, we will omit the dependence in & of the Dirichlet form, and simply denote it by
2. The Dirichlet form is convex and non-negative. Furthermore, any function f in its kernel is such that
f(0) = f(@) for any pair (7, 7) of configurations with the same number of particles K < N? —1 and the
same family of angles. We also introduce the Dirichlet form

(3.6) D(h) = 2(Vh),

which has the same properties as Z.

We now investigate the entropy production of the AEP. Let PtN”\’B be the semi-group of the AEP
associated to the complete generator Ly introduced in equation (2.2), and p = ¥ PN the measure
of the configuration at time t. Thanks to the two assumptions (2.7) and (2.8), u!¥ is absolutely continuous
with respect to the product measure p,. This, and the fact that the alignment rates c, g are bounded
from above and below uniformly in @, guarantee that for any time ¢, u¥ is also absolutely continuous
w.r.t. 1. We therefore denote by f¥ = dulY /u¥, the density of the measure at time ¢ w.r.t. the reference
measure p,. We now prove the following estimate on the entropy of the function f7.

Proposition 3.9 (Control on the entropy and the Dirichlet form of f)
For any density f w.r.t. pl,, we denote by H(f) = EX (flog f) the entropy of the density f. Then, for

o~

any time t > 0, there exists a constant Ky = Ko(t, A, 3,¢) such that

1/t 1/t
H (t/ fSNds) < KyN? and D (t/ fSNds) < K.
0 0
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Proof of Proposition 3.9. — The density £ is solution to
{atftN = Ly SN
fo = du™ /dus,

where L% is the adjoint of Ly in L?(u%). To clarify the proof, we divide it in a series of steps.

(3.7)

Expression of the entropy production of the system. — The relative entropy of ul¥ with respect to the
reference measure p), is given by

H(uy | o) = H(fY) =B (fM log f1Y)
which is non-negative due to the convexity on [0, +o00[ of  — zlogx. According to equation (3.7), its
time derivative is

(3.8) OH (f") = By, (log [N Ly fY) +EL (Ly )
The second term on the right-hand side is equal to
E; (Li ) =Es (fMInT) =0,
since all constant functions are in the kernel of Ly. Equation (3.8) can be rewritten, since L% is the
adjoint of Ly in L?(u}), as
O.H (f") =Eg, (fi" Ly log ;") .
Now thanks to the elementary inequality

(Vb —Va),

2
logb —loga < —
a

7

we can control Ly log f¥ by
2

WLN ftN7

therefore, the definition of Ly yields

(%) < 28D (7) + 28 (V5o ) 2w (Ve /1)

where D is the Dirichlet form defined in Definition 3.8.
Integrating between the times 0 and ¢, we get

o) HG L) 2n [ D) <G vz [ m (Ve e /i) o

Since the Dirichlet form of the symmetric exclusion process is non-negative, we now focus on showing
that the part of the entropy due to the weakly asymmetric part and Glauber part do not grow too much
in N, in order to get an upper bound on the Dirichlet form D(f) and on the entropy H(ul | pZ). From
here, control over the initial relative entropy should suffice to ensure that the measure of the AEP remains
close to a product measure.

Bound on the entropy production of the asymmetric part of the dynamics. — by definition of the asym-
metric dynamic,

B (Ve i) =B | A -y 5@ (Vi - 1)

r,i,0==%1

Despite the extra factor IV, the jump rates of the weakly asymmetric dynamics are not very different
from symmetric exclusion process jump rates, which allows us to estimate the quantity above in terms of
the Dirichlet form. More precisely, thanks to the elementary inequality

E(py) < 1E(9?)/2 + E(¥?)/2y

which holds for any positive constant v, we can write with

o == ) (VI - 1@,
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and
Y = N0:)04\/ V(1)
that

Ez( VL fSN)

< 3[R fs)+';ﬂ<:z:<x< — ) (VIF @0 -1 @) )]

In right-hand side above, letting C\, = 4\? the first term can be bounded by C\N?/2+, since the number
of terms in the sum is 4N?2, whereas the second sum of terms is yD(fN). We then let v = N to obtain

the upper bound
(3.10) 2NE, ( e ng) < O\N? + N2D(fN).

Bound on the entropy production of the Glauber part of the dynamics. — thanks to the elementary
inequality ab < (a% + b?)/2, and since the jump rates c, g are less than e*% /27, and 5, by 1

£ (Ve i) sz (Vi S o [t (Vira - @) a

zeT%,
e8P 3
< * [ = N (~x,0 2 eN (=~ .
<G % B (5 [ XG50 @)
TeLN

Since E, ([ fN(77%)d0) = EZ, (fY), the expectation can be bounded from above by 2, and we can
therefore write, letting Cg = 2e%° /7

(3.11) 2E* ( f&ﬁ%/ﬁ) < CgN2.

Bound on the Dirichlet form and on the entropy production. — at this point, we obtain from (3.9), (3.10)
and (3.11)

t
|1+ N [ D (1) ds < N |12) +HCx -+ Co)N?

By assumption (2.8), the initial density ¢ € C(T? x $) is positive and continuous, therefore there exists
two constants ¢ and C such that
0<c< C <C.

Furthermore, by assumption (2.7), for any u € T%, fS u,0)df €]0,1[ and is continuous in wu,
thus there exists ¢ and C’ such that for any u € ']I‘2

0<dcd <¢u)<C' <1.
These two conditions yield that for some constant K = K (E ), for any N € N, we can estimate the relative
entropy of the initial measure p w.r.t. u¥ by
(3.12) H(u™ | ut) < KN?.

We can therefore write
tNQ
(3.13) Gl i)+ [ 55D (1Y) < KN
0

where K(t) = K + t(Cx + Cjp) is a positive constant. Since H(f) = EX (flog f) and D(f) are both non-
negative and convex, we can deduce from (3.13), that for some time-dependent constant Ko = fot K(s)ds
we have

t t
(3.14) H (1/ fsN) <KoN?* and D <1/ fsNds> < K.
0 0

This upper bound proves proposition 3.9, and will be necessary in the next Section to apply the replace-
ment Lemma 4.1 to the AEP. O
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Before taking on the problem of irreducibility, we give a result that will be needed several times
throughout the proof, and comes from the entropy inequality. Let us denote by £%A=9 the modified
Glauber generator with uniform update of the angle in $, (i.e. 8 = 0)

—0 1 B
L9 @) = 3 may- [(FG) - f@)ae
™ Js
z€T%,
and denote in a similar fashion
(3.15) L3 = N2LP 4 L9720,

which is the complete generator of the AEP with random update of the angles. Then, accordingly to our
previous notations, IP’i‘L;O is the measure on the trajectories started from p* and driven by the generator

L]BVZO. We can now state the following result.

Proposition 3.10 (Comparison of ]P’Zzg and Pz}xo). — There exists a constant Ko = Ko(T, 8, py) >
0 such that for any function X : EE?,’T] — R and any A > 0,

~ 1 n
¢ [ ()] < (s o 13 5+7)).
where %) is the notation already introduced at the end of Section 3.1 for a trajectory (7j(t))sepo,1)-

Proof of Proposition 3.10. — The proof of this Proposition is rather straightforward thanks to the en-
tropy inequality. In a first step, we compare the same process starting from p,. First note that for any

function X : ZE?[’T] — R, we can write

2 [x (7)) = 53¢ (% Gonx (7°71)).

This yields that
.10 B [x (707)] < 2 (HG™ | 1) + 1082 [exp (ax (7°7))]).

In the entropy inequality above, Eif is the expectation under the measure of the process started from
p, whereas IEf;(B is that of the process started from the stationary measure ;.

By (3.12), the first term in the right-hand side above is less than K N?/A for some fixed constant
K=K (Z ). Furthermore, the Radon-Nikodym derivative of the process with alignment (3 > 0) w.r.t the
one without alignment (8 = 0) can be explicitly computed. Given a cadlag trajectory ploTl ¢ EES,’T],
consider 71, ..., 7g the set of angle jumps between times 0 and 7', let us denote by x; the site at which
the angle changed at time 7;, and by 0; = 6., (7;) the new angle at site z;. Then, the density between the

measures with and without alignment is given by

R ~
Py’ @) =] Caci,ﬂ(@’ﬁ(%‘)) < SR
ey i Cai0(05,70(m))
where R is the number of angle updates between times 0 and 7. To establish the estimate above, we
used that ¢, (6,7) can be uniformly bounded from above by e*% /27, that ¢, o(,7) = 1/27, and that
regardless of the configuration and the inverse temperature §, each site updates its angle at rate 1(i.e.
Jp €2,5(0,7) = 1). We can now estimate the second term in the right-hand side of equation (3.16) by
1 N
1 log}Ei‘L’zO {eSﬂR exp <AX (n[O’T]>)} .
Applying the Cauchy-Schwarz inequality yields that the quantity above is less than
1 A A, ]
74 (log E#’ZO [ewﬂR] + log IE#':O [exp (2AX (n[O’T]))D .
Since the spin updates happen in each site at rate 1 except when the site is empty, we can define on the
same probability space as our process a family P, of i.i.d. Poisson variable with mean 7', and such that
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R< erT?V P,. thanks to the elementary inequality

1685, cr2, P}

logE |e =T(e'% —1)N?,

we now only have to let
Ko(T, B,0) = 2K(¢) + T(e** — 1)
and replace A by 2A to conclude the proof of Proposition 3.10. O

3.3. Irreducibility and control on full clusters. — Unlike the exclusion process with one type of
particles, the multi-type exclusion process is mot irreducible when the number of particles is too large,
namely when the domain has less than one empty sites. When all the sites are occupied for example, the
process is stuck in its current configuration, up to realignment, due to the exclusion rule. At high density,
we therefore lose the mizing properties we need to reach local equilibrium. To illustrate this statement,
consider a square macroscopic domain of size eN, and on it a configuration with the bottom half filled
with particles with angle 0, and the top half filled with particles with angle ' # 0, and letting a finite
number of sites be empty, the mizing time of this setup is of order larger than N? due to the rigidity of
the configuration. In order to reach equilibrium, an empty site needs to "fetch” a particle and transport it
in the other cluster, and so on, until the density is homogeneous for both types of particles. The scaling
of our alignment dynamics, is, furthermore, not sufficient to ensure sufficiently frequent realignment of
the particles to solve this issue.

In order to prove the scaling limit of a multi-type exclusion process, it is therefore critical to bound
the particle density away from 1. This issue was solved in [35] by using the fact that the total density of
the multi-type SSEP (the spin blind model) follows the standard SSEP dynamics (with one specie). Thus
the total density could be controlled by the classical argument on the hydrodynamic limit for SSEP. In
our case, however, the total density does not follow the SSEP dynamics. In fact, it is not even a Markov
chain due to the asymmetric parts which depend on the angles. A different argument is required to control
the evolution of the total density, which is the purpose of the subsection.

In the general setup where the number of types of particles in a domain B can reach | B| (which
will often be the case when particles take their angles in $), it is known that the exclusion process with
| B|—1 particles is no longer irreducible, as a consequence of a generalization of the n-puzzle (cf. Johnson
& Story, 1879, see [26]). We therefore need to consider only the local configurations with two empty sites,
on which the exclusion process is irreducible regardless of the number of types of particles, as stated in
the following Lemma.

Lemma 3.11 (Irreducibility of the displacement process with two empty sites)
Consider a square domain B = B,(x), and two configurations 7, 7j two configurations with the same
types and number of particles in B, i.e. such that
> nabo, =Y 1,00
zEB zeB
Then, there exists a sequence of configurations 7°,..., 0", such that 7° =7, 7" = 7, and such that for
any k € [0,n — 1], %+ is reached from 7* by one allowed particle jump, i.e.

7/’]\k+1 _ (ﬁk)wk,l'k-i-zk

Furthermore, there exists a constant C such that n < Cp*.

) and nf .. =1-nf =0 and |z | = 1.

Proof of Lemma 3.11. — The proof of this statement is quite elementary. Fix a configuration 7 € ¥y on
a rectangular domain B with two empty sites, and let a = (a1, az) be an edge in T%. We are first going
to prove that 7*%2 can be reached from 7 using allowed particles jumps. Notice that according to the
exclusion rule, we can consider that any empty site is allowed to move freely by exchanging their place
with any site next to it.

We first bring ourselves back to a configuration described in Fig. 2, where the two closest empty sites
are brought next to the edge a. More precisely, we reach a configuration where the two empty sites and
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New position of the two empty sites

Initial positions of the two empty sites

FIGURE 2. Reaching 7*°*? from 7 .

the two sites a; and ay are at the vertices of a side-1 square. From here, we are able to invert the two
particles in a; and as by a circular motion of the four empty sites along the edges of the square, and then
bring back the empty sites along the paths that brought them next to a to their original location. Doing
so0, one reaches exactly the configuration 7%4>*2 from 7 with allowed particle jumps in B.

We deduce from this last statement that for any pair of configurations 7, 77’ with the same particles in
B, 7' can be reached from 7 with jumps in B since the transition can be decomposed along switches of
nearest neighbor sites. The process is thus irreducible on the sets with fixed numbers K of particles, as
soon as K is smaller than | B| — 2. Furthermore, this construction guarantees that any two neighboring
particles can be switched with a number of particle exchanges of order p where we denoted by p the size
of the box. Since one needs to invert p pairs of particles at most to move one particle to its final position
in 77/, this proves the last statement. O

We now prove that large microscopic boxes are rarely fully occupied under the dynamics. Let us denote
by E, . the event

(3.17) Epo = Z ny < |Bp(z)| =2,

YyEBy(v)
on which the box of size p around z contains at least two empty sites. When the site z is the origin,
we will simply write E, instead of E, . In order to ensure that full clusters very rarely appear in the
dynamics, we need the following Lemma.

Proposition 3.12 (Control on full clusters). — For any positive time T,
A8 L
(3.18) plggo Jim E7 /0 oo > g (t)dt | =o0.

z€eT?%,

Remark 3.13 (Scheme of the proof). — We first sketch the proof in a continuous idealized setup to
explain the general ideas before giving the rigorous proof.

To prove that the box of microscopic side p is not full, setting p’ = (2p + 1)? the cardinal of B,, it is
enough to prove thanks to the microscopic setting that

// pf’(u)dudt — 0,
[0,T] xT2 p'—00

where p;(u) denotes the macroscopic density in u at time ¢.
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We expect the total density p to follow the partial differential equation
(3.19) dp = Dp+V.(m(1 - p)),

where m is a random quantity representing the local direction of the asymmetry. Should (3.19) be true,
we could therefore write, letting ¢(p) = 1/(1 — p)

o0 [ otoidu= [ /(o) Ao+ V.m0 = po)] du

= /1r2 ¢ (pe) [—(Vpe)* + mi(1 = pe) V] du

(Vpe)?
2

(3.20) < [0 [~ + Sk 1 - p?)

< [ nllmalle (1= podu =2l | oo

One could then apply Gronwall’s Lemma to obtain that for any time ¢,

/ ¢(Pt)du§62um”i°t/ o (po)du.
T2 T2

Furthermore, for any time ¢,

1 1-4
/ P(pe)du > g/ l{ptzl—aﬁ/ Lpci-ay = —5— | Lipzi-ap +1,
T2 T2 T2 T2

therefore, for any time ¢,

1) 2
, < 2f|ml |2t _ ,
(3.21) /T2 Ip>1-6y < 1-3 [‘3 /1T2 @ (po)du 1] 530 0

As a consequence, for any time ¢, we could therefore write

(3.22) // pf'(u)dudt <T(1 -6 + // Lip,>1-5}-
[0,T] x T2 [0,T]x T2

The first term in the right-hand side vanishes for any fixed § as p’ — oo, whereas the second becomes as
small as needed letting § — 0.
Since our macroscopic density does not verify equation (3.19), however, the operations above need to

be performed in a microscopic setup. The derivation of equation (3.21) is the purpose of Proposition 3.14.
Two intermediate Lemmas 3.15 and 3.16 prove the microscopic equivalent of equation (3.20).

Before giving the proof of Proposition 3.12, which is postponed to the end of the subsection, we give
first the following estimate.

Proposition 3.14 (High density estimate). — For any positive 0 < §' < 1/2, and any time t > 0,
we have the bound

1
. . A L ’
(3.23) limsuplimsupE 7 | 7 22 Lirpon(ty>1-263 | <0'C,
€Ty,
where C' is a finite constant depending continuously on t, and also depending on the asymmetry X\, and
the initial profile .

Proof of Proposition 3.14. — For any small § > 0, let us denote by ¢s the application

o5 = 0,1 — R,
A
Note that all successive derivatives of order less than k of ¢s are positive (and increasing) functions, and
all are bounded by 1/6%+1,
We now fix a C! function H : T? — R, and assume that fTQ H(u)du = 1. For any u € T?, we denote
by H, the function

H,:v— H(u—v).
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In order to simplify the notations, for any configuration 7) € X, and given its empirical measure 7%, we

shorten

N 1 T —y
(3.21) P i M o= 1 S 1 (S
yeT?,

We now write

(3.25) N 2 3 0s (@) | =B [ 3 Ewos () |
z€T%, zeT?,

where L is the generator of the complete process Ly = N2L+NL™4 LS. Our goal is to apply Gronwall’s
Lemma to the expectation in the left-hand side, therefore we now need to estimate the right-hand side.

Since p2Yf1 does not depend on the angles of the particles, neither does ¢s ( N, H) and the contribution
of the Glauber part L% of the generator Ly in the right-hand side above vanishes. The two other parts
of the generator together yield the wanted bound, and are treated in separate lemmas for the sake of
clarity. As mentioned earlier, these two lemmas are the microscopic equivalent of equation (3.20).

Lemma 3.15. — [Contribution of the symmetric part] There exists a sequence (cy (0, H))nen depending
only on § and H, vanishing as N — oo, and such that for any configuration ) € Xy

o (2 ) + ¢ (o)
(326) Y Los(NT) @< 3 aG )2 ‘5 (%~ o) () 4 en (6. ).

IET%\, xET?\,
i=1,2
Lemma 3.16. — [Contribution of the asymmetric part] There exists a sequence (¢ (0, H))nen depend-

ing only on ¢ and H, vanishing as N — oo, and such that for any configuration 1 € X

(3.27) Zﬁ‘% ) @)

wETz

(7) +en(0, H).

< Z 22: 5 (p2o™) + 6 (p2°) < NH NH)2+2/\2¢6(PJIV’H)

9 zte; — Pa N2

zeT%, Li=1
Proof of Lemma 3.15. — By definition of the symmetric part of the generator L,
> Los (@)= Y Z fmgsen=0y [85 (271 (V7)) = 05 (021 )]

zeT?, z,yeT?, i=1

We now develop the gradient of ¢ to the second order, to obtain that the right-hand side above is equal
to

5 3 e [0 (2 @) (217 — o)

z,y€eT?, i=1
oF (pX-H (7 . . . .
+ M (o (rvtery — pNH (@) 4 0 ((pi-V’H(ﬁy“y+ 0 —pi-V’H(n))2)]-

Note that since the successive derivatives of order less than k of ¢s are uniformly bounded on [0, 1] by
1/6%, the vanishing quantity o ((inH(ﬁyy*e) - inH(ﬁ))z) can be bounded uniformly in 7, z,y and i
(but not uniformly in ¢). Since H is a smooth function,

NH ~yy+ery  NH~ | _ 1 y+e\ y

N2
is of order N3, the contributions of the second line above are therefore at most of order N~2 and vanish
in the limit N — oo. This yields

(328) D Los (o) =D ¢ (pX @) Y Zﬂ{nynﬁe,m (o H (7 +2) — pNH (@) + 0w (1),

zeT?, z€T%, y€T2, i=1
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where oy (1) is less than a vanishing sequence (c})ven depending on § and H only.
Since for any z € T?, H, (v + z) = H,_.(v), the definition of p2"# yields

utes H 1 +e;
oo ot (750 = o5 @) =z = ) (Hops (5 ) = o (%))
1 Y ]
=52 (e (3) = Ho (7))
1 +e; +e;
- mnym <Hm/N (y Ne ) —Hyqeyn (yNe)> .

Summing the quantity above over y, one obtains exactly pz e; H 4 pz+e — 2pN:H | This is the discrete
Laplacian in the variable z of p)'# | and a discrete integration by parts allows us to rewrite the first term
on the right-hand side of equation (3.28) as

-2 22:(% (252) = 5 (2211)) (25 = X))

et i=1

We now write

(96 (22) =96 (22°) -2 (pm,);% e (P22 = ) 0 (2 = o)

in which inJ_I; — pN-H g of order 1/N because H is a smooth function, to finally obtain that

(3.29) Y Los (o)== Z % (pwel)j% ) (o - in’H)2+0N(1),

€T3, z€T i=1

where once again, the oy can be bounded by a vanishing sequence (cy)n depending only on §, which
completes the proof of Lemma 3.15 O

Proof of Lemma 3.16. — This proof follows the exact same steps as for the previous one. We first obtain
by definition of L™ and developing the discrete gradient of ¢ that

1 1 2 A N v .
(330) & D £™0s (p) =on (W) + 5 Do D (ma)es (o2 (@) (e T @) — (@)
zeT%, z,y€eT?, =1

where 5 is defined according to equation (2.17) as

320 @) = Xi(00)no(L = ne,) — Ai(Be, e, (1 — 10),

and oy (1) is less than a vanishing sequence depending only on ¢ and H. Once again, similar steps as in
the previous case allow us to rewrite

(ry?) (3 () = o H ) )
:$ [Xi(0y)11y (1 = nye.) + Ai(Oype,)yte, (1 — ny)] <Hz/N (y jV&i) - Hyn (]%J)
:%)‘i(ay)ny(l — Ny+e;) <Hz/N (y ;el) — Hy/n (]?if)) -
+ ]\;A (Oyte; ) My+e; (1 — 1) <Hm/N (y;ez) CHyx (jg\/f))

1 Yy +e; yte
:m)\i(ay)ny(l — Ny+e,) (Hﬂf/N ( N > = Hogeu/n < N )) "

+ ;2)‘ (Oytre ) Myte; (1 —1my) (H:c—ei,/N (%) - Hy/n (%))
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Summing once again by parts in z, we obtain that the second term in the right-hand side of equation
(3.30) is

Do > () (e @) (el Gt — pi (@)

oyt i=1
N3 ;TQ ;[% (pﬁet ) o5 (2™ (7 ))} x
22 [Ai(ay)”y(l = Myre ) Horei/n (y . ei) + Ni(Oyre )y+e, (1 —ny) Hayn (]‘%)}
(331) Jois
where
ne N3 XT; 2[% (p”e ) % (o1 (0 ))} qu:z {)‘i(‘gy)ny(l_ny+ei)Hx+ei/N (y ;eiﬂ
and N o

Sm o SN [ (R 0) 0 X)) X [MOse e 1 ) (5)].

zeT% i=1 yeT?,

These two terms are treated in the exact same fashion, we therefore only treat in full detail the case of
S1, So will follow straightforwardly. First, we develop the difference ¢j; (pivjrei( )) ¢ (pYH (7)) to the
first order,

N,H , _ N,H N.H , N,H ;
¢Z§ (p:H»ei) - ¢i§ (pi\f H) = ¢y (px%»el) (pm+ei - p]mv H> +o (szre,; - pi\f H) .

Once again, H being a smooth function, p); — pN-# is of order 1/N, therefore the o (pﬁe — plV-H

also a on(1/N), and the corresponding contribution in S; vanishes in the limit N — oo. Recall that ¢
is a positive function, we now apply in S; the elementary inequality ab < a?/2 + b?/2 to

N,H N,H :
a = ¢g <px+ei> (pr+ei - p]zv H)

b= %\/@57;' (PiVJrI:) Z [)\i(ey+ei)77y+ei(1 —ny)Hy/n (%)} .

yeT?,

and

This yields

EARYNOEDY W(pﬁipm ")’

2
/! (
’0$+6z) Y+ e;
+ W > 77y+el)Hw+ei/N( N Z)
y€TY

The function H being non-negative, for any y, we can write

Y+ e yte
)‘i(ay)ny(l _77y+ei)Hx+ei/N< N ) <A1 _ny+€i)Hﬁf+€i/N ( N >

Furthermore, since we assumed that fw H =1, and since H is smooth, we get that

1
N2 2 Hon(y/N)=1+on(D),
yeT?,
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which yields

1 Y+ e;
1 5 MO ) Hava (D) | £ 20 = 25+ o)

yeT%

This, combined with the previous bound, yields that

7 (o) 2 Ny (ph7)
TTei N,H N,H TTei N,H \2
|Sl‘ SON(1)+ ZT:Q f( r+e; — P ) +T _pz-ﬁ-ei)
e
=13

A similar bound can be achieved for Sy, this time developing the difference ¢} (piv+§) — ¢k (piv H ) in

N.H : N.H
p, " instead of p, ¢,
" N,H 2 411 N,H
b (Px’ ) N,H na\2 | NP5 (pm ) N,H\2
&|sMum-%;[2@Hﬁ—% )+ e gy
zely
i=1,2

Combining these two bounds with identities (3.30) and (3.31), we obtain that

3L (o)

2
zeT?,

+'ON(1%

¢// ,OiV’H +¢// pi\i,H 2 )\245// ,OiV’H
< Z [ 6( )2 6( )<Piv+’1;—PiV’H) + 625\72 )(1_,0;\/,11)2

z€TA
i=1,2

where the oy (1) can be bounded by a vanishing sequence (¢y )y depending only on H and 4. One easily
obtains that for any non-negative ¢ and any p € [0, 1],

(1= p)*05(p) < 2¢5(p),
thus concluding the proof of Lemma 3.16. O

We are now ready to apply Gronwall’s Lemma and complete the proof of Proposition 3.14. For that
purpose, let us define

1
A, ,
o) =M |z O 65 (27 ()
zeT?,
according to the previous Lemmas 3.15, 3.16 and to equation (3.25), there exists a sequence ky = ¢y +Cn
depending only on § and H, verifying

kn — 0,
N—oc0

and such that
0, ®(t) < 2X2®(t) + kn.
Since ¢; is bounded from below by 1/1 + 4, ®(t) also is, and therefore
0P (t) < (2A7 + kn(1+6))®(1).

Gronwall’s Lemma therefore yields that for any non-negative t,

a1 a1 2
B | vz 2o 00 (e 0) ) SEW | 5 X2 06 (o7 (O) | 2T,
z€T% zeT%,
where this time the right-hand side depends on the trajectory only through its initial state 7(0).
Fix a small §' > 0. s being a non-decreasing function bounded from below by 1/1 4 §, one can write
for any p € [0, 1]
1 1 1-4
>7]]_ —8 ]]_ —8 = ]]_ v o —
95(p) 255 Lips1-0y + Lip<i-o 75 G700 -+ 155
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We apply this decomposition to the left-hand side of the inequality above, to obtain that

1
B 2 :
(332) ]E,U.N ﬁ ]l{piv’H(t)>l—5’}

z€T?,

(14+6)(6+9d) MG % Z 65 (pN(0)) (2N kN (140)t _

> N
-0 " ‘
zeTy,

Coming back to the definition (3.24) of p-# | for any smooth non-negative function H with integral equal
to 1, taking the limsup N — oo, we thus obtain from equation (3.32)

1
. A8
(3.33) h]Ian;lopEMN N2 Z ]l{p;V»H(t)>1751}
reTi
, 14+8)(6+ 6 1
S hmsup W E)\}g — Z d)(; (in7H(O)) 62)\2t -1
N—o00 -0 a N

2
zeT%,

Fix a small ¢ > 0, and let us denote for any u,v € T?
1 1

H*(v) = @M—a,ﬂ]?@) and Hy(v) = Wl[—s,-&-a]?(v —u).
Recalling that p.n(t) is the empirical density in a box of size e N around the origin at time ¢, we can

then write

(QEN)Q N,H¢® N, H®

szeN(t) = ( = Pz + ON(l).

2:N +1)2/"
At this point, we want to apply equation (3.33) to H = H¢, which is an indicator function, and thus
need to be smoothed out. For that purpose, consider a sequence (Hf)en of functions such that
— VI €N, Vu € T?, Hf(u) >0 and sup Hf =sup H® =1/(2¢)? .
T2 T2

— VieN, Hf € CY(T?) and [, Hf (u)du = 1.

— Hi(u) # H*(u) = e — 1/l <|Jul|, <e+1/L.
The existence of such a sequence of functions is quite clear and is left to the reader. In particular, the
last condition imposes that

I 1:/ Lz (uyHe (uydu < ?’
T2

which is the area of the crown on which the two functions may differ. The sequence H} converges for any
fixed ¢ towards H¢ in L!(T?). Furthermore, notice that for any = € T%;, since both the H;’s and H® are
bounded by 1/(2¢)?,

N,HE : 1 Y Yy
o | < g i () ~ Mo ()|
yeT3,
16¢ 8
< (1 + o)) (AL + 1711 = 5 + (1),

where the last line represents the proportion of sites of the discrete torus in the crown around u = z/N
on which Hy, IN and H: /N can be different. The last observation yields that for any = € T%,, we can
write

: 8
ropen(t) = p2 (1) | < 5+ on (D)
where the on (1) can be chosen independent of 77 and z. Fix € > 0 and consider Ny and Iy such that for
any N > Ny and any [ > [,

N,HE
| mapen () =2 (1) | <

For any such pair I, N, we therefore also have

5/
5.

Lirpen(t)>1-67/2} < ﬂ{pgjﬂf >1-57}
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For any [, by our assumptions, equation (3.33) holds for H = H; for any positive § and ¢’. For any
[ > lp, we can therefore write

1
. A,
hmsupEM}\? Wg L pen(t)>1-67/2}

N—oc0
z€T%,

<timsup TEOOED g [ LS g (o) | 2% 1

1-4
N—o0 mGT%

Since 6 > 0, the dominated convergence theorem and the law of large number yield that right-hand side
above is equal to
(1+0)(d+0")
1-—¢
where ( is the initial density profile defined in assumption (2.7), and ” *” denotes the convolution on T?.
Since ¢ is bounded away from 1 uniformly on T?, ¢ * Hf is also bounded away from 1 uniformly in ¢, and
therefore

2 [ sstcxiyan-1).
TZ

¢s (C+ Hi(v)) <C" <1,

where C* = C*(() is a constant which does not depend on [, €, v or J.
Letting now § go to 0, we obtain that for any € > 0 and any time ¢,

1 o 2
. A, *
llmSHpEul\é el E ]l{‘rmpgN(t)>175//2} < Y (62)\ tors 1)7
N—o0 >
zeTy,
which concludes the proof of Proposition 3.14 since we assumed §’ > 1/2. O

With the estimate stated in Proposition 3.14, we are ready to prove Proposition 3.12.

Proof of Proposition 3.12. — First notice that in order to prove (3.18), it is sufficient to prove it both

for Fy, . and F , instead of £ ,, where
Fpo= Z ny = | Bp(z) | and F;/z,x = Z ny = | Bp(z) | —1
yE By () yEBy(z)

We focus on the first case, the second is derived in the exact same fashion.

Unlike in [35], the spin blind process’s macroscopic density does not evolve according to the heat
equation because of the weak drift. However, thanks to the bound (3.14) on the entropy of the measure
ulN w.r.t. the reference measure y, and on the Dirichlet form of the density f{¥, local equilibrium holds for
the angle-blind process. As a consequence, the replacement Lemma 4.1 holds for functions independent
of the angles (cf. for example [27], p77). One therefore obtains that to prove

T
1
(3.34) lim lim El);]e / N2 E 1g,,(s)ds | =0,
0

p—00 N—o00
zeT?,
one can replace 1, () by its expectation under the product measure with parameter 7, p.n (s), namely
ETIPEN(S)(HFP,J = [Twpen(s)]”

where p’ = (2p + 1)? is the number of sites in B,.
To prove equation (3.34), it is therefore sufficient to prove that Vvt € [0, T7,

/

1
(3.35) lim lim sup lim sup ]Ei}\é Nz Z [repen@)]P | = 0.

p’—=0o0  £0 N—o00 2
z€T%,
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To prove the latter, since p.y(t) is at most 1, one only has to write, as outlined in equation (3.22),

]. ’ / 1

A, Al

Exd | 5 2 [epen @1 | <=0 +EW | 55 D Limpniis1-) |
zeT?, zeT%,

which holds for any positive 9.

For any fixed d > 0, the first term on the right-hand side vanishes as p — oo, whereas the second does
not depend on p and we can therefore let § — 0 after N — oo, then ¢ — 0, then p’ — oo. Since the
right-hand side of equation (3.23) vanishes as §' = 2§ goes to 0, the left-hand side also does, and (3.35)
holds for any ¢ thanks to Proposition 3.14. This proves equation (3.34), and the equivalent proposition
with F} , instead of F), , is proved in the exact same fashion, thus concluding the proof of Proposition
3.12. O

4. Law of large number for the spin process

4.1. Replacement Lemma. — OQur goal in this Section is to close the microscopic equations and
to replace in the definition of the martingale M™N introduced in (2.14) any cylinder (in the sense of
Definition 2.1) function g(7) by its spatial average E;_ (g), where p.n is the empirical angle measure
over a small macroscopic box of size eN. We use this Section to introduce new useful notations. The
proof of the main result of this Section, the Replacement Lemma 4.1, follows closely the usual strategy
(c.f. Lemma 1.10 p.77 of [27]), however it requires several technical adaptations due to the nature of our
canonical and grand canonical measure. In particular, we will need the topological setup and the various
results obtained in Section 3.

Consider a cylinder function g € C, and [ a positive integer. Recall from (2.21) that (g)} is the average
of the translations of g over a box of side 2 + 1 centered at the origin. Recall from equation (2.22) and
Definition 3.1 that the empirical angle measure ﬁl over the box B; of side 2] + 1 is the measure on [0, 27|

pl |B ané

zEB;
Define
(4.1) V@) = (9(m)o —Ep(9)  and  W'(@) = g(i)) — Ez(9),
and for any smooth function G € C(T?), let
(4.2) xXWN@,n) = N2 Z (z/N)T W'
z€T%,

We first state that under the measure of AEP, one can replace the average of g over a small macroscopic
box by its expectation w.r.t. the canonical measure with angle measure p. .

Lemma 4.1 (Replacement Lemma). — For every § > 0, we have with the notation (4.1)

lim sup lim sup Py A8 / N2 Z T ’VEN )‘ dt>d| =0.

e=0 N—oo zET?,

The proof is postponed to subsection 4.2, and requires the control of the full clusters stated in Propo-
sition 3.12. For now, we can deduce from this lemma the following result, which will allow us to replace
in (2.20) the currents by their spatial averages.

Corollary 4.2. — For every § > 0, and any continuous function

G : [0,T]xT? — R
(t,u) = Gy(u) '
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we get with the notation (4.2)

T
lim sup lim sup ]P’i:f,; [ | / XgN’N(Gta 7(t))dt
0

e—0 N—oc0

>5] =0.

Proof of Corollary 4.2. — Recall that ¢ — 0 after N — oo, which means that the smoothness of G allows
us to replace in the limit G(x/N) by its spatial average on a box of size e, which is denoted by

1
GN(x/N) = ——— G(y/N).
yEB:n(z)
More precisely, we can write, using notation (2.21) for the local averaging, and since g is a cylinder, hence
bounded, function,

T T
1 1
limsup/ N2 E Gi(x/N)1pg dt = lims(L)lp limsup/ N2 E GN(2/N)1,g dt
0 e—

N—o0 N—oo JO

IET?\] mGT?\,
T
(4.3) = lim sup lim sup / ] > Guly/N)(g)s" dt,
e—0 N—oco JO ye']l‘i,

where the average (g)5" is defined in equation (2.21).
As a consequence, 7,g can be replaced by its average (g);N . Note that

VN @) =W @) + (97" — 9,
and that the replacement Lemma 4.1 implies in particular that for any bounded function G € C([0, T]xT?)

T
1
limsuplimsuppz}g / N2 Z Gy(z/N)m VN (5(t))dt | > 6| =0.
0

e—0 N—o0

z€T%,
Therefore, thanks to equality (4.3), Corollary 4.2 follows directly from Lemma 4.1. O
4.2. Proof of the replacement Lemma. — In order to prove the replacement Lemma 4.1, we will

need the two lemmas below. The first one states that the average of any cylinder function (g(7))} over

a large microscopic box (a box of size [ which tends to infinity after N) can be replaced by its expected
value w.r.t. the canonical measure with parameter the empirical density Ez, ().

The second guarantees that the empirical angle measure does not vary much between a large micro-
scopic box and a small macroscopic box. We state these two results, namely the one and two-blocks
estimates, in a quite general setup, because they are necessary in several steps of the proof of the hydro-
dynamic limit.

Lemma 4.3 (one-block estimate). — Consider o €]0,1[ and a density f w.r.t the translation invari-
ant measure p), (cf. Definition 3.4) satisfying
i) There exists a constant Ko such that for any N
H(f) < KoN?>  and  D(f) < Kj.
. . X 1
(4.4) lim lim E! | f Z 1g. | =0.

p—00 N —00 N2
zeT%

Then, for any cylinder function g,

1
lim sup lim sup E — V| =0,
l—>oop Naoop “ fN2 Z !

where V' was defined in (4.1).
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Lemma 4.4 (two-block estimate). — For any « €]0,1[ and any density [ satisfying conditions i)
and ii) of Lemma 4.3,

: : : | 1 N N
lim sup lim sup limsup sup EZ, N2 Z | TotyPt — Twpen ||If ] =0,

l— o0 e—0 N—oco yEBen IET?\,
where T,py is the local empirical angle measure in the box of size k centered in z introduced in (2.22).

The proofs of these two lemmas will be presented resp. in Section 4.3 and 4.4. For now, let us show
that they are sufficient to prove the replacement Lemma 4.1.

Proof of Lemma J.1. — Lemma 4.1 follows from applying the two previous lemmas to the density
-~ 1 /T
Fr=g [ £

where fN = dul¥/dp?, defined in Section 3.2, is the density of the AEP at time t started from p®

and prove that Lemma 4.1 follows. Proposition (3.9) proved that fT satisfies condition ¢) of Lemma 43
Furthermore, ?¥ also satisfies condition ii)

P&HOIOJ\;E)HOOE TN2 Z ]lE -

z€T%,

—N
thanks to Proposition 3.12, thus the one-block and two-blocks estimates apply to f = fp.
Now let us recall that we want to prove for any § > 0

hmsuphmsupP A8 / e Z T VEN ‘ dt >8] =0,

e=0 N—oo zET?,

where

V@) = (9@ — Epy (9)-
Thanks to the Markov inequality, it is sufficient to prove that

limsuplimsup]E A8 / Nz Z Te VEN | dt| =0.

e—0 N—o0 re']I‘2

. 7N . . .
We can now express the expectation above thanks to the mean density f. Since T is fixed, to obtain
the replacement Lemma it is enough to show that

=N 1
(4.5) lim sup lim sup E, fé\fm Z T |V8N(ﬁ) } —0

e—0 N—o00 weT?\]

For any function ¢(-) on the torus T%, recall that we denoted in (2.21) by (¢(-)), the average of the
function ¢ over a box centered in x of size [, and that 7,p; is the empirical angle measure in a box of size
[ centered in y defined in (2.22). Let us add and subtract

eN 1

<<9(ﬁ)>6_Eﬁz(9)>O = mxz 2l+ Z 79 — Er,5(9)

€Ben | y—z |<l
inside | V¥V (7)) | . We can then write thanks to the triangular inequality
[ VN@) | < (@0 + 2+ 25 (@),

where

1
Zl,sN _ -
L (2eN + 1) > |79 21+1 > )|

z€B:N ly—x|<I
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is the difference between g and its local average,

1
ZleN E.,-A
(2eN +1)2 Z 71(9) = 2l+1 Z v\

rEB:N ‘ —x ‘<l
is the difference between the local average of g and its expectation under the product measure with
parameter the local angle measure p;, and

1

l,eN

= T @2eNt12 Y |Ens(9) —Erpiy(9) |
TEBeN

is the difference between the expectations of g under the empirical microscopic and macroscopic angle
measures p; and pey .

Let us consider the first term, N2 TmZi’EN. All the terms in Zi’EN corresponding to the z’s in
B.n_; vanish, since they appear exactly once in both parts of the sum. The number of remaining terms
can be crudely bounded by 4eNI, and each term takes the form 7,g/(2eN + 1)2. Hence, we have the
upper bound

E* 71\/ 1 leN Kl « | =N 1
oz TN2 Z 28 SWEQ fTWZTng‘
zeT%, zeT%

Since g is a bounded function, this expression can be bounded from above by

Kl!jg\]/'HOOE* (ft ) =C(l,e,9)on(1),

which proves that

lim sup lim sup E* Zl NF =0.
e—>0p N—>oop “ N2 ZQ
zeTy
Now since
1
> (2eN +1)2 Y. Tg= ) T
z€T?, yEBen () z€T?,

the two following terms can respectively be rewritten as

« [N 1 LeN " —N 1
(46) ]Ea fT N2 Z 7302276 = Ea T N2 Z Ta ﬁz - <g>lO 5
zeT% zeT%,
and
« | =N 1 l,eN « | =N 1
(47) Ea fT N2 Z TIZ?)E :Ea fT N2 Z Tz ‘]Epl psN (g) I
z€T%, z€T?,

The quantity (4.6) vanishes in the limit N — oo then [ — oo thanks to the one-block estimate stated in
Lemma 4.3.

Finally, according to Definition 3.2, (4.7) also vanishes thanks to the two-block estimate of Lemma 4.4
and the Lipschitz-continuity of the application

Uy o MS)LIID — R
a = Ea(g)’

which was proved in Proposition B.2. The Replacement Lemma 4.1 thus follows from the one and two-
blocks estimates. O

In the next two Sections 4.3 and 4.4, we prove the one-block and two-block estimates. The strategy
for these proofs follows closely these presented in [27], albeit it requires some adjustments due to the
measure-valued nature of the parameter of the product measure g and the necessity to control the full
clusters.
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4.3. Proof of Lemma 4.3 : The one-block estimate. — The usual strategy to prove the one block
estimate is to project the estimated quantity on sets with fixed number of particles, on which the density
of f should be constant thanks to the bound on the Dirichlet form.

