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Highlights 

 Theory of mind and language related processing facets are unlikely to be clearly dissociable in 

the LPL 

 Cluster 1 and 2 in the ventral LPL were both congruently associated with social-cognitive and 

language tasks, yet in distinct functional modules 

 Cluster 3 and cluster 4 in the dorsal LPL showed neither connectional nor functional evidence 

for a domain-specific involvement in either social or language cognitive processes 
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Abstract  

Social cognition and language are two core features of the human species. Despite distributed 

recruitment of brain regions in each mental capacity, the left parietal lobe (LPL) represents a zone of 

topographical convergence. The present study quantitatively summarizes hundreds of neuroimaging 

studies on social cognition and language. Using connectivity-based parcellation on a meta-analytically 

defined volume of interest (VOI), regional coactivation patterns within this VOI allowed identifying 

distinct subregions. Across parcellation solutions, two clusters emerged consistently in rostro-ventral 

and caudo-ventral aspects of the parietal VOI. Both clusters were functionally significantly associated 

with social-cognitive and language processing. In particular, the rostro-ventral cluster was associated 

with lower-level processing facets, while the caudo-ventral cluster was associated with higher-level 

processing facets in both mental capacities. Contrarily, in the (less stable) dorsal parietal VOI, all 

clusters reflected computation of general-purpose processes, such as working memory and matching 

tasks, that are frequently co-recruited by social or language processes. Our results hence favour a 

rostro-caudal distinction of lower- versus higher-level processes underlying social cognition and 

language in the left inferior parietal lobe. 

 

 

Key words: theory of mind, speech, statistical learning, connectivity-based parcellation, functional 

connectivity, functional decoding  
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1. Introduction 

Human cognitive evolution has been leveraged by social and language capacities. A prominent 

feature of social cognition is the ability to infer the thoughts, beliefs and behavioral dispositions of 

other people. Even young infants at the age of seven months appear capable of implicit mental 

inference (Frith and Frith, 2003). In particular, they successfully ascribe false beliefs to agents, 

reflecting a likely understanding that an agent can have incorrect beliefs about the physical world 

(Kovacs et al., 2010). This provides evidence for an early development of advanced social-cognitive 

functions (Kovacs et al., 2010; Onishi and Baillargeon, 2005; Surian et al., 2007). Successful 

perspective-taking is essential for navigation of the inter-personal space. It enables us to collaborate 

with our peers (Engemann et al., 2012; Watson et al., 1999), thus promoting the social relations that 

form the basis of both local communities and global society (Tomasello et al., 2005). 

Social cognition is closely intertwined with language comprehension and production. Both 

processes appear crucial for inter-personal exchange. From an evolutionary perspective, the use of 

language might facilitate successful bonding of (larger) social groups. In particular, language might 

have evolved to facilitate the exchange of social information (Dunbar, 2004). Indeed, previous 

studies have suggested that social topics account for approximately two thirds of human 

communication across age and gender (Dunbar et al., 1997).  

Language is an elementary mental faculty that serves inter-individual communication. A key 

facet of language processing is the association of sounds and symbols with meaningful concepts (i.e., 

semantic processing), which enables us to describe our external environment and articulate abstract 

thought (Price, 2000). The understanding of the semantic implications of a given context is of 

particular relevance for social interactions. It was argued that semantic processing is mandatory for 

our ability to act in a coherent, purposeful manner regarding the meaning of words, objects, or 

situations (Lambon Ralph and Patterson, 2008). Moreover, semantic processing plays a particular 

role in a diverse set of higher-level cognitive processes, contributing to both social cognition and 

language. These cognitive facets include sentence comprehension, discourse, problem solving, and 
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planning (Binder and Desai, 2011; Binder et al., 2009). Taking these psychological categories to the 

neurobiological level, mental representations related to others’ thoughts and to language content 

might feature a shared representation as common denominator: the expression of propositional or 

sentence-like, logical content (Cohen et al., 2014). 