To prove the one-block estimate, thanks to the translation invariance of 7, it is sufficient to control
the limit as N goes to oo, then | — oo of

B | fom 0wV | =ELOPD),
zeT?,
where f = N~2 ZT?V 7. f is the average over the periodic domain of the translations of the density f.
Before doing so, we need to eliminate the configurations on which the box B; is almost full. Notice that
the average V' is bounded because g is a cylinder function. We can therefore write
EL0'F) S EL0MaT) + V| Ea e,
where Ej is the event on which at least two sites are empty in Bj, defined after Equation (3.17), and E7
is its complementary event. The second term in the right-hand side vanishes by definition of f, because
f verifies (4.4), and it is therefore sufficient to prove that
lim sup limsup B (V' 1, f) = 0.
=00 N—=oo

Furthermore, the convexity of the Dirichlet form and the entropy yield that condition i) of the one-block
estimate is also satisfied by f. Since V!1, only depends on 7 only through the 7),’s in the cube B;
we can replace the density f in the formula above by its conditional expectation f,, defined, for any
configuration ' on By by

Fi@) =EL(f | e =T, @ € Biya).
For any function f depending only on spins in By let E, ; be the expectation with respect to the product
measure p, over B;. With the previous notations, and in order to prove the one-block estimate, it is
sufficient to prove that

limsup limsup EY, ; (V'1g, ;) <O0.

00 N—oo
In order to proceed, we need to estimate the Dirichlet form and the entropy of f; thanks to that of f,
and prove the following Lemma

Lemma 4.5. — Regarding f,, we have the following bounds

(4.8) Diy1 (f)) <C()N~2 and  H(f,) <C(l).

Proof of Lemma /.5. —
Estimate on the Dirichlet form of f, - we denote by £, , the symmetric part of the exclusion
generator corresponding to the transfer of a particle between = and y

Loy f@0) = (e —my) (fF07F) = f(0)),

and by D*¥ the part of the Dirichlet form of the exclusion process corresponding to L ,

Do (f) = B (VFLeaV/T) -
With this notation, we have
D(f)= Y  D"(f),
lz—y|=1
where D is the Dirichlet form introduced in equation (3.6). We denote in a similar fashion the Dirichlet
form restricted to the box of size [ + 1 for any function h depending only on the spins in B;y; by
Dy (h) = =By (VAL VR)

Y

Since the conditioning f +— f; is an expectation, and since the Dirichlet elements D;"¥ are convex, the

inequality

D4 (f) < D™U(f)
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follows from Jensen’s inequality. We deduce from the previous inequality, by summing over all edges
(x,9) € By, thanks to the translation invariance of f, that

Dia(Fy < Y Do =+ Y 00 = EE pe),

(z,y)€B; Jj=1
where D;,1 is the Dirichlet form of the process restricted to the particle transfers with both the start and
end site in B;. Up to this point, we have proved that for any function f such that D(f) < D(f) < Ko,
we have as wanted

(4.9) Di1(f;) < Ci()N 2.

Estimate on the entropy of f; - recall that we defined the entropy H(f) = E%(flog f) and that
we already established H(f) < KoN?2. Let us partition T% in ¢ := |N/(2l + 3)|? square boxes B! :=
Bit1(z1),. .., B%:= Biy1(x,), and B!, which contains all the site that weren’t part of any of the boxes.

We can thus write
q+1

T = | | B".
i=1

We denote by 7' the configuration restricted to B* and by fz the complementary conﬁguratlon to 77*. In
other words, for any i € [1,q+ 1], we spht any configuration on the torus 7 into 7)* and 51 We define for

any i € [1,¢] the densities on the 7°
mmszWﬁfﬂ.
Let us denote by ¢ the product density w.r.t. ¥ with the same marginals as f, defined by

@ =L @@ . T e,

elementary entropy computations yield that

q+1

H(F) = Hy (/o) + 3 H (7).

where H,(f) = H(fu}, | ¢ul,)- Since by construction f is translation invariant, for any i = 1,...,q, we
can write H (7;) =H <7l1 = H (f,), therefore in particular, the previous bound also yields, thanks to
the non-negativity of the entropy, that

H(f) >qH (f))-

Since q is of order N?/I?, this rewrites

(4.10) H(T) <
and proves equation (4.8). O

Thanks to Lemma (4.5) we now reduced the proof of Lemma 4.3 to

(4.11) lim sup lim sup sup ol (V'1g, f) = 0.
lo0  N—o0o Dy (f)<Ci())N~2
H(f)<Ca(1)

Since the set of measures with density w.r.t. u such that H(f) < Cy(l) is weakly compact, to prove the
one block estimate of Lemma 4.3, it is sufficient to show that
limsup sup E,; (V'ig, f).
l—00 D1 (f)=0
H(f)<C2(1)

Before using the equivalence of ensembles, we need to project the limit above over all sets with fixed
number of particles 7 defined in equation (3.3). Recall from Definition 3.6 the projection of the grand
canonical measures on the sets with fixed number of particles. For any density f w.r.t. p’, such that
Di11(f) = 0, thanks to Section 3.3 and the presence of the indicator function, f is constant on EZIA{ for
any K € M (8). We therefore denote, for any such f, by f(I?) the value of f on the set Zf?. Shortening
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2k

Bl

BP &B

F1aUure 3. Construction of the B’

Jieex, for the sum D2 pe o102 fp, e5 -+ Joceqo We can write thanks to the indicator functions 1, for any
[ satisfying Dy 1(f) =0,

(112 L 0es) = [ HRE 0 (7€ 5F)

where K was defined in (3.2).
Since fKeK f( )d]P’* (n € EK) =1land E, (Vl) <suwpgcg E (Vl), we obtain

lim sup lim sup sup .l (Vl]lElf) < limsup sup E, (Vl)
l=oo  N—00 Dy (f)<Ca()N? =00 KeK
H(f)<C2(1)

To conclude the proof of equation (4.11) and the one-block estimate, it is therefore sufficient to prove
that the right-hand side above vanishes.

For any K € K, recall that ap € My(9) is the angle measure

1

K
ap = m;(%k € M1(S)

Since the expectation [, » conditions the process to having K particles with angles ©x in B, by
definition of Vj, we can write

1
E, z V) = E, z ( Ea.(9) — (2041)2 Z Teg > :
zEB;

Let k be an integer that will go to infinity after [, and let us divide B; according to Figure 3 into ¢ boxes
BY,..., B9, each of size (2k + 1)?, with ¢ = | 221 |2 Let B® = B; — U{_, B?, the number of sites in B°

2k+1

is bounded for some universal constant C' by Ckl.
&E(g) 2]€ +1 Z Tzg

With these notations, the triangular inequality yields

\
El,f(( Ear(9) - 21+1 %;Trg >|B|ZEZK
l
2k+1
GEiDs m(

+O(’§)

wEB’

)
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Since the distribution of the quantity inside the expectation does not depend on i, the quantity above

(2k + 1)?
N————

—1
Because ¢ is a cylinder function, and since k goes to oo after [, the quantity inside absolute values is a
local function for any fixed k. Letting [ go to oo, the equivalence of ensembles stated in Proposition B.1
allows us to replace the expectation above, uniformly in K, by

e )

Finally, since UleN{&I?,IA( € ]Kl} C My (S), where M (9) is the set of angle density profiles introduced

in Definition 3.1,
Ba(o) - iy O
a(9) ~ Gz 29| |
r€ By,

whose right-hand side vanishes as £ — oo by the law of large numbers, thus concluding the proof of the

can be rewritten

Eag(g) 2]{1 +1 Z Ted

Ea_(g9) - Z Tzg
* 2k + 1 x€ By

limsup sup ElK(Vl) < sup Eg
=00 KEKL aeMq(8)

one-block estimate.

4.4. Proof of Lemma 4.4 : The two-block estimate. — This Sections follows the usual strategy for
the two-block estimate, with small adaptations to the topological setup on the space of parameters My (%)
introduced in Definition 3.2.

Our goal is to show that for any density f satisfying conditions i) and 4¢) in Lemma 4.3,

1 ~ ~
limsup limsup limsup sup E; [ — Z | TotyPi — Twpen IIf | = 0.
=00 e—0 N—oco y€Ben N >
zeTy,
The previous expectation can be bounded from above by triangle inequality by

Z (Teryb\l - 7—:13+Zﬁl)

2€EBN.

f | +o(l/eN).

1 1
E: | — —_—
>\ N2 Z (2Ne + 1)
zeT?,
In this way, we reduce the proof to comparing average densities in two boxes of size [ distant of less than
eN. Let us extract in the sum inside the integral the terms in z’s such that |y — 2| < 2[, the number
of such terms is of order at most [/eN, and this quantity is bounded from above by

N | -
Ea ﬁ Z m Z (Tac-i-ypl - Tx+zpl) f + O(Z/SN)

zeT?, 2€EBN.
|y—=z|>21

This separation was performed in order to obtain independent empirical measures 7,1,0; and 74 .0
Regarding the expectation above, notice that we now only require to bound each term in the sum in z.
In order to prove the two-block estimate, it is thus sufficient to show that for any |y | > 21

. . N 1 —~ —~
lim sup lim sup EJ, N2 Z Il Te+yPl — Tzl Ilf | =0.

00 N—oo xe’ﬂ‘ﬁ,

As in the proof of the one-block estimate, the quantity above can be rewritten

Ex (Il 7o =21 lIf)
where f = N2 Zme% 7. f is the average of the density f. As in the one-block estimate, we can introduce

the cutoff functions 1, in the expectation above, thanks to f satisfying (4.4) and ||| 7yp; — pi ||| being a
bounded quantity.
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Let B, be the set B; U1, B, the quantity under the expectation above is measurable with respect to
the spins in B, ;. Before going further, let us denote, for any configuration 77 € Xy, 11 the configuration
restricted to B; and 7, the configuration restricted to y+B; = 7, B;. We also denote by 7 the configuration
(M1,72) on By ;. Let us finally write p,; for the projection of the product measure p}, on B, ;, and E,;
the expectation with respect to the latter.

With these notations, the expectation above can be replaced by

EZ (||| Ty:b\l - ﬁl H|]1Elfy,l) )
where for any density f, f, is its conditional density with respect to the spins in B,

Fuali) = i (Uin, . = 1)-1)

which is well-defined because the two boxes B; and 7,B; are disjoint, thanks to the condition |y | > 2I.

As in the proof of the one-block estimate, we now need to estimate the Dirichlet form of ?y,l in terms
of that of f, on which we have some control. For that purpose, let us introduce with the notations of the
previous Section

Diy(h) = —Eyu(h.Loyh) = Y Eyu(hLo-h)— > Eyy(hLy.h)

x,2EB,; r,z€y+B;
|z—2z|=1 |z—z|=1
1 2
(4.13) = Dy, + D}, + D},

the Dirichlet form corresponding to particle transfers inside the two boxes, and allowing a particle to
tranfer from the center of one box to the center of the other, according to Figure 4. The work of the
previous Section allows us to write that

_Ey,l(?y,kﬁx,Z?y,l) < DLZ(?)?
which implies, if D (f) < Cp that

— — (20 +1)?
(4.14) D}, (fy)) + D7y (fy0) < 2007’
by translation invariance of pgz and f. We now only need to estimate the third term Dﬁy. Let us consider
a path xg = 0,z1,...,2; = y of minimal length, such that | z; — ;41| =1 for any i € {0,...,k — 1}.
For any such path, we have k < 2Ne, since |y | < Ne, and we can write

D9,(7) < ~E:(FLoyh) = 5B [ 1m0 —my | (FG@) ~ F@)Y)

where 7% here is the state where the sites in 0 and y are inverted regardless of the occupation of either
site. Since ny — 71, vanishes whenever both sites 0 and y are occupied or both are empty, we can for
example assume that 79 = 1 and 1, = 0. For any configuration 7 = 7, we let for any i € {1,...,k}

~i (ﬁ¢_1)$171,m

77:
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Thanks to the elementary inequality

2
k

k
D ar| <k df
j=1 j=1

and by definition of the sequence (7));—o...x (which yields in particular 7° = 7 and 7* = 7%

equation yields

), the previous

k—1
S [o(1 ) ) — )2 < k S B (1 = n) Fa ) - F)?)
3=0
k—1
=3B ok, (= k) [ ) - T ]
j=0

Since pf is invariant through any change of variable ij — 7, and since we can easily derive the same kind
of inequalities with 7, (1 — ) instead of 79(1 — 7, ), we obtain that

k—1
(4.15) DYY(F) = kS DF (F) = k2N-2D (f) < 462D (f)
=0
thanks to the translation invariance of f. Finally, equations (4.13), (4.14) and (4.15) yield
— 20+ 1)?
(4.16) Dyy(fy1) < QCO% +4Cye?,

which vanishes as N — oo then € — 0. A bound on the entropy analogous to (4.8) is straightforward to
obtain. Finally, to prove the two-block estimate, as in the proof of the one-block estimate, we can get
back to proving that for any density f on B, ; satisfying (4.16),
limsuplimsuplimsup  sup  Ey; (||| ypr — o1 |||1g, f) = 0.
l—o0 e—0 N—oo 2i<|y|<eN

Any such density is ultimately constant on any set with fixed number of particles and angles in the set
B, with at least two empty sites. The proof of the two-blocks estimate is thus concluded in the exact
same way as in the one-block estimate by projecting along these sets, and then using the equivalence of
ensembles.

5. Preliminaries to the non-gradient method

The main focus of Sections 5 and 6 is the symmetric part of the displacement process, whose generator
L requires the non-gradient method. Before engaging in the proof of the non-gradient estimates, however,
we regroup several results which will be needed throughout the proof.

5.1. An integration by parts formula in the context of particle systems. — Considering the
symmetric exclusion generator L as a discrete Laplacian, throughout the proof, we are going to need an
integration by parts formula in order to express the expectation of ¥.h in terms of the gradient of h and
the “integral” VL 19 of 1.

We first extend the definition of the canonical measures given in Definition 3.6 to any domain B C T%..
For that purpose, consider an integer K < | B|, and an orderless family {6;,...,0x} € $¥. Recall that
we denote by K the pair (K,{01,...,0k}), and we let ji; » be the measure such that the K particles
with fixed angles 61, ...,0k are uniformly distributed in tfle domain B. If B = By is the ball of radius
[, this notation is shortened as & in accord with Definition 3.6. The expectation w.r.t both of these
measures is respectively denoted E B.R and ]El’ 7+ We will, in a similar fashion, write

‘CBf(ﬁ) = § N (1 - 77m+z) (f(ﬁ%x-i_z) - f(ﬁ)) )
z,x+z€B
|z|=1
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for the generator of the symmetric exclusion process restricted to B, shortened as £; if B = B;.

Our focus from now on will be a class of local functions, depending only on sites within a domain
B, and with mean 0 w.r.t all canonical measures u B.R- When there are less than one empty site in the
domain B, we require these functions to vanish in order to avoid classifying the irreducible subsets of X
when there is only one empty site. For any cylinder function ¢ € C, we will denote by s, the smallest
integer such that v only depends on sites in By, and recall that we already introduced in Definition 3.6
the sets K; and ]Kl. We now define

Co={veC B, z(#)=0 VK eR,, and wz=0VEeK, K}

S"P’

In particular, any function ¢ € Co has mean zero w.r.t any canonical measure. Note that for any ¢ € Co,
and any a € M;(S), conditioning w.r.t. the number of particles in B, , we obtain in particular that
Ea(y) = 0. -

The purpose of the non-gradient method is to prove that in the space Cy endowed with an H~!

Sqp 9

discrete topology, any element can be expressed as a combination of the instantaneous currents, up to a
perturbation of the form L1 for some 1 € Cy (cf. Proposition 6.32). However, the crude definition of Cy
regarding the almost full configuration implies in particular that the instantaneous currents j; = 1o — 7.,
and j¢, defined in equation (2.17), are not in Cj.

For that purpose, we therefore consider the enlarged set

(5.1) Co=Co+ J%,

where J“ is the linear span of the instantaneous currents due to the symmetric part of the generator,
defined in Definition 2.8

(5.2) J¥ = {aji + bjs + cj¥ + dj$, a,b,c,d € R} .

Note that in particular, since the symmetric exclusion process does not create particles, for any ¥ € Cy,
we also have L 1 € Co.

We now have all we need to state an integration by parts formula which will be useful later on in the
proof of Theorem 6.1.

Lemma 5.1 (Integration by parts formula). — Recall that we denoted in (3.4) by V, the gradient
along an edge a. Let ¢ € Co be a cylinder function, and a C Bs,, an oriented edge in its domain. Then,
% is in the range of the generator L, and we can define the "primitive” I,(v) of ¢ with respect to the
gradient along the oriented edge a as

(W) = 3Va(L£0,) 7.

Furthermore, for any B C T% containing Bs,, any K = (K, (01,...,0K)) such that K < |B| and

he L*(ug ), we have

S s

(5.3) Epr@Wh)= Y BEyg (). Veh).
aCBSw
This result is also true if i, p is replaced by a grand canonical measure jz. Note that if K = |[B|—1

or K = | B]| the result is trivial because v vanishes.
Furthermore, this integration by parts formula can be extended to the whole Cy, setting

—%77:;1(1 - naz) lf (a‘h a2) = (Oa ei)
L.(57) = { 4n% (1 = nay) if (a1,a2) = (e;,0)
0 else.

and
—57a, (1 = 7ay) if (a1,a2) = (0,¢€;)
1o (ji) = q 5Ma, (1 = 7a,) if (a1, a2) = (e;,0)
0 else.
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Proof of Lemma 5.1. — The proof of the previous result is quite elementary. Fix a function 1 € C~0, to
prove the integration by parts formula, we first show that ¢ is in the range of £, , by building for any K
a function ¢ g on E;;“, verifying L, JPR = ¢|zip. This result is well-known for the color-blind exclusion
process, but in our case where each particle halg an angle, the canonical measures take an unusual form,
and we prove it for the sake of exhaustivity.

Consider the vector space Ep = F (E%",R) of real-valued functions on E?. The generator Ly, can
then be seen as a linear application

L EIA( — Ef(

(ID = £Swg0 )

Sap

Consider ¢ € Kerp_(Ls,), we can write in particular that

1 —
Ep, g0La®)=—3E5 | D m(l—n)(e@™) - @) [ =0,

z,zEBsw

| z—z |=1
therefore ¢ is invariant under the allowed jump of a particle along any edge in B ,. Assuming now that
K€ K, (cf. Definition 3.6) this means that any function ¢ € Kerg_(Ls,) must be a constant function,
because Z“}? is then irreducible w.r.t. the exclusion dynamics in By, according to Section 3.3. Since
any constant function is trivially in Kerg_(Ls,), we finally obtain that Dim(Kerg_(Ls,)) = 1, and
elementary algebra yields

Sep

{90 € E}A(vEBSw’[A((QD) = 0} = ImEg(ﬁsw)
Let us now get back to our function ¢ € C~0, by definition of C~0, for any K e ]sz, wmi" € F, and there
K
exists a family of functions (¢z)z g such that g : ¥ = R,
‘Csw@}? = w‘z;ib .

Since ¢ vanishes when B, has one or less empty site, we also let ¢z = 0 for any K e Ks, \]sz. For
any configuration 7 on By, with K particles, we now define o* (7)) = ©7(7), and we have

UES Eswgﬁ*a

which proves that any function ¢ € Co is in the range of L .
We get back to the proof of the integration by parts formula, since we can now write ¢ = L, C;wlw,
where L4 = ¢*, and

Ep g(ht) =Ep g (hLo,£3)0)

_ _% S By g (Vals)v.a0)

aCBy

Z EBJ? (]a(w)'vah)

aC By,

which proves identity (5.3). The same is obviously true when the canonical measure is replaced by a grand

canonical measure ug for some couple of densities @, since we only used the invariance of the measure

w.r.t the generator £, which concludes the proof of the integration by parts formula on C~0.
Furthermore, the extension to Cy follows immediately from a simple change of variable 7 +— 7%, [

5.2. Spectral gap for the symmetric exclusion spin process. — As investigated in Section 3.3,
the mizing time for the exclusion dynamics on configurations with angles is not of order N?. We therefore
cannot consider a general class of functions as dependent on the 0! s as wanted, and need to restrict to
a subclass of functions with low levels of correlations between particle angles, but large enough for the
non-gradient method to apply. In this Section, we prove that the spectral gap of the symmetric exclusion
process on this class of functions is of order N=2. This result is derived by Quastel in |35]. We present
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here a more detailed and slightly modified version. It states that once restricted to a convenient class of
semi angle-blind functions, the spin exclusion process has a spectral gap of order N 2.

Throughout this Section, we consider the square domain
An = [0, N]?

with closed boundaries, and denote by MSN the product measure with angle measure & € M;(3). Recall
that S was introduced in Definition 2.1 as the set of cylinder angle-blind functions, and that w is the
angular dependence of our test function H (cf. equation (2.15)), we define the subspace of S

(5.4)

T(()u = {f S LQ(HSN)v f(ﬁ) = 50(77) + Z (6177(;:) +C2nm)wm(7l), Cc1,C2 € ]R, and 7/}7" c S, Vo € ZQ,QD c S}

TEAN

Remark 5.2. — The purpose of the non-gradient method is to replace the instantaneous current ;i
introduced in equation (2.17) by a gradient quantity D(no — ne,) +d(n§ —n%,), and the class T§" above
is the simplest set of functions, stable by £ and containing both the currents and the gradients.

Remark 5.3. — One might expect, that it is not the biggest class of functions on which a spectral gap
of order N~2 can be obtained. Indeed, we believe that introducing some finite numbered correlations
between spins might not alter too much the order of the spectral gap. It is not, however, the purpose of
this Section, and this remark is therefore left as a conjecture at this point.

Proposition 5.4 (Estimate on the spectral gap for the spin-dependent exclusion process)
For any angle measure & € M1(3) such that 0 < o < 1, there ezists a constant C = C(«a) such that
for any functions f € T with E5z(f) =0,
Ea(f?) < CN*92(f),
where D(f) = Pa(f) = —Ea (fLf) is the Dirichlet form relative to the symmetric part of the exclusion

generator on the non-periodic domain Ay .

In order to prove this estimate, we need the following lemma, which states that the angle-blind process
has a spectral gap of order N—2.

Lemma 5.5 (Spectral gap for the angle-blind exclusion process)
For any angle measure & € M1 (8) such that 0 < o < 1, there exists a constant C = C(«) such that
for any angle-blind function ¢ € S with E5z()) =0

Ea(y?) < ON?2(y).

The proof of this result can be found in [27]. Before deriving Proposition 5.4, we define for any site x € Z?

(5.5) Tz =1 — Eg(w)ne = [w(fs) — Eg(w)] na,

where we shortened Ez(w) for Ez(w(6y)). This new occupation variable plays a particular role in the
proof of the spectral gap, and we state in the following Lemma two useful identities regarding 7, which
will be used repeatedly later on.

Lemma 5.6 (Properties of ). — let © # y € Ay be two distinct sites, and consider an angle-blind
function b € S, we have

Eg (1:9) =0 and Eg (.7,¢) = 0.
Furthermore, assuming that v = nv (i.e. that 1 vanishes when the site x is empty ), we also have
Ea (179) = C(a)Ea(v),
where C(Q) = Varg(w(6)).
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The proof of Lemma 5.6 is immediate and omitted, since under ug, and for any angle-blind function
1) € § and any function ® on 3, we have

Eg (17 ¢) = Ea(®)Ea(1:9).
We get back to the proof of the spectral gap of the spin process.

Proof of Proposition 5./. — First note that we can decompose any function f = f(c1,c2) in T as
f= [+ fs, where

:fV: C1 Z Nz (1) and fso = (c1Ea(w) + c2) Z Nz (1)

T€EAN TEAN

We first show that fand fsb are orthogonal in L?(ug). Considering a function f € T¢ with mean zero
and thanks to the decomposition above,

Ea (ffsb) =C > Ea i | > matdy

T€EAN yEAN

vanishes thanks to the first identity in Lemma 5.6 and
Ea () =Ea (%) +Es (f3).

With the same reasoning, it is not hard to see that Ejz (fsbﬁf) = E; (f[ﬁfsb) = 0, thus we can also
write

Ea (f£) = Ba (FLT) + Ea (faLfa),

ie 2(f) = @(f) + 2(fsp)- Thanks to Lemma 5.5, to get Proposition 5.4, it is therefore sufficient to show
the result for any function f =3 . 7.%.(n). We can also assume without loss of generality that for
any z, 9.1, —o = 0, since when the site is empty the corresponding contribution vanishes. For any such
f7
Es (f2) = Y Ea(iyaty).
Tz, yEAN

Thanks to Lemma 5.6 and to our assumption on the ,’s, the expectation above vanishes whenever = # y.
Furthermore,

Eg (7;¢7) = C(0)Ea (¥7)
therefore
(5.6) Es (f*) =C@) Y Eg(
TEAN
We now turn our attention to Eg(fLf). For any site z and any angle-blind function ¢ € S, we can
write
L) =Tl + > Ly, =0y b0 2) (0757 — 77,).
|z]=1
If we assume that 1 vanishes when the site z is empty,

~, m+z) ~, m+z)

I]'{nz7h+2*0}w( - ]]'{nzfoﬂthZ*l}w(

)

and the quantity above can be rewritten

where we denoted
E(w,ﬂfﬂ?) = Z ]l{nzzo, nx+z:1}¢(77 n$+z Z 771+z 1 — Nz w(/\m r+z>
lz]=1 |z]=1
It follows that
~Ea(fLf) = Y [“Baliiytelidy) — EBa(lutahi(¥y,y,-))] -

T, YEAN
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Since ¢, L1y is still an angle-blind function, the first term in the right-hand side above vanishes as soon
as x # y, whereas if x = y, it is equal by Lemma 5.6 to

_E&(ﬁiwIﬁww) = 6(3)-@(%),
because 1), L1, still vanishes whenever the site x is unoccupied. Furthermore, by definition of A,
function of n

Ea(ﬁmwwﬁ(wy’ Y )) = Z Es (77””771/-1-—2(1 - Wy)ww(ﬁ)qﬁy(ﬁy’y—i_z))’

lz|=1

and as before, this expectation vanishes as soon as x # y + z. The only remaining terms are those for
which y and z are neighbors, therefore

> Ealltuh(Wyu )= D Ea (B = ety (7°71))

z,yEAN T€AN,| z|=1
(57) :a(a) Z E ((]- - nx+z)wz¢z+z (Nl—i_z m)) .
TEAN,| 2z |=1

Since Z (¢) = —Ez(¢Lg), up to this point we have obtained that

(5.8) 2(£)=C@ Y |2Ws) = Y Ea (1= mass)tbatbars (7°°F))

T€EAN |z |=1

Let us introduce the Dirichlet form locally cropped in =

1 ~
(5.9) 7, () = 5Ea S =) @@V = @) |
yEAN,| z |:1
Y, y+2AT

which forbids jumps to and from the site x. Since 1, vanishes whenever the site x is empty, the quantity

(1= 1) (a (7)1, (7))? i also equal to (1 — n,4-) 0 ()2, and a similar argument with 1, -
allows us to rewrite equation (5.8)

) =0@) Y |72+ 5 X Ba (1= mees) [ter= (7777) — @)

T€EAN |z]=1

To obtain Theorem 5.4, thanks to the identity above combined to (5.6) it is enough to prove that for
some constant C

TEAN T€EAN ‘Z‘ 1

Lemma 5.7 (Spectral gap for the exclusion process with a frozen site)
Let us consider a fized site x € Ay . For any & € M1(3) such that 0 < « < 1, there exists a constant
C = C(«) such that for any angle-blind function ¢ € S with Ez(¢¥ |n, =1) =0

Eq(4? |1, = 1) S ON*Z5(¢ | e = 1),
where the conditioned Dirichlet form is defined by the conditional expectation Ez(. | n, = 1) instead of
Ez,

D | e =1) = —Eg(Ly [ 0, =1).

Proof of Lemma 5.7. — We do not give the detail of this proof. It is quite similar to the proof without
the frozen site for an angle-blind function, the only difference being that whenever a path should go
through the site z, the path is bypassed around it, which results in a larger constant C' but does not
affect the order N2. O
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We now take a look at the left-hand side of Equation (5.10). Since 1), vanishes whenever 7, = 0 we
have Ez (¢, | n: = 1) = a 'E4(¢,), the previous Lemma applied to 1, — Eg (. | n. = 1) yields

1 *
(5.11) > Ea (V7) = ~Ea (42)” SCN? 3 27 ().
TEAN TEAN
Notice that since ) A 7 is constant for the simple exclusion dynamic on Ay, we can add or subtract
to f the function Y- ., 77,1, where = N=23" _, 4, at the cost of an angle-blind function. We can
therefore safely assume that erAN 1, = 0. Since

> [Ea (@) —Ea(@y) = Y [Ea(¥e)® +Ea(¥y)?] -2 Y Ea($s)Ea(dy)

T, yEAN T,yEAN T, YyEAN

=2N?Y Ea(vs)?,

since the last term of the first line vanishes thanks to our previous assumption. Furthermore, consider
the family of paths (v;,y)z,ycay going from z to y, defined thusly : starting from «, the path ~, , starts
straight in the first direction, until reaching the first coordinate of y. then, it goes in the second direction
until reaching y. With this construction, each edge a is used at most N? times in the 7, ,’s. Letting
n, be the number of times the edge a is used in one of the paths v, ,, we hence have n, < CN? Va.
Furthermore, each path 7, , has length at most 2N. With this construction, we therefore write, since

7/11 - % = Z (wal - %2),

a=(a1,a2) €Y,y

and (3p_y zx)* <n Y p_, x7 that

> [Ea@o)—Ea@y)P< D> 2N > [Es (va)) — Ea(va,))

z,yEAN z,yEAN (a1,82) €,y
=2N Y nalEs (Ya,) — Ea(va,))
(a1,a2)CAN
S2N4 Z []Ea (wal) - Ea(q/}az)]Z
(ahag)CAN
—2N* Z [Ea (wac—i-z) - Ea(wx)P'
T€EAN,| 2z |=1

Using the two previous identities, we obtain that

(5.12) D Ea(®e)’ <N? 30 [Ea(ers) — Ealva).
z€AN z€AN,| z|=1

Let us consider Z(z) the empty site nearest to x, chosen arbitrarily if there are multiple candidates. We
want to reach from 7 a configuration with an empty site in « + z to offer some counterweight to the
second term A in the left-hand side above. To do so, we merely have to "move" the empty site from Z(z)
to x + z, without crossing any edge twice, which can be done in n < 2( | Z(z) — x| + 1) allowed jumps
along the edges ay,...,a,. Furthermore, we can also assume that no such edge is of the form (z,z + 2)
since to bring the empty site to  + z, one only has to go around the site x. For any integer » < n let
7(") = p@--ar be the configuration where the empty site has traveled along r edges. We denote 70 = 7,
and notice that ﬁ;@z = 0. Furthermore, for any function h, since every successive jump is allowed (each
initial site is occupied, each end site is empty) we have

(1) 0 (5) =0 (3) = 0@+ >0 (1) = 0 (3) =) + 3 Vauh (31),
r=1 r=1

with V, the gradient defined at the start of Section 5.1. We can rewrite this identity

@ = (1) (1) - 32 an (3070).
r=1
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Note that in the formula above, both the n and the 7(")’s depend on 5, since they depend on the position
of the nearest empty site. From here, letting respectively h = v, and h = 1, (75%#), for which we
can choose a sequence of bonds (a,), we obtain

Ea (Yo+z) — Ea(¥s) =Ea (Yot (7°7T7) — )

_E. <i1 {Vaﬂlfz (ﬁ(r 1) ) Vo Wtz ((Aa: erz)(T 1))})

(5.13) +Es (( Aij-)z) [¢m+z ((Aw Hz)(n)) — Yo (ﬁm))D :

The first part of the quantity above can be controlled thanks to the Dirichlet form of the v, ’s. Indeed,
restricting to the configurations 7 with at least one empty site (if not, f = 0, and the result is trivially
true)

n(Z(x)) n(zo)
Ba| Y Vatu (i) | = 3 3 Ea(Lzwmen Vot (1777))
r=1 ro€EAN T=1
n(zo) ) o\ 1/2
< Z Z Ea (1{z(z)=x0}) N Es <|:VaT¢x (ﬁ(rfl))} )
rog€AN T=1
L") 12
< Z Pa (1{z(2)=z0}) Z Ea ([Varl/)x} )
ToEAN r=1
1/2
< Z Z Pa (]l‘{z(ﬁ):%o})l/2 ClQEa Z [vad}x]z )
ISN/2 |x—zo | =1 a€B(x)

a#(z,x+2)

for some universal constant C. In the last inequality, we used that Y. | \/Z; < n\/>. ., ;, and the fact
that each edge in the als is used at most once, and that the number of edges in a box of side length 2] +1
edges is of order 2. Since the probability that Z(x) = 2¢ is bounded from above by (1 —a)(!*=%o | -n?
we finally obtain that

n(Z(x))

(614)  Ba| > Vaur (i07V) ]| £ 3 P - ) 21, (0.)2 < Cl)Zi ()2,
r=1

I<N/2

where 2 is the Dirichlet form deprived of the jumps between x and its neighbors defined in equation
(5.9), and 9, 1s the restriction of 27 to jumps in the box of side 2/ + 1 centered in . We obtain in a
similar fashion, using this time a sequence of bonds (a,) moving the nearest empty site to z this time,
avoiding the sites around z + z,

(5.15) Ea (— > Vo tbays ((ﬁ“*z“)"“‘”)> < C(@) Dy (g )2

r=1

Finally, we can write

Ba (1= [ors () ™) = v (1)) =Fa (1= nesz) [ (7)) = )

Ttz 2 1/2
(5'16) S]Ea ((1 - 77x+z) [1/)32-&-2 (( )) - ¢x} ) .
The three bounds (5.14), (5.15) and (5.16) combined with (5.13) guarantee, since
(a+b+c)? <3(a®+b* +c?),

that for some different constant C' depending on a,

N2 Z Ea[(%+z) - ]Ea(%)]Q SNZ Z {C@;(Tr/)z) + Z Ea ((1 - 77$+z) ('(/)z-‘rz (ﬁm7E+Z)) - ¢x)2:|

T€EAN T€EAN |z]=1
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* T4z 2
SO/NQ Z [Qx (¢x) =+ Z E& ((1 - 77x+z) (¢x+z (7/7\% + )) - %) }
TEAN |z |=1
This together with (5.12) and (5.11) then yields that (5.10) holds as desired. This concludes the proof of
the spectral gap restricted to the set T§’. O

5.3. Comparison with an equilibrium measure. — In this section, we prove a result that will
be used several times throughout the proof, and which allows to control the exponential moments of a
functional X by a variational formula involving the equilibrium measure ). This control is analogous
to the so called sector condition for asymmetric processes, which guarantees that the mizing due to the
symmetric part of the generator is sufficient to balance out the shocks provoked by the antisymmetric part.

Remark 5.8. — [Non-stationarity of u* for the weakly asymmetric process] It has already been pointed
out that £ is self-adjoint w.r.t any product measure p5, which is not in general the case of £%#=C. How-
ever, L&Y is self-adjoint w.r.t. u due to the uniformity in 6 of that measure. Asymmetric generators
are usually "almost" anti-self-adjoint, in the sense that one could expect LY* = —£"*, This identity
is for example true for the TASEP, for which the asymmetry is constant and does not depend on each
particle.

It is not true in our case however, due to the exclusion rule and the dependence of the asymmetry
in the angle of the particle. To clarify this statement, see the adjoint operator as a time-reversal, and
consider a configuration with two columns of particles wanting to cross each other. This configuration
would be stuck under £"*, however, under the time-reversed dynamics £, it starts to move. This
illustrates that in our model, the asymmetric generator £™* is not anti-self-adjoint.

Let us denote accordingly to the previous notation (2.17) and recalling the definition of the A,s (2.1),
fori=1,2

57 = Xi(00)mo(1 = 1e,) = Ni(Be, )1e, (1 = 10)-

Elementary computations yield accordingly that the adjoint in L?(u%) of LY is in fact given by
(5.17) L =L 42 7 g
z€T?, i=1,2
This identity will be necessary to prove the following result, which compares the measure of the process
with drift to the measure p}.
Lemma 5.9. — Fix a function
X = Xy x[0,17] — R
(1) = Xe(@)
For any v > 0, we have

exp (W / Xt@(t))dt)

where the supremum in the right-hand side is taken on the densities w.r.t. p},.

2T \?

<

+ % /OT dt sup {E’& (e Xe() — ;D(w)} ;

1 2,0
SNz 108

Proof of Lemma 5.9. — Let us denote by Pf"X the modified semi-group
t
PN = exp [ / L0+ VNQXSds} :
0

where L'JBV:O is the alignment-free generator introduced in (3.15) and let us denote in this Section by
< .,. >4 the inner product in L?(u%). For any ¢ = 1, 2, and any H, and T > 0, the Feynman-Kac
formula guarantees that

T
(5.18) K, [exp <7N2/ Xt(ﬁ(t))dtﬂ = <1,PpM1 >, << Py, P12
0
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by definition of Pf"X,

d - —0
(5.19) - < PM1, PM L > =< P (L0 4+ L5704 29 N2 X)) PR >y,

where M* stands for the adjoint in L?(uZ) of M. By definition of Ljﬂvzo, we have
L7% = N2L* + NLW 4 £GF=0x,

We now work to control the weakly asymmetric contribution in the right-hand side of equation (5.19),
which does not vanish in our case, as a consequence of Remark 5.8. For that purpose, consider a function
€ L2(puz), identity (5.17) yields

<@ (LML) >=2 > Y E [QDQszf\i] :
z€T2, i=1,2
Recall the definition of V,f given in equation (3.4). A change of variable 7} — 7% on the second part
of 7, jf‘ yields that for any x
B} (9°7237") = —E&(Xi(00) Vaate,0%) = —Ef [Xi(00) (¢(0777) + ¢) Vaate, 9]
therefore applying the elementary inequality ab < a?/2 + b?/2, to
Ai(fo)

a = \/]vavx_,_ei(p and b= 7W (QD(?/’;mym+ei) + (,0) 5

we obtain (since X;(0) is either Acos(f) or Asin(f) and is less than )
<O (L4 LN >as 5 Y Y B [(Veased)] + X 3 [0 + 07,
zeT%, i=1,2 z€T?, i=1,2
Since (p(7%*+e) + )2 is less than 22 (%% +¢) + 2¢? | we finally obtain that,
<o, N(L™ + L) >, < —N°E% [pLy] + 4X*N°EZ [¢*] .
In particular, applying this identity to ¢ = P;"*1, we deduce from equation (5.19) that

d j—
% < Pt>\7X17Pt)\7X1 >, < < Pt>\7X17 [2’7N2Xt + N2£ + 2£G,B—O +4)\2N2] Pt>\7X1 >

< (v (1) +4X2N?) < PMX1, P >, 42 < P £9P70PM R >

where v, (¢) is the largest eigenvalue of the self-adjoint operator N2L + 2yN2X,. It is not hard to see
that the second term above is non-positive. Indeed, for any function ¢ on Xy, by definition of £&5=0
(cf. equation (2.5))

<L 20 = T B () |5 [ a0 - o))

2
zeT?,

—% > E <m [;ﬂ/sw(n“’g)cw— w(ﬁ)F) <0.

z€T%,

To establish the last identity, we only used that under p,, the angles are chosen uniformly, and therefore
EZ (nep(02)) = Ef (12)(1/27) [ 0(0")d8’. We thus obtain that

d
- < P PMYT >0 < (1 (1) + 402N?) < PMR1L, PR >,

and Gronwall’s inequality therefore yields that
T
< P71, Pp1 > < exp <4T)\2N2 +/ z/v(t)dt> :
0

This, combined with (5.18), allows us to write

1 2,0 o [F
(5.20) logE . |exp | YV / Xdt
e I3 o

2 T
T[T,
Y 0 2YN?
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The variationnal formula for the largest eigenvalue of the self-adjoint operator N2?(L£ + 2yX;) yields that

* * 1
=N sup B (4 20 X00) =28 sup {3 () - 5D |
P, EX (42)=1 ®
where the second supremum is taken over all densities ¢ w.r.t. u, which together with (5.20) concludes
the proof of Lemma 5.9. To prove the last identity, one only has to note that the supremum must be
achieved by functions v of constant sign, so that we can let ¢ = /2.
O

5.4. Relative compactness of the sequence (Qn)nven. —  We prove in this Section that the se-
quence (QN)nen, defined in equation (A.4), is relatively compact for the weak topology. It follows from
two properties stated in Proposition 5.10 below. The first one guarantees that the fized-time marginals
are controlled, whereas the second ensures that the time-fluctuations of the process’s measure are not too
wide.

Given a function H : T? x $ — R, we already introduced in the outline of Section 2.4 the notation

<m H>= H(u,0)7(du,dd).
T2 xS

The following result yields sufficient conditions for the weak relative compactness of the sequence (Q™V) .

Proposition 5.10 (Characterization of the relative compactness onP(M7]))
Let PN be a sequence of probability measures on the set of trajectories M%) defined in (2.11), such
that

(1) There exists some Ay > 0 such that for any A > Ay,

limsup PV [ sup <m,1> >A] =0
N—oo s€[0,7

(2) For any H € C(T? x 8), € > 0,

lim lim sup PV sup | <mp,H>—-<m,H>| > | =0.
6—0 N — 00 ‘t—t/IS(S
o<’ t<T

Then, the sequence (PN)nen is relatively compact for the weak topology.

Since this proposition is, with minor adjustments, found in [2] (cf. Theorem 13.2; page 139), we do
not give its proof, and refer the reader to the latter. For now, our focus is the case of the AEP, for which
both of these conditions are realized. The strategy of the proof follows closely that of Theorem 6.1, page
180 of [27], but requires two adjustments. First, our system is driven out of equilibrium by the drift, and
we therefore need to use the Lemma 5.9 stated in the previous section to carry out the proof. The second
adaptation comes from the presence of the angles, and since most of the proof is given for a test function
H(u,0) = G(u)w(#), we need to extend it in the general case where H cannot be decomposed in this
fashion.