In sum, the above-cited studies suggest a strong functional interaction between social 

cognition and language. However, it remains unclear whether this interaction might also be 

underpinned by a shared functional-anatomical network. Indeed, the neural correlates common to 

social cognition and language are currently under-researched. Informal juxtaposition of previous 

neuroimaging reports on social cognition and language strongly suggests common involvement of 

heteromodal association areas. High-level social cognition tasks, on the one hand, typically modulate 

neural activity in the medial prefrontal cortex, posterior cingulate cortex / precuneus and bilateral 

temporo-parietal junction of the parietal lobe (Mar, 2011). Language tasks, on the other hand, 

typically engage the inferior frontal gyrus, posterior superior temporal gyrus as well as the angular 

gyrus and supramarginal gyrus of the left parietal lobe. Hence, it might be the left parietal lobe (LPL) 

that is commonly recruited in social cognition and language tasks (Binder et al., 2009). Indeed, 

previous neuroimaging and virtual lesion studies with non-invasive brain stimulation have 

demonstrated a key contribution of different LPL subregions to a variety of different social cognitive 

capacities (Bzdok et al., 2013b; Decety and Lamm, 2007; Spreng et al., 2009) and language capacities 

(e.g., Binder et al., 2009; Hartwigsen et al., 2014). 

The inferior parietal lobe, in particular, might have expanded in the primate lineage (Orban 

et al., 2004), while existence of its nonhuman homologue is currently uncertain (Mars et al., 2011; 

Seghier, 2013). Such expansion might relate to our unique capacity of speech and language 

processing and the ability for planning, problem solving and other complex processes (Binder and 

Desai, 2011). More specifically, an LPL subregion extending into the superior temporal gyrus turned 

out to be a key player of converging semantic information pathways (Binder et al., 2009). In studies 

of social cognition, this region is frequently labeled as "temporo-parietal junction" and "posterior 
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superior temporal sulcus". In contrast, the language literature often refers to the same region as 

"angular gyrus" and "posterior superior temporal gyrus / sulcus". For the sake of simplicity, these 

mostly parietal regions, extending into adjacent temporal regions, will henceforth be referred to as 

"LPL". We opted for this functionally, rather than strictly neuroanatomically, motivated term because 

neural activity associated with the two target cognitive processes routinely exceeds traditional 

macroscopical landmarks. 

Taken together, previous evidence converges to a functional contribution of the LPL to social 

cognition and language. However, it is unclear whether both functions engage the same anatomical 

regions of the LPL. It is therefore open to debate whether different subregions in the LPL contribute to 

different processing facets underlying social cognition and language. This question is addressed by 

the present study. First, we conducted connectivity-based parcellation of a volume of interest (VOI) in 

the LPL (Eickhoff et al., 2011; Johansen-Berg et al., 2004). Second, the ensuing connectivity-derived 

subregions in the LPL were characterized by determining their brain-wide connectivity profiles based 

on task-related meta-analytic connectivity-modeling (MACM) and task-unrelated resting-state 

correlations (RSFC). Finally, we inferred the functional associations of the derived subregions from 

extensive meta-data in the BrainMap archive (Fox and Lancaster, 2002). In this way, the present 

report provides a statistically defensible characterization of subdivisions, connectivity, and functions 

of the human left parietal lobe in social and language processes. 
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2. Materials and methods 

In this section, we first provide a step-by-step overview of our study and then describe each of these 

steps in detail. 

2.1. Workflow 

As a prerequisite for meta-analytic connectivity mapping, we first defined the volume of interest 

(section 2.2.). This was achieved by computing converging activation in the left lateral parietal cortex 

across social cognitive and language tasks. In a second step, we computed an activation likelihood 

estimation (ALE) meta-analysis to quantitatively map the whole-brain coactivation profile of each 

voxel within the obtained VOI in the lateral parietal cortex (section 2.3.). The seed voxels were then 

grouped by k-means clustering (Eickhoff et al., 2015) based on similarities of their coactivation 

profiles (i.e., connectivity based parcellation, section 2.4.). In the next step, the optimal filter range 

was selected as a prerequisite for determining the optimal cluster solution (section 2.5.) The most 

pertinent clustering solution was then identified by the combination of different metrics (section 

2.6.). The whole-brain connectivity patterns of each derived cluster (i.e., subregion within the LPL 

VOI) was determined based on meta-analytic connectivity modeling (Eickhoff et al., 2011; Robinson 

et al., 2010) (section 2.7.) and resting-state functional connectivity (Biswal et al., 1995; Yeo et al., 

2011) (section 2.8.). The final step of our analyses included the characterization of the clusters based 

on an overlap between task-dependent and task-independent connectivity (section 2.9) and the 

characterization of cluster function (functional decoding, section 2.10.).  Anatomical localization was 

performed by means of the SPM Anatomy Toolbox (Eickhoff et al., 2007; Eickhoff et al., 2005) 

(section 2.11.). 