Proposition 5.11 (Compactness of (QV)yen). — The sequence (QN)nen defined in equation (A.4)
of probabilities on the trajectories of the AEP satisfies conditions (1) and (2) above, and is therefore
relatively compact.

Proof of Proposition 5.11. — The first condition does not require any work since the AEP only allows
one particle per site and we can thus choose Ay = 1. Regarding the second condition, recall that

¢
(5.21) <7rfY,H>—<7rfv,H>:/LN<7r£V,H>ds+MtH—Mf,I,

+
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where M ¥ is a martingale with quadratic variation of order N~2. For more details, we refer the reader
to appendix A of [27]. First, Doob’s inequality yields uniformly in ¢ the crude bound

(5.22) By

<sup ’MtH—MtI,i

) <amt (s | M7 |) < ounn,
1<

0<t<T
where E;\Lﬁ is the expectation w.r.t the measure Piﬁ introduced just after Definition 3.4 of the complete
process 7197 started from the initial measure p/.
Regarding the integral part of (5.21), we first assume like earlier that H takes the form
H(u,0) = G(u)w(8),

where G and w are both C? functions. When this is not the case, an application of the periodic Weierstrass
Theorem will yield the wanted result. Then, following the same justification as in Section 2.4 we can write

/t Ln <N H > ds = % /t ds 3 7. (Z [NG® + 1] ()0, N Gl(z/N) + mW@)G@/N)) ,

!
2 i—
z€T3; i=1

where the instantaneous currents j, r and v were introduced in Definition 2.8.
The weakly asymmetric and Glauber contributions are easy to control, since both jump rates r and
~v“ can be bounded by a same constant K, and we can therefore write

t t 2
/t/ (NL™ 4 £8) <aN H >ds < K ; ds$ > 1G@/N) |+ |04, NG(x/N) |

©ET3, i=1

—Nsoo K(t—t’)/

2
[ 16|+ 10,6 | du
i=1

which vanishes as soon as |t —¢| < § in the limit § — 0. Finally,

QN sup | <7y, H>—<m,H>|>¢
[t—t"|<§
0<t' t<T

t
N2L <7l H > ds

< Pﬁf sup >¢e/3
[t—t" <5 t
0<t' t<T
t
+P20 | sup / (NL™ + %) <al H>ds| >¢/3
|[t—t"|<8 t
Lo<t’ t<T

A8 H H
+ ]P)MN sup | M;" — M,
lt—t"|<s
Lo<t',t<T

>¢e/3

The second line of the right-hand side vanishes in the limit N — oo then § — 0 thanks to the computation
above, whereas the third line also vanishes thanks to Markov’s inequality and equation (5.22). Finally,
the first term vanishes accordingly to Lemma 5.12 below and the Markov inequality, thus completing the
proof in the case where H(u,f) = G(u)w(f). The general case is derived just after the proof of Lemma
5.12.

Lemma 5.12. — For any function H(u,0) = G(u)w(f) € C*9(T? x §),

t
N’CL <7, H>ds| | =0.

¢/

(5.23) lim lim sup B sup
5§—0 N—00 H |t,7t|§§
o<t t<T
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Proof of Lemma 5.12. — The proof of this Lemma follows, with minor adjustments to account for the
drift, the proof given in [27]. First, we get rid of the supremum and come back to the reference measure
with fixed parameter « €]0, 1] thanks to Lemma 5.9 of Section 5.3. Let us denote

t
(5.24) g(t) = / N?L < 7N H > ds.
0

We now compare the measure of the AEP to that of the process started from equilibrium (uV = u?),
and with no alignment (8 = 0), according to Proposition 3.10 with A = RN? and

b% (40 T] sup N2,C <N H>ds| = sup |g(t)—g(t)]
\t—t|<6 t [t'—t]<é
0<t/ 1<T 0<t’,t<T

This yields that for some constant K, > 0, the expectation in equation (5.23) is bounded from above for
any positive R by

1
ENE K0N2+log]E L exp RN? sup |g(t) —g(t)|
[ ~t]<5

o<t t<T

(5.25)
We therefore reduce the proof of Lemma 5.12 to showing that

5.26 lim lim sup ———— log E*Cexp [ R(S)N? su t) — gt =0,
(5.26) 550 N_mp R(6)N2 gE,: exp | R(0) |t'7tr\)§6|g() g(t) |
o<t/ t<T

where R(§) goes to oo as d goes to 0.
Let p and 4 be two strictly increasing functions such that ¢ (0) = p(0) = 0 and ¢¥(+00) = +o0, we

denote
I:/ w(g(t)_g(t/”)dt’dt
[0,T][0,T] p(|t' —t]) ’

the Garsia-Rodemich-Rumsey inequality [23] yields that

)
B iy
(5.27) w190 -9ty <5 [ v 1<2)p<du>.
[t —t]<68 0 u
0<t' t<T

Given any positive a, we choose p(u) = y/u and ¥(u) = exp(u/a) — 1, hence 1~ (u) = alog(l + u). An
integration by parts yields that

/Oaw <iI) p(du) = /0610g (1+4I> chuf

5
I
= aVilog (1+41672) +a/ _8L Vudu
0

ud +4lu
< aVilog (1 +4I572%) +a/ —du
=aV6 § [log (52 +4I) — 2log é + 4]
< aVs [—1055 log (6% 4 4I) — 41log 5]
(5.28) < aV/§ [~4logdlog (6% +4I) — 4log ],
since for any § < e~2, we have —log(§) > 2. From equations (5.27) and (5.28) we deduce that
log IE;):) exp | RN? sup |g(t)—g(t)|| <log ]E;)’ZO exp (—32aRN2\/Slog6 [1+log (6% +4I + 1)])

[t —t|<8
o<t t<T
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holds for any a > 0. For § < 1, Let us choose a = —(32RN?v/§logd)~" > 0, we can write for the second
term of (5.25) the upper bound

1
log]E Yexp | RN? sup |g(t) —g(t)] | < 1+1log (1+ 0% +4E5 (1))].
RN2 Ha [t |<5 RN?2 [ ( )}
o<t t<T

By definition,
| Jy NL <l H > du

I = / exp
[0,7)x[0,T] ay/[t =1

Let us assume, purely for convenience, that 7' > 1/2, for § sufficiently small, we have 472 — 1 — §2 > 0,
and the quantity inside the limit in equation (5.26) can be estimated by

dt'dt — T2

(5.29) RN2 logEA*O exp | RN? sup |g(t) —g(t) ]|
[t —t|<s
o<t t<T
1 ‘ft,N2£<7TéV,H>ds‘
< —— |1+ log4E)? / sp [ L dt'dt
RN * | J10,1x[0,1) ar/|t' —t|

If T < 1/2, we simply carry out a constant term in the log above, which does not alter the proof.

Let us take a look at the two constants a and R. Noting the first bound on the entropy mentioned
earlier, in order to keep the first term of (5.25) in check, R = R(J) must simply grow to co. Furthermore,
we previously obtained that a = —(RN?232v/8log §)~!, we can choose a = N~2, thus R = —1/32v/4 log 4,
which is non-negative, and goes to co as § — 0. Therefore, the second term above can be rewritten

t

1 2,0
—log/ 42 exp 7% vie;(8)0u; NG(x/N)ds | dt'dt
RN? 0.7x[0,7] v |t — t\1/2 ;r:z el

In order to estimate the expectation above, we can get rid of the absolute value, since el | < e* 4 ¢,
and since the function G is taken in a symmetric class of functions. Furthermore, Lemma 5.9, applied
with A =1 yields that the second term in the right-hand side of (5.29) is less than

1 (=) 2 n2 ,
(5.30) 7log/ exp [ ANN? 4+ vy (G,4)] | dtdt’,
RN? [0,7]x[0,T] 2 [ (G.1)]
where vy (G, i) is the largest eigenvalue in L?(11%) of the self-adjoint operator
2N
2 .
N E-Fm ZT2 j;JJJrei@ui,NG(a:/N),
zely,

which can be rewritten as the variational formula

(5.31) vn(G,i) = sup ,71/2 Y 0w NG/ NIEL (fisare,) — N?D(f) ¢
A R

where the supremum is taken on all densities f w.r.t. p. In order to prove that the eigenvalue above is

of order N2, we now want to transform

W Y 0w NG(@/NEL (f15 ase,) -

z€eT?,

For any density f, since j¥ . (7"

) = —TxJ¢, we can write

BL (Fser) DuN G /N) = =SB [(FGT) = )i nye,] DG/ N)

<10 (e (VI@=) - V7))
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| Q

+ S 0nwctomyre, (Vi) + V7))
Since (j¢ ,4e,)? < |lwl1% Ly, 0, ., =0, and since [\/F(777Fe) 4 \/ﬂ < 2f(®"Fe) + 2f, we obtain the
upper bound

N |Jwl|? N3C
wﬁ;ﬂ O NG(x/N)ES, (75 e;) < QCHU_%FL/QD(JC) + TIE 10w, G2,
which holds for any positive C. We now set C' = [t/ —t|~1/2 Hw||ic /N so that the Dirichlet form con-
tributions in the variational formula (5.31) cancel out. We finally obtain that for some positive constant
C1(@G), independent of N,
C1(G)N
[t —t]
which yields that (5.30) vanishes in the limit N — oo and § — 0, since R = R(J) goes to oo as J goes to
0. Finally, we have proved thanks to equation (5.29) that

I/N(G, Z) S

lim lim sup logE O lexp |RN? sup |g(t) — g(t =0,
5—0 N—so0 RN2 ‘t/_tIS(S' ( ) ( )|
0<t' t<T
which concludes the proof of Lemma (5.12). O

In order to complete the proof of Proposition 5.11, we still have to consider the case when H does not
take a product form G(u)w(#). In this case, since H is smooth it can be approximated by a trigonometric
polynomial in w1, ug and 6. Each term of the approximation is then of the form G(u)w(8), and the previous
result can therefore be applied. More precisely, consider a smooth function H, and for any « > 0, there
exists a finite family (pfj;)o<i,jk<m, of coefficients such that

sup H(u,0) — Z p?jkuiuéﬂk <a.
ueT?, ;o
<1 isjkelo,M]

Let us now fix an € > 0, and let us take a = ¢/4. Then, considering the corresponding family P;;x(u,§) =

pEuiult* we have that
| <l H>—<a H>| < |<a) —al,H— > Pup>|+ Y |<«d—m)Pu>].

,5,k< Mo 4,5, < Ma

Since we allow at most 1 particle per site, and since H — Zi7j;k§Ma P;;i; is smaller than €/4, the first
term of the right-hand side above is less than ¢/2. From this, we deduce that for the left-hand side to
be greater than ¢, one of the terms | < 7}/, Pij, > — < @Y, P;jx > | must be larger than e/2M3. This
yields that

QN sup | <my,H>—<m,H>| >¢
| s—t|<é
o<t t<T

Z QN sup | <7y, Pyr>— <m, Piyr > | >

’
4.5,k <M, |t ~t]<d
yJHIRS Mo OSt/,tST

e
203

Since « is fixed, we can now take the limit N — oo then § — 0, in which the right-hand side vanishes
since all functions are decorrelated in v and 6. The result thus holds for any smooth function H, thus
completing the proof of Proposition 5.11. O

We now prove that in the limit, the empirical measure of our process admits at any fixed time a density
w.r.t. the Lebesgue measure on T2.
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Lemma 5.13. — Any limit point Q* of the sequence QV is concentrated on measures T € ./\//TT with
time marginals absolutely continuous w.r.t the Lebesque measure on T?,

Q* (m, me(du, d9) = p,(u, df)du, ¥t e [0,T]) =

Proof of Lemma 5.13. — For any smooth function H € C(T?) configuration 7 in ¥ and any corre-
sponding emplrlcal measure 7, we have

1 1
| <7V H>| = e > H(z/N)m, | < 3 > |H(z/N)|
z€T% z€T3,

The right-hand side above converges as N goes to co towards [, | H(u) |du. Since for any fixed function
H, the application

T sup | <m,H > |
0<t<T

is continuous, any limit point Q* of (Q™)x is concentrated on trajectories 7 such that
sup | < m, H > | S/ | H(u) |du,
<t<T T2

for any smooth function H on T2, and therefore is absolutely continuous w.r.t. the Lebesgue measure on
T2. O

5.5. Regularity of the density and energy estimate. — In this Section we prove the reqularity
of the particle densities needed for equation (2.13). The regularity of the total density is obtained quite
easily following the strategy for the proof used in [27], however the regularity of the density of each type
of particle (with angle 0) is more delicate, and requires the Replacement Lemma 4.1 as well as the tools
developed in Section 5

Due to the non-constant diffusion coefficients, the second derivative in equation (2.13) cannot be
applied to the test function, and we need, according to condition #ii) of Definition 2.5, to prove that
the macroscopic profiles of our particle system are such that Vp is well-defined. We are going to prove
a slightly stronger result than what is required, and also prove that d(p)Vp(u,0) is, once smoothed out
by a function w, well-defined as well.

Recall from the irreducibility Section 3.12 the definition of the cutoff functions 1g,, where E),, defined
in equation (3.17), is the event on which the configuration has at least two empty sites in the box B, of
side length 2p + 1. For any angle measure @, (cf. Definition 3.1) we already introduced @ = [¢ &x(df), w
define

(5.32) FoP(@) = Ea(ng 1e,)

the cutoff density. Recall from Lemma 5.13 that any limit point Q* of (Q™)yen is concentrated on
trajectories such that

7t (du, df) = p,(u,dd)du,

and that we denote p;(u fs pt(u, d). We can now state the following result.

Theorem 5.14. — Any limit point Q* of the measure sequence (Q™)x is concentrated on trajectories
with p;(u) and F*P(p,(u)) in Hy = W12([0, T] x T?) for any p > 1. In other words, there exists functions
Ou, pt(u) and 8, F¥P(p,(w)) in L?([0,T] x T?) such that for any smooth function H € C12([0,T] x T?)

(5.33) / / () Do, Ho () dudt / / D, pr(u)dudt
[0,T]x T2 0 T]><11‘2

and
// FP(py(u))Oy, Hi(u)dudt = // )0y, FP (P, (u))dudt.
[0,T]x T2 [0, T]><11‘2
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Furthermore, there ezists a constant K = K (T, \, 3, p,) such that for any limit point Q* of (QV), and
for any 1,

(5.34) Eq- ( / /[O e [Buipt(u)]Qdudt> <K.

In particular, any such limit point Q* is concentrated on measures satisfying condition iii) of Definition
2.5.

Remark 5.15. — We obtain in fact throughout the proof a stronger regularity than p, F“?(p) € H;.
Indeed, to prove the latter, one only requires according to Riesz representation theorem that

/pVH <C </ H2>1/2 and /Fw’p(ﬁ)VH <C </ H2)1/2,

for some constant C. In our case, we are really going to prove that
1/2

/pVH <C (/ p(1— p)H2)1/2 and /F“”p(ﬁ)VH <C (/ pH2> ,

which is obviously a stronger result since p < 1. However, since p, F*"?(p) € H; is sufficient to define the
differential equation (2.13), we formulate the theorem above with the weaker result instead of the latter.

The proof is postponed to the end of this Section. The usual argument to prove this result is Riesz
representation theorem, that guarantees that if

I oo Hiwdud < C|ja1
[0,T]xT2

for any H there exists a function d,,p € L?([0,T] x T?) such that (5.33) holds. We first prove that if
F“P(p) and p are in H', then ds(p)d,,p* is properly defined. For that purpose, we need the estimate
given in Lemma 5.16 below. Fix a direction i € {1,2}, for any = € T%, let (k) kefo,eny be defined by
zr = x + ke;. Following the strategy of the energy estimate of [27], and recalling that 7,psn is the
empirical particle density in Bsy(x), we let

1 ~ _ AH(z/N) "
VialAe, 6 H) = 7 Y Hiz/N) ( e i) — F=2(rpon)] — AN S ).
z€T%, k=0

We also introduce the equivalent of Vi ; for the angle-blind configuration 7, instead of n;1g, ,, and
let

1 2H (z/N) "=
Wi,i(e, 6, H,n) NQ > H(z/N) ( [FoteNe.psN = pon] = ——x7— > Tepsn(l— p&v)) :
z€eT?%, k=0

Lemma 5.16. — Let {H',l € N} be a dense sequence in the separable algebra C%1([0,T] x T?) endowed
with the norm ||H|| + 2?21 0w, H||,- For any r = 1,2 there exists two positive constants Ay = Ao(p)
and K = K(T,\, B, py) such that for any k > 1 and e > 0,

T
lim sup lim sup 7,5 e (max/ VN,i(AO,s,é,Htl,ﬁ(t))dt) < Ky,

§—0 N—oo 1<I<k Jg
and
T
lim sup limsup B | max / Wi .ile, 8, HLn(t))dt | < Ko.
650 Nooo H \1i<k Jg
Proof of Lemmma 5.16. — By the replacement Lemma 4.1, it is sufficient to show the result above without

the limit in J, and with VN,i(A,e, H;,7) and WNJ-(& Hy,n) instead of Vy; and Wy ;, where

1., AH(z/N) “=!
VN z(A e, H,7) N2 Z (x/N) (E I:n;C+EN61j]]'Tz+5NeiEp ny 1r, p] TN Z Ny,
z€T%, k=0
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eN—-1
= 2 HEN) e Y [Ne0 1s,.,) — AH(/Nn, |
16']1‘2 k=0

and

AH(z/N) ° ="
WNZ(E H 77 N2 Z H LC/N ( [77:1:+5Nel _771] % Z ka nlk+1)>
k=0

z€eT%
eN—-1
N2 Z x/N Z [N(ka+1 - ka) - 2H($/N)mk(1 - nwk+1)] .
z€T%, k=0

To obtain the second identities we merely rewrote P (7, cne, Psn) — F“P(Topsn) and ToyenNe, P5N — PoN
as telescopic sums, and §; is the discrete derivative in the direction e;

6ig(7) = 7e.9(0) — 9(0).-
Applying Proposition 3.10 to A = N? and

T
X (707) = max [ V(A Bl ) o)

1<i<k
the contribution of the Glauber dynamics and the initial measure can be compared to the case 5 = 0
started from p,

T
]Ei\b}\é ( max / VN,Z'(Aa g, H)fa ﬁ(t))dt>

1<i<k Jo
< K T /3 p/\ 1 1() E)\ 0 ex N2 max ~[/ i A g Hl 7 d
= 0( » M 0) N g P 1<i<k Nﬂ( P) tvn(t)) L :

The max can be taken out of the log in the second term because for any finite family (u;),

exp (max ul) Z exp u; and lim sup N2 log (Z U N) < max limsup N 2 log UN,I-

N—o0 I N—oc0

Furthermore, we apply Lemma 5.9 to v =1, and X; = XN/N,i(A, e, Hy, 1), to obtain that

1 A0
— logE7x
N2 08T 0

T
exp (Nz/ VN,i(Avethﬁ(t))dt)

< 2T + ;/OT dtsgp {QEZ (@VNJ(Aagathﬁ)) -D (@)} ;

where the supremum is taken over all densities w.r.t. u. We obtain the same bound with WJ\M instead
of ‘~/NZ Letting

K(T, )\, 8, py) = Ko(T, B, o) + 2TA2,
to prove Lemma 5.16 it is therefore sufficient to show that the second term on the right-hand side of the
inequality above is non-positive for some constant A. This will be implied by Lemma 5.17 below, since
the time integral is now only applied to H. O

Lemma 5.17. — Let p > 1 be some fized integer, there exists a positive constant Ag depending only on
p such that for any H € C*(T?), and ¢ > 0,

lim sup sup {ZE:; (VN,i(AOaszv 7/7\)90) - D(‘P)} <0,
N—oco ¢

and
lim sup sup {QEZ (WN,Z‘(E, H, ﬁ)go) - D(ap)} <0,

N—=oco @
where the supremums are taken over the densities ¢ w.r.t the product measure p,.
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Yrgde - =77 —P__ —P— A g Ppl
By :
e R U Ty
0. e;
- Te; Bp

LN A

Ficure 5. Change of variable 7j — T7,7).

Proof of Lemma 5.17. — We treat in full detail only the first upper bound, which requires to handle the
events F, .. The second can be derived in the exact same fashion, and with much less effort. We first
work on the expectation of the first part of Vi o, which can be rewritten

eN—1
2 . 1 w w
(535) NEQ @ Z H(x/N)é‘iN Z (n1k+6i]]'Ep,xk+1 _nIk]]'EP»Ik)
k

zeT% =0

In order to transfer the gradient appearing in the expression above on ¢, we need a specific change of
variable described in Figure 5. For that purpose, given z in the torus, we denote for any m € [—p, p]

Ym = T — pe; + mey and zZm = + (p+ 1)e; + mey,
where 4’ # i is the other direction on the torus. Given these, we denote for any configuration 7 by
~ NY_ oz N\ YpsZ
T3, (1) = (((oeten)y-sr) )

the configuration where the sites x and x + e; have been inverted, as well as the boundary sites y,, and
Zm, according to Figure 5 : the purpose of the inversion between the y,,’s and z,,’s is to transform 1g,.,
into 1g,, -
TR
By definition of 73", we thus have

W1, L (T2) = 1 Up, ., ()
therefore
Bl (000 e By, — 151, ) = Ba | ((TE80) = 0(0) 1, 1., | -

Thanks to the elementary inequality

Alp() — @) < AWR() + Vo) (Vo) — o)
(Vo) + ve@)” + % V(@) — ve@)*,

<

o[
2

and the fact that | n% | < ||wl|, 7. the quantity E, (H(x/N)go(nngrei 15y, — o 1B, ., )) can therefore
be bounded for any positive v by

w 2 X 2 2 2
eao) Ul MO g (Vi) + Vo @) na) + 555 (1., (VTS - VE@)°).

Since (a + b)? < 2(a? + b?), the expectation in the left-hand side above can be bounded from above by

Ylwl|2 H(z/N)?EL (0(Maysy + ay)) -
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The corresponding part in (5.35) can therefore be bounded from above by

47|\w||w 1 &
(5.37) > H(z/N)? ZE (972, ) + ¥ Non (1)

zeT%

We now want to estimate the right-hand side of (5.36) by the Dirichlet form. Thanks to the cutoff

functions 1g for any k, according to Section 3.3 there exists a sequence of allowed jumps in By, (zy)

p,xp?
allowing to reach 77’ ;7 from 7). More precisely, denote by (! )ieqo,...,.} the sequence of configurations such
that n° = 7, n = T;7, and for any I < L, gttt = (7)™ for two neighboring sites a; and b; such that
the jump from q; to b; is allowed in 7' Flnally, we can choose L bounded by some constant C,, and we
can safely assume by the construction in the Section 3.3 that each edge in B, is used at most n, times.

These notations allow us to rewrite for any fixed & € {0,eN — 1}

E: (VA(Tnd) — VE@) 18, ) =Ei |1r., (Z\F ) —\/W))

Z (v (@)t — @(ﬁ))ﬂ

=0

<C,E

<Cpn,E;, > (Vauws:v@)?| < CpDpyay) (9),

z,x+2E€Bp (k)

where Dp (.) is the Dirichlet form relative to the symmetric generator £, restricted to having both
extremities of the jumps in B, and C}, = 2C}n,, is a constant depending only on p.
Summing the expression above over x and k, since for any k&

> Di ey (#) = 22+ 1)°D(9),

2
zeTy,

there exists a constant C}, = (2p + 1)2(~7p such that

(5.39) = S E; ((VBTzsm = V@) 15,., ) < CyD(9).

zeT?,

We finally obtain, thanks to (5.36), (5.37) and (5.38), that for some constant C'(w), (5.35) can be bounded
from above by

(5.39) 1CC) S pr(any L ENZIE (onm) + Nox(1) + 2D (p).
N k yN

2
z€T%,

We then let v = C},/N, and set A9 = C,,C(w)/2 to obtain that the first bound in Lemma 5.17 holds.
The second term is much easier to derive, and follows the exact same steps as the first. The key idea
however, is that this time

Nzppr = Mo = Moy (1 - nrk) = Nzy, (1 - nﬂﬁk+1)7

NTk

and we only need a change of variable 77 — 7n®****+1 to make the Dirichlet form directly appear. O

Lemma 5.16 allows us to complete the proof of Theorem 5.14. Once again, we only treat in full detail
the case of F“P(p), the proof for p follows directly.

Proof of Theorem 5.14. — Recall that we defined in Section 3.1 IP’ J. the measure on the space

D([0,T],T%) of the AEP 7)(s) started with the measure ¢, and Q" is the measure on the corresponding
measure space MT]. Let us introduce

os(u) = (26) 1 g2
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For any trajectory () in M[®7] we define the density profile of the torus (in the sense of Definition
3.1) p°
ﬁf(u, do) =< m(-,dO), ps(. +u) >= / ws(v + w)m(dv, d).
T2
The application

T
wH/ For (B0 (u, )t
0

defined for any trajectory 7 € M is continuous for Skorohod’s topology described in Section 5.4.
Letting Q* be a weak limit point of (Q"), Lemma 5.16 therefore yields that

Hl
limsupEo- | max // Hilw) (Fo? B+ ze1,)) ~ F*(3}(w. )
[0,T)xT2 €

50 1<i<k
Hl U 2
e [ [ s
€ [u,utee;]

dudt) <K,

where p(v) =< 74, @s(v —.) >. Since thanks to Lemma 5.13 any limit point Q* of (Q"V) is concentrated
on trajectories absolutely continuous w.r.t. the Lebesgue measure on T2, letting § then ¢ go to 0, by
dominated convergence, we obtain that

1<i<k

! “P(p, (u)) — L) pp(w)] du <
Eq- (max I 1y o BB 0) ~ Ao 00p)] dt) <K,

where p, is the density profile on torus, which exists @Q*-a.s. according to Lemma 5.13, such that
m(du, df) = p,(u,dd)du. By monotone convergence, and since the sequence (H;) is dense in C%1([0, T] x
T?), the measure Q* is concentrated on the trajectories p for which there exists a constant Ay, such that
for any i

(5.40) Eo- <sgp / /[ o PO (3,(00) — Ao () dudt) < K,

where the supremum is taken over all functions H € C%1([0,T] x T?). Let us first assume that w is a
non-negative function, then

(G, H) = / G (o) Hy () pr (),
[0,T]x T2

is an inner product on C%*([0, T] x T?). Let L% denote the resulting Hilbert space. Finally, let us denote
fi the linear operator

Fi(H) = / / D, Hy(w) F=P (B, (u))dud,
[0,T]x T2
then equation (5.40) yields that for any positive constant r, rf;(H) — r?Ao(H, H) < K, i.e.

Fi(H) < K 4 r Ao H, H).

Letting r = \/K/Ao(H, H), and Cy = ﬁ(m—&— \/Aiofl>, we obtain that for any function H €
C%1([0,T] x T?),

fi(H) < Co(H, H)Y2.
Thus the operator f; is bounded in L%. Therefore, for any 4, Riesz’s representation Theorem yields that
there exists a function denoted F;""(p,(u)) € L% such that for any H € C%1([0,T] x T?),

fi(H) = /MW 0. Hi(w) P (p, () dudt — /MW Hy(w)F (5, () () dudt.

Letting 0, F<?(p, (1)) = pe(u) F*P(p,(u)) € L*([0, T] x T2), we obtain the wanted result. We can follow
the same strategy if w is non-positive, which we only used so that (G, H) would be positive, and finally
also for any w since the wanted identity is linear in w. O
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Remark 5.18. — We have proven in the previous theorem that the differentials 9, F“?(p,(u)) exist.
Following the same exact strategy and replacing 7§ 1g, by 7o, it is easily derived that p is also in H L
This time, there is no need for the cutoff functions, since this time the currents and gradients vanish as
soon as the configuration is full, and the Dirichlet form appears naturally.

To any density profile on the torus p, we associate p* the angle density smoothed out by w
o) = [ w(O)ptu,do).
$

For any large p, and assuming that the density does not go to 1, F*“"?(p,(u)) is close to p¥(u), and since
the gradient of F“(p,(u)) is well-defined according to Theorem 5.14, that of p¢(u) should also be well-
defined. However, when the density reaches 1, this is no longer the case, and the definition of 9,, p¥ (u)
becomes problematic. However, this issue can be solved, because the diffusion coefficient relative to p$ (u)
is ds(p), which vanishes as the density p reaches 1. This construction of 9y, p¥ (u) is given by the following
Corollary of Theorem 5.14.

Corollary 5.19. — Any limit point Q* of the measure sequence (QN)x is concentrated on trajectories
mi(du, df) = p,(u,d)du such that there exists functions ds(p)dy,ps in L*([0,T] x T?), verifying for any
smooth function G € C%2([0,T] x T?),

/ 0200, [ds () G ()] dudt = — / (1) ds (), p dudt.
[0,T] T2 [0,T] T2

Proof of Corollary 5.19. — In order to obtain the functions 0,,p%, recall that Ep is the event on which
at least two sites in B, \ {0} are empty. In order to make E, and 7 independent, we let

Ey=¢ > m<(2p+1)?-3
T€EBy, x#0

Then, Ep and 7 are independent by construction, and

(5.41) FP(py(u) = 97 P, ) (Ep)-

Also note that P5 (,)(E,) depends on p,(u) only through p(u),

P, () (Ep) = 1= (pe(u) +4p(p + 1)(1 = py(u))) py () P@+D L,
For any p # 1, we can use equation (5.41), and define the derivative as

ds(pt) ~ o
LU (PR (B,(w) — 500 P, (By) )
Pﬁt (Ep>
Note that a priori this definition depends on p. In fact, the construction ensures that is does not, but
since this is not a crucial point of the proof, we do not develop it further. This quantity is well-defined

ds(pt)Ou; Py =

since p and F“P(p,(u)) are in H; according to Theorem 5.14, and since d,(p;)/Pp, (Ep) admits a finite
limit as p goes to 1, thus concluding the proof of Corollary 5.19.

6. Non-gradient estimates

6.1. Replacement of the symmetric current by a macroscopic gradient. — In this Section, we
focus on the complete exclusion process, and replace the current j¢° by a quantity of the form 7,,h—h+Lf,
with f a function of the configuration with infinite support. We then show that the perturbation Lf is
of the same order as the weakly asymmetric contribution, and they both contribute to the drift term of
equation (2.13). To obtain the non gradient estimates, we use the formalism developed in [27] rather than
that of [35]. This changes the proof substantially, with the upside that the orders in N, as well as the
studied quantities, are clearly identified at any given point of the proof.
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One of the challenges in proving the non-gradient hydrodynamic limit is to replace the local particle
currents j’ by the gradient of a function of the empirical measure. Recall that we already defined in
equation (2.22) the empirical angle measure p; € M; (%),

P 200, »
= 2z+1 3 2 M.
reB;

and we denote by p; the empirical density

pL=

2z+1 5 2 Tl = il

z€B;
Let
P = 21 e > n,
€D
be the average of n* over a box of side 2l + 1. Finally, for any function ¢ on Xy, recall that §; is the
discrete derivative

dip=Te, 0=
(for example, §,78 = ne — ng).

The usual strategy in the proof of the non-gradient hydrodynamic limit is to show that for some
coefficients 9¥, 9 : [0,1] x R — R,

Ji + 0% (pens pEn) 0ipsy + 0 (pen, Pan) Gipen

vanishes as N — oo. More precisely, the quantity above is in the range of the generator £, which is
usually sufficient when the functions of the form Lf are negligible. In our case, however, due to the
addition of a weak drift, the usual martingale estimate does not yield that L£f is negligible, but that
LPf = (L+N~-1L")f is negligible, therefore this perturbation can be integrated to the drift part, which
is done in Section 6.9.

For this replacement, we will need further notations similar to the ones introduced in Section 4.1. In
our case, the diffusion coeflicient ?“(p, p*) is in fact the self-diffusion coefficient ds(p), therefore we will
from now on simply write d,(p) for the diffusion coefficient relative to p“. Note that it depends on the
configuration only through the empirical density, and not on the particle angles. For any positive integer
[, and any cylinder function f, let us thus denote

VN (@) = 52 4 ds (pon) 8:pEx + 0 (penvs pEy) dipen — L,

where 9 : [0,1] x R — R is the diffusion coefficient given in (2.12).
We introduce for any smooth function G € C?(T?)

1
f.eN ~ f.eN
(6.1) XN (G =+ > Gl/N)r v,

2
zeT%;

Our goal throughout this Section is to prove that under the measure of our process, Xi{f,N(G, 7)) vanishes
for any smooth function G, i.e. that the microscopic currents can be replaced by a macroscopic average
of the gradients up to a perturbation £f that will be dealt with later on.
The sum contains N? terms, and the normalization is only 1/N, therefore an order N has to be gained,
and this is the major difficulty of the non-gradient dynamics. To prove this statement, we decompose
x/, EN(G 7)) into distinct vanishing parts. We already introduced in Equation (3.17) the set

=< > m<IB -2y,

ly—z|<p

E

b,z

such that at least two sites are empty in a vicinity of x of size p. The cutoff functions 1g, , are crucial
in order to control the local variations of the measure of the process with the Dirichlet form.
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We set for any integer [

6.2 ©1 d PP =g - 1
62) g 25+12§” 5. and PP =pf — g7 21+12§771;E
l 1

where E . is the complementary event of E,

We are now ready to split Xf’EN into 4 vanishing parts. Let us denote by

o~ W w1/ l—s
Wi =WH @) =52 = (2% — (£ = LhHi™).,
the difference betweenjy’ — L f and their local average, and by
Wa = WEN’p( 1) = ds (pen) 0iPei’

the mesoscopic contributions of full clusters, where p.37 was defined in equation (6.2) above. Let us also
introduce

Wi = WiV (@) = ds (pen) 8ip2i¥ — ds (1) 8ip)" +0(pen, pEn) Bipen — 0 (pu, i) Sipr,

where [, =l —p—1and I’ = [ —1, which is the difference between the cutoff microscopic and macroscopic
gradients. Note that the cutoff functions are not needed for the total density p, because the gradients will
vanish on full configurations. Finally, we set

(6.3) Wi = WEEP@B) = G + dy (1) 80+ (i, ) Supr — (LY,

the microscopic difference between currents and gradients, taking into consideration the perturbation Lf.
For any smooth function G € C?(T?), we also introduce

A~ 1 € /\
V=V G = X GaNmw, =Y G = Y Ga/Nmws,

z€T%, z€T%,
1
Y; =Y/ 5VP(G, D) Z G(z/N)r,Ws  and Yy =Y/"P(G.5) = ¥ > G(x/N)raWs.
:ze1r2 zeT%

By construction,
4
N = =
k=1
We can now state the main result of this Section.

Theorem 6.1. — Let G be a smooth function in C**([0,T] x T?), T € R%, and i € {1,2}. For any
cylinder function f,

(6.4) hgr;suph]{]njupE ’ﬁ ( '/ Yzfll Gy, m(t))dt ) =0.

Furthermore,

(6.5) plgrolohmjélph]{]nsup]E B ( |/ YEN’p (G, n(t))dt >—0.
€ — 00

For any integer p > 1,

(6.6) lim sup lim sup lim sup E7/ B / Yl NP(Gy,T(E)dE | ] = 0.
=00 e—=»0 N-—oo
Finally,
T
(6.7) iI}fplLrI;o lifn sup li]{fn sup E;);A? ( /0 }/;ﬁl,p(Gt, n(t))dt > =0,
— 00 — 00

where the infimum in f is taken over the set C of cylinder functions.
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The core of this Section is dedicated to proving these four estimates. The proof of equation (6.4) is
immediate and is sketched in Section 6.2.

Equation (6.5) is quite delicate, and requires both the control on full clusters derived in equation (3.18)
and the energy estimate (5.34). It is proved in Section 6.3, in which the main challenge, as in the control
of full clusters, is to carry out the macroscopic estimate (5.34) in a microscopic setup.

The proof of equation (6.6) is given in Section 6.4. This limit is the non-gradient counterpart of the
two-block estimate stated in Lemma 4.4. It follows closely the replacement of local gradients by their
macroscopic counterparts performed in Lemma 3.1, p.156 of [27], but needs some technical adaptation
due to the presence of the cutoff functions.

The last limit (6.7) requires the tools developed by Varadhan and Quastel [48] [35] for the hydro-
dynamic limit for non-gradient systems, and therefore requires more work. It is the non-gradient of the
one-block estimate of Lemma 4.3. However, if the latter was essentially a consequence of the law of large
numbers, (6.7) is analogous to the central limit theorem, where the gradient term plays the role of —E(j%).
The limit (6.7) is the focus of Sections 6.5-6.8.

Finally, Section 6.9, and in particular Lemma 6.44, is dedicated to the integration of the contribution
Lf to the drift part of the scaling limit.

These four estimates are sufficient to allow the replacement of currents by macrocopic averages of
gradients, up to a perturbation Lf.

Corollary 6.2. — Let G be a smooth function in C*2([0,T] x T?), and T € R%, and consider X{}@N
introduced in (6.1). Then for i € {1,2}

(6.8) inf lim sup lim sup E77 A8 =0.

e—0 N—o0

| / XIEN (G )

Proof of Corollary 6.2. — Since
4
XIRN(G. ) = Y Yi(G ),

this Corollary follows immediately from the triangular inequality, and Theorem 6.1 above, taking the
limits N — oo, then € — 0 then | — oo, then p — oo, and finally the infimums over the local functions
f O

2. Replacement of the currents and Lf by their local average. — In this paragraph, we prove
equation (6.4), i.e. that for any i = 1,2, any function G € C*2([0,T] x T?), and any cylinder function f,

)—0.

Gl’N(x/N)zﬁ S Gly/N),
yeT3, ly—z|<I

T
/0 Y1 (Gy, A(t))dt

l—o0 N—o00

lim sup lim sup Ef;]\é (

We set

an integration by parts guarantees that, shortening I’ =1 —1

N: Z :Z?/N j;)796+61: - 2[/+1 Z ]y y+e;

rET2 |y—az |<U

) 2
LY (0ta/N) - @V @/N)) iy, < ST

xET2

since the difference G(z/N) — GUN (2/N) is a discrete Laplacian, and is therefore of order 12/N?, and the
currents j; ... are bounded. By the same reasoning, letting Iy = [ — sy, we obtain a similar bound on
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YeN+ Hzon
YeN=1+ +zZena
YeN -2+ Hzeno

Yo |+ + +

Z
0 0
BEN
y2—6N+ + 29N
Yr=eNt +217€N
Y—eNl+ Hzoen
BEN(_Gi)
F1GURE 6. Definition of the yi’s and z’s.
the difference
1 C'(G, f)l2
~ Z (z/N) | =Lf - @l +1)7 Z wLf | < — N
xeT2 ly—a|<ly

since Lf is a bounded function (this last statement comes from the fact that f is, and depends only on

a finite number of sites). These two bounds finally yield that for some constant K = C(G) + C'(G, f),
Ki?

| Y1(G,7) | <W

which immediately yields equation (6.4) for any cylinder function f.

6.3. Estimation of the gradients on full clusters. — We now prove that equation (6.5) holds. Our
goal is to bound Yifév’p(G, 7(s)) thanks to the control of full clusters functions obtained in (3.18), and to
the energy estimate (5.34). For the sake of clarity, we drop the various dependencies, and simply write
Yy = Y0P,
By definition of Y5 and pZ{ (6.2),
o~ 1 —w
Ya(G) =+ D Go/N)7e (ds (pen) 8:P2K)

z€T%,

1
Nz, | d S S “1 e
-N Z (@/N)7a | ds (Pen) | ooy 172 > ileg, 25N+ 5 2 ’
z€T?, yEB:N(e;) yGBeN

and we can rewrite it by summation by parts as
(6.9)

Z% ﬁ% Y. GW/N)nyds(pen) = Y Gy/N)ryda(pen)

x€'ll‘2 yEBN(—€;) yEB:N

Most of the terms in the parenthesis above cancel out, since the boxes B:.y(—e;) and Bey = B.n(0)
overlap except on the two sides (cf. Figure 6).
For any k € [—eN,eN], we let according to Figure 6

Yp = —(eN + 1)e; + key and 2z, =eNe; + key,
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where ¢/ # 4 is the second direction on the torus, which are defined so that B.n(—e;)\B:ny =

{yfeNv s 7y6N} and BEN\BEN(_ei) = {ZfsNa ceey ZsN}~
We thus obtain from (6.9)

(6.10) Ya(G,7(s))

T+ Yk T+ 2
AT Z % 2€N—|—1 ( Z G( ) (7—:1:+ykp€N) _G< N >d5(7m+zkp5N)>'

z€T2

We can now rewrite the quantity inside the parenthesis as the sum over k of

z+ T+ 2z rT+z
{G( Nyk> _G< N k)} ds(TeryszN)_G( N k) [dS(Tx+ka5N)_ds(TerykpsN)}'

Since yr and zj are distant of 2e N + 1, the first term in the decomposition above can be bounded in
absolute value uniformly in = and k by (2e N + 1) ||0,,G/| o, /N. Let C(G,w) = ||0u, G| ||w|ls [1ds]] s
the corresponding contribution in (6.10) is

- Z # 521\5 el R L N R A (r )
*(2eN +1)2 N N )| &l TetuleN |
””ETN<HWH =N <lldall,

<(2eN+1)||0u, G| /N

and can therefore be bounded by
C(G,w)
N2 Z ]]-Ez(i,m
z€T?,

Furthermore, since d; is C* on [0, 1], it is Lipschitz-continuous on [0, 1] with lipschitz constant ¢, we
let C"(G,w) = c||G||, l|w||o /2. We can now write thanks to the previous considerations that

1Y, | < Z 1 C'(G,w) Z 1 Ezj\f 1 |Tx+ykaN — Tut 2 PeN |
2 &2 N? < (2eN +1) Fra e '

z€T, z€T3, =—¢eN

For any positive ~y, we have the elementary bound

1 2
4 (Tx+yk PeN — T4z, PEN)

T PeN — T, N
15 | Tty Pe z+ 2y Pe ‘ SVRE;T‘F

P,z £ ,x ~ 62 ’
and finally, for any positive v,
N 2
C + ’YC C’ 1 < (Tg;f(gNa}l)evpsN - Tx+aN€~p£N>
Yol< ———— 1 - u
| Y2 | Z Epa T O N2 Z 2eN + 1) Z o2
zeT?, k=—eN
2
C + ’YC Tz (eN+1)e; PeN — Tx+eNe; peN)
611 DEFIRES 3 . .
zeT?, zeT?,

Recall that we want to prove (6.5), i.e.

T
lim lim sup lim sup B (/ | Y2 (G, 7(1)) | dt) =0.
p—0 =0 Nooo M 0

The contribution of the first term in the bound for | Y2 | in equation (6.11) vanishes for any v as N then
p goes to oo, thanks to Proposition 3.12.

Furthermore, we can replace 7, (-n+1)e; PeN DY To—eNe, pen in (6.11) since the difference between these
two quantities is of order 1/N and vanishes in the limit N — oo. This replacement allows us to work only
with quantities that can be expressed in terms of the empirical measure of the process. Equation (6.5)

therefore holds according to Lemma 6.3 below, letting v go to oo after N — oo then € — 0 then p — oc.
[ |
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he = Vige(-v)
; 1/4€3
— vl <e f P
— v | >e+ g8 | / : \
Pel-sv) ( \vaE : \
. 1/4e3 y | 1 \
/ \ \ :
‘/ \LPE \‘ “} : \\
| \ / ) e? c+e?
‘\ \‘ —(e+¢€%) —¢ —e8 \ 1 [ g
| \ |
| \ |
s |
*(EJrEB) —€ € e+¢ed \
\
(4) \
(B)
FIGURE 7. (a) Representations of @.(-,v) depending on the value of v.
(b) Representation of h.(-,v) = V°@.(+,v) depending on the value of v.
Lemma 6.3. — There exists a positive constant K such that
. . A8 T 1 (TzfaNe'paN (t) - Tz+8Ne'p6N(t))2
limsup limsup E”% / ~3 Z : 5 : dt | <K.
e—=0 N—o00 H 0 N > 3
z€T%;
Proof of Lemma 6.3. — This Lemma states that the difference of macroscopic densities between two

points distant from 2¢ is also of order ¢, and is a consequence of the energy estimate (5.34). We are going
to prove this macroscopic estimate in the topological setup of the space of cadlag trajectories of measures
on T? x § . Recall from Section 5.4 that M(T? x $) is the space of positive measures on the continuous

configuration space,
MOTT = D ([0,T) x M(T? x 8))

is the space of right-continuous, left-limit trajectories on the set of measures on T? x $, and that Q" is
the law on M7 (T? x $) of the process empirical measure 7. We have proved in Proposition 5.11 that
the sequence (Q™V)yen is relatively compact for the weak topology. Let A, = [g,¢]?> C T? be the cube of

size €, and (¢:)e>0 be a family of localizing functions on T?

1

LPE() = (25)2 ]]'As ()a

we then have

B (2eN)?
Tepen(t) = 2N+ 12

For any u € T? we define the mesoscopic gradient

<7rgv,g0€(.+x/N) > .

Vie() = (p(. —eei) — p(. + eei)),

represented in Figure 7b. Note that V5. is at most of order =2 since (. is of order e72. We can rewrite

the left-hand side in Lemma 6.3 as

T
1
(6.12) Egn / 5 3 < Vi /N) 22 dt | +ox(1),
0 z€T%,

Furthermore, since for any two sites x, 2’ € T2 distant from less than 1/N,

1
| <7, Vipe(.+2/N) > — <7, Vip(.+2'/N)>| < C(E)N,

we can replace the sum above by the integral over the continuous torus.
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However, regarding the weak topology on M(T? x $), it will be convenient later on to consider smooth
functions instead of .. We therefore introduce for any ¢ a function ¢, represented in Figure 7a verifying
— @ = . on A, and on T?\ A, 5.
— 18l = llgelloe-
— @ is in CH(T?).
Since @. and . coincide everywhere except on A i.s\A., and since ||@.||, = (2¢)72 we can write for
any r € T%,

- 1
’ < va,goe(.—i—x/N) > — < ﬁfv,cpe(.—&—x/N) > ‘ < ——< Wiv’]lAerE:s\As(‘ +xz/N) >.

(2¢)?

<4exe3

< Ce?,
for some positive constant C. This bound immediately yields
| <alN, Vip.(.+x/N)> - <a¥,V5p.(.+z/N) > ’ < Ce,

which allows us to replace in equation (6.12), in the limit N — oo then € — 0, ¢, by @.
To prove Lemma 6.3 it is therefore sufficient to prove that

e—0 N—o00

6.13 lim sup lim sup Eg~ < e he( 4 u) > dudt | < K,
Q
[0,T]xT?2

where h. = V5., is a continuous bounded function, represented in Figure 7b. Let us denote by II the
subset of M0
H:{FEM[O’T]7 sup < m, 1 >§1}
te[0,7

of trajectories with mass less than one at all times, which is compact w.r.t Skorohod’s topology introduced
in Section 5.4.

Consider a weakly convergent subsequence Qy, — Q*, in order to substitute Q* to Q" in the limit
above, we want to prove that for any fixed € > 0, the application

I, :m— / <y he (4 u) >? dudt
[0,T]xT?

is bounded, and continuous on II w.r.t. Skorohod’s topology.
Note that this application is bounded on II by construction, we now prove the following Lemma.

Lemma 6.4. — Fix ¢ > 0, the application I. is continuous on (I, d), where d is the Skorohod metric
defined in Equation (A.3).

Proof of Lemma 6./. — For any two trajectories m and 7’ in II, and some continuous strictly increasing
function « from [0, T into itself, such that ko = 0 and kp = T', we can write

I(7) — I.(n) = //[O . du < ) 4+ 7 he (4 u) >< 7 — T, + Ty, — Ty he(c 4 u) > di.
T %

The first factor < 7 + m¢, he(. + u) > can be crudely controlled by 2 [|A.||, which yields
(6.14)

| I.(7) — I.(7") | <2||h8|oo//[oT] . | <m — Ty, he(c+u) >+ < g, — T, he (- +u) > | dudt.
T %

Note that by definition of ||x||, one easily gets that for any t € [0,7], |t—r:| < T(ellll — 1),
therefore, xk; — t uniformly on [0,7] as ||k|| — 0. Let us fix 7 € II, and assume that d(7,7") — 0
for some sequence of trajectories (7™), € IIV, there exists a sequence (K")nen such that [|&"|| — 0
and limy, . SUpyejo, 77 6(7y' mep) = 0. This last statement yields in particular that for any ¢ € [0,T],
§(m}, Ty ) — 0, therefore for any t € [0, T, and for any u € T2,

lim < 7" — men, he(. 4 u) >=0,

n—oo
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@Eﬂ'(.,’l})
— |v] <e ;
R

— |v| >e+éd R
' 1/4e? 4+ 0-(1)

—(e+¢%) —¢ —g3 g3 e e+éd

FI1cURE 8. Representation of ®. ;(-,v) depending on v.

since h. (. +u) is a continuous bounded function, and § is a metric of the weak convergence. Furthermore,
since k7' converges uniformly towards ¢ on [0, 7] and since ¢t — m; is weakly continuous almost everywhere
on [0, 7] by definition of M%7} we also have that for any (¢,u) € [0,T] x T2,

lim < 7ep — mg, he(. 4 u) >=0.

n—oo
Since m and the 7™’s are in II, both of these quantities are crudely bounded in absolute value by 2 ||,
which is naturally integrable on [0, 7] x T2. One finally obtains by dominated convergence, from (6.14)
applied to 7/ = 7™ and k = k", that

| I(x) — I.(x") | — O.

n—oo

Lemma 6.4 is complete. O

We have now proved that the application I, is continuous for any fixed &, therefore the left-hand side
of (6.13) is less than

lim sup sup Eg- // du < m, he (. +u) >2 dt |,
e—0  Q* [0,T]xT?
€

where the supremum is taken over all limit points Q* of the sequence Q¥ . Since by definition h. = V.
does not depend on 6, we drop the dependence of m on § and consider simply for any u € T%;, p(t,u) =
Js P (u,df), where p,(u, df) is the density of m;(-,df) w.r.t. the Lebesgue measure T2, which exists Q*-a.s.
according to Lemma 5.13. We can write

(6.15)

2
Eg- // du < my, he( 4u) >2dt | =Eg- // (/ p(t,0)Vige(v+ u)dv) dudt | .
[0,7] xT? (0,T]xT? \JveT?

We can now express Vi@, as a gradient, by writing

ug

ViGe(u) = Oy, V5 oe(ve; + uye)dv = 0y, D 4,

—1/2

where ¢/ # i still denotes the second direction on the torus.
Furthermore, ®. ;, represented in Figure 8, is in C?(T%) because @, is C!, and the various integrals

can be freely swapped since all quantities are bounded at any fixed e. Since Q*-a.s. p € W12([0,T] x T?)
according to Theorem 5.14, the right-hand side in equation (6.15) is therefore equal to

2
(6.16) Eg- <// (/ . (v+ u)@uip(t,v)dv) dudt) .
[0,7]xT2 \JveT?
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In order to conclude, we adapt the proof of Young’s Inequality, and apply Cauchy-Schwarz inequality to
f=(D:(v+ u))l/2 and g = (P, (v + u))l/2 Ou; p(t,v), to finally obtain that

]EQ(// du < 5, he (. +u) >2 dt)
[0,T] X T2
< Eq- < / / @], [ / B i(v+ u)(@uip(t,v))zdv} dudt)
[0,T]xT? veT?2
( I e u>>2dudt> ,
[0,T]xT2

where the last identity was obtained by integrating first w.r.t. u, then w.r.t. v. Since ||®. ;||, = 1+ 0.(1),
Lemma 6.3 follows from equation (5.34). O

2
= H(I),' 1

6.4. Replacement of the macroscopic gradients by their local counterparts. — We now prove
equation (6.6), i.e. that the macroscopic average of the gradients can be replaced by a local average. To
simplify the notations, throughout this Section, we drop the various dependencies of Y;{‘;Nm
denote it by Ys.

Recall that £57=0 stands for the modified Glauber generator without alignment of the spins, where
each angle is updated uniformly in S,

z€T%

and simply

and
B=0 __ a72 pD G,B=0
L3770 = N2LP 4 £8P0,
Recall that IP’;);O is the measure on the trajectories starting from the equilibrium measure p, and driven

by the generator Lf\,zo, and that the expectation w.r.t the latter is denoted by ]E;\LLO. We first apply
Proposition 3.10 to the positive functional
/ }/3 Gt7 dt

letting A = yN?, and obtain that for some constant Ko = Ko(T, 3, py),

K
Ei}é ( ) <204 logEko exp <’yN2 )] .

N2
Letting 7 go to oo after IV, to prove (6.6) it is therefore enough to show that for any integer p > 1

log EA 0 lexp (’yN )] =0.

We now get rid of the absolute value by using both of the elementary inequalities

X ’\[0 T]

T
/ Y3(Gt,7/’]\(t))dt / Y3 Gtv ( ))dt
0

(6.17) lim lim sup lim sup lim sup ——
T soo e=0 N—oo N

/ Y(Gry (1)) dt

and
li 1y (an +bn) < li 1, li 1y b
111 Su ogla max 1m su og a 1m su (0]
P 5z ‘oglan + 0N M SUP g 108 AN, P 3 108N

Both of these imply that the limit in equation (6.6) is bounded up by the maximum of the limits of

1 A, 5 [T ~

1Rl lexp <ny /0 Y;,(Gt,mt))dtﬂ
T

exp (—VNQ /0 Y},(Gt,ﬁ(t))dtﬂ .

and

1 2,0
N2 log B},
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Since —Y3(G,7) = Y3(—G,7), and since the identity above must be true for any function G, to obtain
the wanted result it is sufficient to show that for any v and any G € C%2([0,T] x T?)

exp (7N2/0 Yg(Gt,ﬁ(t))dt>

We now get back to a variational problem, since Lemma 5.9 yields

1
(6.18) lim inf lim sup lim sup —— log Ei‘blgo <0.

Y=o f  e0 Nooo YN

1 T
3 log K leXp (’YN 2 / Ys(Gtﬁ(t))dt)
Y 0

The first term in the right-hand side above vanishes as 7 goes to co. Furthermore, the time integral is
now only applied to the function Gy, therefore to obtain equation (6.6), it is sufficient to prove that for
any v and any function G € C?(T?),

2Nz 1 (7T . PO |
< + f/ sup {Ea (p7Y3(Ge, 1)) — D(@)} '
v vt 2

(6.19) lim sup lim sup lim sup sup {27E> (¢Y3(G, 7)) — D(p)} < 0.

l—o0 e—0 N—oo ¢

Since this must be true for any G and any ~, we can safely assume that v = 1/2, and equation (6.19)
follows from Lemma 6.5 below. Thus this completes the proof of (6.6).

In order to avoid repeating a similar proof twice, we forget for the moment that % (p, p*) = ds(p)
only depends on the total particle density, and present the proof of the following Lemma in the most
difficult case where the gradient is on p“"P and where the diffusion coefficient depends on both p and
p“. We simply assume throughout this proof that the diffusion coefficient 9 is a uniformly continuous
function of p and p* on the set

{(@aw) € 0,1 x [~ ol s [wllo)y Taw | < [l a}-
Lemma 6.5. — Let us fir 1 <1, j <2, we shorten
Dy =0 (pr, pi) and vy, = 8;p;".
For any G € C?*(T?)

1
(6.20) lim sup lim sup lim sup sup Z {G(x/N)E; (gOTm(DENUEN — Dlvlp)ﬂ —D(p) p <0,
l—o0 e—=0 N—oo ¢ T2 N
TClN
where as before I, =1 —p — 1, and the supremum is taken over all probability densities with respect to
. The same result is true for the gradients vy, = 8;py, instead of 8;p;", 0 instead of 9%, and ' =1—1
instead of .

Proof of Lemma 6.5. — The difficulty of this Lemma comes from the extra factor N, which prevents us
from using directly the replacement Lemma 4.1. We hence need to get some precise control over each
term to ensure that they are small enough. We start by splitting in two parts the quantity in Lemma 6.5
by noticing that

(6.21) D.nven — Divy, = Den(ven —v1,) + (Den — Di)uy,.

Both terms are treated in the same fashion due to the continuity of the diffusion coefficients (which follows
directly from their explicit expression). More precisely, we intend to show that the difference between
the average over a microscopic and macroscopic box is of order 1/N, and hence yields the extra factor
N needed to use the replacement Lemma. Let us thus consider the first term appearing in the Lemma,
namely

1 *
NE‘X ® Z G(z/N)TeDen(veny — v1,)

zeT?,
Recall that we denoted B; = {x € T3, |z| < I}, and | B;| = (21 + 1)?. Since both v.y and v;, are merely
spatial averages of the gradients d;(n§ 1, ), a first summation by parts yields that the quantity above is
equal to
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1 * w w 1
NE(I <90 Z (7790+eqz]lEp,z+ei — Ny ]]'Ep,m) | B N I Z G(y/N)TyDEN

—ﬁ Z G(ZU/N)TyDEN})'

ly—z|<l,
Now let us denote S, (7)) the quantity inside braces, i.e
e 1 1
Se) = m— > Gly/N)nDen == D> Gly/N)mDen.
| Ben | | B, |
ly—z|<eN ly—z |<lp

We are now going to prove that

. . . 1., 1

(6.22) lim sup lim sup lim sup sup NEO‘ %) Z Se(Mye, 1g, ..., — nilg,.) | — §D(gp) <0.
l—o00 e—0 N—oo ¢ ;cE’]I‘?V

In order to transfer the gradient appearing in the expression above on ¢ and S, we need the same change

of variable as the one already introduced in Figure 5 of Section 5.5. For any direction i € {1,2}, let ¢’ # ¢

be the second direction on the torus. Given z in the torus, we denote for any & € [—p, p] (See Figure 6)
yr = & — pe; + ke € By(x) and zg=a+ (p+1)e; + key € Bp(x + €;).
Given these, recall that we denote, for any configuration 7, by
T, () = (7 reyy-rzr) )
the configuration where the sites  and = + e; have been swapped, as well as the boundary sites y; and

Rl
By definition, we have

n;lEp,l (Txpﬁ) = 77:c+el ]1 p,xte; (ﬁ)
The first term in the left-hand side of (6.22) can be rewritten as

1 1 ~
SE 0 X Sl te, s, s, | = B [ DD L (05 (T50) — 05.)
zeT?, zeT?,
1 * w T T 5
- N Z ]Ea (T]x ]]'Ep,z [‘P(szﬁ) (ST(,‘Tz,pn) - SI)
zETQ
(6.23) + (P(T7,0) — ¢) Si]) -

We are going to show that the contribution of the first term of the right-hand side in (6.23) vanishes
in the limit N — oo, whereas the second term can be controled with the Dirichlet form D(). Recall that
S, is defined as

. 1
S2() = 75—

‘BeN‘

Z G(y/N)TyDEN |B ‘ Z G(y/N) TyDen.

ly—z|<eN ly—z|<lp

Since the only dependence of S, in 7 lies in Dy, which is the diffusion coefficient evaluated in the
macroscopic empirical density p.n, in order to control the first term in the right-hand side of (6.23), we
can write

(6.24) S, (T7,7) — S, =

Tl L CWN) DT - Den(@] ~ g X Cl/N)r, [Den(T) — Den()].
 y—z|<eN ly—= |<l,

Recall that 7,D.n (7)) = 0¥ (Typen, Typ%y)- Since it depends on the configuration through an average over
B.n(y), TyD:n(7) is invariant under any exchange of a pair of sites with both ends in B, (y). We deduce
from this remark that for any |y — = | < l,, the quantity

7y [Den (T7)1) — Den (1)]
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vanishes, since all the exchanges happen between sites at a distance at most p of x, and therefore at a
distance at most p + I, of y. This yields that the second term in the right-hand side of (6.24) vanishes.

We now consider the first term in the right-hand side of (6.24). For the same reason as before, for
any y in Ben—p—1(7), all the exchanges in 77, have both ends in B.y(y), and T, [DEN (T,1) — Den (ﬁ)]
vanishes. We can finally rewrite (6.24) as

1 o n
(6.25) Sa(Tipn) — Sz = Bv] > G(y/N)ry [Den (T7,0) — Den ()] -

N yeBoy (@\Benp1 ()
We now take a closer look at each of the remaining term. By definition, the configuration 7,7 can be

obtained fom 7 by inverting 2p + 2 pair of sites in 7). Furthermore, fix a y in the sum above, and consider
any inversion 7°"*2 with 21 € Ben(y) and 22 € B.n(y), we wan write by definition of p.y and p¥y

]‘ 21,22 (%% fou 2HO‘)H
22) _ 1 < ==
|B€N| ) yPeN(W) | = lBeNI

and | Typn (17
By assumption, 0¥ («, «,) is uniformly continuous on the set

{(@a0) € 0,1 [ wll, ol ] < wlla}.

We deduce from this that

21,22)

| TyPsN(ﬁ - TypeN(ﬁ) | <

Ty (Den (1772) = Den () = on (1),
therefore
| 7y (Den(T,0) = Den (@) | < on(1),
where this time oy (1) stands for a constant depending on p which vanishes as N — oo. We inject the
latter identity in equation (6.25), to obtain that

| Ben(2) \ Ben—p-1(2) | 1

|B5N | ON(]') = NON(]')V

where the last oy (1) depends on p and e, but vanishes as N — oo. This allows us to get back to equation
(6.23), in which the first term in the right-hand side can be rewritten

Se(Tip1) = Sz =

3 B O T, (1) (So(TE0) — 1) o(TE,7) o(1) = on (1),

z€T?, z€T%,

since pif, is invariant under the change of variable T}",7, and therefore E¥, (o(T7,7)) = Ej () = 1.

We now work on the contribution of the second part of (6.23), namely

(6.26) EL N 021s,,8:) [ (T5,0) — ¢] | -

zeT?,

that we wish to estimate by the Dirichlet form D(¢). The elementary bound

Ac? 2 g2 2
_p) < _ -
cd(a—0b) < 5 (ﬁ \/5) +2A(\/&+\/5) ,
which holds for any positive constant A, applied to
ch(ﬂfpﬁ), b=, c=nS;andd=1g,,
yields that the quantity above (6.26) can be bounded from above for any positive A by
1 % A w 2 PR 2
62 5 X B (GO B VB + gyle. (VB THD - V).
z€T%,

Since we already established that S, (T}%,7) = S, + (eN)~'on(1), since 5 can be bounded by C(w) > 0,

and since 1g, , < ]lEp+1 , the sum above is less than

(6.28) A S Ee) e X B (L (VE(TET) — vB)?) +on(1)

z€T%, z€T%,
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According to Section 3.3, on the event E, 1, on which there are two empty sites in B,11, there exists
a sequence of allowed jumps permitting to reach ﬂ-”fpﬁ from 7). However, this sequence is random, which
we avoid by crudely bounding

]lEp+1,z < Z (1 - 7721)(1 - 7722)ﬂ
21,22€Bp+1

since the right-hand side only vanishes when there are less than one empty site in By;. Given two fixed
empty sites z; and zo there exists an integer n,(z1,22) bounded by a constant C),, and a sequence of
edges ((@m,bm))me[o,n,] sSuch that

7=10(0),  THn=7(n,),  andij(m+1)=n(m)*"" Ym e [0,n, — 1],

where a,, and b, are neighboring sites in Bj,;1(z) and 7,,, (7(m)) = 1—mn;,, (7(m)) = 1. We can therefore
write

B (15, (VB (T50) - ve)') < > Ei (nZﬂE ((m +1)) - @(ﬁ(m»f)

21,22€Bp 11

< KpDnpia();
since 7j(m + 1) is reached from 7(m) by an allowed particle jump, where Dy ,+1(p) is the contribution
of edges in Bpi1 in D(yp).
The sum in the second term of (6.28) can therefore be bounded by Cy D (¢), where C = (2p+1)%K),.
Finally, (6.26) can be bounded, for any positive A by

AC2 i} c
> EL(pS2) + +5an D (@) +on (D).
z€T%,

We can now set A = Cj /N, to obtain that

B (NS 1, 5.0 o (75,0) 0] | < S8 ST B 682 + 1D (0) +on (D).

z€eT%, z€T%,

The first term in the right-hand side above vanishes as a consequence of the two-block estimate stated
in Lemma 4.3, since the diffusion coefficients are continuous according to their explicit expression. This
concludes the proof of equation (6.22).

The contribution of the second part of equation (6.21) is treated in a similar fashion. Denoting by

Sl = —— S Gly/N)(r,Den — D).

| Blp | ly—z|<lp

As before, the corresponding contribution in the left-hand side of (6.20) can be written as

1 * w 3
_N Z E’a (771 ]]‘Ep,z (@(Tz,pn) - QD) S;) )
z€T%,
since this time, S} is invariant under the action of 7}, by definition of I,,, whereas the second term can
be controlled in the limit N — oo as well by D(¢)/2. This completes the proof of Lemma 6.5 in the case
where Dy, =0 (pg, p) and vy = d;p) "

In the case where Dy = 0 (pk, py) and vy = d;p, the proof is easier and no longer requires indicator
functions, since unlike d;7%, ;7. vanishes when there is no empty site. We do not give a detailed proof,
which would be an easier version of the previous case. We will instead just give a brief outline and the
equivalent quantities to the previous ones. The same summation by parts allows us to rewrite

1 *
Gla/NE: (ra(Denven = Diwy,)) = SE& | @ 3 (So + 8 (e —12) |
zeT?,
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where 1 1
S, = > G/N)rDen — 7 > Gy/N)mDey,
|13aN| ‘13V| ’
|y—z |<eN ly—z|<I
and 1
G =51 2 C/N)(nPey — 7).

|y—z | <V

We can now rewrite Ngte;, — Mz = Nate; (1 — Mz) — N2(1 — Nate, ), to obtain that the quantity above is

%Z EL, (e (1= nate,) ((Se + 82)) (777) = (82 + S3)¢) -

2
zeTy,

The gradients of S, and S’ still vanish, whereas the average of the gradients o(7%*"¢) — ¢ can be
controlled by the sum of a vanishing term and the Dirichlet form of ¢, since this time the jump rates
N (1 — Naye; ) are already present. This concludes the proof of Lemma 6.5. O

6.5. Projection on non-full sets and reduction to a variance problem. — We now prove the
limit (6.7), which states that in a local average, the current can be replaced by gradients, up to a
perturbation Lf. Following the exact same steps as in Section 6.4, up until the statement of Lemma
6.5, where we reduced the proof of equation (6.6) to (6.19), we reduce the proof of equation (6.7) to the
variational formula
(6.29) inf lim limsup limsupsup {E}, (¢Ya(G,7n)) — D(¢)} <0,
f P20 400 Nooo ¢
where we shortened
Yi(G.) = Y60 = ST Gla/N)ymwi,
zeT?,
and Wlf ;f’p was introduced in equation (6.3). Since this step is performed in the exact same way as in
the beginning of Section 6.4, we do not detail them here and refer the reader to the latter. To simplify
notations, we shorten
Wh=w/r
for the local average of the difference between gradients and currents in the direction i.

We will now work to get an estimate of the largest eigenvalue of the small perturbation £ + Yy of L.
The strategy is close to the one used in the one-block estimate of Section 4.3. To do so, we break down
the process on finite boxes with a fixed number of particles, where the generator £ has a positive spectral
gap. In order to introduce this restriction, we adopt once again the notations introduced in Section 4.3,
which we briefly recall here. Let B; = [—I, ]2 be the box of size |, K = (K, {61,...,0x}) be some particle
number and angles. Recall that K; is the set of K’s such that K < (20 +1)%, and denote by @y the angle
measure

K
- 1

Recall that we already defined in (3.3)
= {fieDy, Ai=ag)
the set of configurations with K particles in B; with angles 0’s. Also recall that p, » is the canonical

measure pf (. | Elf( ) conditioned to particle configurations of the form K in B.
We denote for any site x ¢ = 7_,¢, and by <pf 2 the density induced by ¢ on Zf( . It can be defined

for any configuration Z on B; by

E: (" | fip, = )

P Q) = 2
h Ex(¢” | 2f)
Let us now get back to the quantity of interest,
* P 1 1 * x
(6.30) Eo (0Ya(Go) = 7 D Ga/NIE (pmWi) = 7 > Gla/NE; (Wig").

zeT?, z€T?,
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Because W! only depends on the vertices in B, we can replace the expectation under p, by the integral
over K; of the expectation under u, . More precisely, let us denote

mo(dE) = B}, (¢"1gux )

the infinitesimal probability of being on the set Ef? under the measure with density ¢* w.r.t p%. Thanks
0 (6.30), letting Ej , be the conditional expectation of Ej, w.r.t the spins inside of B;, we can write

E;, (9Ya(G, 7)) N > G(x/N)E}, (Wie™)
z€T%,

(6.31) N 3" G/N) /GK B,z (Wiei ¢ ) ma(dR).
a:e’]I‘ l

Let us now decompose in a similar fashion the Dirichlet form. For ¢ some density with respect to ua,
let D, 7 be the Dirichlet form on ElK

Z E1K|:77m (\/—” )}

z,yeB;
|z—y|=1

We have with the same tools as in the proof of Lemma 4.3
(6.32) 3 [ D, & (¢ %) m(dR) < (21 +1)°D(p).
wet?, V KeKi ’ ’

From the previous considerations, we can localize the quantity inside braces in equation (6.29), which
is bounded above thanks to (6.31) and (6.32) by

L (WG = Do) = 1 /KK m(dR) (}VGWN)El,R (Whetz) — @ +1)72D, 2 (¢ ) )
<o 5[5 (i) - (i)
(6.33) <k1 »  sup sup [%El,f{ (W) = D, (¢)} ,

we'ﬂ“?\, IA(E]KL ¥
since [z, m(dK) = 1, where
ki =20+1)"% and wp=G(z/N)(20+1)?

and the supremum is taken over all densities ¢ with respect to j, -

We now wish to exclude in the supremum over K above the configurations with one or less empty
sites since on the corresponding sets, the exclusion process is not irreducible as investigated in Section
3.3. First note that for any K such that K = | B; |, W! vanishes. Indeed, thanks to our cutoff functions
1g,, and since [ goes to oo before p, in that case, the currents, the gradients as well as the L£f’s in Wf
all vanish as well as D,  (¢).

We now consider the case where K = | B;| — 1, i.e. when there is one empty site in B;. We state the
corresponding estimate as a separate lemma for the sake of clarity.

Lemma 6.6. — There exists a constant C = C(G,w, f) such that for any K such that K = |Bi|—1,
HQ C
N lK(Ww) <D1K(¢)+W~
Proof of Lemma 6.6. — First note that all the gradients §;7**? vanish in the expression of W! due to the
cutoff functions. We can therefore write, for any configuration with one or less empty site, that
Wi — 1 1 —

0 T, x+e; ) £ )
i (2l/ + 1)2 EZB ]z ,Tte; + KJ + ) (2lf + 1)2 lf
rEBy
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where we denoted by 95 the value on Zlf{ of 0 (p1, py’), which does not depend on the configuration, and
f= Do B, Te f- The quantity we want to estimate can therefore be rewritten

Ko 1 %) ‘w . Ko —
—E » ) = —=FE » Vpjoate) | — —=——=E » (VL f).
N LK (Wlw) N(2l1+1)2 I,K w ;3; (']137I+€'i + Rlzax+ 1) N(2lf+1)2 I,K (’(/) lf)
x 14
Since ko, (20" + 1)%, and (2{; + 1)? are of order (20 + 1)?, and since the sign of f is arbitrary, to prove
Lemma 6.6 it is sufficient to prove both

1 - ) Dl,f( (¥) C(w)
(634) NEl,f( w GZB (]i’m+ei+0[’§]z,z+ei) < 2 + N2
xT 14
1 — D) cw
and N]Elf( (wﬁlf) < 9 + N2

The two inequalities above are proven in the same way. We treat in detail the second, which is the
most delicate, and simply sketch the adaptations to obtain the first. Using the elementary inequality

~va? b2
6.35 ab < —
which holds for any positive v, we first write
]El’f( (d)‘al?) = Z E[yf( (wvxav—i-z?)
x,x+2€B;
1 _
= *5 Z El,[? (vm,m+z'l/)vz,x+zf)
z,x+2€B;
Y 1 )
B Z ZEZ,IA( ((v$’1+2\/i)2) + ZEl,IA( ( T x+zf \/>+ \/> nort )
z,x+2€B) v
Y ]- 3 w x Z x z
- EDl,IA( (¥) + BELIA{ Z Nx(1 = Mg ) (f — + \F"_ \/> nort

z,x+2€B;

One only has now to carefully account for the order of the different quantities in the second term. Since
f is a bounded local function, by definition of f, it is invariant under particle jumps with both ends
outside of its domain. There hence exists a constant C(f) such that for any = and = + 2, f — f(7**%) <
C(f). In particular, the constant C(f) does not depend on . We can also crudely bound 7, by 1 and
(VO + VP05 1#))? by 2¢p + (%% +#). These bounds and a change of variable 7 — 7%**# finally yield

that for any positive -,

o)

lK(w‘C’lf) < 27

M\Q

Dig )+ =SZE | D (2= —nuye)v

z,x+z€B;
Furthermore, since there is only one empty site in By,

do@-my—myre) =IBial— Y my+lmeBial- D, my <2

|y |<l—1 yEB;_1 YETe; Bi—1

<1 <1

therefore, since v is a probability density, and setting v = N proves the second identity of (6.34).

The second identity is obtained in the same way, since

1 cw ) 1
NEZ,IA( (4 Z (.]x,ac+ei + Df(]ﬂc,x-ﬁ-eq = N Z I? ) +0z )vyvy""ei’l/)) )
xEBy S

we also obtain
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1 , .
VER (Y D0 (ore +0gdnare,)
:6€Bl/
2
(1wlloe +110llo0)”
2y

<

o2

DZJA{ (¢) + lJ? Z (2 — Nz — 77:1:+6i)w

z,x+e;€B;

The last estimate, in turn, yields the first inequality in (6.34), which concludes the proof of Lemma
6.6. O

In the limit N — oo then [ — oo, Lemma 6.6 guarantees, since x; vanishes as [ — oo, and since all

quantities vanish when K = | B;|, that
K2
K1 Z sup  sup [N]E”? Wiy — D, % (1/))] — 0.
€T IA(EKI P
N K> B |-1

We can therefore restrict the supremum over K to those satisfying K < | B;| — 2. Recall that we

denoted in equation (3.2) by K; the set of such K, the left-hand side of (6.29) is bounded by

(6.36) inf lim limsup limsup k1 z sup sup [@]El 7 (Wfi/)) -D, (¢)] ,
J P90 oo Nooo | T Reg, w LNV T ’
N

where the supremum is taken over all densities ¢ w.r.t. g, z. On all the sets Elf( considered, £; is invertible
and the supremum over 1 is a variational formula for the largest eigenvalue of the operator £; +rkaW!/N.
Proposition A.6 then allows us to bound the quantity whose limit is taken in (6.36) by

2

R1R3 1 1 1 9 . o .

‘ E »~ (Wi(-L)"' W) <(21+1 E, ~ (W{(=L)"" W,
Rk 1= 29 [V #aN Lz WH=L)7 W) < ( >f§1€1% L& WH=L) 7))

where &2 = ||G]|_, (20 + 1)%. To obtain the last inequality, we denoted by v, the spectral gap of the local
generator £;, which is positive, and used that ||1/Vf||OO is finite, and x1k3 is of order (21 +1)2. In order to
obtain inequality (6.29), and conclude the proof of equation (6.7), it is therefore sufficient to prove the
following result.

Proposition 6.7 (Estimate of the local covariance). — Recall that W! is the local average of the
difference between currents and gradients up to Lf, namely

L w, w !
Wi = ()0 + ds (o) 8ip" +0 (pu, o) Gipr — (L)

where 0 is given by equation (2.12). Recall that ]Kl only takes into account configurations with two empty
sites in By. Then,
(6.37) inf lim limsup sup (20 + 1)°E, z (Wi(—L)~'W!) = 0.
F P2 s ReR, ’
We now take a step back from that result in order to introduce the concept of discrete differential
forms, which is essential to prove that the quantity above vanishes.

6.6. Discrete differential forms in the context of particles systems. — We introduce in this
Section the concept of discrete differential forms in the context of particle systems. The key point of the
non-gradient method is that any translation-invariant closed form can be decomposed as the sum of a
gradient of a translation-invariant function and the currents. This result is stated in Proposition 6.1/,
and directly rewrites as an approzimation (in the sense of equation (6.37)) of any function in Cy by a
linear combination of the currents up to an elements of LCy.

Let us denote by Y, the set of configurations on Z?

Soe = {2 Or)uezs € (0.1} x 87, 0, =01t 5, =0}
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T

7x+ei)y’y+5j

(

)
3
&
+
o

ﬁx,x-&-ei—i-e]-

FiGURE 9. Representation of a differential form u on the graph G : if u is closed, the weight of
both green paths is identical, and the weight of both red path also is.

We consider here the graph § = (X, E) with edge set
(6.38) E= {(ﬁ»ﬁ/) € Ego | ;7\/ =7""" ¢ and Ne(1 = Neve;) + Naye, (1 —12) = 1} :

In other words, two vertices 7 and 7’ are connected if and only if one can be reached from the other
with exactly one allowed particle jump. We endow G with the usual distance on graphs, i.e. d(7,77) is the
minimal number of particle jumps necessary to go from one configuration to the other. Note that this
graph is not connected, since for example a configuration 7 with no particles is not accessible from any
configuration 7’ with any number of particles. This is also the case for two configurations with different
angle distributions. In such a case where there is no path between 7’ and 7, we will adopt the usual
convention d(7,7') = oo. By abuse of notation, we also denote by ug (cf. Definition 3.4) the grand
canonical measure measure on Z? with parameter &, and write Eg(-) for the expectation w.r.t ug, which
will not be a problem since we only consider cylinder functions.

In order to illustrate the notion of closed form of the graph G, let us start first consider the following
example. For any edge a = (a1,a2) C Z?, we defined the gradient of a cylinder function f € C along the
edge a as

Vaf = 77@1(1 - naz)(f(ﬁah(m) - f(ﬁ))v
and shortened V; = Vg ,.

Let us now fix a cylinder function F € C. For any z € Z2, i € {1,2}, we define

(6.39) w2 (1) = Vaoure, F () = 0o(1 = Naye, ) (F@7T) = F(7).

uf . can be interpreted as the "cost” for the function F' to transfer a particle from x to x + e;. For any

configuration 7 with 7, =1 — 1,1, = 1, to each edge (7,7%°T¢) € E (cf. equation (6.38)) in our graph
G we therefore associate the “cost” uf .+ The collection (uZF » )i 18 a particular type of closed form, called
an ezact form, because it can be written as the gradient of a local function, in the sense of equation
(6.39). However, we do not need a function F to define such a collection of variables, and the idea of
closed forms is to generalize this notion of gradient on the graph G.

We will now define the notions of exact and closed forms on the metric space (G,d), which will be
necessary in order to prove Theorem 6.25.

Definition 6.8 (Differential forms on (G,d)). — A differential form on (G, d) is a collection of func-
tions (1;4)ie{1,2},0€22, With

Wi o (1) = 10(1 = Noye, )0ia(0) € L?(1z),

and v; 5 Xoo — R.
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As outlined before, u; , (7)) can be interpreted as the “cost” of a particle’s transfer from = to x + e; in
the configuration 7. A differential form is closed if the “cost” of a path only depends on its endpoints.
It is easy to see that a form is closed if and only if the previous property is true for any two-edge path.
Since a two-edge path consists either in a particle moved twice or in two particles moved once each, we
can give the following definition.

Definition 6.9 (Closed forms on (G,d)). — A differential form (1;;)ic{1,2},5ez2 is closed if both of
the following equalities hold for any z,y € Z?, 4,5 € {1,2} :

(6.40) 1) e (7774) = ) e, (7779)

(6.41) W0 (1) + w5,y (75719) = 24, (7) + wip (F0VH)

for any 7 such that both paths are allowed, i.e whenever 7, = 1, Nz e, = Note; = Nate,+e; = 0 in the first
case, Ny = Ny = 1, Nute; = Ny+e; = 0 in the second. The first identity states that transferring a particle
from x to x + e; then to x + e; + e; creates the same cost as transferring it first to « 4+ e; and then to
x + e;j + e;. The second states that transferring a particle in = to = + e; then another from y to y + ¢; is
the same as transferring a particle from y to y + e; then the other from x to = + e;.

Given two configurations 7, 77’ such that d(7, ') =2, the two properties above ensure in particular that
the cost of any finite path on G from 7 to 7’ is the same.

In particular, we easily see that for a closed form, the ”cost” for a particle to jump from z to z — e;
is —w; y_e, (77~ %) : making the particle in z jump in the direction e;, then make it jump back in the
direction —e; should have no cost :

Wi, () = Wiz—e, (N"7°) = 0.

As outlined in the introductory example, for any cylinder function F, the differential form (u; ;) defined
for any ¢ and = by u; , = uf . is a particular type of closed form.

Definition 6.10 (Exact forms on (G,d)). — A differential form (u; ;)ic{1,2},0ez2 is ezact if there ex-
ists a function F : ¥, — R such that for any = € Z2, i € {1,2}

Wi o(1) = ViF () = 12(1 = Nore, ) (FF) = F(0).
We now investigate further the case of translation invariant closed forms.

Definition 6.11 (Germs of a closed form). — A pair u = (uy,us) of functions on ¥, is a germ of
a closed form if (T,u;);cq1,2},2ez2 is a closed form. We endow the set of germs of closed forms with its
L?(ug) norm

1/2
(6.42) lullz,2 = [Eq(uf +u3)]

We denote by € the vector space of germs of closed forms, and by €5 its weak closure in L?(ug). Note
that in the Banach L?(ug), and since € is a vector space, the weak and strong closure coincide, and
therefore €3 is also the strong closure of € in L%(ug).

Definition 6.12 (Germs of an exact form). — A pair u = (uy,uy) will be called germ of an ezact
form if we can write

(ul,ug) = VZh = (Vlzh, V2Zh)
for some cylinder function h, where X, is defined as the formal sum X, = 3 ;> 7,h. We denote by £
the vector space of germs of exact forms, and by £5 its weak (and also strong, cf. Definition 6.11) closure
in L*(pa).

Remark 6.13. — Since the function X, is ill-defined as a series, one could argue that the definition of
a germ of an exact form is also ill-defined. However, for any given direction ¢ and since the functions h
have finite support, V;3; is well-defined as a finite sum. Also note that the collection of translations of
a germ of an exact form does not necessarily yield an exact form. We will see later on, though, that it
produces at least a closed form.
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In order to investigate the structure of the set of germs of closed forms, let us expand briefly on some
of its noteworthy subsets. The first such subset is the set of germs of exact forms. Indeed, it is easily
verified that if the germ is the gradient of some "translation-invariant" function, the cost for a path only
depends on its endpoints, and therefore

£5 CCy.

Before introducing the second particular subset, let us first describe the closed forms representing the
particle currents. Let us consider the closed form defined by

]zlz = 1im1m2(1 — Nagey )

This differential form is trivially closed, since the cost of any path is the algebraic number of particle
jumps to the left along the trajectory defined by this path, which does not depend on the trajectory but
only on the first and last configurations. This differential form is translation invariant with germ

(6.43) it = (i1.33) = (1 = 1e,) , 0),

and it can be interpreted as the gradient of the formal function Fy(7) = > ;> 17,, which gains 1
when a particle jumps to the right, and decreases by the same amount when a particle jumps to the left.
However, since F} is not a well-defined function, the closed form associated with j' is not an exact form.
We can define in a similar fashion the germ of the closed form representing the particle current in the
second direction, namely

(6.44) i =0, (L — 1)),

whose associated closed form is the gradient of the formal sum F5(7)) = > > Z27,, which gains 1 when a
particle jumps up, and loses 1 when a particle jumps down. Regarding the angle-blind exclusion process,
these two forms would be sufficient to account for the particle currents on Z2. In our case however,
consider for example the germs

jlﬁ: (778(1—7761)’ 0)7 j2,9: (0’ 778(1_7762))7

where we defined 7? = 15, _gn,. These germs represent the current of particles with spin #, and cannot
be expressed by a combination of j* and j?. It is not hard to see that these are also germs of closed forms,
since the corresponding differential forms count the algebraic number of left-wise particle jumps with
angle 0, in the corresponding direction.