 

2.2. Defining the volume of interest in the left lateral parietal lobe 

This study aims to functionally segregate the left lateral parietal lobe in social and language tasks. 

Convergence of parietal activation across both task families was determined by coordinate-based 
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meta-analysis (Eickhoff et al., 2012; Turkeltaub et al., 2002). High-level social processing was 

represented by a previous meta-analysis on 68 theory of mind experiments (Bzdok et al., 2012). 

General language processing was localized by a present meta-analysis on all language-associated 

taxonomy terms (i.e., orthography, speech, syntax, semantics, and phonology) from the BrainMap 

database (Fox and Lancaster, 2002), which amounted to 1841 experiments. The converged activation 

(i.e., OR-conjunction) in the lateral parietal cortex was then extracted from each meta-analysis and 

merged into a composite region (Figure 1). Please appreciate that the location of the LPL VOI was 

thus determined in a functional rather than anatomical fashion. That is, notions of cognitive theory, 

not micro- or macro-anatomical landmarks, constrained the starting point of the present 

investigation. The meta-analytic composite convergence was subject to spatial smoothing by 

iterative voxel-wise image dilation (i.e., adding an outer voxel layer) and erosion (i.e., removing an 

outer voxel layer). The ensuing more regular meta-analytic convergence definition constituted the 

VOI for all subsequent analyses. 

 

2.3. Meta-analytic connectivity modeling   

Computation of whole-brain coactivation maps for each voxel of the VOI was performed based on 

the BrainMap database (www.brainmap.org; Fox and Lancaster, 2002; Laird et al., 2011). We limited 

our analysis to functional neuroimaging studies in the healthy human brain (no interventions, no 

group comparisons), which reported results as coordinates in stereotaxic standard space. These 

inclusion criteria yielded ~7,500 eligible experiments at the time of analysis (September 2014). Please 

note that we considered all eligible BrainMap experiments because any pre-selection based on 

taxonomic categories would have constituted a strong a priori hypothesis about how brain networks 

are organized. However, it remains elusive how well psychological constructs, such as emotion and 

cognition, map on regional brain responses (Laird et al., 2009; Mesulam, 1998; Poldrack, 2006). 

The rationale of coactivation analysis is to compute the convergence across (all foci of) those 

BrainMap experiments where the seed voxel in question is reported as active (Laird et al., 2013). One 
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challenge in constructing voxel-wise coactivation maps is the limited number of experiments 

activating precisely at any particular seed voxel. Hence, pooling across the close spatial 

neighborhood has become the dominant approach in MACM analysis (Eickhoff et al., 2011) to enable 

a reliable characterization of task-based functional connectivity. Importantly, the extent of this 

spatial filter was systematically varied from including the closest 20 to 200 experiments in steps of 

two (Clos et al., 2013). That is, we selected the sets of 20, 22, 24, ..., 198, 200 experiments reporting 

the closest activation at a given seed voxel (i.e., 91 filter sizes). This was implemented by calculating 

and subsequently sorting the Euclidean distances between a given seed voxel and any activation 

reported in BrainMap. Then, the x nearest activation foci (i.e., filter size) were associated with that 

seed voxel. 

The retrieved experiments were used to compute the brain-wide coactivation profile of a 

given seed voxel for each of the 91 filter sizes. In particular, we performed a coordinate-based meta-

analysis over all foci reported in these experiments to quantify their convergence. Since the 

experiments were identified by activation in or near a particular seed voxel, highest convergence was 

obviously found at the location of the seed. Convergence outside the seed, however, indicated 

coactivation across task-based functional neuroimaging experiments. These brain-wide coactivation 

patterns for each individual seed voxel were computed by activation likelihood estimation. The key 

idea behind ALE is to treat the foci reported in the associated experiments not as single points, but 

rather as centers for 3D Gaussian probability distributions that reflect the spatial uncertainty 

associated with neuroimaging results. Using the latest ALE implementation (Eickhoff et al., 2012; 

Eickhoff et al., 2009; Turkeltaub et al., 2012), the spatial extent of those Gaussian probability 

distributions was based on empirical estimates of between-subject and between-template variance 

of neuroimaging foci (Eickhoff et al., 2009). For each experiment, the probability distributions of all 

reported foci were then combined into a modeled activation (MA) map by the recently introduced 

"non-additive" approach that prevents local summation effects (Turkeltaub et al., 2012). The voxel-

wise union across the MA maps of all experiments associated with the current seed voxel then 
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yielded an ALE score for each voxel of the brain that describes the coactivation probability of that 

particular location with the current seed voxel. The ALE scores of all voxels within gray matter (based 

on 10% probability according to the ICBM maps) were recorded before moving to the next voxel of 

the seed region. 