Any germ of a closed form in the context of particle systems can usually be expressed as the sum of a
germ of an exact form and of the macroscopic currents. In our case, this would mean that any #-dependent
germ of a closed form can be expressed as a combination of all the 1% and 3%, up to the germ of an
exact form V3.

Recall that €5 and #£; are introduced in Definitions 6.11 and 6.12. The main result of this Section is
that any closed form in €5 is a combination of the forms j* and ji’e, with a perturbation in £5. However,
the proof of this decomposition requires a sharp estimate of the spectral gap of the generator of the
symmetric exclusion process, which we do not have in our case because of the angles, as outlined in
Section 5.2. Furthermore, we do not need to understand each current of particles with angle 6, but rather
an observable current weighted by w. For this reason, one can restrict to the class of semi angle-blind
functions, with no correlations between angles. More precisely, recall that we already introduced in (5.4)
T¢ the subspace of L?(u)

15 = {f € L*(ua), f() =)+ Y (crny + come)ba(n), c1,02 €R, and ¥, € SVz € 2%, p € S}'
x€Z?

For i = 1,2, let E; be the space

Ei = {f, Ea (1{nonei=0}f2) < OO} C L2(,ua)

and T} the closure in F; of T’ (Once again, strong closure and weak closure coincide, and we therefore
do not need to specify which one we consider). Let Ti"”- be its orthogonal in E;, and let us denote by T*
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the set of pairs of random variables with each coordinate in 77
(6.45) Tv {t € (L*ua))?, teT® Vie {1,2}}.

The embedding in E; is performed for purely technical reasons. Essentially, it allows 7% as well as T¥+
to be stable under the action of the symmetric generator £, but since this is not a crucial point of the
proof, we do not give more detail here.

Finally, we define the germs of closed forms

(6.46) 3= 06 (1= me), 0), 37 = (0, 15 (1= ne,)),
and let J“ be the linear span of the four germs of closed forms described through equations (6.43), (6.44)
and (6.46)

Y= {an’ +az” + b1t + 02, (a1,a2,b1,00) € R}

Proposition 6.14 (Structure of €3). — For any angle measure & € M1 (8), with the notations above
we have the decomposition
CaNTY = (LaNTY) +3F¥.

Remark 6.15. — Notice that the j* and j** are in T, therefore we do not need to restrict j* to T*.
Finally, we can safely assume that the total density « is in |0, 1[. If not, the graph ¢ is trivial since its
edge set is empty. This assumption will be made throughout the rest of this Section.

Before turning to the proof of the last proposition, we investigate the case of a finite domain con-
figuration. Considering the graph G, with vertices the non-periodic configurations 7 on the box B, =
{-n,...,n}?, and connected in the same way as on the infinite graph if one can be reached from the
other with one allowed jump. We define the sets €5 ,, and £5 ,, the closure of the sets of closed and ezact
forms on the graph G,, in L?(ug). On this graph, we have the following result.

Proposition 6.16. — For any density parameter &, with the notations above we have the decomposition,
¢&,n = E&,n-
i.e. on a finite set, all closed forms are exact forms.

Proof of Proposition 6.16. — It is important to consider only a non-periodic domain, because in the
periodic case, the differential form associated to any of the germs in j* are not closed. In particular, in a
non-periodic domain, it is not true that a differential form is closed if and only if the cost of any path of
length 2 only depends on its end points.

We simply sketch the proof, and refer the reader to appendix 3 of [27] for the detailed proof. The
basic idea is quite simple. For any given closed form w = (w;;);, and any given particle number K
such that K < (21 + 1)2, choose a reference configuration N with K particles in B,,, for which we set
F(7%) = 0. Then, for any configuration 77 with K particles in B,, which is reachable from 7 (in particular,
any configuration is if K < (2n+1)? — 1, cf. Section 3.3), choose a path of neighbor configurations in G,
¥ = (Mi)i=1... between 7)1 =7z and 7y = 77’. We then let

-1
7/7\( - Zu 7717771—1-1
i=1

where w(7;,7;+1) is the cost, according to the differential form (u; ;); , of the jump from 7; to 7;41. It is
then easy to see that this defines a function F', whose gradient is the closed form u. O

We now turn to the proof of the decomposition of germs of closed forms on the infinite configurations.

Proof of Proposition 6.1/. — We have seen previously that the elementary currents j*, j** are all germs
of closed forms, hence their linear span is included in €5. Let u = VX, be the germ of an exact form,
with h some cylinder function in L?(ug), let us show that u is the germ of a closed form. The differential
form associated to u is

Wi (M) = 02(1 = Nate,) [Zh(ﬁx’“_ei) - Zh(ﬁ)] )
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which is the form associated to the formal function ;. Since it is not a proper function, u is not exact,
however when the particle jumps are allowed, the variation of v only depends on the trajectory through
its endpoints, since this differential form restricted to any finite subset of Z? is the gradient of a function.
The form (7,u;);c(1,2},5ez2 is therefore closed, and by definition u is a germ of a closed form.

We have now proven that

€: D&+ {i', i, ie{1,2}}.

We now come to the main part of this result, namely the reverse inclusion. The strategy of the proof is
rather straightforward, let us give a brief outline right now. Given a germ of closed form u = (u;, us), the
main idea of the proof is to project the associated closed form (7,u;); . on large finite cubes, on which it
is exact according to Proposition 6.16. This will allow us to write u; as the gradient of a local average, up
to a boundary term. The gradient will converge towards the germ of an exact form after local averaging,
whereas the boundary term is ultimately in j* .

Let u be the germ of a closed form in the subspace T defined in (6.45), and (u; 5); o = (74;); . the
associated closed form. For any fixed integer n, let F,, be the o-algebra generated by the spins inside B,,

Fn=0 (1 v € [-n,n]? ).
Furthermore, let u’, be the conditional expectation

u', =Ez(w . | Fr).

1,2
Note in particular that u, is also in .

Recall that the gradient of a local function ¢ when a particle jumps from z to = + e; is defined as

Vi ate ©(M) = N1 = Nate,;) (‘P(ﬁ%ﬁ_ei) - ‘P(ﬁ))
Since according to Proposition 6.16, any closed form on a finite box is exact, there exists a family of
Fn-measurable function ¢,, € L%(uz) such that

(6.47) W'y = VaarePn = TaVo,e, T—zPn-
Furthermore, since the gradient of any constant vanishes, we can safely assume that for any n, Ez(p,) = 0.
Let us fix n € N, and consider the germ of an exact form ﬁvo,eiz%

1 1 1
(Qn)QVO,eiEgan = Wvo,ei Z ToPn = W Z T2V zte Pn-

T€Z2 z€Z?
Since ¢, is F,,-measurable, V, .., vanishes as soon as both z and x + e, are not in B,,. Hence, the
previous quantity is equal to

1 1 1
(648) Wvo,ei Egpn = W Z fovz,a:jLei Pn = Rn,i + W Z szcva:,:xhkei Pn,
—n—1<z;< —n<z;<n—1
25 | <n, i “aen)
where the boundary term R,, ; is
1
Rn,i = (2 )2 Z T—xvx,x+ei4pn + Z T—xvx,x+ei‘pn
n ri=—n—1 Ti=n
| ;| <n, j#i z€Bn

Since ¢, is supported in B,,, the exchanges at the boundary act as reservoirs with creation (first term in
R, ;) at the sites  with x; = —n, and annihilation of particles (second term in R, ;) at the sites x such
that z; = n.

Let us focus on the resulting equation and its behavior as n goes to infinity :

1 1
Wvo,eizzpn = Rn,i + W Z T—xvx,x+ei4pn-
—n<lz;<n—1
xeBn

For any n, the left-hand side is the germ of an exact form as introduced in Definition 6.12, and the limit
is therefore in £5. We will see that the second term of the right-hand side converges in L%(ug) as n goes
to infinity towards u;. Hence to prove Proposition 6.14 it will be sufficient to show that the boundary
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FIGURE 10. Description of the boundary terms R, ; in equation (6.51).

term term R, ; remains in a compact set, and that any of its limit points is in the linear span of the
elementary currents. In order to do that, we must first obtain some control over the boundary term, i.e.
to estimate it by the Dirichlet form of the ¢/ s. The difficulty here is that the Dirichlet form records only
the displacements of particles, whereas the boundary term involves creation and annihilation of particles.

Let us briefly illustrate that statement : consider one element in the boundary term R, ;, say ¢ € B,
such that z; = n, and consider the gradient V 4., ¢n. For any configuration 7 with a particle in z, let
us denote 77 — 6% the configuration equal to 7 everywhere except in  where the site is now empty. Since
pn 18 Fp-measurable, the previous gradient is equal to

(6.49) Vi zten(M) = Ne(1 = Nave;) (on (0 = 62) — on(R)) -

Creation and annihilation of particles cannot be directly estimated by the Dirichlet form. In order to
circumvent this problem, we need to smooth out ¢,, on a larger domain and consider

Pn = Ea(psn| F,)-
Rewrite (6.48) with ¢, instead of ¢,

1 1 L=
(6.50) Wvoyeiz% = @ > maVawte,@n+ Ru
—n<lz;<n—1
r€EB,

where this time

~ 1 _ _

(651) Rn,i - (2n)2 Z T—zvx,m+ei90n + Z T—mvz,m—i-ei ®n
ri=—n—1 Ti=n
|z | <n, j#i z€Bn

We are going to show that

— the bulk term converges as n goes to infinity to u;.

— the limiting boundary terms are all in the linear span of the currents.
For the sake of clarity, we state both of these results as separate lemmas, and we will prove them
afterwards.
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Lemma 6.17 (Convergence of the bulk term towards ;). — For any i € {1,2}, the convergence
1 ~
(2 )2 Z szvx,ereiQDn m u;
n —n<z;<n—1
zEB,

holds in L?(ug)-
Let us state the second part of the convergence before giving the proofs.

Lemma 6.18 (Limit of the boundary term). — For any i € {1,2}, we split the boundary term ac-
cording to Figure 10 as
R,:=R,;+ R

n,i’
where
~_ 1 ~ ~ 1 ~
(6'52) Rn,i = (2n)2 Z T—mvm,z—i-ei@nv and R:,Z = (2n)2 Z T—ngc,ac-i-eiSOna
i=—n—1 T;=n
| 2) | <n, i b

which will be referred to respectively as negative and positive boundary terms. With the previous notations,
Ynen are bounded in L?(ug). Furthermore, for any weakly convergent

N2

both sequences (E;’i)neN and (R}
subsequence ﬁ,:n ; — R, , there exists a;, b; € R such that

m; = ams}(l - 776i> + bz770(1 - 7761-)-
The same is true for the positive boundary term.

Before giving the proof of the two Lemmas 6.17 and 6.18, we conclude the proof of Proposition 6.14.
Recall from equation (6.50) that

1 1 ~
Y rVewra®n = 55 Voo Sp, — R

EO- N DR
T€B,

Lemma 6.17 guarantees that the left-hand side converges in L?(ug) towards u;, whereas the first term
in the right-hand side is the limit of a sequence of germs of exact forms. Finally, Lemma 6.18 guarantees
that

2
Hm (B, Roo) = 3 aidt + b,
i=1

n—o0
where j* and j* were defined in (6.43), (6.44) and (6.46). This yields, as wanted, that
C;NZTY C (‘fa O‘I“) + 3%,
which proves Proposition 6.14. O

The proof of Lemma 6.17 is simple, we treat it right now before turning to the proof of Lemma 6.18,
which is a little more elaborate.

Proof of Lemma 6.17. — We want to prove that the convergence
. 1 -
nh—>néo (27)2 Z T—JJVIE,I+€7; Pn = Wi,
—n<z;<n—1
r€B,

holds in L?(ug). By construction, for any z,x + e; € B,
Vﬂc,x+ei¢n = vx,x+eiE&(903n | ]:n) = ]Ea(vx,:c+ei§03n ‘ -Fn)7

n

since both x and = + e; are in B,),. Since by definition of ¢, u;’

vr,z+ei¢n = Ea(uiﬁ | ]:n) = ]Ea(ui,it | ‘Fn)

+ = Vazte;on We deduce that

The random variable u?y = Eg(u; o | F,) converges in L?(ua) to u; o = u;. Therefore, consider € > 0,
there exists some integer ng such that

o (|uig—wi|?) <e
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and it is easy to see that for any n > ng and = € B,,_,,, we also have
B (| o, —w | ?) <2

since Eg is translation invariant. Now we have some control over the convergence of u}’ for any z € B,,_y,,
we can prove Lemma 6.17. For any n > ng,

2
1
(o 2 o))
—n<z;<n—1

r€B,
= (2;)2 > s (el —w))

—n<z;<n—1
r€eEB,
1 n 2 1 . )
= (2n)2 Z Ea ((T_g;ui,w - ui) ) + (2n)2 Z Es ((T—wui,z — ui) )
#€Bn—no —n<z;<n—1

2(n — n, 1)2 dnn
<& (2710));r = (2n)2
<e+o,(1),

C

where C; is a crude bound on
Ea ((rol, —w)") < 2Ba ((ufo)”) + 2Bq (w?) < 4Es (u2) = C;,

thanks to the conditional Jensen inequality. Finally, for any € > 0, we can write
2

. 1
nh—>ngo Eg W ) Z Tl — W <eg,

and we have shown Lemma 6.17. O

We now prove the second Lemma, i.e. that the limiting boundary term is in the linear span of the
currents, which is the main difficulty of this Section.

Proof of Lemma 6.18. — The proof of this Lemma being long, we split it into three steps.
— We first control the L?(ug) norm of the 3,,’s.
— Thanks to this control, we prove that the boundary terms ﬁf
therefore weakly compact. /

; are bounded in L?(puz), and
— Finally, we prove that the limiting boundary terms SR?E can only depend on the configuration
through 7o and 7., and that they can be written as a combination of the j* and j**.

The scheme follows closely that of Theorem 4.14 in Appendix 3 of [27] however adjustments are needed

in the second and third step to take into account the presence of the angles.

First step : Control on the L? norm of the p,’s.

We proved in Section 5.2 that, even though we do not have a sufficiently sharp spectral gap on the
set Cp defined in (5.1), we could circumvent this difficulty by restricting ourselves to a convenient class
of functions not too dependent on the spins. This spectral gap estimate is needed to control the norm
of the ¢/ ;s. This is one of the reasons for limiting the result to closed forms in T* defined in (6.45). We
state this step as a separate lemma for the sake of clarity.

Lemma 6.19. — There exists a constant K depending only on &, such that ¢,, introduced in (6.47)
verifies for any n € N,

2
Ea(en) < Kn'[Julls -
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Proof of Lemma 6.19. — For f a function in T}, one can check that the symmetric gradient

Vif = Lgone.—oy (F () = f)

is also in T;”. Furthermore, a simple change of variables shows that for any functions f,g € FE;, this
modified gradient is symmetric indeed, i.e.

Ea(fVig) = Ea(gVif).

This implies that T#+ is invariant by the action of %, therefore for any function such that %l«p e Ty,
we also have ¢ € T’. With that in mind, note that for any function ¢, we have the identity

Vie() = Vip([n) — Vip([n™).
In our case, T,mu’ﬁx = Vo,e, T—aPn hence

Vﬂlz@n = T*Iu?,z(n) - Tffu?,z(ﬁo’ei)'

Now since the right-hand side of the identity above is in T}”, we obtain that ﬁiT_wtpn € T, which yields
thanks to the observation above 7_,p, € T and ¢, € T;”. We can now use the estimate of the spectral
gap obtained in Proposition 5.4, which yields since we assumed that the ¢,,’s have mean 0 w.r.t. ug,

C
Ea(‘pnﬁnson) < _EE&(@Z)
hence
Ea(@i) < C_1n2@n(50n)a

where 2,,(f) = —Eg(fL,f) is the Dirichlet form relative to the symmetric exclusion process restricted
to B,,. Recall from the definition of Z,, that

2
9”(‘10”) = %Z Z Z Ea [(vz,+6ei@n)2] .

i=1§e{-1,1} z,x+de;EB,

Since vm,x—‘—eiﬁpn = u?:CE and vm,r—ei@n - *uzaj,ei (ﬁz,mfei)’ Jensen’s inequality yields
2 2
n 2
(6.53) Dlon) = > Eal@l)’] <> > Eal[w)’] <Cn’|ulls,
1=1x,z+e;EB, =1 x,x+e; EB,,

for some constant C, thanks to a change of variable n — 7®*%¢ under which ug is invariant. We obtain
as wanted, thanks to the spectral gap,

(6.54) Ea(p)) < Kn' IIuHi,a’

where K is a constant depending only on a. O

Second step : Control on the L? norm of the boundary terms.

Recall that in order to control the boundary terms, we have to deal with creation and annihilation of
particles. We now prove thanks to Lemma 6.19 that the boundary terms are bounded in L?(ug), which
is the main difficulty of the proof of Lemma 6.18.

Lemma 6.20. — Given the definition in equation (6.52) of both boundary terms E;Z and ﬁ:z,
a constant C = C(Q), such that uniformly in n

ma ([Rn] ) s Clulte e ma (7)) <l

Proof of Lemma 6.20. — We will treat in full detail only the case of the negative boundary term

there is

~ 1 _
Rn,i = (2n)2 Z T—JJV(L‘,I-‘rei Pn,

r,i=—n—1
| zj | <n, j#i
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since the positive boundary term is treated in a similar fashion. The elementary inequality

n 2 n
(6.55) <Z ai) <n) aj,
=1 =1

yields
~_ 12 2n 2 1 2
Ea([Rn,i} )s Zi > Ea ((oVoure®0)?) = 53 X ((Towresn)’)
| zj | <n, j#i [z | <n, j#i

by translation invariance of ug. At this point, we reduced our control over the boundary term to a sum of
L? bounds on Va,o4e,$n, which we wrote explicitly in equation (6.49) for any « in the negative boundary
(xi=—mn—-1, |z;| <n),

(6.56) Vaate Dn(M) = Ne(1 = Naye;) (‘Zn (n+ 5z+ei) - Szn(ﬁ)) )

where 7 + 67 +e, is the configuration equal to 7) everywhere except in  + e;, where the site contains a
particle with angle 6 distributed as &/« independently of 7). Note that in the expectation Eg, we will also
take the expectation w.r.t. 8, but still denote it by E4 for the sake of concision. Since ¢,, is independent
of 7, for any z in the negative boundary term, the L? norm of the gradient can be rewritten thanks to
equation (6.56)

~ s~ 0 ~ a0 2 ~ i~ 0. o 2
Ea(1)Ba (1= ve,) (Bl + 001e) = 2a@)”) = aBa ( (1= nover) (Bl +0%5e) = 2a(@) )
and the L? norm of the boundary term can bounded from above by

650 Ea([T]) sl X B (0o @+ ) - 2a@)).
r;i=—n—1
| | <n, j#i

where the expectation w.r.t 6 is taken under the law &/a. Thanks to the identity above, and since the

number of terms in (6.57) is of order n, Lemma 6.20 follows from Lemma 6.21 below. O
Lemma 6.21. — There exists a constant C depending only on &, such that for any v € B, such that
T, =—n—1,

Ea (1= tuse) [0+ 0040) = Ba()]) < On? |13 5.

Proof of Lemma 6.21. — Let us fix z, x; = —n —1 in the negative boundary. To make the Dirichlet form
appear, we are going to force an occupied site in a neighborhood of z, and transform the creation process
into a particle transfer. For the sake of clarity, any configuration 7 on Bs, will be considered as the pair
of an interior configuration Z on B, (which is hence F,-measurable), and an exterior configuration fA
on Bs, — B,. With the previous notations in mind, and since @,, = E(p3, | Fn) we have the following
equalities for @ (E—i— (5z+ei> which appears in (6.57) :

Zn (C+0%1e,) =Ealpsn | Fa) (C+ 004, ) = Ealean(l,8) 1T =+ 0.
where in last term, the expectation is only taken w.r.t Bz, — B,.
We compute now @, (Z—i— 6z+ei) — ©n(¢). For any y € Bs, — B,, we rewrite using the identity
(l-a) 'l-E+&-a]=1

B (C+0%4) = o (Ba (1= &)osn | Fu) +Ea( (6 — adosn | 7)) (T4 804,).

where §, is the occupation variable in y, and is either 1 or 0 depending on whether the site y is empty or
not.

The first part of this decomposition will be controlled by the Dirichlet form, as the existence of an
empty site in y (thanks to 1 — &,) will allow us to reconstruct a particle transfer from y to « + e;. The
second term will be estimated after a spatial averaging over a large microscopic box. This box must be
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measurable with respect to the spins in Bs,, — B,,, in order to be able to introduce it inside the expectation.
For any x in the negative boundary, consider the set
Bl‘

n— 1L_x_nei+Bn—1;

which is the box of radius n — 1 centered in  — ne;. Remark that the cardinal of BZ_, , is (2n — 1), so

that averaging the previous identity over the y’s in B, ; allows us to write

(6.58)
fn) + Ea <£y ©3n

Pn (C+5z+e7>(2nil)2y6; A<Ea<1 gngn 1 n>) (C+5m+e7).

Let us consider the first term of the previous equahty For any y in the boundary, thanks to the factor
1-— fy the site y is empty. By the change of variable 5 — § 0y where f 0y is the configuration identical

K

to § everywhere except in y where the site is now empty, so that

Ea ( 1= —b ©3n n) (C+5w+e )
~Ea (51" oo (€-3,) ] ) (<+6m+el)

—Ea(éy [on (C+00we €=00) = 2 (GE) ’f>+E<

S o (CE 'f)

We deduce from the last identity and equation (6.58) that we can write @, (C + 52—5-61) as

Pn (5+5§+ei) = ﬁ Z []Ea <£ [SDBn <C+5I+617£_59> — ¥3n (Zf)] ‘ fn)

yEBY,

n—1,1

+ B (gan (CE) | 7o) +Ea (fly ¢3n(4+5m+w§)’ )]

We are therefore able to rewrite the difference ¢, (E—f— §z+ei> — SZn(Z) as

(6.59)

B (Z_|_ 5z+ei> _@n(f) - ﬁ Z l]EA (fy [@ 3n <C+5w+en€—5y> — ¥3n (Z’gﬂ ‘ ]-'n)

+Ea (59;0‘ o3 (C.€) fn) +Ea (ﬂy ean (C+ 0040 € ' F )]
using the elementary bound (6.55) as well as Jensen’s inequality yields

Ba (1= ) Ba@+0%4.,) — 30@)°)

< | X Ee (M [wsn(ﬁwzm—éy)—sogn(ﬁ)]?)

2
yeBﬁ—l,z @
2
+ SEa Ea 27’L — 1 ny ©3n -Fn
YeBT_1
2
1- Ne+e; Ty — Q@ —~
(6.60) +3E5 | Ea w Y. o | e 0 |
yEBY

n—1,i

From now on, the strategy to prove Lemma 6.21 is straightforward. We are going to prove that each of
the three terms in the right-hand side above is of order n?
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— The second and third line above are controlled thanks to the spatial averaging by the L? norm
of the ¢, ’s.
— In the first line, the angle of the particle deleted in y is not necessarily the same as the one
of the particle created in x + ¢;, because the angle 6 above is distributed according to @/« and
independent of the configuration. However, since the ¢,, are in T’ their dependence in the angles
can be sharply estimated. Once this difficulty is dealt with, the remaining quantity will be controlled
by the Dirichlet form.
We first treat the first step above. Thanks to the Cauchy-Schwarz inequality, we can estimate the second
line
2

1 Ny — Q@

Ea|Ea | | 52 z n| Fn
' (2n —1)2 Z ! Pan | T

yeB®

n—1,i

2

1
a2a

AN
o
S
| | =
—_
e
=
<
|
=}
=
)
5.
w N
5—/

_ Varg(no) E~ ( 2 )
a2(2n —1)2 ’
since under g, the n,’s are i.i.d. variables. We can now use the bound obtained in Lemma 6.19, which
yields that for some constant C, = Cy(a),
2

2
2n_1 Z Ny —a| ¥3n | Fn §01“2||u||2,a~
yeB®

(6.61) Es | Es

n—1,i

We obtain in the exact same fashion, since

—~ 2
Ea (1= Mlore)n (7+0240)") = Ea(lose,93n) < Ealeh),

that
2

(6.62) Ez|Ea 2n )2 Z My —«@ — Nzte;)P3n (ﬁ"‘ 5§+ei) Fn < 02n2 HuH;a
YEBL 1
We now turn to the second step, and obtain an estimate on the first line of the right-hand side of
(6.60), namely
(6 63) 1 Z E~ ny(l — 77£E+€7‘,) [ (A+§0 —-5 ) o (/\)]2
. 7) a o2 P3n \T1 T Ogqe, y P3n 1 .

(2n—1 yebT

n—1,1

We first deal with the fact that the deleted and created particles do not have the same angle. Recall that
7Y% is the configuration where the angle of the particle at the site y has been set to 6, we can thus write

77+590¢+e 5 _ (Ny g)y ,rte;

)

therefore

rTe; 2 A~
(0 (74 0% e, = 0,) = 0o ()" <2 [sn ([9)") = 03 ()] +2 [an (77) = 30 @]

Since 6 is distributed according to a/a, %% has the same distribution as 7 under j5, and we can therefore
control (6.63) by

(6.64)
ﬁ BZ 7 [Ba (11 = neve) [ian (777) = @3 )]) +Ea (ny [pan (77) = wan @)])] -

Once again, we are going to prove that the contributions of both terms in the right-hand side above are
of order n?.
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We first need to decompose, as in the proof of the two-block estimate of Lemma 4.4, the particle
jumps appearing in the first term into nearest neighbor jumps. More precisely, there exists a finite family
xo, ...,y such that ©g =y, v, = x and for any k € [0,p — 1], | xx — xk+1| = 1. Furthermore, we can

safely assume that p = |y — « |. With this construction, for any y € B we can write

n—1,:7

Ea [ny(l — Nate;) (¢3n(ﬁy’w+ei)—‘/’3n(ﬁ)>2]

ly—az |

<|ly—z] Z [mgk ~ ) (wsn(ﬁ“’“’”’““) - %Mﬁ)ﬂ

\y*m\

(6.65) <ly-21 > Ea([Varwwnwan(@]’).
k=1

since (3h_, ax)® <p>_ h_, ai. Furthermore, by definition of ¢3,, assume that 41 = zj + ¢; in which

case Vi, oy, 030 (1) = 37 5, we obtain by Jensen’s Inequality that

12 2 2
Ea ([Vorarpan()]’) < B (72 (0)%) < ]34
The same bound holds if 2311 = 21 — e; for some j, and we can finally rewrite (6.65) as

ly—az |

nY,rte; ~\? 2 2 2
Ba (1 = v (pon @55 = 00n@) ] < 1= 3 s = 19— P Il
k=1

We now get back to the first term in (6.64). It is not hard to see that ZyeBz_l

and we obtain as wanted that for some constant C3 depending only on a,

i |y — |2 is of order n?,

2 rTe ~\12
666) a2 Ea (w0 e [on (77) — e @)) < Con® i3
YyeEBT 1.

We now estimate the second contribution in (6.64). The only difference between 3, (7¥?) and @3, (7))
is the angle of the particle at site y. We proved along with Lemma 6.19 that ¢, € T}, therefore the
variation of ¢, when an angle is changed can be precisely estimated. For the sake of simplicity, we
assume that ¢, is in the set T we defined in (5.4), but if it is not the case, the estimate we are going
to obtain still holds, once ¢,, is replaced by a sequence in Tj’ which converges towards ¢,. If ¢, € T§,
for any n, there exists two constants a1, and as ,, a family of angle-blind functions (1, 4)sez2, and an
angle-blind function %}, € S, such that

P3n = 1/}:1 + Z (al,nngc + a2,n7];))'¢n,x-
r€Z2

Since the only difference between 7% and 7 is in the angle present at the site y, we can write

P3n () = 3n (1) = az,n(w(0) = w(0y))nyny (),
therefore the second line in (6.64) can be rewritten

660 g X a0 -w®)0R,) < el S b 02,

yEB? yEeZ?

n—1,i

where we shortened Varg(w) = Varg(w(bp)), since the angles are independent of the configuration
conditionally to the presence of a particle. Recall from Section 5.2 that we can write

on =@} + o,
where

= ¢:L + Z bl,n"]m"r/)n,x and 90‘;; = Z a2,n(w(9;c) - ]Ea(w)nan,ma
z€Z? zET2
where b1, = a1, + Ez(w) and Eg(w) stands for Eg(w(6p)). Furthermore, one obtains

Ea(p2) = Ea((@3)?) + Eal(¢%)?),
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as well as
Ea((¢%)?) = agnVara(w) Y Ea(natl ).
T€Z2
The two previous identities finally yield that

aznVara(6o) > Ba(netr ) < Eal(p)).
T €Z?
We now use the previous identity as well as (6.67) and Lemma 6.19 to obtain that for some constant Cy
depending only on &

(6.68) & 2 > Ea (ny [pan (1) — @an (77)]2) < Can® [Julf3 4 -

a?(2n —1
yeB?®

This is the estimate we wanted for the second line of (6.64).
Letting C' = 3(C; + C2 + C3 + Cjy), we now use the four bounds (6.61), (6.62), (6.66) and (6.68) in
equation (6.60), to obtain that

o 2
Ea (1= o) (Ba(+ 0240) = Ga(®)”) < On? |lull3 5
as wanted, which concludes the proof of Lemma 6.21. O

We have now finished the second step, and proven that the boundary terms (EL)%N and (E;i)nEN
are bounded in L?(uz). To conclude the proof of Lemma 6.18 we still have to prove that all limiting

points R;” of (R, ;) are in the linear span of the currents. The main difficulty is to prove that any limit
point only depends on 7y and 7,,, which we state as a separate lemma.

Third step : Proof that R, only depends on 7 through 7o and 7.,

Let us denote
Zi’i ={z; >0} n7z? \ {e:},

we first prove the following intermediate result.

Lemma 6.22. — Any weak limit point R of the sequence (R, ;) is measurable w.r.t. the sites in
72 N {x; > 0} U{0}. Furthermore, for any edge (z,z + e;) with both ends in the set 73 ;, the gradient
vz,z:l:ejg%_

. vanishes in L*(ug).

Proof of Lemma 6.22. — In order to avoid taking subsequences, let us also assume that (R;i) weakly
converges towards JR; . We first prove the first statement, which is elementary. For any x in the boundary,
T_3@n is measurable with respect to the half plane {z; > 0}, therefore V., 7_,% is measurable with
respect to the sites in {x; > 0} U {0}. We deduce from the last remark that for any n, R;i is measurable
for any n w.r.t. the sites in {z; > 0} U {0}, therefore R also is.

We now show that for any edge {z,z £ e;} C Z?hi’ the gradient V. 4. 9,

. vanishes. Fix an edge

(2,2 £ ej) with both ends in Zi ;- We are going to prove that the sequence (Vz7ziej E;l) vanishes
s 7"/ neN
in L?(uug). By definition,

~ 1 _
vz,z:l:ejRn,i = W Z vz,z:l:eijzva:,erei@n

x;=—n—1
1 ~
= (2n>2 Z vz,z:l:ej vO,eiT—ac(pn-
r;=—n—1

Because z, z + e; are different from 0 and e;, the two gradients in the formula above commute, therefore
using once again (>, a;)> <nY .., a?, as well as the crude bound Ez((V,f)?) < 4E5(f?), yields

2 ~
(27?)4 Z Ea [(VO,eivz,ziej wa(Pn)Q]
Ti=—n—1

Ea [(vz,zieJ'R7 )2 <

n,t
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(2n)3 Z Ea [(Vo,ei T—wvz+w,z+wiej &n)Z]

r,i=—n—1

(271)3 Z Ea [(VZer,erwj:ej &n)ﬂ .

r;i=—n—1

(6.69) <

There are three cases to consider to estimate Eg [(VZH,ZHRJ. @n)Q].

(1) The first one is the case where both = + z and = + z £+ e; are in B, the complementary set of B,,. In
that case,

Ea [(vz—&-x,z—&-xiej&n)ﬂ =0,
because ¢, is F,,- measurable.

(2) The second case when both x + z and = + z + e; are in B,,. in that case, we can write

Vz-l—w,z—i—aciej &n = vz-{-z,z-‘rmiean((p?)n l JT"n) = E&(vz-‘rm,z-‘rwiej P3n | fn)
(670) = Ea(uj,erw | ]:n)a

therefore Jensen’s inequality yields
~ 2
Ea [(szrx’Zsziej ‘pn)2] <4 ||u||2,a'

(3) The last case to consider is if  + z and « + z £ ¢; link B,, and Bf. Then, an elementary adaptation
of Lemma 6.21 yields that

- 2
Eg [(Vz+z,z+z:|:6j @n)2] < Cn? Hu||2,a~

We treat separately the two cases for j. Fix an edge (z, z £ e;) with both ends in Z2 ;. If j = i, for any
n large enough (more precisely as soon as 2n+ 2 > z;), for any x such that 1 = —n — 1, either « + 2z and
x4zt e; are both in B,, or both are in its complementary set Bf. We are therefore either in the first or
in the second case above, and since the number of terms in the sum is O(n), equation (6.69) yields
~_ K
Ea [(Vase, )?] < 5 Ilul

n,t —
? n

2
~ — 0
2,0 oo T

for some constant K depending only on &.
If now j # i, there can be only two terms in the sum over x for which xz + z and = + z £ ¢; link B,, and
B¢ (third case above), whereas all the others are either in the first or the second case. We deduce from
this that in this case, equation (6.69) yields
~ K’ K''n2
Ea [(Vapmie, B)?| < 25 +

2

T, = n2 n3 Hqu,a n:)oo 0’

where K’ and K" are different constants depending only on @. This proves that the sequence

(Vz,ziejR;l) vanishes in L?(ug) for any edge (z,z + e;) with both ends in Z3 ;. Since the gra-
i), ,

dient V: 24e; 18 a continuous functional, Vi zte; MR, vanishes for any edge (z,z * e;) with both ends in

Z3 ;. This concludes the proof of Lemma 6.22 O

Lemma 6.23. — Any weak limit point R, of the sequence (R;i)neN only depends on the configuration

through 7o and 7.,. The same is true for the limit points of the positive boundary terms (R;i)neN-

Proof of Lemma 6.23. — This Lemma is a consequence of Lemma 6.22. Consider the localization R, , =
Eg(R; | Fn), then R, also has the two previous properties : the measurability with respect to the sites
in {z; > 0} U {0} is trivial. The fact that its gradient vanish is easily obtained as well, since

vz,erejm;,n = nz(l - anrtij )Ea(m; (7/7\2’2+6j) - m; (ﬁ) | ]:n);
which vanishes since R, (7%*7%) — ;7 (7)) vanish by assumption as soon as 7, (1 — 7.4,) # 0. Let

B, =B.n 73,
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+

7,n’

since the gradients of 9R; vanish for any edge in B}, on the event on which there are at least two empty

sites in B

7,n)

MR, only depends on the 7, x € Bj)'n through the empirical measure on B;’n
N 1
Pptr = B+ Z ﬂxf;ew-
o | in B+

Indeed, for two configurations 77 and 7’ with the same number of particles, and with the same angles in
B} | we can reach one from the other with a combination of the previous gradients, hence the difference

i,m?
R, (M) — R, (") vanishes. This is not true whenever there is one or less empty site in Bj" | but since

i,n?

we are under the product measure, this happens with exponentially small probability and will not be an
issue.

+ »

-, the previous statement

Let us denote by E7 the event “there are at least two empty sites in B
rewrites as

ﬁo’ﬁewﬁan> .
For any cylinder function f, we are going to prove that Eg(f.R; ) = Eg [f. E(R; | 7o, 7,)]. Let
In :E(f | Ne, T € {zi > O}U{O})

be the conditional expectation with respect to the sites in {x; > 0} U {0}. Since f is a cylinder function,
so is f,, therefore for any sufficiently large integer n, we can write

Ea(f R 1g;) = Ea(f R, 18;)
ﬁ07 ﬁ6i7 ﬁB::n>>

Es (Ea (f.%i’nﬂE;
7/7\07 ﬁei ) ﬁBi’n> >

=Ea (9%{7”1113;;153@ <fn ﬁo,ﬁemﬁgjn>>
=Es <%;nEa (fn ﬁo,ﬁei,ﬁgj)) +Ea <9QZ”1E;;C]Ea (fn

7/7\07;7\61')) + On(1)7

Ea (9{1" 1g:Ea (f

ﬁ()aﬁe“ﬁB;tn))

6.71) =Eg (% Bz (fn

since
E& (fn

because p,+ converges g a.s. as n — oo towards a. and

ﬁO?ﬁ&jﬁB% )) — 07
i,n n— o0

because f, is a bounded function, and R;, is in L*(ug). For the same reason, the left-hand side in (6.71)

PO L?(ug)
77077767',7/)33’”) —#> Ea (fn

n—oo

ﬁoaﬁei) )

Ea (9?\{, nlescEg (fn

converges as n goes to co towards Eg(f.JR;), and therefore

Ea (%7 Ea (fu | o7, ) ) = Ea(f.57) + oa(1).

We finally obtain
Ea(f%7) =B (R Ea (fu | o7, ) ) +0n(1) = Ea (fuBs (B | 0,7, ) ) + oa(),
from which we deduce what we wanted, since the previous is true for any cylinder function f, i.e. that

R = Ea (%]

(2

7/7\07 ﬁei) .
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This concludes the proof of Lemma 6.23. O

To complete the proof of Lemma 6.18, now that we have proven that all limit points of the boundary
terms are function of 7y and 7.,, we still have to show that such limit points can be expressed as linear
combination of the currents. To do so, first notice that any limit point of the negative boundary R
verifies

(6.72) Ne,R; = (1 —no)R; =0.
Indeed,
_ . ~ . 1 ~
Ne, Ry = nlingo (2n)2 xi;_l Ne;T—ax Ve zte, Pn = nlingo (2n)2 xi:;_1 Ne; V0,6, T—2Pn,
|z | <n, j#i |z | <n, j#i
since 7, Vo f = V. o7 f. Now the latter obviously vanishes since 7., Vo, = 0. The second identity is

proven in the same way.

Since the ¢,’s are in T§’, R,

. also is, and can therefore be expressed as

Ry () = Z(Cﬂ?? + Came ) Ve (1)
Injecting in this identity that 93, only depends on 7y and 7, yields ¢, = 0 for any = # 0, e;. Furthermore,
since 7¢, R, vanishes, we also obtain that 1., = 0. Finally, we can write

Ry (1) = (cang + c2m0)¥o(10, e, )-
Since we must also have
Ne%0(M0s Me;) = (1= 10)vo(n0, e;) = 0,
we obtain that g (1o, 7e,) is proportional to 79(1 — 7e,), and finally,

R (M) = (cng + cano)(1 =17, ).
The previous equation states that the limiting boundary terms are in J“, which is what we wanted to
show. The proof of Lemma 6.18 is thus complete. O

6.7. Space-time covariance limit. — In Section 6.5, we reduced our problem to a local covariance
problem. The first part of this section introduces several motations as well as the limiting covariance
& . >4 which is the focus of the next section. Although it does not constitute a proof, the second part of
this section provides some heuristic insight on the correspondence between closed forms and functions in
Co, as well as on the definition of < . >5. We will also use this section to introduce several notations
that will be useful later.

In Section 6.5 we reduced the proof of equation (6.7) to proving Proposition 6.7, i.e. that

inf lim limsup sup (20 + 1)°E, o (Wi(—L) "' W)) =0,
Fp=oo isee Reg, '
where
W= () + da (1) 8ip" + (o1 o) iprr — (L)
is the local average of the difference between gradients and currents, ? is given by (2.12), £; is the
symmetric exclusion generator restricted to By,

(6.73) S;h=T1o,h—h

is the discrete derivative in the direction e;, and K, was defined in (3.2) and only takes into account
configurations with at least two empty sites.

To prove Proposition 6.7, we are now going to investigate the limit as [ — oo and ag, — a (cf
Definition 3.2) of

(6.74) %El’f{l LYY mp. Y | = <>,

(2l + 1 xEBlw ,’I)EBlw
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where 1) is supported by By, and I, = —dy — 1 is chosen such that ) T2 is measurable w.r.t.

xEBlw
sites in B;. There are therefore two important steps to prove (6.37) :
— Prove that the limit (6.74) is well-defined for any function ¢ in a convenient class of functions
containing at least the currents, the gradients and the functions of the type Lf.

— Prove that, letting

(6.75) o(@) = 22U (1 g (a))

we have
(6.76) ir}f sup < i’ + ds(@)0; (15 1,) +0(@)dino — Lf >a= 0.
«

where the infimum is taken w.r.t. local functions with mean 0 w.r.t. all canonical measures.

Introduction of the limiting covariance. — In order to properly introduce the limiting covariance < . >3,
which we are going to define by a variational formula, let us recall some notations and introduce some
others. Recall from equation (5.1) that we denote by Cp, the space of cylinder functions with mean zero
w.r.t. every canonical measure and vanishing for any configuration with strictly less than two empty sites
in their support, and by

Ty = Z (1 + eane)z(n), c1,c2 € R, and ¥, € S Vo € T

z€T%,
Furthermore, we introduce
(6.77) To' =1y N Co.

Note in particular that these three sets are stable by the symmetric exclusion generator £. This is trivial,
since £ does not introduce correlations between angles.

For i = 1,2, and = € T%, Ja ote; 18 the instantaneous symmetric currents with angle dependency w
along the edge (z,x + ¢;) introduced in equation (2.17), where we want to replace the current

3 =m6 (L= ne,) — 1, (L —10)

by the gradient quantity
(g, —15) + (e, — mo)-

Let j“ and j denote the two-dimensional random vectors

J¥=01,J3) and j= (j1,j2),
where j; = ng — 1, is the total current along the edge (0,e¢;). Finally, for any a = (a1,a2) and b =
(b1,b2) € R%, we will write
(6.78) % =a-j¥ +b-j€JY,

is the usual scalar product in R? and J is the linear span of the currents already introduced
in equation (5.2). We introduce analogous notations for germs of closed forms, and let

where 7 -

2
(6.79) 0 =Y i + bij € 39,
i=1

where j* and j* were introduced in (6.43), (6.44) and (6.46).

For g € Co, recall that ¥, is the formal sum X, =} _,> 7,¢. This formal function’s gradient along
any particle jump is well-defined, as well as its expectation against any cylinder (therefore local) function
in Cy. Finally, recall that V; = Vg ., stands for the derivative in the direction e; in the sense of equation
(3.4),

vzf(ﬁ) =To (1 - nei) (f (,;]\O,e,-) - f(ﬁ)) )
we denote by Vf = (V1 f, Vaf) the two dimensional gradient vector of f.
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We now have all the notations needed to introduce the limiting covariance < . >3.

Definition 6.24 (Definition of < . >3). — Let @ € M;(S) be an angle measure, and consider f €
Co, where Cy was defined in (5.1). In particular, f is a local function, and has mean 0 w.r.t. any grand
canonical measure ug, and we can define

2

(6.80) L f>a= sup (2E; | f. |2g + Z (y-a)ny +(y-o)ny| | — HVZQ +5¢h
967—0‘”2 yEZ2 2,0
a,beR

where ||.||, 5 is the norm with which we provided the space of germs of closed forms (cf. Definition 6.11).

For any cylinder function 1, recall that s, is the smallest fixed integer such that v is measurable with
respect to Fg,, and let [, = [ —d, — 1 for any integer [ large enough. The following result states that the
quantity < . > introduced in the previous Definition 6.24 is indeed the limit of (6.74) for any function
v e Ty,

Theorem 6.25. — Consider & € M1(S), and a sequence (I?l)leN such that I?l € K; and H‘ @f(l —-Q H‘ —
0, where af([ € M1(8) is the angle measure defined in (3.7). Then, for any function v € T3, we have

. 1 —1
(681) lli}rélo WELK—I _‘Cl Z Tz'(/J . Z Tw'(/) =K w >4 -
z€B, z€By,
Furthermore, for any function 1 € T§°, the application & —< 1 >z is continuous in &, and the
convergence above is uniform in &. In particular, for any ¢ € T3,

1
(6.82) lim sup ————E, » —Ll_l T . Y| = sup KLY >5.
120 Ref, (20 + 1)2 ! xEZB:zw xezB;w aEM(8)

1/2
a

Remark 6.26. — Although it is not clear from its definition, < . >~/ is a norm on 73’/ Ker< . >5.
This is shown in Proposition 6.27. Assuming it is, however, we can define the corresponding inner product

1
<L 0, >a= 1(

and for any functions ¢,y € 73, the previous theorem then also yields that

Lo+ >z —<Lp—19Y>5),

E, Z o (L) Z | =<, >y .

lim ———
l—00 (2l + 1)2 LK
zeBzg, yEBzw

The proof of Theorem 6.25 follows very closely the proof given in [27], we recall it in our case only for
the sake of exhaustivity in Appendix C. The key to the proof is to divide B; into boxes of size k which
goes to infinity after [, in order to be able to replace the expectation w.r.t the canonical measure by the
expectation w.r.t ug. The rest of this section is dedicated to giving heuristic insight regarding the shape
of < .>g, and why Theorem 6.25 should hold.

Heuristic insight on Definition 6.2/ and Theorem 6.25. — The purpose of the second part of this Section
is to explain the variational formula for the limiting covariance < ¥ >>5. Given the generator £ of the
SSEP on Z2, for any function f € Cy, consider the linear application

V1L~ 1 Ef

Vgﬁilz:f '

This definition raises a few questions. First of all, notice that it is not well-defined for any function f in
Co : indeed, even though f is a local cylinder function, £~ f is no longer local, therefore it is not sure that
VL71%¢ only involves a finite number of non-zero contribution. Second, the gradient in this expression,
assuming that f is such that VL713 is well-defined, would indicate thanks to the "translation invariance"

(6.83) T f VLIS, = <
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of ¥y and L£7!, that F(f) is the germ of a closed form as introduced in Section 6.6. To illustrate this last
remark, we describe the effect of this application over two particular subsets of Cy, namely £Cy and J¢
introduced in (5.2).

We first investigate the action of § on the linear span of the currents J“. Consider an infinite config-
uration 77 with no particles outside of some large compact set K. For the sake of concision, we will call
such a configuration bounded. Then, we can write

Z i Lny = Z Teji = Xje-

z€Z? z€Z?
Since the configuration was assumed bounded, both of the sums above are finite, and the identity above
is well posed. Coming back to our application §, the previous identity yields that

565) = (e ) = (e o).
VoL Zj;v Va EmGZZ TNy

Since the only positive contributions in the right hand side above are for = € {0, ¢;}, elementary calcula-
tions yield

S0 =i,
where the j*“’s are the germs introduced in equation (6.46). For any bounded configuration, we can
generalize this identity according to the notations (6.78) and (6.79), and obtain

(6.84) F) =37,

which once again holds for any bounded configuration. We can therefore expect that § maps J* into J“.

We now investigate the action of § on £Co. Another way to write ¥ is §(f) = VX -1, and therefore
F(LH =V mL'Lf=V5.
TE€ZL?
This allows us to define § on LCy as well, by

(6.85) S(Lf) =V,

which is the germ of an exact form associated to f, and we can thus expect § to map LCy into the set of
germs of exact forms £ introduced in Definition 6.12.

The two constructions above allow us to define the bijective application

F o LCo+JY —  EF®
Lf+j§% = VS;4jt

Taking the closure of both spaces in L?(j5) and restricting to the subset 7¢* C Cp, we obtain that the
application § is a one-to-one mapping between L7 + J and £5; NTY + J, where LT is the closure
wrt. <. >>}i/2 of L7;°. Note that taking the closure and restriction of J“ is not necessary, being a

finite-dimension space included in T’. Furthermore, we proved in Proposition 6.14 that
EoNTYH IV =C4NEY.

We can therefore build an isomorphism

(6.86) T LT +JTY — CNE~.

Thanks to the isomorphism described in (6.86), this one-to-one mapping therefore gives 73’/ Kers(F)
the same structure as € N T. Denoting by Kerz(§) the kernel of § w.r.t || . ||, 5 this mapping yields
the decomposition

7'0(.«) B L:’]Bw
Kerg(§) Kerag(3)
which is strictly analogous to the one stated in Proposition 6.14. However, this construction is purely

heuristic, and its rigorous derivation is given a bit later in Proposition 6.32. This decomposition, however,
is the reason why (6.76) should hold : &;(n§'1g,) is a function in 73, and can therefore be written as a

®JY,

combination of the currents §;19 = j; and j¢, up to a perturbation £f. The rigorous derivation of (6.76),
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and the derivation of the explicit form of the conductivity and diffusion coefficients is the purpose of
Section 6.8.

We now explain further the variational formula for the limiting covariance < . >4 introduced in
Definition 6.24. Let us now admit for a moment that § is well-defined on all 73, and takes its value in
the set of germs of closed forms. § is now a surjective linear application T3* — €5 N T“. Recall that we

endowed €5 with its L? norm

[ully s = [Es (u3 +u3)] 2.

It can be rewritten for any closed form u = (ug,uy) € &N T, as

2
(6.87) Jull3 5 = sup {21Ea (u~(VEg+i“’b))—Hvzgﬂa’b’ A},
’ geTy” 2,4
a,be]R2
since
£ oI
inf |lu—(VD, +i% ’ -0
9e€Ty’ ‘ ( 9] ) 2.a
a,b€R2

according to Proposition 6.14.
Since Kerg(§) is the kernel of § w.r.t || . HQ’a, § is an isomorphism between 7}’ /Kerg () and €NTY,

and we can therefore equip 75’/ Kers(§) with the norm < . >3/

[e3

< = 11F)llos -

Since §(f) was assumed to be the germ of a closed form, we can rewrite thanks to (6.87)

induced by the mapping §, defined as

2
< f>a= sup {QJEa (5 (75, +3) = ||V, +5*|| A} .

g€eTy” 2,a

a,beRr?
This expression for < . >3 is in fact identical to that given in Definition 6.24, once admitted that the
correct expression in a general setting for § is (6.83), and that the integration by parts formula of Section
5.1 can be generalized. However, once again, this construction is not rigorous, and the correct definition
for <. >4 is the one given in Definition 6.24.

We now briefly carry on with our heuristics and explain why Theorem 6.25 holds, which is rigorously
proven in Appendix C. The proof is based on the integration by parts obtained in subsection 5.1. Applying
it to Y, ep, Tx¥ yields that the quantity in the right-hand side of (6.81) can be rewritten

P

2

. 1 1 1
}i}};mEz,fq ) Do Vel Y ¥

TEB; z€By,
|z |=1

Assuming that one is able to replace 7, by the translation invariant grand canonical measure ug, and
all quantities being ultimately translation invariant, this limit should be the same as

2 2
. 1 1 1 . 1
B e | 5 2 | Vewrefit 2 me| | = B | 3\ Voo kit 30w
‘;Zelill xEBlw i=1,2 xEBlw
2
= IBW)l2a
=P >5.

The rigorous proof of this result, however, is complicated due to the delicate nature of £~1. In the next
section, we derive the diffusion and conductivity matrices, by investigating the properties of < . >3.
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6.8. Diffusion and drift coefficients. — In this Section we derive the diffusion and conductivity
coefficients given in Theorem 2.6, and conclude the proof of the limit (6.7). To do so, we investigate the
properties of the semi-norm < . >>é/2, and the structure of the quotient of the set Ty” defined in equation

(6.77) by the kernel of < . >5.

In Section 6.5 we reduced the proof of equation 6.7 to proving Proposition 6.7, namely

inf lim i 20+ 1)°E, z (WH(—L)"'W))) =0,
i i f, sup 21+ 1%, g (W07 0)

where
N w1 w, w l
Wi =W/ = (5206 + ds (1) 80" 40 (1, 1) Bipr — (L) -
Thanks to equation (6.82) of Theorem 6.25, we can also write

P

lim sup (21+1)21E”?(w{l(ﬂcl)*lw{g) = sup <V (@) >a,
lmoo g ’ ’ GeM.(S) ’

with
(6.88) V(@) = 2 + du(e)diny” +0(@)8imo + L.
and d(@) is given by (6.75). The main result of this section is the estimate

6.89 inf lim sup <V (Q)>z=0,

(6.89) jut tin sup < V(@)

which is stated at the end of the section in Proposition 6.38 and concludes the proof of equation (6.7),
and thus the proof of Theorem 6.1.

Keeping the notations introduced in Section 6.7, we first investigate the properties of < . > intro-
duced in Definition 6.24.

Proposition 6.27. — norm and inner product of the currents and Lg in Hgy The quantity < . >>g2

defined in (6.80) is a semi-norm on the space T3’ (cf. (6.77)), and thus extends via the polarization identity
into a semi-inner product on T . Furthermore, let g and h be two functions in T, and a,b € R2. We
have the following identities :

(6.90) < Lg,h>z=—-Ez(X,.h),
(6.91) < h>a=— Y [(a-2)Eg (hn%) + (b 2)Ea (has)],
r€Z?
and
2
(6.92) < Lg+ ™ >a=||vZ, +5||

where (a - x) is the canonical scalar product on R?, and j%* = a - j* + b - j was defined in (6.78).

Remark 6.28. — The following identities immediately derive from (6.92), and will be used numerous
times throughout the proof :

<ji>a=al—a), <j¥>z=FzwHa(l—a) and < j;,j* >5=FEszw)a(l —a).

Proof of Proposition 6.27. — Although this result is expected from the heuristic derivation of the vari-
ational formula for < . >3, its proof comes from Theorem 6.25. The fact that < . >4 is a semi-norm
is rather straightforward. Its positivity directly results from Theorem 6.25, as well as the homogeneity.
The triangular inequality follows directly from the positivity.

We first prove equation (6.90). Let g, h € T, Theorem 6.25 yields

1
<L Lg,h>5=lim —FE = [(=£1) § - T.Lg. § - Tyh
=00 (2l + 1)2 LEG : TzE€B; yEBy, ’
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Given the definition of [, for any = € B, , we have 7,Lg = L7,g9 = L;7,g, therefore the expectation in
the right-hand side above is equal to

El,fﬁ Z Tag - Z Tyh| = Z Elf(z T |G- Z Ty—al

z€B, yEBy, x€By, yEB,

Now let us fix some z € Z2, E, %, (Tm [g 'ZyEBzh Ty_th is equal for [ large enough to E, % (72[9.35]).
Therefore, it converges thanks to the translation invariance of pg and the equivalence of ensembles stated
in Proposition B.1 towards E(gX;,) uniformly in x, which completes the proof of identity (6.90). Note
that at no point did we use that g and h are in 7§, we only used that g and h are in Cy.

We now turn to equation (6.91), which is proved in the same way. Thanks to the elementary identities

LY wmy = > e and LY e = Y jeaten

z€B; x,x+e; EB; zEB; z,x+e; EB;

we obtain
. 1 _ .
(6.93) <Jhza = fim o B (CET YD e 30 b
z,x+e;€B) meBlh
. 1 w
(6.94) = lm WEM?, S amy > mh|,
reB; .’EEBlh

therefore once again using the equivalence of ensembles finally yields

<P h>a=— Y wila (haf).
TEZ?

An analogous identity holds for j;, which proves equation (6.91).

We now prove (6.92). Equations (6.90) and (6.91) yield

g + Z(a-x)n‘iﬂb-x)nzb,

(6.95) L Lg+ ¥ >a= —E; <(£g +3%")
TE€Z?

we split the right-hand side above in two parts.

First, recall that we introduced in (6.79) the notation j**, we can rewrite for any I > sg+1

Egs (ﬁg. [zg + 3 (a @) + (b me

TE€ZL?

Lo+ D (a-a)my + (b-w)na;D

T€Z?

1
75 Z Es <Vy7y+z9~vy7y+z

(y,y+2)€B;
|z|=1

2
Z Z ]Ea (V%?H-eig-vy,y-&-eq,
i=1 (y,y+e;)€B;

2

>

Y.+ Z a;z;ny + bﬂiﬁx])

r€Z?

Ea | Vi| > 79| (Vi% +if)

i=1 (y,y+ei)EB;
(6.96) = - ZQ:E& (Vizg' (Vizg “?’b))

with the following justifications :
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(i) The change of variable 7 — n¥¥*¢ transforms V., , into =V, , 1., therefore

Z Ea (Vyy+2fVytzy9) =2 Z Ea (Vyyte: fVyy+te9) -

(y.y+z)eB; Y,y+ei €B;
|z]=1

Finally, for any ¢ # j,
Vyyte Z iy = Vyyte Z zng = 0.
T€Z? TEZ2

(ii) translation invariance of g, as well as the elementary identities
T—mvz,z+e7¢g = ViT_29,

Voe O @i =ng(l—ne)=i{"  and Voo, Y 2ie =mo(1 —ne,) =il
x €72 z€Z2

Regarding the second part of (6.95), for any function h, a change of variable 77 — 7°:¢ in the second
part of j yields
Ea(jih) = ~Ea (15 (1 = 0e) (M(@7) = h(7))) = ~Ea (5" Vo, h).
Using the latter with h = Xy + 3" _/.(a-z)ny + (b- ), and since V; Y .o xms = ng (1 —ne,), we
obtain

Ea (j;d.(zg + Z (a-x)ne + (b- x)nm)> = —E; (]:M (V’izg _’_j(il,b)> .
x€Z?
A similar identity holds for j;, therefore for any a and b in R?,
Ea (ja’b'(zg + > (a- 2y + (b IW)) = -Ea (i“’b ' (vzg + i‘“b)) '
TEZ2
This last identity, together with (6.95) and (6.96), proves (6.92) and concludes the proof of Lemma
6.27. 0

Remark 6.29. — Let us denote by £ the part of the generator £ representing jumps in the i-th
direction

LOF =33 0l = nosse ) (F@7T0) = f (7))

r d==%1
Performing computations as in the proof of equation (6.96) yield

< LOf,Lf >5=Fa [(ViZy)?],

which means that for any given function f,g € 7§, and any a,b,c,d € R we can write thanks to (6.92)
and to the definition of ||||§ & (which splits the coordinates)

< aj® +bji + LD, 5 + djp, + LB g >5=1,_4Eqa ([aj;i b vizf} [cj’,g +dibe 4 vkng ,

Since the right-hand side above vanishes if i # k, we have for any 7 # k

(6.97) < LOf LFg>s=0.
Remark 6.30. — Proposition 6.27 allows us, for any function h € 73", to rewrite < h >4, according
to its Definition 6.24 as
(6.98) <h>a= sup {2<h, Lo+ >a — < Lg+ " >a}.
geT
a,bGl?%2

therefore for any h € 73’, we have

inf < h—(Lg+7) >5=0.
9g€Ty’
a,beR?

Denote

(6.99) Na={heTy, <h>z=0},
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one can therefore expect that in the space 7% /N5, any function h can be ultimately written as Lg+ j*°.
However, proving that this decomposition is unique requires Corollary 6.31 below, we therefore postpone
it for now.

Before carrying on with the proof, we set some more notations. We shorten
Ea(w) :=Ea(w(fo) [no=1) and  Varg(w):= Varg(w(o) | no = 1),
as well as a,, = E5(ng) = aEg(w). We also denote by
X =Eg ((15)%) — Ea(§)® = a2 — (aw)?
the variance of n§ w.r.t pa-

In the rest of the section, it will be convenient to express differently the gradient part of Vi{ p» defined

in (6.88) : on the one hand, we want a term which is constant in 6 and on the other hand a mean 0 term
which fluctuates in 6. For this purpose, we define

&= (W(ew)szEp - E&(W)) Nz -
where

Ey=1{ > m<|Bp| -2
r€B)

is the event on which at least two sites are empty in B,. Recall that
ding " =ne s, 5, —n5lg,.

The quantity &2 is defined so that

(6.100) 6158 = 5i778J’p + ]Ea(w)ji,
therefore elementary computations and the expression (2.12) of d allow us to rewrite in (6.88)
(6.101) V(@) = ¢ + ds(a)8:) + Ea(w)dimo + L.

Note that &P depends on a as well as w, but for the sake of clarity, we drop this dependence in our
notation. The reason for this change of variable is explained later on in Remark 6.34.
We now state the following Corollary of Proposition 6.27.

Corollary 6.31. — Denote p’ = (2p +1)? and
By@)=1—a” 1 —(p —1)(1 — a)a? 2,

the probability for a binomial distribution with parameters p' — 1 and 1 — « to be strictly more than 1.
Recall that we introduced in (6.100) the gradient 8,65, for any integer p and any & in M;(S),

(6.102) < 8885 >a= —a;aVarg(w)P,(a) + (Ea(w)a; + b)) Ez(w)(1 — a)a? L.
Furthermore, for any function g € Ty’, and any cylinder function h € T§,

(6.103) < Lg,8;h >4 = 0.

In other words, the last identity states that any gradient expression is orthogonal to any Lg w.r.t.
& .,.>g. In particular, for any function g € 7y,

< Lg,8;88 >a = and L Ly, 0;ing >a = — <K Lyg,ji >z = 0.

Proof of Corollary 6.31. — The proof follows from Proposition 6.27. We first treat the case where & is
such that @ = 0 or @ = 1. In this case, all quantities vanish and the two identities are trivially true. We
now assume that « €]0, 1].
We start with (6.103), which is a direct consequence of (6.85) : for any g € 7o,
< Lg,0;h >z= —E3 ((Teih — h)Eg) R

which vanishes thanks to the translation invariance of pgz and X,.
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Thanks to Proposition 6.27, proving identity (6.102) is a matter of careful computation, and poses no
special difficulty. First, equation (6.91) yields

< 8myP gy >a=— Y xxBa (Sing " %)
reZ?

=" wEa ([01s, — 0% 1r,5,] 0%)
x€Z?

If x # 0, e;, under the product measure ug, we have

Ea (n61e,n5) = Ea (02 1r, 5,n5),

and the corresponding contribution vanishes, and the contribution in e; vanishes if i # k for the same
reason. The contribution for z = 0 also vanishes because of the factor zj. Finally, we can write

< 815", i >a= LizkEa ([n§1e, — 081, B, n%) .

Writing 1g, =1 — 1ge, this identity now becomes

(6.104) <0 ? ¢ >a= Lok (Ba ([ = 2] n) = Ba [160m; — 02 1 5] m2))
Following the same steps, we can also write

< Ez(w)ji, it >a= —1,xEaq(w)Es ([770 — 7e,] n;’) .
Since by definition 8,65 = &;15"" + Ea(w)j; and Ez(n¥) = Ea(w)Ea(n.), taking the sum of those two
identities finally yields
(6.105) < 8i€f, i a= —lizaVara(w) = LiskEs ([n§1e; — 02 Lr, 5g] 02) -

Furthermore, since the expectations is taken w.r.t. the product measure ug, the second term can be
explicitly computed, and it is straightforward to obtain that
(6.106)

Es ([n(‘)"]lEg —ns ]lTequé} 77;’) = —aVarg(w) (ap/—l + (@ —1)(1 - a)aP'—Q) — Eg(w)?(1 - a)aP'—l.
We denote as stated in Corollary 6.31
Pyla)=1-a""" = (p = 1)(1 - a)a? 2,
which is the probability for a binomial distribution with parameters p’ — 1 and 1 — « to be strictly more

than 1 and vanishes uniformly as soon as & is bounded away from 1. With this notation and equations
(6.105) and (6.106), we obtain as wanted

(6.107) < 8,68 38 Sa= Ty, [—onara(w)Pp(oz) FEa(w)?(1 — a)a?' !
We can derive in the same way
<&M gk >a= Lick(—au(1 — a) + Ezg(w)(1 — a)a? 71,
and
< Ea(w)ji, jr >a= lizkEa(w)aw (1 — a),
therefore, we also have
< 8,80 Gk >a= Licy, |Ea(w)(1 — a)a? 1.
This, together with (6.107), concludes the proof of equation (6.102). O

Now that we have derived the main properties of < . >3, we are ready to investigate the structure of
Ty with respect to this semi-norm. Let us denote

Na = Ker < . >3,
< . >

<. >

is therefore a norm on 7§’ /N5. Letting Hz be the completion of 73° /N5 with respect to

, we can now state the following result :
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8T

jw'R2

FiGURE 11. Representation of the different subspaces of Hz : L7 is orthogonal to the set of
microscopic gradients §;7¢, but not to the set of currents j* - R2.

1/2

a

Proposition 6.32 (Structure of Hz). — For any & € M;(38), (Ha, < . >
the following decomposition holds :

) is a Hilbert space, and

o
=N
where LT /N is the closure of LT /[Na w.rt. < .>5 and J¥ = j* -R* + j - R?* C T§ is the linear
span of the currents defined in equation (5.2).

Ha o JY,

This decomposition is represented in Figure 11

Proof of Proposition 6.32. — First note that if « =0 or 1, < . >5= 0 and therefore Hgz = {0} is trivial.
We now assume that & is such that « €]0, 1].

1/2
a

Since we took the quotient by N, the fact that (Hg, < . >
first inclusion

) is a Hilbert space is immediate. The

LTy
Nz

is immediate, since LT3 C T3’ and since the currents are also in 7;’. Regarding the reverse inclusion,

®JY

Ha D

. L7e . .
since TT? @ J“ is a closed linear subspace of Hg, we have

— 1

o= (TF+ ) o (T 1)

Na N a
therefore we only need to prove that (LT3 /N + J‘”)l = {0}. To do so, assume that there exists a
function h € T such that < h, Lg + j¢* >5= 0, then by (6.98), we obtain that < h 5= 0, therefore
h = 0 in Hg. The reverse inclusion thus holds.

To prove that the sum is direct, consider a function A in the intersection. Assume that
h=j"" = Lgy
for some cylinder function g5 € 7 and a”, b" € R2. Thanks to equation (6.103), we can thus write
< 8,8 h>s =< 85,8 j" Y >a = < 6,88, Lgn > =

Since we assumed that 0 < a < 1, this identity together with (6.102) yields in the limit p — oo
(6.108) alaVarg(w) = 0.

— If Varg(w) = 0, in Hg, j* = Ez(w)ji, therefore J* = R? . j in Hg, which is orthogonal to LT
according to (6.103), and the sum is direct.
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— If Varg(w) # 0, and since we assumed « # 0, (6.108) yields a? = 0, therefore h = Lg;, = b" - j.
According to (6.103), h is thus self-orthogonal, and vanishes.
In both cases, the sum is direct, which concludes the proof of Proposition 6.32. O

The next Proposition states that we can indeed write the currents j as combination of gradients, up
to a function which takes the form Lg, and that the coefficients converge as p — oo to those given in
(6.101).

Proposition 6.33 (Decomposition of the currents). — Fiz i € 1,2 and & € My(S). For any p €
N*, there exists two coefficients c,(@) and dy(Q) € R, such that

(6.109) inf, < Ji + ep(@)8:&5 + dp(Q)dino + Lg >5=0.
9&/o

Furthermore,

(6.110) cp(@) p:)o ds(o) and d, (@) p:>o Es(w),

and for any positive €, this convergence is uniform on
M 8):={aeMi(S), a<l-—c¢}.

Finally, any sequence (gm)m ultimately realizing (6.109) can be chosen independently of p, and also
ultimately realizes
(6.111) inf < g+ Lg>s.

g€Ty’
Remark 6.34. — We can now explain the reason behind the change of variable d;15"" — ;6. The basic
idea is that even when w is not degenerate, for an infinite number of angle measures @ € M;($), we may
have Varg(w) = 0. To justify this statement, assume for example that for some arbitrary angles 6 and ',
we have w(f) = w(#’). Then, for any o and o’ such that a+a’ < 1, any measure & = adg+a’dgr € M1 (9)
will verify Varg(w) = 0. Note that for any such @, we can write in Hg

7 =Egz(w)j,
because w is constant w.r.t &. Assuming then that there exists a decomposition
dimg™” +aji +bji + Ly =0
in Hg, this decomposition is by no means unique if Varg(w) = 0. This degenerate case poses some issues
to invert this decomposition and obtain equation (6.109). More precisely, without the change of variable,
writing
inf < 3¢ +,(Q)8mg " + dp(@)8imo + Lg >a= 0,
9</o

both coefficients Jp(a) and J,,(&) can diverge as Varg(w) — 0. In fact, however, these two infinite
coefficients cancel out, and the system does not really degenerate as Varg — 0. To circumvent this
(apparent) issue, the "right” way to obtain coefficients ¢, (@) and d,(@) which are continuous in & even
when Varg(w) — 0 is to perform the change of variable §;n;"" — §,£P, which expresses j& as a constant
term in 6, namely E5(w)j;, and a fluctuating term ds(«)d;&) with mean 0 in 6, up to a perturbation Lf.

Proof of Proposition 6.33. — We start by proving the last statement, which is immediate and will be
needed later on. Since the gradients are orthogonal to the Lg’s, we can rewrite for any g € 7Ty the
quantity in (6.109) as

< i+ ep(@)8:8h + dp(@)dino + Lg >5 = < j + Lg >
+2<j, (@)l 4 dp(Q)dino >a + < ¢p(@)i€h + dy(Q)dino >5 -
The second line does not depend on g, therefore any sequence which ultimately realizes the infimum of

the first line of the right-hand side above also realizes the infimum of the left-hand side, and vice-versa,
and such a sequence can be chosen independently of p, which proves the last statement.
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We now turn to the main identity, namely (6.109). Once again, we start by clearing out the trivial
cases when @ is such that o = 0 and o = 1. In those, all quantities vanish and (6.109) and (6.110) are
trivially true for ¢, (@) = ds(«) and d,(@) = Eg(w). We now consider & € M;($) such that o €]0, 1].

Fix p € N, we now prove that (6.109) holds for some well-chosen coefficients ¢, and d,. The function
8,8 is in Ha, therefore according to Proposition 6.32, there exists a” and b” in R? such that,

(6.112) mf < 8:88 4§ 4 Lg>5=0.
ge

In order to clarify the proofs, we will sometimes assume that the infimum in ¢ is reached, i.e. that there
exists a function g, € 73 such that

(6.113) L 85+ + Lg, >a=0.

This assumption is purely for convenience, and we can substitute at any time to g? a sequence of functions
(g2, )men such that the previous identity holds in the limit m — co.

We first want to prove that the contribution of the currents in the direction k& # 4 in the decomposition
(6.113) vanishes. Consider some index k # 4, we now show that a} ji’ 40 j,, = 0. Recall that we introduced
in Remark 6.29 the generator £(*) with jumps only in the direction i. We now take the inner product
of the quantity in (6.113) with afji + b} j, + E(k)gp, with respect to which 8,5, 7, j; and E(i)gp are
orthogonal according to Remark 6.29 and Corollary 6.31, and because i # k. This yields

< 88+ 7Y 4 Ly, , dbje + Vg, + L P g, >5 = < by + bk + LM g, >4 = 0.

In the last identity, we obtained that some quantity of the form Lf is equal to a combination of currents.
We can repeat the proof given in Proposition 6.32 that the sum of the two spaces was direct, to obtain
that af ji + b} j, = 0, which is what we wanted to prove.

We now drop our assumption that the infimum was reached. Since we proved that the currents in the
direction k # ¢ vanish, Equation (6.112) becomes

(6.114) 16% < 0,88 +al(a)jy + P (a)ji + Lg >z = 0.
9& /o

We first consider the possibility that af (@) = 0, and prove that it implies Varg(w) = 0. In this case, since
both 8;&8 and j; = —d;m0 are orthogonal to Lg in Hga by equation (6.103), we could write

< 6,88 +V0(Q)j; >a=0.

Taking the inner product of this quantity w.r.t. 5% and j;, we obtain according to Proposition 6.27 and
Corollary 6.31 the two identities

—aVarg(w)Py(@) + 0,2 (1 — ) 2 + 0P (@)aw(l—a) =0  and (1l —a)a? 2+ P (@)a(l - a).
Multiplying the second identity by Ez and subtracting it to the first, we obtain that a”(@) = 0 if and
only if

aVarg(w)P,(a@) = 0.
We already cleared out the special cases & = 0 and o = 1, thus the only remaining possibility to have

= 01is Varg(w) = 0. We show at the end of the proof that if this is the case, the decomposition (6.109)
is not unique, but one can choose the coefficients ¢, and d, so that (6.110) holds uniformly on M.($).

We can therefore assume that a? # 0 and since j; = —8;70, we can rewrite (6.114)
(6.115) f < 8;60 — bi(a )5 +Lg>5=0
. 1n 4z a= 0.
ge -]’L a. ( ) 150 af(a) 2770 g

Denoting ¢,(@) = 1/a? and dp(a) = —b/al’ proves equation (6.109).

We now prove that the coeflicients ¢, and d, converge. Once again, we assume for convenience that
the infimum in (6.109) is reached by a function g, which allows us in particular to write

L JP + 068+ dpdino + Ly , Ji + Lgp >5 = 0,
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which is a restatement in Hy of < 0, j¥ + Lg, >5= 0. Since by equation (6.109), the gradients are
orthogonal to the currents, this identity can be rewritten

L+ Lgp >a= —cp K 6;88, 78 >5 —d, < 8ino, j¥ >a .
Taking now the inner product of j¢ + ¢,8;&) + dpd;n0 + Lg, with j;, we also obtain
LG+ Ly, Ji >a=< j{, ji Sa= —cp L 880, ji >a —dp, < 8ino, Ji >a -

These two identities can be written in matrix form, since we already established that the functions
realizing the infimums (6.109) and (6.111) coincide,
f 'W R ~ ~
(6.116) ( loery <€+ Lg >a ) :Ap(a)( (@) )
<7550 >a dp(Q)
where
A (a) _ < 625677];] >a <K 61770;.7;) >a
b L 080, ji > <0mo,ji>a )
Each coefficient of the matrix A,(@) is explicitly known, according to Proposition 6.27 and Corollary
6.31, and we can therefore write

a) — aVarg(w)Py(a) — Ea(w)Q(l — a)ap/_l a,(l—a)

Ap( )_( —Es(w)(1 — a)a?' ~ x =a(l —a) >
Elementary computations also yield

(6.117) Det(A,(Q)) = (1 — a)Varg(w)Py(a),

which is non-zero as soon as a # 0, 1 and Varg(w) # 0. If @ meets these two conditions, we can then
rewrite equation (6.116) as

(6.118) (@) ) _ AS(@) infyery < jf +Lg > )
dp(@) P < j¢sji >a

The matrix A, L(@) is explicitly known, as well as < j¢, j; >5= a,(1 — ), therefore the only missing
coefficient to compute cp and dp, is infgere < ji + Lg >4, which is given by the following Lemma.

Lemma 6.35. — For any & € M4(3),
inf i L a— “ A7
glenTOw<<]z + Lg >5=s"(a)
where the conductivity coefficient s* is given by
(6.119) s¥(a) = Eg(w)aw(l — a) + aVarg(w)ds(a).

The proof of Lemma 6.35 is postponed for now, in order to complete the proof of Lemma 6.33.
Thanks to Lemma 6.35, we can now rewrite (6.118) as

( Zg ) - Det(fllp(a)) ( IEa(cu)((ll—_c(j))oﬁ"1 oncw“a(w)l’Dp(_)%(1 _(5;2(1 —a)a? ! )
o ( Ea(w)ay (1l — a) + aVarg(w)ds(a) )

ay(l—a)
Using (6.117) for Det(A,(@)), computing the matrix product above finally yields
- ds(@) N dy(a)a?' =1
(6.120) cp(@) = and dy(@) =Eq(w) |1+ ——————
"= E ) p() = Bl By (o)

In the cases where o = 0 or Varg(w) = 0, the matrix A, is no longer invertible. However, we leave to the
reader to verify that the coefficients ¢, and d, given by (6.120) are still solution of (6.116), even though
this solution is not unique. In those cases, we can therefore choose ¢, and dj, as in (6.120). This continuity
as Varg(w) vanishes is, as explained in Remark 6.34, the reason for the change of variable §;n5"" — 8,&).
Since P,(«a) converges uniformly to 1 if « is bounded away from 1, ¢, and d, converge uniformly on

MS) :={aeMi(S), a<l—¢},
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towards ds(«) and Eg(w), which completes the proof of Proposition 6.33. O

Remark 6.36 (Stokes-Einstein Relation). — Letting p go to oo, equation (6.116) becomes the
Stokes-Einstein relation
(6.121) (i.nfgeﬁ]w<<j.;“+£g>>a ):X( ds(Q) )

infyere < Ji + Lg >a Eg(w)
where X is the compressibility of the system, and can be written as the limit p — oo of the matrix A,
ds(@) and Eg(w) are the diffusion coefficients, and infye7e < ji’ + Lg >5 and infyere < j¢ + Lg >5=
a(l — «) are the conductivity coefficients. Note that the diffusion and conductivity coefficients are not
those presented in equation (2.12) because of our change of coordinates

") (84
— .
( dino 410

Note that the Stokes-Einstein relation is a matrix identity, and not a vector identity like (6.121). In fact,
the matrix identity also holds, however we only wrote the part of the relation which was relevant in our
context, the omitted part being trivial.

Before proving Lemma 6.35, we state the following elementary Corollary of Proposition 6.33.

Corollary 6.37. — There exists a constant C' depending only on w, such that for any & € M1(3) and
any integer p,
K 0;67 >5 < C.

Proof of Corollary 6.37. — The proof of this result follows directly from that of Proposition 6.33. We
obtained in the latter that

(6.122) mf < 6; 88 +aP(a)jf +P(Q)ji+ Lg>a = 0,
and by construction, ¢, = 1/ap and d, = —bP/a?, where ¢, and b, are given for any @ such that a # 1
by (6.120).

Thanks to (6.120), this yields

~ _ (@) R 1) N
ay(@) = 2a() and by(@) = Eg(w ){dé ) +a 1}.

(a
Elementary computations show that P,(c) = 04—1(1 — ), and ds(a) is bounded from below by ¢(1 — «)
according to Proposition A.3. We therefore obtain that if & # 1 both a,(@) and b,(&) are bounded
uniformly in @ and p by some constant C’ depending only on w.

Once again, we assume for the sake of clarity that the infimum (6.122) is reached by a function g,.
Since by (6.103) §;&f is orthogonal to Lg,, we can write
L 0,8 >5+ < Ly, >a =< 8:;& + Lg, >5 = < d’(Q)j¢ +bP(Q)j; >4 -

Since the coefficients a, and b, are bounded uniformly in @, all quantities above being non-negative, we
finally obtain that for any & such that a # 1

(6.123) L 880 >a < aP(Q)? < Y >a +HP(Q)? < ji >a
(6.124) < C(w).
Since when o = 1, < §;&P >5= 0, this concludes the proof of the Lemma. O

We now prove Lemma 6.35, whose proof was postponed.

Proof of Lemma 6.35. — Once again, we first consider the trivial case & = 0 or 1. Since ds(1) = 0, in
the latter case, Lemma 6.35 is trivially true, because both sides of the identity vanish.
We now assume that a €]0, 1[. Denote

wo = w — Ez(w),
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and consider the mean-zero current

3:° = (w(bo) — Ea(w))no(1 = ne,) — (w(fe,) — Ea(w))ne, (1 — m0),
we have < j;, j;° >5= 0. This last statement is a consequence of Proposition 6.27, which yields
< Ji, Ji° >a = Ea(wo) < ji >5=0.
——
=0
Note that wg depends on @, but since in this proof & is fixed in M;(3), it is not an issue. Since j¥ =
Ji° + Eg(w)ji, we can now write

o= inf <P+ Lya= inf <Es()ii+ii" +Lg >

=< Ez(w)j; >a + Inf < j°+ Lg>a
9€Tg’
(6.125) =Ezw)a,(l —a)+ inf < j°+Lg>5.
9€Tg’
Note that the computation above guarantees that any sequence of functions g,, ultimately realizing

inf, < j& + Lg >4 also realizes inf, < ji° + Lg >5.

In order to prove Lemma 6.35, it is therefore sufficient to show that

inf < j;°+ Lg >a=aVarg(w)ds(a).
9€To

Recall from Proposition 6.27 that

< JP+ Ly >a=

"+ V5|

2
)
2,a

-wo

therefore, since j*° is indeed of the form j*° for a = e; and b = —Eg(w)e; (here, we identified for the

convenience of notations a and b with vectors of R?),

2 2
<JP+Lg>a=Ea |y [Uowo(l — 1)+ Vi Y ngl

=1 TEZ?

We now need to replace the gradient in the expression above by its symmetric counterpart. The right-
hand side above rewrites

2
Ea | |76 (1 =)+ Vi ) ng] =Ea (mo(1 = me,) [ + 2, ") = £,]%)

TEZL?

1 w v 2
=§Ea (770(1 —7e,) N5 4+ Tg(17°) — 5] )

1 w €4 2
+ §Ea (7761(1 - T]O) [7761-0 + Z‘] - 2!]("7/\07 7)] ) )
since Ez(f) = [Ea(f) 4+ Ea (f (7°%))] /2. Furthermore, considering that only one of 7o(1 — 7,) and
7e; (1 —no) can be non-zero, and replacing 7o(1 — 7e; ) + 7e, (1 —10) by Liyyn. —0} We can rewrite,
s W 1 w w e; 2
(6.126) <30+ L0 >a= LB (L <oy [0 — 10 + Dg(°7) ~ 5,]°).
Note that T’ can also be defined as

TY = { Z (C1n2° + Cong) (), C1,C2 € R, and ¢, € S, Vz € T?\,} ,

TE€Z?
therefore taking the infimum over g € 73" is equivalent to taking the infimum over C, Cy, and the family
of angle-blind functions (¢z),cr2, € (SN CO)T?V. Letting V; denote the symmetric gradient

%if == ]]‘77077ei:0 (f(ﬁO’ei) - f) )
(6.126) thus yields
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2

. N 1 3 V
inf < ji°+Lg>a=z inf Ba| [Lgen, oy —15°) + C1Vi > my1°4a(n)
geTe 2 C1,Co,s ¢ x,y€Z2

JrEa 0262 Z Tynmd)m(n)

x,y€Z?

To split the two parts, we simply used that for any @ € M;(8), any z € T%,, and any angle-blind function
U, Ez(neeW) = 0 because the angular dependence of n*° in 6, has mean 0.

We now simply have to chose C> = 0, and notice that »_ 7o 7yn5°%.(n) = 3_, 272 020729 (n) for the
angle-blind formal sum 1)’ = Zyez2 1y € S (which is well-defined since only a finite number of terms are
non-zero), to get that

2

. 1, .
inf < + Lg >a= S infBa | | Lign, =0y (150 = 76°) + Vi Y n20m1 (n
geTY 2y : e

We take the terms z = 0 and z = ¢; out of the sum, the right-hand side above is equal to

1 _
(6.127)  SinfEg | | Lgn,—oy (10 = 06°) + Varg ' + Vet re ' + Vi 0 nom
v 2€Z2\{0,e;}

For any z € Z2\ {0, ¢;}, sz“Tzw’ is equal to ny° Vﬂzw’. Furthermore,
Vmoow = lnone,—o ( 1/} (AO e’) - 778)07//) )

and
vin;Ome/ = ]lnonei:() (77(6)07—617#/ (nAo’ei) - 772107@1#’) .
Regrouping the terms in 1¢° and 75°, (6.127) is equal to

1
e (R (A PR B

2
+ 60 [~1+ 7, (77°) — '] + Z njOViTzzb’) )

2€Z22\{0,e;}

For any z # 2’ and any angle-blind function ¢ € S, we have already established in Section 5.2 that
Ea(nZ°n20(n)) = 0.
The previous quantity now rewrites

: W, L. w €e; 2
H%fw < 9 O+ Lg >z= 5 1£f;E& ((1 - 770)776;)2 [1 + 'l/)/ (770’ ) - Teﬂ//] )

g€y

# s (1= [ @) =)+ 5 B (Lo [T ).

2€Z2\{0,e;}

We translate the first term by —e;, thanks to the translation invariance of Eg, the former is equal to

;iﬁma (= meednge® 14w, [0 ()]~ w7°)
+ Eg (( = e )52 [~ 1 + Tt (70) — 1//]2> + Z Ea (]1{7,077%—0}772“’2 [%TZW]Q) :
2€722\{0,e; }
Notice that with respect to ¢, we only place on the event 75° # 0, (since the last term is translated
by z), we can hence only consider the functions ¢ independent of 9. With that condition, v’ (AO e,_)
independent of 7., , therefore 7_., [w’ (AO 61)] is independent of 7. We also have 7,1’ is independent of 7., ,

is
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and 7,9’ (?)06) is also independent of 7. Finally, 61-72121' is independent of 7,. Elementary computations
yield

E((n5°)?) = aVarg(w),
and because the two directions ¢ = 1 and 7 = 2 are orthogonal in Hg and play identical roles, the previous
quantity now becomes

2
1
inf 0+ L =— inf 0+ Lf >5
At <5+ f>a 2f1€76u<<]§:1]k +Lf>a

V) {3 (1) [ [ 90 - o)

+Es ((1 = e, [ 7ot (1) = MQ)

+ Z Ea <1%nonek—0} WkTZWF) }

2€722\{0,ex }
= aVarz(w)ds(a),

where d; is the self-diffusion coefficient for which a variational formula is given in Proposition A.2. This
completes the proof of Lemma 6.35. O

We now prove equation (6.89), and thus concludes the proof of Theorem 6.1.

Proposition 6.38 (Uniform bound on the local covariance of Vi{p)
Identity (6.89) holds, in the sense that

inf lim sup < j¥+ds(a)d;&) +Ez(w)dino + Lg >5=0.
9€C0 P90 e M4 ()

Proof of Proposition 6.38. — There are two important steps to prove Proposition 6.38. First, for any
density @ € M (3), according to Proposition 6.33, a local function gz € 7§ such that
L J¢ 4+ ep(@)0;E8 + dp(@)dino + Lga >a < 6.

However, since this function depends on @, we still need to construct a cylinder function independent of
& which satisfies (6.89).

Furthermore, the diffusion coefficients are not those wanted in Proposition 6.38, and c¢,(&) and d,(Q)
do not converge uniformly towards d,(«) and Ez(w) on M (3$). This won’t be an issue, however, because
the quantity above vanishes as a goes to 1 regardless of the diffusion coefficients, and because according
to Proposition 6.33, the convergence is uniform on

M (S) = {a e Mi(S), a<1-—¢}

for any e.
The proof being a little bit intricate due to the degenerate case a — 1, we split it in two Lemmas.

Lemma 6.39. — For any § > 0 there exists a cylinder function fs € Cy such that for any e > 0

lim sup < j¥+ cp(a)élﬁg + dp(a)émo + Lfs >5 < 30.
PO FeM(S)

Furthermore, there exists a constant C' such that for any & € My(S),
(6.128) L jP + Lfs >a — g%fw LjP+Lg>s| <C6.
9&€/o

Lemma 6.40. — For any § > 0, consider the cylinder function fs defined by Lemma 6.59, there exists
€ = €5 > 0 such that

lim sup < j¢ 4+ ds()8;88 + Eg(w)dino + L fs >a < 40.
p—0o0 aeEM(S)\M.(S)



HYDRODYNAMIC LIMIT FOR AN ACTIVE EXCLUSION PROCESS 115

Before proving these two Lemmas, we show that they are sufficient to obtain Proposition 6.38. Fix
d > 0, and consider the € = €5 given by Lemma 6.40 and f5 given by Lemma 6.39, we have

(6.129) sup < ji + ds(@)8; €0 + Ea(w)dino + Lfs >a
aeM;(9)

< sup <GP 4 ds(@)d;8 + Ea(w)dino + Lfs >a
aeM.(8)

+ sup K j¢ 4 ds()8;88 + Eg(w)dimo + Lfs >a .
aEM1(8)\Mc(S)
In the limit p — oo, the second term in the right-hand side is bounded by 44 according to Lemma 6.40.
Regarding the first term in the right hand side, we write by triangular inequality

(6.130) sup < j¥ 4+ ds()di&h + Egq(w)dino + Lfs >a
aceM.(3)

< osup <K Y+ ep(@)0:E8 + dp(@)dino + Lfs >a
aeM(S)

+ sup < (¢p(@) — ds(a))d;&g + (dp(@) — Ea(w))dino >a
aeEM. ()
The limit p — oo of the first term in the right-hand side is less than 3¢ according to Lemma 6.39. By
triangular inequality, the second term is less than
sup < (p(@) — ds(@))8:&0 + (dp(@) — Eg(w))dino >a
aeM.(3)
< sup {(p(@) — ds(a))® < 8i&fl >a +(dp(@) — Ea(w))” < dir >5} -
aeM.(8)
As a consequence of Proposition 6.33 and Corollary 6.37, both < §;&f >4 and < 8;19 >4 are bounded
uniformly in @ € M;(8) and p, whereas ¢, and d, converge uniformly on M($), as p — oo, to d, and
Es(w). Therefore, as p — oo, the second term in the right-hand side of (6.130) vanishes, and

(6.131) lim  sup < j¥+ds(a)d;&f +Ea(w)dino + Lfs >a < 36.
PO Fe M. ($)

This, combined with (6.129), finally yields that
lim  sup < ¢+ ds(a)d;&l +Eq(w)dino + Lfs >a < T4,
P70 Fe M, (S)

which proves Proposition 6.38. O
We now prove both Lemmas 6.39 and 6.40.

Proof of Lemma 6.39. — For any § > 0, we want to build a cylinder function f5 € Cy such that

lim sup < j¥+ cp(a)&fg +dy(@)d;ino + Lfs >a < 6.
P70 geM.(8)

By Theorem 6.25 the application & —< ¢ >4 is continuous on M, ($), and thanks to equation (6.89),
for any parameter @y, there exists a function gg, € 73 and a neighborhood N3, of @y such that for any
aenN, Qo

L J¢ + cp(Q0)8:Eh + dp(qn)dino + Lga, >a < 20.
Furthermore, thanks to the last statement in Proposition 6.33, this function is an approximation of the
one realizing inf e 7w < ji’ + Lg >5;, and can be chosen independently of p.

We prove in Proposition B.3 that M;($) is compact, it therefore admits a finite covering M;($) C
U7 N5, - We can build a C? interpolation of the gs,’s, and therefore obtain a function (a,7) — ®(a,n)
which coincides in @ = a@; with gg,, with the two following properties :

— let B be a finite set of edges in Z? containing the support of all the ga,’s, ®(@, . ) is a cylinder
function in 7§’ with support included in B for any & € M, (9).
— For any fixed configuration 7, ®( . ,7) is in C2(M(9)).
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Furthermore, by construction of ® and thanks to the continuity in @ of the diffusion coefficients and &,
for any @ € M(9)

(6.132) < ¥+ ) (@)8:€8 + dy(@)0 im0 + LO(@, ) >z < 20.

Recall that we introduced in (2.22) the empirical angle measure

- 1
pr:‘B | Zna:(SGw

r reB,

the empirical angle measure in the box of side (2r + 1) around the origin. For some fixed large integer r,
let us now consider the function

fr(7) = (b(ﬁTv ),
which is a function in Cy as soon as the support B of the ®(a, n)’s are contained in B, which happens for
r large enough. Note that f,. is not necessarily in 7, therefore, < Lf, >4 should a priori be ill-defined.
In fact, it is not, because for any f € Cy, we can define

K Lf>s=)Y Ea((ViZy)?), and < Lf,g>a=Ez(g.5f),

which is consistent with our prior definition of <. >4 on £7;”. This problem being purely cosmetic, we
therefore keep the same notations as if Lf, was in Hz.
By triangle inequality,
(6133)  sup < ¥+ cp(@)3,EL + dy(@)Fi0 + Lfs S5 < 2+ sup < L{f, — D@, ")) g .
aeEM () acEM. ()
The second term in the right-hand side above is explicitly known thanks to Proposition 6.27, and is
equal to

2 2
ZEa (vi Z T2 [fr — ®(@, )]) = ZEa <Z Vaate [fr — (@, )]) )
i xT€ZL? i x€Z?

by translation invariance of 115, and because V;7, = 7,V _; _;1.,. We extend B by 1 in such a way that
for any edge a outside of B, V,®(q,.) vanishes. Therefore, the only contributions outside of B in the
sums above are at the boundary of B;, where f, has a variation in its first argument of order (2r 4 1)~2.
Thanks to the regularity of ® in @, and since the number of corresponding edges is roughly 4(2r 4 1), the
contribution of all these jumps is of order 7~! in the whole sum.

Then, since the number of edges in B depends only on ®, and since Eg ((V4f)?) < 4E5(f?), we obtain
by the definition of f,. that
(6.134) sup < L~ B(@,) >a < sup  C(®)Eg [((pr, ) — (@) + 067,

aceM.(5) aceM.(S)

whose right-hand side vanishes as r goes to infinity by the law of large numbers.

Let us fix 75 such that the right-hand side of (6.134) is less than d, and let f5 = f,,, (6.133) finally
yields

(6.135) sup < i’ +¢p(@)0;€5 + dp(Q)dim0 + Lfs >5 < 36,
aceM.(5)
as wanted. The last statement of the Lemma is a direct consequence of the construction of fs and of
Proposition 6.33. This concludes the proof of Lemma 6.39.
O

Proof of Lemma 6.40. — We now prove that given § > 0 and the function fs built in Lemma 6.39, there
exists a constant C such that

lim sup L J¢ 4+ ds()8;88 + Eq(w)dino + Lfs >a < Ce+ 30,
PO GE M1 (S)\ M (S)

which proves Lemma 6.40. We first write by triangular inequality
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< jf 4+ ds(@)d:£5 + Ea(w)dimo + Lfs >a
S Lfs = L@, ) >a + < jf + ds(a)d:60 + Eg(w)dino + LO(Q,-) >5

where ®(@, -) is the function built in the proof of Lemma 6.39. The first term in the right hand side being
less than § by construction of f5, we focus on the second term. Using once again the triangular inequality,
we can bound it from above by
(6.136) L JE 4 LP(Q, ) >5 +ds(a)? < §:88 >a +Ea(w)? < dimo >4 -

For any @ such that o > 1 —¢, < §;m >a= a(1 — @) < ¢, and for some constant C,

ds(a) <C(1—a) <Ce

according to Proposition A.3. This yields, < §;&} > being bounded according to Corollary 6.37, that
the two last terms in equation (6.136) are bounded from above by Ce for some constant C' depending
only on w.

We now turn to the first term in (6.136). For any function f, we can write by triangular inequality

<GP+ L@, ) >a < <P+ Lf >+ <GP+ ¢p(@)0:85 + dp(@)ino + L >a
+ <Y+ p(Q)8:88 + dp(@)8imo + LB(@, . ) >5 .
We now let f ultimately realize both of the infimums (6.109) and (6.111). The first term above converges

according to Lemma 6.35 towards Eg(w)ow, (1 — o) + aVarg(w)ds(e). The second term vanishes, whereas
the last term is less than 20 by equation (6.132). Finally, we obtain

L+ LB, . ) >a< aVarg(w)ds(a) +26 < C'e + 26

for some constant C’ depending only on w.
Finally, choosing €5 = §/(C + C”) concludes the proof of Lemma 6.40. O

6.9. Drift part of the hydrodynamic limit. — Recall that Ly = N?2L+NL" + LS is the complete
generator of our process introduced in (2.2). In the previous section, we proved that the symmetric currents
can be replaced by a gradient, up to a perturbation Lf. In our case, this perturbation is not negligible,
and must be added to the asymmetric currents induced by the asymmetric generator L™ to complete the
drift term in equation (2.13). This is the purpose of this Section.

To achieve that goal, we need notations similar to the ones introduced in Section 4.1. For any positive
integer I, and any smooth function G € C([0,T] x T?), let us introduce

RI@) = rf + L% ~Eq (¢ + L)),
and
~ 1
YN (@0 = 55 Y Cla/N)mR],

2
z€T%;

where r¢ is the asymmetric current introduced in (2.18). According to Theorem 6.1, for any 4, there exists
a family of cylinder functions (f5)s>o introduced in Lemma 6.39 such that

exp <7N 2
where Xif, ’Jf,N was defined in equation (6.1). Furthermore, we also established in equation 6.128 that this
sequence satisfies for any @ € M (9)

1
lim lim lim sup lim su
70060 aﬁOp N>+aP’7Am

T
log ),y / X1 (G, () dt
0

(6.137) ;1_13% L ji + Lfs >a= f1€n7%“ Lji +Lf >a.

The replacement Lemma 4.1 applied to g() = r¥ + L™ f yields the following result.
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Lemma 6.41. — Let G be some smooth function in C*2([0,T] x T?), and T € R?., then for i € {1,2}
we have
] ~o.

Furthermore, we now prove the following result, which states that any function of the form NLP f
vanishes in the hydrodynamic limit, where £LP = £+ N~!1£™ is the generator of whole exclusion process.

lim lim sup lim sup E)‘ B [ ‘ / Yfa,aN 7)ds

050 ¢50 N—ooo

Lemma 6.42. — For any function G : [0,T] x T? = R in C12, and any cylinder function f,

T
1
hmsupE N / Z G (s,2/N) 1 LP f(7)(s))ds | | =0.
IETz
Proof of Lemma 6.42. — For any such smooth function H and cylinder function f, let us denote
Fo(s,7(s)) = N72 Y G(s,2/N)a f(il(s)).
zeT%,

The time process

Malt) = Fat.i(0) = Fo(0.0) ~ [ 0.Fas.i(s)ds - / L Fo(s,A(s))ds

is a martingale, where Ly is the complete generator of our process, introduced in (2.2). Since f is bounded,
the first three terms are of order 1, it remains to control fOT Ly Fgds. The quadratic variation of this
martingale is given by

T
[Me (1)) —/ Ly Fa(s,7(s))* = 2Fg(s,1(s)) Ly Fa (s, 1(s))ds

/ dsN? Z To i, 5| (5, %% (s5)) — Fg(s, 77(5))]2

m€T2
§==+1 ze{l 2}

+/ A5 3 e [ a0, [Fo(s.77(0) = Fols. ()] o

z€eT?%,

T
—xp [t X Rl | S Glu) () ~ ()
5:ﬁi§%1,2} veTy

b 8 e [0 | 3 Gl (7 60) - Go0) |
z€T%, ye’]I‘2
where
T:z/:\,z,i,é(ﬁ) = (1 + 6)\357936)) 77:1:(1 - 77m+z)
is the total displacement jump rate.

Since f is a local function, all but a finite number of terms in the y sum vanish, and the quadratic
variation is hence of order N~2. (For a reference on the quadratic variation, cf. Appendix 1.5, Lemma
5.1 in [27]). We deduce from the estimate of the quadratic variation of M¢ and the order of the three
first terms in the expression of Mg that

T
E,~ (‘ / N1 Ly For(s,7i(s))ds
0

>SN—1 E.w (Mo(t.20)"2 +Ox(1)| ~ 0.

—00
O(N-1)
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The previous martingale estimate shows that E,,~ ( ‘ fOT N LnFg(s,7(s))ds ‘ vanishes in the limit
N — oo. Furthermore, elementary computations yield a crude bound on the contribution of the Glauber
generator of order N~!. Finally, since Ly = N2LP + L%, we obtain

EHN ( > Njoo 0,

which completes the proof of Lemma 6.42. O

T
/O NLPFo(s, (s))ds

We now use these two Lemmas to prove that the total displacement current can be replaced by the
wanted averages. More precisely, let
1 1
1l pos W w w (%3 w
ul' @) =g + N s (p) 8ipf 0 (o1, 1) Gipr — 5B (7 + L),

we can state the following result.

Corollary 6.43. — Let G be some smooth function in C*%([0,T] x T?), and T € R, then fori € {1,2}
we have

T

1 A

lim lim sup lim sup E? / — Gz /NUN (G, H)ds | | =0.

Jimy Jimm sup lim sup ON;TQ(/)’ (G.7)
TN

Proof of Corollary 6.43. — Adding and substracting (1/N)L" fs to the definition of L{if‘s’EN, we can split

it into three parts,

];ﬂ +ds (psN) 51,0(:N +0 (PsN, p:N) 5ipsN + £f5a
1 1
N(le + ﬁmfg) — NEﬁEN (7‘:') + ﬁmf5)7 and — EDf(s.
The contribution of the first quantity vanishes in the limit of Corollary 6.43, according to Corollary
6.2. The second contribution also does thanks to Lemma 6.41, as well as the third due to Lemma 6.42,
thus completing the proof of the Corollary. O

We now derive an explicit expression for the quantity E;_ (r¥ + L™ f5) as 6 goes to 0, which is the

main result of this section.

Lemma 6.44. — For any angle measure & € M(S),

[e7RIe5W

(6.138) girr(l) Ea (r¥ + L™ f5) = 2ds(a)awy, + 2 (1—a—ds(a)),
—

!
where for any function ® : S — R, we defined ag = Egq(P(00)n0)-

Remark 6.45 (extension of < . >5). — For any function ®, we denoted

3 = ®(00)mo(1 — 1e,) — (0c, e, (1 = o).

Note that our definition of Hjg is intrinsically dependent on w. In order to move forward with the proof
and state the proof of Lemma 6.44 in a form as simple as possible, we need to enlarge the space Hg, to
functions and currents depending on the \;’s. For this purpose, we set n%%%4 = an® + by}t + en)? + dn,,

x

To=CoNQ > ne"Ny(n), a,bc,d €R, and v, €S, Vo € T ¢,

z€eT?%,

2
< f>a= sup B4 | f. |2, + Z yln;hbhcl»dl +y217§2’b2’62’d2 _ Hvzg +ja7bac7d‘
9€To yEZL2
a,b,c,deR>

)

2,a

where
sa,b,e,d w w A A A A
JOPOY = a1 UY 4+ a8 + b1 UM 4+ DU + 1 U2 + U2 4 di i+ dof8.
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One easily proves that < . >4 thus defined is a semi-norm, and, letting Nz be its kernel, we still have
the decomposition

To _ LT

L ==

Na N ©
where J = j¥.R? + jM.R? + j22.R? + jR? C T is the linear span of the currents. We can also state a
result similar to Proposition 6.27 in this new space Hjg.
Proof of Lemma 6.44. — The proof of the previous Lemma is mainly based on Proposition 6.27. First
note that by definition of r¥ = A;(00)w(60)n0(1 — ne,) + Ai(Oe, )w(be, )7, (1 — 10), we can write
(6.139) Ea(rf') = 2Bz (Xi(f0)w(60))Ea () = 2 < 4}, jf’ 5 -

For any cylinder function f, with equation (6.90) and the translation invariance of the product measure,
as well as np — 7?19 changes of variable, setting respectively ®(#) = A;(6) and \o(6), we can write

2 2
€Y ML e =< ) Nil0o)mo(1 = 1e,) = Xi(0e,)me, (1= 1m0), Lf >a

i=1 i=1

=—-Ea > PaBo)mo(1 = me) = XiOe,)me, (1 = m0)] 7o f

z€T%,,ie{1,2}

=-—Ez Z [Ai(02)n.(1 — 7796-&-61:) - )‘i(ox+e1:)77x+e1:(1 — )] f
z€T%,ie{1,2}

=Ea Do A0 (L= e ) (@) — f)

z€T%,ie{1,2}

:;Ea< ST Al = e () — f)

z€T%;,ie{1,2}
= X0 )02 (1 = ne—e, ) (F(777C) — f))

1
=5Ea(L™f)
2
ie.
(6.140) Eg(L™f) =2 < M 422, Lf >4 .
Combining the two identities (6.139) and (6.140), we can therefore write,
(6.141) Ea(re + L™ f) =2 < M, j¥ + Lf >4 .

By definition of f5 = f§’ (cf. Lemma 6.39) j¢’ + L fs being ultimately, as ¢ — 0, a combination of gradients
and therefore orthogonal to any L£f according to equation (6.109). This yields

lim <M + Lff >a = lm <G + L+ LIS >a
1 , . A . .
(6.142) = lim = |< G R LY s — <N+ LY > — < Y+ LfY >>a] .

In the identity above, we used that f§’ + f?i = (‘5’”"\1', in the sense that if £f§ (resp. £f(§\i) ultimately
realize the difference between the currents and gradients with angular dependence w (resp. A;). Indeed,
if we can write both

<P A8+ 00y + LI >a o

LGN+ Em)t 4+ 0,85 + Lf3 >a =0

—00,0—0
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then we can write
KGN LS Y 0,8 + L+ fE) >a — 0,
p—00,0—0
which is to say that

i Fw

LGN L LY+ fE) >a= mf LGN L Lf >5

Equation (6.142) thus holds, and the three parts of the right-hand side respectively converge towards

s\t (), 5% (Q) and s¥(Q), where 5 was introduced in equation (6.119). Since a4, = @, + ay, and

ne TN =@ 4+ 1), the second line of (6.142) thus rewrites

[F422 (1~ — dy(@)) + Ea g )ds(0)]

which is what we wanted to show. O

lim < j,j¢ + Lff >a=2
§—0

7. Proof of the hydrodynamic limit

We now have all the pieces to prove Theorem 2.6. The last remaining difficulty is to perform the second
integration by parts, since even the gradients obtained in Section 6 are not exactly microscopic gradients
due to the non-constant diffusion coefficient. This is not a problem when the variations only depend on
one quantity, the density for example, since we can then simply consider a primitive of the diffusion
coefficient and obtain at the highest order in N a discrete gradient. This is not the case here, and we need
some more work to obtain the wanted gradient.

Let us recall from Section 2.4 that for any smooth function H € C12:2([0, T] x T? x 8), that we denoted
H,N .
by M, the martingale

t
(7.1) Mf’N:<7r,{V,Ht>—<7réV,HO>—/ [<aN,0,Hy > +Ly < 7, Hy >] ds,
0

where
5 N2 Z N2 (t)6(x/N) X bg, (s
z€T%,

is the empirical measure of the process on T? x S.

Proof of Theorem 2.6. — The quadratic variation [M*-N], of M"Y (cf. A1.5. Lemma 5.1 in [27]) is

[MH’N]t:/LN<7r H,>? 2<al H,> Ly <7l H, > ds
0

[ | 3 A e WG+ 2)/N) + Aali ) o/ NP2

z€T?, || z]=1

/ Y Ol ds < 10|

z€T2

where C, Ay (7, z,z) and As(7), z) are finite quantities independent of N. The quadratic variation [M#:V],
is therefore of order N~2, and vanishes as N goes to infinity. The Doob’s inequality hence gives us for
any T >0, >0
. X, B H,N —
dim 20 (s, || 25) <o
and in particular
2 I IP’\ﬁ(‘MH’N’>5>:
(7 ) NE)noo T -

We first consider the case of a function H such that

Hi(u,0) = Gi(u)w(0),
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the general case will be a simple consequence of a periodic version of the Weierstrass approximation
Theorem. For any such H, we can write

T
(7.3) /LN<7rt,Ht>dt —/ at Y 7
0

zeT%,

[Z[sz +171(0)0u, NGi(x/N) + Gi(z/N)y? (1) |,

i=1
where j, r¢ and v were introduced in Definition 2.8, and
Ou; NG(z/N) = N(G(z +¢;/N) — G(z/N))

is a microscopic approximation of the spatial derivative 0,,G.
Thanks to Sections 4 and 6, we can perform the following replacements, in the expectation of the
expression above, and in the limit N — oo then ¢ — 0:
— Thanks to Corollary 6.43, we can replace, j¢ by

(7.4) - [ds (peN)éipgN + a(pENa p?N)‘sipeN] )
where ? is given by equation (6.75),

o(p, p*) = p* (1 = ds(p))/p,
— Thanks to Corollary 6.43 and Lemma 6.44, ¥’ can be replaced by

PeN

Ry (pen) = 2 |ds(pen)Ep o (™) + = pen — ds(pen))

— Finally, the Replacement Lemma 4.1 yields that 4 can be replaced by E5_, (7).

In other words, thanks to equation (7.2), for any Hg(u,0) = G4(u)w(d), we can write
(7.5) lim sup hm P ﬁ(‘MHNE >5):O
e—=0
where

T
(7.6) Mf’N’€:<7T¥,HT>—<7réV,HO>—/ < 7N O.H, > dt
0

T
1 _
+/O dth2 > 7 >IN (do(pen)8ipSy +0(pen, pEN)0ipen) + RE (Pan)] Ou, N Gi(z/N)

+ Gi(2/N)Ep. (%) | (1),

In order to give a clear scheme, we divide the end of the proof in a series of steps.

Performing the second integration by parts. — Due to the presence of the diffusion coefficients, one
cannot switch directly the last discrete derivatives d;0.n and d;p%y onto the smooth function G. In one
dimension, one would consider a primitive d(p) of the diffusion coefficient D(p), and write that

D(pen)dipen = 6;d(pen) + on(0;pen)-
However, our case cannot be solved that way because the differential form
(p, ) = ds(p)dp® +(p, p*)dp,
is not closed, and therefore not exact either, which means that we cannot express (7.4) as
0iF(pen, pen) + on(1/N).

We thus need another argument to obtain the differential equation (2.13).
First, we get rid of the part with §;0“. To do so, notice that

0; [ds(pen ) pEn] = ds(pen)dipen + pinOids(pen) + on(1/N)
= ds(pen)0ipen + pindi(pen)dipen + on(1/N).
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We can therefore write

(7.7) ds(pen)Oipen = 0i [ds(pen)pin] — pEnds(pen)dipen + on(1/N).

2
Let us denote for any z € Ty,

D:iN =Ty (0(pen, PEN) — p?Nd/s(PeN)) .

We perform a second integration by parts in the contribution of the first term in the right-hand side
of (7.7), whereas the left-hand side is added to the existing contribution of §;p.n, with the modified
diffusion coefficient D" defined above. We can now rewrite Mf e as

T T
(7.8) <N Hr>— <n},Hy > 7/ <N, 0.H; > dt f/ I (t,0) — In(t, 0 )dt + on (1),
0 0

where

L(t,7) = ;2 dom [ZdS(pEN)p:Nazt,NGt(x/N) R (pen)0u nGie(2/N) + Gi(x/N)Ep,  (v7))

2
DLy oy v
Ig(t,T]) = ﬁ T NDON(sszNau“NGt(SL'/N)

z€T? 1=1

2
1
= ﬁ Z Z NDiN(TereiPeN - TxpsN)aul,NGt(x/N)
z€T?, i=1
In I, we regrouped all the terms for which taking the limit N — oo is not a problem, whereas I5 is the
term where the extra factor IV still has to be absorbed in a spatial derivative.

Replacement of the microscopic gradient by a mesoscopic gradient. — Since we cannot switch the deriva-
tive on the smooth function G due to the diffusion coefficient, we need to obtain the gradient of p in
another way. For this purpose, we need to replace the microscopic gradient 7,4, p:n — Tzp=n by a meso-
scopic gradient, and make the derivative (in a weak sense) of p appear directly. More precisely, let us
define

2
~ PR 1 €T+3NipN77_—3NipN
Lt,7) = 5 D D DiV e R A0, NG/ N).
zeT%, i=1

We are going to prove that for any configuration 7),

(7.9) | L2, 7) = Bo(t,7) | < o (1) +02(1),
uniformly in 7. To prove the latter, for any k € [—3N,e3N], let us denote by zp = x + ke;,
k=e3N—-1
Tr+e3Ne;PeN — Tx—e3Ne; PeN = Z Tzk+1psN — Tz PeN-
k=—e3N

A summation by parts therefore allows us to rewrite TQ as

k=e3N-1
L(t,7) = N2 > Z 2N€3 Y DN Ou NGi(wr/N)| N(Tote,pen = Tupen).

z€T?, i=1 k=—e3N
Furthermore, we can write for any = € T3,

k=e3N—1

> DiNOu, NGilak/N)

k=—e3N

D0, WGl /N) ~ 5
k=e3N-1
eN eN eN
< 53N kZZSN | DY (8 NGi(x/N) = Ouy NGie(k/N)) | + | Ouy NGl /N)DFY = DIY) |
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Since the diffusion coefficients are bounded and G, is C?, and since = and the z}’s are distant of 3N,
we can write

| DZY (0u, NGi(2/N) = 8y, nGi(zi/N)) | < C(Gr)e®
Since Diff depends on the macroscopic density p.y, and since the diffusion coefficients can be extended
as C' functions due to their explicit expression, we also have

} aui,NGt(xk/N)(DiN - D;iv) | < C/(Gt) (| Twpen = Tappen | + | Tpin — TapPen |)

N
S C”(Gt, w){:‘iN
These two bounds finally yield that
=e3N-1
(7.10) | DENO,, nGi(z/N) — 53 N Z DN, NGi(zi/N) | < C(Gr)e® + C"(Gy,w)e? = oc(e).
k=—e3N

By definition of I and fz, the triangular inequality yields

I, —I| <
1 k=e3N—-1
N2 > Z DNy NGi(w/N) = o D DeY0u NGi(ak/N) | N(Tate,pen = Tapen)-
zeT%, =1 k=—e3N

The quantity inside the absolute values in the right-hand side above is ox (1) + o:(¢), thanks to (7.10),
whereas N (Tyte, peN — Tupen) is of order at most 1/e, whereas the quantity inside absolute values is o, (¢),
therefore their product vanishes as e — 0, which proves equation (7.9). We therefore have obtained as
wanted that

(7.11) lim sup lim sup Iy (¢, 7) — Ly (t,7) = 0,

e—0 N—oc0
uniformly in 7. We can now replace in equation (7.8) I by I.

Embedding in the space of trajectories of measures MI®T). — Recall that QN is the distribution of

. . . TFH.N
the empirical measure of our process. We now wish to express the martingale M, " **
N

introduced after
equation (7.5) as an explicit function of the empirical measure 7" in order to characterize the limit points

Q* of the compact sequence Q. For that purpose, let (¢.). o be a family of localizing functions on T2,

e(t) = (26) *Lj—eiq2 (),

and recall that we defined the empirical measure as

ﬂ't N2 ;Tz 77r z/N@ t):

Then, for any function ® : $ — R, and any v € T? we denote by wsu the function
2,  T*x$§ — R
(v,0) = w(v—u)®(B)
With this notation, we can therefore write

1 Z > (25N)2

N @
— 5 = — > < > .
(25,7\74— 1)2 ny (25”74- 1)2 ™ 7905@/1\/'

]ETzﬁsN (77(?) =

lly—z|| o <eN

In the particular case where ® = 1, (resp. ® = w), the above reads as
(QEN)Q N 1 w (25N>2 N  w

—— <V, > TPy = e <N o >

(2eN +1)2 ~ " 2 FeeN OPTPeN T geN )2 ST Fee/N

Since (2eN)?/(2eN + 1)? = 1 4 on(1), we can replace in the limit N — oo the quantity E. 5 . (n5)

(resp. Tupen, Tzp”) by the function of the empirical measure < WN,¢§$/N > (resp. < 7rN,<p;x/N >,

N
<m0 N )

TePeN =
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We deduce from equations (7.5), (7.8) and (7.11) and what precedes that for any positive J,

(7.12) lim sup lim sup Q™ ( ‘ Nf’N (W[O’T]> ‘ > 5) =0.

e—0 N—o0

H,N ,
where N, is defined as

(7.13)

T
N¥,N (W[O,T]) =<7, Hp > — < m, Hy > _/ < my, OsHy > dt
0

T [ 2
1 - -
_/o Nz Z de/N,e(Wt)ai,i,NGt(ﬂﬁ/N) — Ry e,i(m)0u; NGe(x/N) + T3y o (m¢) Ge(z/N) | dt
L z€T%; i=1
T [ 2 1 it
1 = Pex 3¢; — Pex/N—c3e;
+/0 e Z ZDQJ/N@(Wt) <y, N 523 SULEL > Oy, NGt(z/N) | dt.
z€T?, i=1

In the identity above, we denoted

dx/N,e(ﬂ—) = d8(< T, @;,x/N >) <m, @;},Jc/N >
Dw/N,a(W) = D(< T, 50;73;/N >, <, @;),gc/N >)7 <m, (p:),x/N > dl@(< T, QD;,z/N >)
Ry/nei(m) = ds (< W’Wé,x/N >> < Wv‘P‘:,/:\pi/N >
Ai
<m, SOL:,I/N ><m, (pe,z/N >

+ < ! >
4R (pa,m/N

[1— < 7r,<p;7z/N > —d, << w,gp;,x/N >>} ;
and Iy . (7) = Eg, . (x)(7*), Where &y o (m) € M1(S) is the measure on 3

G (1) (d0) = /T e~ /N )(du, d6).

Limit N — co. — We can now let N go to oo in (7.12). Since G is a smooth function, one can replace in
(7.13) the discrete space derivatives d,, x by the continuous derivative 9,,, the sums N2 Zzeﬂri, by the
integral f11‘2 du, and the variables x/N by w. Since the quantity inside the absolute values is a continuous
function (for Skorohod’s topology defined in Appendix A.1) of 7[%7], the whole event is an open set, we
obtain that for any weak limit point Q* of (Q%), and any positive d,

T
limsupQ*< <7p,Hr > — <my, Hy > —/ <y, O Hy > dt
e—0 0
T 2 N
_ / / D [due(m)02, Golw) = R (70)91,Gelw) + T - () G(w)| dudt

0 T =1
T 2 » <)01 5 — s01 R

(714) +/ / Z Du,g(’/Tt) < Ty, e, utede; . e, u—e3e; >8uiGt(u) dudt.l > 51 =0
0 T2 i—1 25

Limit ¢ - 0. — In order to consider the limite ¢ — 0, we need to express

1 1
ws,u+536i S05,1175361»
2e3

in the third line above as an approximation of the gradient of the density 9,,p;(u). As in the proof of
Lemma 6.3, consider a smooth function h. ;. such that

(7.15) /TF )

< T,

1 1
Peutede;  Peu—ede;
—— (V) = hejiu

923 dv = o.(1).
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Since such a function is very similar to the one already presented in Lemma 6.3, we do not give a detailed
construction here. Then, we can build a smooth antiderivative H , of h. ., and we can write for any
u € T?, and any density p in H?,

/ p(0)he i (v)dv = / Ou, p(v)He (V) dv.
T2 T2
Regarding the third line of (7.14), this yields

w;,u—&-s%i - @;,u—s3ei
<, - o= [ bl s+ 0.(0),

where H, , is a smooth approximation of a Dirac in u and o.(1) is uniform in u. According to (5.34),
Oy, p is in L?([0,T] x T?) Q*-a.s, therefore

L2(0,T] x T?)

e—0

(7.16) [ ) Bty Duspr(1),

Q*-a.s. (see, for example, Theorem 4.22, p.109 in [5]).

By Lemma 5.13 any limit point Q* of (Q%) is concentrated on measures absolutely continuous w.r.t.
the Lebesgue measure on T2. For any such measure 707!, we denote by P, (u, df) its corresponding density
profile on the torus at time ¢, and let

P2 (u) = /S w(0)B,(u, dB).
We also shorten p(u) = p'(u). Thanks to this last remark and using both (7.16) and the dominated
convergence theorem for the second line of (7.14), we can now let € go to 0 in equation (7.14), to obtain
that for any limit point Q* of (QV) and any § > 0,

T
<7TT,HT>—<7T0,H0>—/ <7rt,8th>dt
0

(7.17) Q*(

T 2 w
LS aes 2 Gt -2 [aoo + P = )| 0u.Git) + B ()Gt )t
o Jr2 i t

>5>=0.

Conclusion. — As expected, all the quantities above are linear in w, and elementary computations yield
that

! /OT /T Z 20, p) = dipo)pt | (D, pe) O, Glw)dudt

Ep, (uy(1*) = /S WO Ep, () (€ (6. 7)) — 117y (1, d6).

Furthermore, since Hy(u, ) = G¢(u)w(f), we can write for k = 1, 2

Py oF Gi(u) = / w(0)0F Gy(u)p, (u, d) = / OF Hy(u,0)p,(u,do).
S 3

Similar identities can be obtained when w is replaced for example by w;. Using in Equation (7.17) the
identities above finally yield, as wanted, that for any § > 0

o

T
<[] [Z (000 ) [0(B10 1) = 4 p0)5.) 0101, 0)  F, (0 )40

i=1
> 6) =0.

As in the proof of Proposition 5.11, this last identity can be extended in the case where Hy(u, ) does
not take the form G;(u)w(f) by using a periodic version of the Weierstrass Theorem, thus letting 6 — 0
completes the proof of Theorem 2.6. O

T
< mp,Hr >—<7ro,H0>—/ < ¢, Oy Hy > dt
0

# 00 Hi (1) |206(5,,p)H(B,) + 2N (0)d. )5, (1.0) ) — (w05 o d(»] dudt
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Appendix A

General tools

This appendix regroups a general definitions and results that we will be used throughout the proof.

A.1. Topological setup. — This paragraph defines the topological setup we endow the trajectories
space for our process with. Denoting by M(T? x $) the space of positive measures on the continuous
configuration space, and

MO = D ([0,T] x M(T? x 3))
the space of right-continuous and left-limited trajectories of measures on T? x $. Each trajectory 7l
of our process admits a natural image in M!®T] through its empirical measure

R 1
(A.1) my (n[O’T]) =3z D (SN0, 1))

2
z€T%,

0,7]

Let (fr)ren be a dense family of functions in C°°(T? x $), and assume that fo = 1. The weak topology
on M(T? x $) is metrisable, by letting

— 1 | <m0, frx>— <7 fr>|
A2 0(m0.m0) = ) 3% 7 7 .
( ) (7T077T0) ZZlir |<7r0,fk>*<7'f67fk>|

Given this metric, M[97] is endowed with Skorohod’s metric, defined as
(A.3) d(m,7") = inf max < [|&[|, sup &(m, 7).,) ¢,
KEF [0,7]

where F is the set of strictly increasing continuous functions from [0, T into itself, such that ko = 0 and

kT =T, equipped with the norm
Rs — K¢
||| = sup {log [} }
5,6€[0,T s—t

Now, (MI®T] @) is a metric space, and we endow the set P(MI%T]) of probability measures on M
with the weak topology.

Given the empirical measure 7" of the process at time ¢, defined in equation (A.1), define the appli-
cation

0,7]

N EE?{T] — MO
ol (ﬂfv (ﬁ[O’T]))tG[O,T] ,
we define
(A.4) QY =P o (z) " e PMPT)

the pushforward of IP;\LE by .

A.2. Self-diffusion coefficient. — We regroup in this paragraph some useful results regarding the
self-diffusion coefficient. Consider on Z?2, an initial configuration where each site is initially occupied w.p.
p € [0,1], and with a tagged particle at the origin. Each particle then follows a symmetric exclusion
process with finite range transition matrix p(-), verifying ) 2zp(z) = 0, and p(z) = 0 outside of a finite
set of vertices B.

Definition A.1 (Self-Diffusion Coefficient). — Given X, = (X},..., X¢) the position at time ¢ of
the tagged particle, the d-dimensional self-diffusion matriz Ds = Ds(p) is defined as

E((y-Xt)2)
t

(A.5) yDsy* = tlim vy € R,

— 00

where y* is the transposed vector of y and ( . ) is the usual inner product in R9.
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This result follows from [28]. Our system being invariant through coordinates inversions, it is shown
in [31] that the matrix Dy is diagonal, and can therefore be written

Ds(p) = ds(p)l'

The following Lemma gives a variational formula for ds and was obtained in Spohn [44].

Proposition A.2 (Variational formula for the self-diffusion coefficient)
The self-diffusion coefficient ds(p) is given by the variational formula

di(p)=inf ¢ D By (1= mse) 16 = (Flmsecn) — F)P
’ i€{1,2}
6e{-1,1}

S = nerse) [fOPTE) — f()])
z€Z2\{0,e;}

Finally, the regularity of the self-diffusion coefficient follows from [30], and a lower and upper bound
was derived by Varadhan in all dimensions by Varadhan in [49].

Proposition A.3 (Regularity of the self-diffusion coefficient). — in any dimension d > 1, the
self-diffusion coefficient ds is C*°([0,1]), and for some constant C > 0, we can write

Lia—p <dip <c-p).

C
A.3. Entropy. — Given two measures on a space F, let us denote
du du
H =E, | — log —
(1) =5, (Prop )
the relative entropy of p w.r.t v.
Proposition A.4 (Entropy inequality). — Let m be a reference measure on some probability space

E. Let f be a function E — R, and v € RT. Then, for any positive measure p on E, we have

/fdu < % {bg (/ e”dﬂ) +H(M7T)} ,

where H(u|m) is the relative entropy of u with respect to .
Proof of Proposition A.4. — The proof is omitted, it can be found in Appendix 1.8 of [27]. O

Remark A.5 (Utilization throughout the proof). — This inequality is used throughout this proof
with 1 the marginal at time s of the measure of the process started from an initial profile x4V, and with
m = ug the equilibrium measure of a symmetric simple exclusion process with angle measure &. Then,
for any fixed time s and for any function f and any positive ~y

E.~(f) < % [logEs (e7) + H(ul |1a)] -

This inequality will be our main tool to bound expectation w.r.t the measure of our process of vanishing
quantities .

A.4. Bound on the largest eigenvalue of a perturbed Markov generator. —

Proposition A.6 (Largest eigenvalue for a small perturbation of a markov generator)

Let us consider a Markov Generator L with positive spectral gap v and a bounded function V' with
mean 0 with respect to the equilibrium measure ug of the Markov process. Then, for any small € > 0, the
Largest eigenvalue of the operator L 4+ €V can be bounded from above by

2

€
sup {eBa(V f*) + Ea(fLf)} < ——5—
P Fa UL} < TV,

where the supremum in the variational formula is taken among the probability densities f w.r.t pg.

Es (V(-L)™'V),
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The proof of this result is omitted, it is given in Theorem A3.1.1, p.375 in [27].

Appendix B
Space of parameters M (%)

In this appendix, we prove some useful results regarding the space of parameters (M;(S),|].||) intro-
duced in Section 3.1.

B.1. Equivalence of ensembles. —

Proposition B.1 (Equivalence of ensembles). — Let f be a cylinder function (in the sense of Def-
inition 2.1), we have
limsup sup | E, z(f) —Ea.(f)| =0,
l—o0 IA(GKZ
where the first measure is the projection along sets with K particles in By, whereas the second is the grand
canonical measure with parameter & = ap introduced in Definition 3.7.

Proof of Proposition B.1. — The proof of this result is quite elementary, and is a matter of carefully
writing expectations for a random sampling with (grand canonical measures) and without (canonical
measures) replacement.

The proof of this problem can be reduced to the following : Consider two sampling of M integers,
chosen among L. The first sampling is made without replacement, and the sampled numbers will be
denoted Xji,...,, X The second sampling is made with replacement, and will be denoted Y7, ..., Y.
Then, for any function

g:{1,...,L}M 5 R,
we have

| E(9(X1,..., Xn)) —E(g(Y1,...,Ym)) | =gl or(1),

where the o, (1) only depends on L. The proof of the last statement is elementary, and is therefore omitted
here.

To come back to our Proposition, M represents the number of sites on which depends the cylinder
function g, L = (21 + 1)? represents the number of sites in B;, the X;’s are the possible values for the
n:’s (x € B;) under the canonical measure 72> and the Y;’s are the possible values for the 7,’s (x € By)
under the grand canonical measure pg .. O

B.2. Dependency of the grand canonical measures ugz in a. —

Proposition B.2. — Consider the set of local profiles M1 (S) equipped with the norm ||| . ||| defined in
Definition 3.2. Then, given a function g € C, the application
oo (M@ — R
@ = Ea(g)

is Lipschitz-continuous with Lipschitz constant depending on the function g.

Proof of Proposition B.2. — Let us consider a cylinder function g depending only on vertices x1, ..., T,
and let us start by assuming that g vanishes as soon as one of the sites x1,...,z)s is empty. We can then
rewrite g(7) as Nz, - Nayy 9Oy s - - - d

IJM , an
/ / Op., .. 00, )dG(0s,) ... dA(0s,,).
01 O

We can now proceed by recurrence on M. Given a function g depending only on a site x1, and for any
two angle measures & and &’ we can write

Ea(g) - Ear(g —||||/

d(@ —a")(0x,) < [lgll" ll & — &' [||
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Assuming now that the proposition is true for any function depending on M — 1 sites, and considering a
function g depending on M vertices, we can write

(B.1) Ez(9) — Ear(9) = Ea (Ba(g | Meys -+ ens ) — Bar (B (9| Mgy -5 Toar ) -
Fix any angle 6, and let ¢? be the function ¢?(7) = g(#, Ozs,....0,,, ) We can write thanks to the recurrence
hypothesis that
| Ea(¢’) —Ear(9°) | < Collla—a |,
which, integrated in 6 against &', yields

| B (Bar(9 | Togs- -5 Tlans ) — Bar (Ba(g | Ty - -5 7)) | < Culll @ =@ |,
On the other hand, we can also write
| B (Ea(g | Mgy - - > Maar)) = Bar (Ba(g [ Mags - 7eas)) | < Cofll@—a" ],
therefore (B.1) yields that
|Ea(g) —Ea(9) | <(C'+C?)la—-a ||,

which is what we wanted to show.
To complete the proof of Proposition B.2, we now only need to extend the result to functions g which
do not necessarily vanish when one site in their domain is empty. This case is easily derived, since any

function g depending on vertices x1,. .. ,, ) can be rewritten
(B2) g(ﬁml""7ﬁmz\l): Z gB(0$ivi€B)a
Bc{1,...,M}

where gg(0,,,7 € B) is defined in the following fashion : recall that 7, = (94, 60,), with 6, = 0 if 5, =0,
and let us assume that B is the set of increasing indexes 41, ...,%,, then gp is defined as

980z, 500, ) =1y, -1y, 9((0,0),...,(0,0), (1,04, ),(0,0),...,(0,0), (1,0, ),(0,0),...,(0,0)).
These functions all vanish whenever one of their depending sites is empty, therefore according to the
beginning of the proof, there exists a family of constants Cg such that for any B C {1,..., M} we have
| Ea(9s) —Ea(98) | < Cplla—a’|||.

We now only need to let C' = ZBC{l MY Cp to obtain thanks to the decomposition (B.2) that

.....

| Ba(g) —Ear(g) | <Clla—a’||

as intended. This completes the proof of Proposition B.2. O
B.3. Compactness (M1(3), ]| . |l|). —

Proposition B.3 (Compactness of (M1(3),][|| . ||])). — The metric space (M1(3),]|| . |||) introduced
in Definition 3.2 is totally bounded and Cauchy complete, and is therefore compact.

Proof of Proposition B.3. — The proof of the Cauchy-completeness is almost immediate, we treat it first.
Consider a Cauchy sequence (A )ren € M1($)Y, then by definition of ||| . |||, for any g € B*, the sequence
fs 0)a(dh))y is a real Cauchy sequence and therefore converges, and we can let

/ 9(0)8*(d0) = tim [ g(6)ax(db).

This definition can be extended to any C'($) function g by letting

g(0)ar(df) = max(|lgl| , [lg'll.) lim /
/S ko0 Js max(||gll » 119l o)

This defines a measure a* on $, whose total mass is given by
/ a*(df) = lim a(df) € [0,1],
T2 k—oo Jr2

which proves the Cauchy completeness of (M1(S), ||| . ||)-

an(do).
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We now prove that (My(S),]|| . |||) is totally bounded. For any integer n, we are going to construct a
finite set My, C M1(S) such that
PN 1
sup inf ||la-a'|]<-—.
aeM, (8) ¥ EMin n
For any n € N and any j € [0,n — 1], we denote 6, ,, = 27j/n, and 6, ,, = 6y, = 0. We can now define

n—1

k;
Min =33 j(sejn, k; € [0,n? Zk < n?
j=0
The inclusion M1, C M;(3) is trivial thanks to the condition Zj k; < n?, and M ,, is finite since the
k;’s can each take only a finite number of values. we now prove that any angle measure @ € M;(9) is at

distance at most 1/n of an element &,, € My .
Fix an angle measure @ € M;($), and let

kj = [n*a@([0.n, 041.0[))-

Since & € M;($), its total mass is in [0, 1], and the conditions k; € [0,n?] and >k < n? are trivially
verified. We now let

and prove that ||| @ — @, ||| < 2/n. Fix a function g € C*($) such that max(||g||,||¢'||) < 1, we can

write
J+1ﬂ k
A (0)(@ — an)(dh) Z / a(do) — ~29(0;.n)
k. n—1 0jt1,n
—Z RUSRITOBES YOSED oY SRNCURYOWETD
j_O ]
— . i+1,n
<31l |a<[0j,m6j+m b +Z|\g|\ et [ et
=0
<1l/n
<1/n?
/
ol + 11 e
n

Finally, we have proved that
Il a—an [l <2/n,
which proves that M ($) is totally bounded. This, together with the Cauchy completeness, immediately

yields the compactness, and concludes the proof of Proposition B.3.
O

Appendix C
Proof of Theorem 6.25 : Limiting space-time covariance

In this Appendixz we give for the sake of exhaustivity the proof of Theorem 6.25. The strategy of the
proof, whose heuristics has been given just after the theorem, follows the same scheme as in Section 7.4

of [27].

Recall that we denoted

< [>a= sup Q2Eg ([ |Sg+ D (ma)ms + b, | | - vagﬂavb
QG%w yEZ2
a,beRr?

‘2
2,a



132 C.ERIGNOUX

We first want to prove that for any sequence (IA{l)l such that

in the sense of Definition 3.2, and any cylinder function v, we have

. 1 )
lm ——<F | (L) D mb. Y m | =<v>s.

l—o0 (2l + 1) IEBLw EEBLw

In the left-hand side above, the integer [, is defined in such a way that ) T, is measurable with

QCEBLw
respect to the spins in B;. We are going to prove the previous identity as two separate inequalities, stated
as distinct Lemmas.

Lemma C.1. — Under the assumptions of Theorem 6.25,
1
li B s | (=L I 2 | < a -
predeEsiatil GNP PRSP PRLY RS St €
xEBlw af:EBlw
Proof of Lemma C.1. — The first step to prove the inequality above is the replacement of the canonical

measure fig by the grand canonical measure pg thanks to the equivalence of ensembles stated in
Proposition B.1. The main obstacle in doing so is that the support of the function whose expectation we
want to estimate grows with [. To circumvent this obstacle, we split the sum of translations of 1 in finite
boxes with respect to [ and bound the difference.

Since the Dirichlet form is non-negative, the application (f,g) — —Elﬁ(f$genelg) is an inner product
on the subspace of Cy of functions measurable w.r.t. ;. We proved along with the integration by parts
formula of Lemma 5.1, any such f is in the range of £;, and can be rewritten f = —L;g, thus

Eg (f(=L)7" )2 = E(g(~L1)g)"/?
is a norm and defines via polarization identities another inner product. We are therefore able to write
the variational formula

B | (-L070 D mv. D mv | =

IEBlw IEBlw

2F, £, Z 7 b | = E, g (h(—Lih))

sup
hE'TO“’ IEBlw

The second term in the right-hand side is the Dirichlet form of the exclusion process restricted ZIKL,

which we denote by Z(u, ,,h). Regarding the first part, thanks to the integration by parts formula

stated in Lemma 5.1 and to the elementary inequality 2ab < v~'a? + vb%, we can write

Wyp | D mwh] =2 Y E g (L(n).Veh)

zeBy,, z€By,, a€By ()

<Y ¥ %El, 7 (T(ma)?) +7E, 2, ((Vah)?)
©€By, a€By(x)
which holds for any positive constant . The first term 4~ 35 5 E; 2 (La(72)?) does not depend
on x, and since v is a local function, ]El,f(l (Ia(Tzz/J)Q) is bounded by some constant depending only on
1. The first part of the whole sum above is therefore bounded by v~!(21 + 1)?| By, |C1(¢). Regarding the
second term, the number of time each edge a appears can be crudely bounded by 2| By, |, which means
that

v Y Eg ((Vah)z) < 29| By |21y 1, 1),

xGBlw acz+By,

therefore for some well chosen constant ~y

) 2, 5, | 30 mv b | < @+ 12Chw) + P 5, 1)

xeBlw
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and we have the upper bound

E, z, Y m. Y | < sup {(2z+1)203(¢);@(um,h)}.

wEBzd wEBl,J heTs

The left-hand side is non-negative, whereas the quantity inside braces is negative for any function h with
Dirichlet form 2(p, ,, h) greater than 2(2] + 1)2C3(1)). Regarding the variational formula above, we can
therefore restrict ourselves to functions h with Dirichlet form bounded by 2(21 + 1)2C3(v).

As in the proof of the one-block-estimate, let k& be an 1nteger that will go to co after [, and let us

divide B; into disjoint boxes BY, ..., BP, where p = | 22};1 ], and B® = B; — U?_, B*, whose cardinal is

bounded by Ckl for some constant C’ Recall that sy is the smallest integer such that ¢ is measurable
with respect to the spins in By, Let us denote by B* and 0B the interior and the frontier of B?, defined

as

Sqp 3

B = {z € B',d(x, B"*°) > s} and OB’ = B’ — B'.
Finally, let us denote
By =U"_ B and B, = B, — B;.
Let h be a function in 73, we can split

(C.2) S Eg (b h)=Y E g (mvh)+ > B (rat.h).

z€By, zeB; z€0BINB,,

With the same method we used to get equation (C.1), we obtain that the second part of the right-hand
side of the equation above can be bounded up by

Cy(v) min{y~'|0B; | + ~I*}
v>0

for any h with Dirichlet form bounded by Cs(1)I2. This minimum is obtained for v = /| 9B, |I=2. The
number of boundary sites in | 9B; | can also be bounded by the number of sites in the boundaries of the
B¥s added to the number of terms in BY, hence |0B; | < Cs(v)(12k~" + ki) this yields that

S Byg, (b h) = G VBB < Cy()P Vo T R

mEBBlﬂBlw

Regarding the first part of the right-hand side in equation (C.2), we defined the B¥s in such a way that
for any z € Jéi, 7,1 is measurable with respect to the spins in B*. In that prospect, for any function A,
let us denote h; = Elﬁl(h\nm,x € B%) the conditional expectation of h with respect to the spins in B?.
We hence have for any « € B' that E, z (h7,¢) = E, ¢, (hi7z1). For any finite set B, let Zp(u, ,,h) be
the restriction of the Dirichlet form to edges with both ends in B. Because we lost the edges between the
B?s, and thanks to the convexity of the Dirichlet form already used, we have

P P
@(:U'lyf(la h) = Z D (,LLl’f(l vh) > Z Dpi (Nl_f(la hi),

=1 =1

therefore 2K, (ZIEBW T h) —Eg ; (h(=Lih)) is less than

P
S22 E g (et hi) = Dpi(py g, hi) p + Ca(@)PVET 4 k-1
i=1 z€Bi
Let Mj, be the space of functions in 7;” measurable with respect to the spins in By, the supremum of
the expression above over all functions A can be bounded from above, since all the terms in the sum in i
above are identically distributed, by

posup $2 ST E g (et f) — Do, iy g, ) p + CO)@+ 1PV + k.

eM
f k ZEEBk
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Now since p is roughly equal to (21 + 1)?(2k + 1)~2, the quantity of interest to prove Lemma C.1

. 1 _
11msup7(2[+1)2E1ﬁ1 Lt Z T2 Z Tz

l=oo xGBzw xGBsz

is bounded from above for any & by

T s 32 3 B () = 9, )+ COVET
IEB;C

= ﬁhﬁ?ﬁpE Z | (=Ly) 7! Z 0| | + C(p) V1
|z |<k—sy |2 |<k—sy
thanks to the variational formula for the variance introduced at the beginning of the proof. Thanks to
the equivalence of ensembles stated in Proposition B.1, since the function inside the expectation now has
finite support, we can replace in the limit [ goes to infinity and IA{Z(QZ +1)72 — @& the expectation above
by the grand canonical measure pg. Finally, taking the limit as £ — oo,

. 1 _
hmsupmﬂﬂhkl (_‘Cl) 1 Z Tx¢. Z wa

=00 {L’EBld) :I?EBZQP

1
Slimsupmﬂfa (_Lk)_l Z wa. Z Ta;w

k—
o0 @€ B, ©€By,,

Now that we have replaced the canonical measure by the grand canonical measure, we are ready to
complete the proof of Lemma C.1, which is reduced to showing that

(C.3) lim sup

1 —
k—s00 W]Ea (L) Z oY Z Y| < <YP>5.

zEBkw IGBkw

The left-hand side in the equation above is equal thanks to the variational formula for the variance to

2k +1)2 jonn, 23:; Es (r2¥ .f) — I, (1a, f)
Ky

For the same reason as before, for some constant C'(¢), the quantity above is negative for any f o(Fy)-
measurable with Dirichlet form with respect to pg not bounded by C(1)k?. Using once again the inte-
gration by parts formula of Lemma 5.1 yields

Eg (129 .f) = Z Ea(La(t2¥)Vaf),
zE€By (x)
where I,(¢) = (1/2)V4(—L,,) " 1. For any edge a, let us denote BY(a) the set of sites z € Z? such that
a is in By(z), and E}f(a) = BY(a) N By, . Note that for any edge a € By,
The integration by parts formula then allows us to write

> Ba(mat f)=>, Y, Ea(la(rmt)Vaf)

»—s,s these two sets coincide.

r€By,, a€By, TGBw(a)
=Y Y Es(u(m¥)Vaf)— > > Ea(lu(mt)Vaf)
a€Bk z€BY(a) a€By, a:EBw\B w (a)

=3 Y Ealla(m)Vef)— > > Ealla(md)Vaf).

a€By z€BY (a) aEBK\Biy, —s,, xeBw\E}f(a)
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By Schwarz inequality, the second sum in the right-hand side is smaller than

Z Z E&(Ia('rxw)vaf)

aEBk\Bkw—sw ZGB’lP\E;f (a)

I 2\ 1/2 1/2

<Ea 3 S L(ny) > (Vaf)
a€Bk\B -, ze€BY\BY (a) a€EBk\By, -5,

r 271/2 11/2
<Es Z Z Ia(ﬁﬂb) Ea Z (vaf)2

a€BK\Bry —s,, \z€B¥\BY (a) a€Bk\B,, —s,, ]

_ 1/2
<Es| Y N CkL(m)?| (P8, (s NV,

_(LEB;C\B;%P,S#) reBY

1/2
g(Ck S Ea Zfamw) [2(f)]'?.

a€B\By,, —s,, zEBY

<C(¥)

The latter is of order k%2, and therefore vanishes in the limit & — oo. Letting 1, (¢) = 3, ¢ pv () La(721),the
left-hand side of equation (C.3) is therefore smaller in the limit k£ — oo than

(Qk% sup{ Z]E aof) — @Bk(uavf)}'

feEMy, a€By,

Let (fx)r be a family of functions such that f; is Fp,-measurable function in T, such that the limsup
of the quantity above verifies

(C4) limsup sup{ ZE of) = @Bk(u&f)}

k—oo (Qk fEMk a€By

= Jim s Q,H { > Ea(la(¥)Vafi) - @Bk(ua,m}.

a€ By

Thanks to the translation invariance of g, and since 7,1, () = I;,4(v), letting y = a1 be the first site
of the edge a = (a1, a2), we have

Ea(Io(¥)Vafi) =Ea (I(0,a5—a1) )V (0,03—a1)T—a1 f&) -

A seen before, a simple change of variable yields that Eg (Vo f.Vag) = Eg (V_of.-V_ag), from which we
deduce

2 Z Ea Y)Vafi) = 4Z]E 7Oei)(¢>'v(078i) Z T-afk
a€ By =1 m,erg-;EBk

Let us introduce

1

k _ w
u; = (2k'+ I)QV(O,ei) E T—rfk € ,‘Tz P
:C,Qf-‘r:iEBk

where T = TT‘;’ is the closure of 7§’ in E;

E; = {f, Ea (]l{none,i:O}Jﬂ) < OO} '
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The L? norm of the differential form u* can be bounded since (}_;_, a;)> <n .1, a? by

2k(2k + 1
Z]Ea((uf)Q) S(Z(k—i—l)‘*) Z Es ((v(w,£+€i)fk)2)
' x,x-&-;eBk
2k

:m@Bk (1a, fk)

Thanks to this inequality, equation (C.4) yields

2 2
2k + 1) 2Es | (=£1) 7t T . ¢ | < lim {4 Ea(T(0.e,)(0)uf) — > Egz((uh)? }
(2% +1)2E5 | ( >§ij§ij Jim {43 Ea(Toa (6)4) ~ 3 Ea(wl))
The inequality above and the control over the Dirichlet form of the fi’s guarantee that the sequence of
differential forms (u*)yecy is bounded in L2(5). Let 1 = (uy,12) be a limit point of the sequence, thanks
to the gradient in the expression of the u*’s, u is in €5 N T, as introduced in Section 6.6. Proposition
6.14 thus yields the estimate

2 B 2
i {43 EaT (0)a) — Y Bal(u)®)}
=1

k—o0 :
i=1

IN

2 2
gseu% {4 ;Ea(j(om)(iﬂ)-(i?’b +V0,e)2g)) — ;Ea((ia’b + Vzg)Q)}
a,beR?
2
s

sup | 2E; [ ¢. |24+ Z (y-a)ny + (y-b)ny | | — HVEg o
a,bec

The last identity is easily checked and is a direct consequence of the integration by parts formula (cf.
Proof of Proposition 6.27 in Section 6.8). The right-hand-side above is < . > as defined in Theorem
6.25, which concludes the proof of the first Lemma. O

The second inequality is more straightforward, since this time the supremum works in our favor.

Lemma C.2. — Under the assumption of Theorem 6.25,
) 1 1
(C5) h?iigp WEZJ?L (_ﬁl ) Z wa . Z wa > K ’ll) >a .
xEBlw xEBlw
Proof of Lemma C.2. — We start once again with the variational formula
B | LD . D> mv| = swp 2B, | D 7t h | —Eg, (h(=Lih))

h€L2(uly?l )NTo

IEBlw IEBZTP IEBlw

(C.6)

v

sup ¢ 2B, & | D et h | —Eg, (h(=Lih)) ¢,
heF xEBzw

where F is the subspace of L?(y, z,) NTo

F=F = hgapi= > g+ . (ax) + (b)), geTy abeR?
CDGBlQ rEB)

We first show that in the variational formula above, we can replace in the limit | — oo the canonical
measures by the grand canonical measure p15. Regarding the first term, for any hg .4 € F,
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1
WEI,I?Z Z Taﬂp 'hgﬂwbvl

IEBlw

:ﬁ YoEBg (| Do me+ D ((aymy + (by)ny)

z€B,, lyl<lq yEB

This time, for some fixed € B, the function inside the expectation is local because 7,9 is, and
Proposition B.1 guarantees that in the limit of the quantity above as [ — oo, we can replace R, by ua.
The translation invariance of g, then yields

1 2
lim B 2 [ Y et hgans | =Ea (v Y |mg+ Y (@) + (by)my)

1500 (20 4+ 1)27 b
oo( + ) wEBlw yEZ2 i=1

Let us now switch to the second part of (C.6). For any h = hg 4, € F, we have, since
Z S(}Z‘Eﬂ’];} - Z j;:d,:chei’
|z <l r,x+e, €B;

that

1 1
WE;?J (h(_ﬁlh)) :W _El,f{l Z Tzg El Z Twg
|z |<ly

|z |<l4

— Q‘El,fﬂ Z Tz9 | - Z Tz(a-jw) + (b])

|z |<ly z,x+e; €EB;

“Eoz | [ @y + )| | D malas®) + ()

yEB; z,z+e; €B;

Since there is no E;l, the functions are all still cylinder, and the equivalence of ensembles allows us to
replace g, 7, by pa. The first term in the right-hand side above can be rewritten thanks to the integration
by parts formula as

2 2

1 1
m Z El,f{t Va Z Tzg :m Z EZ,IA(L vm,m+e,; Z Tyg

aCB, |z |<l, z,z+e; €8y ly|<lg

For any = € B, 2, we have V ;1, Z|y|<zg Tyg = Vi zte; 2g, and since the number of terms in the
crown By — B, 2isa o(1?), the previous quantity rewrites by translation invariance, in the limit { — oo
as Bz ((VX4)?). Elementary computation and the translation invariance of 115 yield that the second term

2?2 g Yoomg| | Y mlad) +(04)| | = —2Ba([(ag?) + (0.5)] ) -

(2l + 1)2 LK l—o0
|z |<l, z,x+e; €EB;

Let us consider only the contribution of j$ in the right-hand side in the identity above. The corresponding
contribution is

Ea (77'2) = Ea (5 (1 = 1e,)%, (1) — Ba (1 (1 = 10)Z, (@) = ~Ea (15 (1L = 1.,) Vi)
which is equal to —Eg(j" - V3,). We deduce from this the identity
B ([(0°) + (0.4)] S) = ~Ba(*.V5,).

Finally, elementary computations allow us to write regarding the last term

G ~Eo | | S (@ G| -| X e+ )

yeB,; z,x+e;€B;
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= Ea (Jlall* 5 (0 = ne) + 1161 n0(1 = 7e,))

which is equal to E5((j**)?). These three limits finally yield

: 1 cab||?
i o (o (—LoMgnt) = ||V, 57|,
and equation (C.6) holds, which gives inequality (C.5) and concludes the proof of the Lemma. O

In order to complete the proof of Theorem 6.25, we still need to prove that the convergence is uniform

in @, which will yield identity (6.82). Let us denote

El,f(z *ﬁl_l Z Tz . Z |,

Vig(R(20+1)72) = ——

(20 + 1)?

zEBlw TeBlw

and let us extend smoothly the domain of definition of V; ,;, to M1 ($). The two previous Lemmas guarantee
that VW(IA(;(ZZ +1)72)) converges as [ goes to oo to < 1) >>5 as soon as K, converges towards the profile
@, hence in particular, V; (Q;) converges as | goes to oo towards < 1) >4 as soon as q; goes to &. For
that reason, < . >3 is continuous, and V; 4 (@) converges uniformly in @ towards < ¢ >3 as [ goes to
00. This, combined with the two lemmas C.1 and C.2, completes the proof of Theorem 6.25.

E......... set of edges (7,757 1%), Ny = 1, Ngyr = 0, 80
FOP(@) covviiiinininan. cutoff density, Eg(ng 1Eg,) , 57
Lo oo the ”inverse” of V, , 43
QF ......... a limit point of the sequence (QN)nen , 57
TE oo set of semi angle-blind functions, 45
TN eveneees modification of n¥ with mean 0 w.r.t. 6, 45

................................ sum ofag and J¢, 43
................... part of £ with jumps inside B, 43
part of £ with jumps inside By, 43
............... Glauber generator with g = 0, 23

2 quotient of 75" by Ker <. >4, 106
AYZ I gradient due to a particle jump 0 — e;, 20
D(R) i 2(Vh), 20
D®Y ... part of the Dirichlet form due to Lz 4, 37
JY linear span of the currents j;, Jis 43
EE ............ space of mean O func. w.r.t. any By R 43
Syp evenenens smallest [, 1 depends only on sites in By, 43
Cov set of cylinder functions, 12
G e the graph (X, E), 80
<m H>......... integral of H w.r.t. the measure 7, 16
AN v [0, N]?3, closed boundary conditions, 45
Bl By(0), 17
Bi() oo {yeT%, ly—x| <1}, 17
B Ep o, 25
Epag.ooiviainin. By (z) contains at least 2 empty sites, 25
Ge(u) voviviiiiin.. smooth function on [0,7] x T2, 15
H(p|v)ooooooiiiiiiiiine entropy of p w.r.t. v, 21
Hi(u,0) e smooth function on [0,7] x T2 x 8, 15
LN v complete generator of the AEP, 12
Li{:o ............... generator of the AEP for 8 =0, 23
QN ... law of (7]¥);c[0,7) for the AEP, 14, 127
IE:;J ......................... expectation w.r.t. M:;’l, 19
E g ocoeer expectation w.r.t. u;, », 19
Ea’ ........................... expectation w.r.t. /;,a, 19
B expectation w.r.t. pu%, 19
T local creation rate of #-particles, 15
Koo a pair (K,Ok), 19
Kp oo the set of possible K= o1, 19
K v, the set of K such that K < |B;|—2, 19

]P’l),"[3 .......... measure of AEP(A, ) started from v, 14

S o set of angle-blind functions, 12
(S O a orderless family of K angles, 19
[ Bl number of sites in B, 17
[ 2] e Soilzil, 12
o 2 total mass of a, 18
B inverse temperature for £, 13
Do density profile on the torus, 13
PO e initial density profile on the torus, 14
T natural application from Cq to €5, 99
T e e e em e occupation state of the site z, 11
D D(02)nz, 17
7 family of the 7., = € 'H‘%\,, 12
AOT element of EBS’T]7 14
350 7 after setting 0, =0, 13
7Y 7 after inversion of 7* and 1Y, 13
TR e e e e e the pair (1z,0z), 11
T2 continuous 2-dimensional torus, 13
B set of angles [0, 2|, 11
Jiereanannn total instant. sym. current on (0,0 + e;), 17
TE w-weighted asym. current on (0,e;), 17
R R closed forms assoc. to j1, j2, 83
jhw gbe closed forms assoc. to j{, j§, 84
JE e w-weighted sym. current on (0,¢e;), 17
Dleeeonennnennn. empirical angle measure over By, 18
O i diffusion coefficient relative to Vp, 15
D Dirichlet form of the exclusion process, 20
PP conductivity coefficient, 15
Y instant. creation rate of ng due to LG, 17
JLG e grand canonical measure GCM(@), 19
L e symmetric part of Ly, 12
Loy oovnnn. part of £ due to jumps between z and y, 37
LO displacement part of Ly, 12
LC Glauber part of Ly, 12
LY weakly asymmetric part of Ly, 12
Va veveen gradient due to a particle jump a; — a2 , 20
A real parameter tuning the asymmetry, 12
Ai(0) ... strength of the asymmetry in the direction 4

on a particle with angle 6 , 12
172 S average over Bj(z) of the 7y, 18
M(T2 x8) ....... space of measures on T2 x $, 14, 127
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MIOTY [ space of cadlag traj. on M(T2 x §), 14, 127 pu) o mass of the measure p(u, -), 13
Lol e GCM with uniform angles, 19 Py e average of % over By, 18
B e pk restricted to configurations on By, 19 Plveonmaaanenns empirical particle density in By, 18
,u,]\; ........... initial measure of the AEP, fitting p,, 14 LDgeeeeenn limit of the space tir'ne covaria'nce7 99
,u,iv .......... measure at t of the AEP started at u!V, 21 2 self—dlffusmn. coefﬁc1er21t7 14
,Uf;v ........ product measure on X associated to p, 13 ig T‘] """"""""""" ?et ((’ifl cor:ﬁg.ur?tl({ns on ;TNz i
=N = i space of cadlag trajectories on
N M:;vl conditioned to.r] € ZZK’ 19 Ei ............... p ...... set of ionﬁéura‘cions on ZJ\;: 80
u_z} ............................ smooth function on S, 15 Zlf( ............. set of confs. with particles in By, 19
Qo local direction of the asymmetry, 15 Taeenenaeenanns translation by = on the discrete torus, 16
Qo angle measure, element of M;($), 18 O v e angle of the particle in z, 11
A eevenns angle measure in M;(8) associated to K , 39 ’]I‘?\, .......................... discrete torus of size N, 11
Osy Of vviviiiiiiiii i time derivative, 16 Tgo eeeeenns space of semi angle-blind functions in Cp, 98
Ouy N vvenennnanennnes discrete approximation of 0y,, 17 C o initial macroscopic profile, 14
Oy vvvevnineneninn. i-th continuous space derivative, 57 O T jump rates for £, 13
ﬂ.gv ................ empirical measure at time s, 14, 127 tN .......................... density of ,uiv w.r.t. pul, 21
Mi(S) oo set of angle measures, 18 1] 1 P norm on M ($), 18
References

[1] H. AMANN — “Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems”, Func-
tion Spaces, Differential Operators and Nonlinear Analysis (1993), p. 9-126.

[2] P. BiLLINGSLEY — Convergence of probability measures, second ed., Wiley series in Probability and Statistics:
Probability and Statistics, John Wiley & Sons Inc., New York, 1999.

[3] F. BoLLEY, J. A. CaNizo & J. A. CARRILLO — “Stochastic mean-field limit: Non-lipschitz forces and swarm-
ing”, Mathematical Models and Methods in Applied Sciences 21 (2010).

[4] F. BoLLEY, J. A. CAN1ZO & J. A. CARRILLO — “Mean-field limit for the stochastic vicsek model”, Applied
Mathematics Letters 25 (2011), p. 339-343.

[5] H. BrREzIS — Functional analysis, sobolev spaces and partial differential equations, 1st ed., Springer, November
2010.

[6] E. CARLEN, P. DEGOND & B. WENNBERG — “Kinetic limits for pair-interaction driven master equations and
biological swarm models”, Mathematical Models and Methods in Applied Sciences 23 (2013), p. 1339-1376.

[7] J. A. CarriLLO, Y. HuaNG & S. MARTIN — “Explicit flock solutions for quasi-morse potentials”, European
Journal of Applied Mathematics 25 (2014), p. 553 — 578.

[8] J. A. CARRILLO & B. YAN — “An asymptotic preserving scheme for the diffusive limit of kinetic systems for
chemotaxis”, Multiscale Modeling and Simulation 11 (2013), p. 336-361.

[9] M. E. CaTEs & J. TAILLEUR — “Statistical mechanics of interacting run-and-tumble bacteria”, Physical Review
Letters 100 (2008).

[10] , “When are active brownian particles and run-and-tumble particles equivalent? consequences for
motility-induced phase separation”, EPL (Europhysics Letters) 101 (2013).

[11] —, “Motility-induced phase separation”, Annual Review of Condensed Matter Physics 6 (2015), p. 219—
244.

[12] H. CHATE - “Onset of collective and cohesive motion”, Physical review letter (2004), no. 92.

[13] A. DE Masi, P. A. FeErrarl & J. L. LEBowITz — “Reaction-diffusion equations for interacting particle
systems”, Journal of Statistical Physics 44 (1986).

[14] A. DE Masi & P. A. FERRARI — “Separation versus diffusion in a two species system”, Brazilian Journal of
Probability and Statistics 29 (2015), no. 2, p. 387-412.

[15] P. DEGoND, A. FROUVELLE & J.-G. Liu — “Macroscopic limits and phase transition in a system of self-
propelled particles”, Journal of Nonlinear Science 23 (2013), no. 3, p. 427-456.

[16] , “Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics”, Archive for
Rational Mechanics and Analysis (2014).

[17] P. DEGonD, J.-G. L1y, S. MoTscH & V. PANFEROV — “Hydrodynamic models of self-organized dynamics:
derivation and existence theory”, Methods and Applications of Analysis 20 (2013), p. 089-114.

[18] P. DEGOND & S. MoTsCH — “Continuum limit of self-driven particles with orientation interaction”, Mathe-
matical Models and Methods in Applied Sciences 18 (2008).

[19] P. DEGOND & T. Yang — “Diffusion in a continuum model of self-propelled particles with alignment inter-
action”, Mathematical Models and Methods in Applied Sciences 20 (2010), p. 1459-1490.




140 C.ERIGNOUX

[20] J. FARrFAN, A. B. Simas & F. J. VALENTIM — “Dynamical large deviations for a boundary driven stochastic
lattice gas model with many conserved quantities”, Journal of Statistical Physics 139 (2010), p. 658-685.

[21] Y. Fiy & C. MARCHETTI — “Athermal phase separation of self-propelled particles with no alignment”,
Physical Review Letters 108 (2012).

[22] A. FROUVELLE — “A continuum model for alignment of self-propelled particles with anisotropy and density-
dependent parameters”, Mathematical Models and Methods in Applied Sciences 22 (2012), no. 7.

[23] A. GaRcia, E. RopEMICH & H. RUMSEY — “A real variable lemma and the continuity of paths of some
gaussian processes”, Indiana Math. J.20, 565-578. (1978).

[24] G. GiacomiN, J. L. LEBow1Tz & R. MARRA — “Macroscopic evolution of particle systems with short and
long range interactions”, Nonlinearity 13 (2000), no. 6.

[25] G. GREGOIRE & H. CHATE — “Onset of collective and cohesive motion”, Physical Review Letters 92 (2004),
no. 2, p. 025702.

[26] W. JounsoN & W. STORY — “notes on the "15" puzzle”, American Journal of Mathematics 2 (1879), no. 4,
p. pp. 397-404 (English).

[27] C. Kipnis & C. LANDIM — Scaling limits of interacting particle systems, Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences|, vol. 320, Springer-Verlag, Berlin, 1999.

[28] C. Kipnis & S. VARADHAN — “Central limit theorem for additive functionals of reversible markov processes
and applications to simple exclusions”, Communications in Mathematical Physics 104 (1986), no. 1, p. 1-19
(English).

[29] T. Komorowskl, C. LANDIM & S. OLLA — Fluctuations in markov processes. time symetry and martingale
approzimation, Springer, Berlin, 2012.

[30] C. LanpiM, S. OLLA & S. VARADHAN — “Symmetric simple exclusion process: Regularity of the self-diffusion
coefficient”, Communications in Mathematical Physics 224 (2001), no. 1, p. 307-321.

[31] A.Masi, P. FERRARI, S. GOLDSTEIN & W. WICK — “An invariance principle for reversible markov processes.
applications to random motions in random environments”’, Journal of Statistical Physics 55 (1989), no. 3-4,
p. 787-855 (English).

[32] A. OkuBo & S. LEVIN — Diffusion and ecological problems : modern perspectives, Interdisciplinary applied
mathematics, Springer, New York, 2001.

[33] S. OrLA & M. SAsSADA — “Macroscopic energy diffusion for a chain of anharmonic oscillators”, Probability
Theory and Related Fields 157 (2013), p. 721-775.

[34] J. K. PaRRIisH & L. EDELSTEIN-KESHET — “Complexity, pattern, and evolutionary trade-offs in animal
aggregation”, Science 284 (1999), p. 99.

[35] J. QuaAsTEL — “Diffusion of colour in the simple exclusion process”, Communications on Pure and Applied
Mathematics 45 (1992), p. 623-679.

[36] J. QuasTEL, F. REzAKHANLOU & S. R. S. VARADHAN — “Large deviations for the symmetric simple
exclusion process in dimensions d”, Probability Theory and Related Fields 113 (1999), no. 1, p. 1-84 (English).

. SASADA - rodynamic limit for exclusion processes with velocities”, Markov Processes and Relate
37 M. S “Hydrody ic limit f lusi ith velocities”, Markov P d Related
Rields (2010).

[38] , “Hydrodynamic limit for two-species exclusion processes”, Stochastic Processes and their Application
120 (2010), no. 4, p. 494-521.

[39] A. Smmas — “Hydrodynamic limit for a boundary driven stochastic lattice gas model with many conserved
quantities”, Journal of Statistical Physics 139 (2010), no. 2, p. 219-251 (English).

[40] A. P. Soron, M. E. CaTEs & J. TAILLEUR — “Active brownian particles and run-and-tumble particles: A
comparative study”, Furopean Physical Journal Special Topics 224 (2015), p. 1231.

[41] A. P. SoLoNn, J.-B. CaussiN, D. BarroLo, H. CHATE & J. TAILLEUR — “Pattern formation in flocking
models: A hydrodynamic description”, Physical Review E, In press (2015).

[42] A. P. Soron, H. CHATE & J. TAILLEUR — “From phase to microphase separation in flocking models : the
essential role of nonequilibrium fluctuations”, Physics Review E 92 (2015).

[43] A. P. SoLoN & J. TAILLEUR — “Flocking with discrete symmetry: the 2d active ising model”, Physics Review
E 92 (2015).

[44] H. SponN — “Tracer diffusion in lattice gases”, Journal of Statistical Physics 59 (1990), no. 5-6, p. 1227-1239
(English).

[45]

[46] A. G. THomPsoON, J. TAILLEUR, M. E. CaTEs & R. A. BLYTHE — “Lattice models of nonequilibrium
bacterial dynamics”, Journal of Statistical Mechanics: Theory and Ezperiment 2 (2011), p. 29.

, Large scale dynamics of interacting particles, vol. 825, Springer Berlin, 1991.




HYDRODYNAMIC LIMIT FOR AN ACTIVE EXCLUSION PROCESS 141

[47] J. ToNER & Y. TU - “Long-range order in a two-dimensional dynamical Xy model : how birds fly together”,
Physical Review Letters 75 (1995).

[48] S. R. S. VARADHAN — “non-linear diffusion limit for a system with nearest-neighbor interactions ii”, Asymp-
totic problems in probability theory : stochastic models and diffusion on fractals, Pitman Research Notes in
Mathematics, no. 283, Springer-Verlag, 1994, p. 75-128.

[49] , “Regularity of self-diffusion coefficient”, The Dynkin Festschrift: Markov processes and their appli-
cations, Progress in Probability, no. 34, Springer-Verlag, 1994, p. 387-397.

[50] T. VicseEk, A. CzIrROK, E. BEN-JacoB, I. CoHEN & O. SHOCHET — “Novel type of phase transition in a
system of self-driven particles”, Physical Review Letters 75 (1995), p. 1226-1229.

[61] T. VicseEk & A. ZAFEIRIS — “Collective motion”, Physics Reports 517 (2012), no. 3, p. 71-140.

C.ErigNnoUX, CMAP, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau
E-mail : clement[dot]erignoux[at]gmail [dot]com



	1. Introduction
	1.1. Collective motion among biological organisms
	1.2. Microscopic active matter models
	Vicsek model and phase transition in alignment models
	Motility-Induced Phase Transition (MIPS)

	1.3. Hydrodynamics limits for non-gradients systems
	1.4. Multi-type lattice gases, and contributions of this article
	1.5. Active Exclusion Process and main result
	Description of a simplified process with two particle types
	Hydrodynamic limit
	Description of the Active Exclusion Process (AEP)
	Model extensions

	1.6. Structure of the article

	2. Notations and Main theorem
	2.1. Main notations and introduction of the Markov generator
	2.2. Measures associated to a smooth profile and definition of the Markov process
	2.3. Hydrodynamic limit
	2.4. Instantaneous currents

	3. Canonical measures, entropy and irreducibility
	3.1. Definition of the canonical measures
	3.2. Entropy production and local equilibrium
	3.3. Irreducibility and control on full clusters

	4. Law of large number for the spin process
	4.1. Replacement Lemma 
	4.2. Proof of the replacement Lemma 
	4.3. Proof of Lemma 4.3 : The one-block estimate
	4.4. Proof of Lemma 4.4 : The two-block estimate

	5. Preliminaries to the non-gradient method
	5.1. An integration by parts formula in the context of particle systems
	5.2. Spectral gap for the symmetric exclusion spin process
	5.3. Comparison with an equilibrium measure
	5.4. Relative compactness of the sequence (QN)NN
	5.5. Regularity of the density and energy estimate

	6. Non-gradient estimates
	6.1. Replacement of the symmetric current by a macroscopic gradient
	6.2. Replacement of the currents and Lf by their local average 
	6.3. Estimation of the gradients on full clusters
	6.4. Replacement of the macroscopic gradients by their local counterparts
	6.5. Projection on non-full sets and reduction to a variance problem
	6.6. Discrete differential forms in the context of particles systems
	6.7. Space-time covariance limit 
	6.8. Diffusion and drift coefficients
	6.9. Drift part of the hydrodynamic limit

	7. Proof of the hydrodynamic limit
	Appendix A. General tools
	A.1. Topological setup
	A.2. Self-diffusion coefficient
	A.3. Entropy
	A.4. Bound on the largest eigenvalue of a perturbed Markov generator

	Appendix B. Space of parameters M1(S)
	B.1. Equivalence of ensembles
	B.2. Dependency of the grand canonical measures "0362 in "0362
	B.3. Compactness (M1(S), "026A30C "026A30C "026A30C  .  "026A30C "026A30C "026A30C )

	Appendix C. Proof of Theorem 6.25 : Limiting space-time covariance
	Index
	References