In sum, quantitative ALE meta-analysis over all foci reported in the experiments associated 

with the current seed voxel determined how likely any other voxel throughout the brain was to 

coactivate with that particular seed voxel. Notably, no threshold was applied to the ensuing 

coactivation maps at this point of analysis to retain the complete pattern of coactivation likelihood 

(Bzdok et al., 2013b; Cieslik et al., 2013). 

 

2.4. Connectivity-based parcellation by k-means clustering 

The unthresholded brain-wide coactivation profiles for all seed voxels were then combined into a NS 

x NT coactivation matrix, where NS denotes the number of seed voxels (3790 voxels in the present 

VOI at 2 x 2 x 2 mm3 resolution) and NT the number of target voxels in the gray matter of the 

reference brain volume at 4 x 4 x 4 mm3 resolution (~36.000 voxels located within gray matter). 

Given the use of 91 different filter sizes, this step resulted in 91 individual coactivation matrices, each 

representing the whole-brain connectivity of the seed voxels at a particular filter size. The 

parcellation of the VOI was performed using k-means clustering (Eickhoff et al., 2015) as 

implemented in Matlab with K = 3, 4, 5, 6 using one minus the correlation between the connectivity 

patterns of seed voxels as a distance measure (i.e., correlation distance). This parcellation was 

performed for each of the 91 filter sizes independently, yielding 4 (k means cluster solutions) x 91 

(filter size) independent cluster solutions (cf. Bzdok et al., 2014; Clos et al., 2013; Eickhoff et al., 

2016). K-means clustering is a non-hierarchical clustering method that uses an iterative algorithm to 

separate the seed region into a previously selected number of k non-overlapping clusters (Forgy, 

1965; Hartigan and Wong, 1979). K-means aims at minimizing the variance between elements within 

clusters and maximizing the variance between clusters by first computing the centroid of each cluster 
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and subsequently reassigning voxels to the clusters such that their difference from the nearest 

centroid is minimal. For each of the 4 x 91 parcellations, we recorded the best solutions from 100 

replications with randomly placed initial centroids. That is, k-means was run 100 times with identical 

arguments but random centroid initializations (Thirion et al., 2014). Keeping the clustering solution 

exhibiting lowest voxel-to-centroid distances remedies the tendency for local minima. Please note 

that a summary estimate across many k-means iterations can consolidate the parcellation estimate, 

yet cannot guard against this algorithm's risk for local minima. 

 

2.5. Selection of optimal filter range 

For each of the 91 filter sizes, the k-means procedure thus yielded 4 different solutions for 

parcellating the VOI into three to six subdivisions. One of the well-known challenges of data 

clustering in neuroinformatics, and computer science in general, is the choice of an “optimal” cluster 

solution (so-called "cluster validity problem") (Eickhoff et al., 2015). This problem is further 

complicated in the current MACM-based parcellation approach because not only the optimal number 

of clusters K had to be determined but also the use of multiple spatial filter sizes. In previous 

parcellation studies involving MACM and multiple filter sizes, this issue was addressed by averaging 

across all filter sizes (Cieslik et al., 2013). As an improvement of this previous approach, we here used 

a recently introduced two-step procedure that involves a first decision on those filter sizes (i.e., the 

target range) to be included in the final analysis and a second decision on the optimal cluster solution 

(Bzdok et al., 2014; Clos et al., 2013; Eickhoff et al., 2016). That is, we first examined the properties of 

each filter size across all cluster solutions and isolated the most stable range of filter sizes. These 

were then submitted to further analysis selecting the number of clusters. The first step was based on 

the consistency of the cluster assignments for the individual voxels across the different filter sizes 

and selecting the filter range with the lowest number of deviants, i.e., voxels that were assigned 

differently as compared to the solution from the majority (mode) of filters. In other words, we 

identified those filter sizes that reflected solutions most similar to the consensus solution. We then 
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compared the number of deviant cluster assignments for parcellation solutions based on different 

filter sizes. Deviant cluster assignments reflect the number of times a given voxel was assigned to 

another than the majority cluster, normalized for K. The filter size range was set from 100 to 160. 

This was based on the increase in weighted sum (across all K) of the z-normalized number of deviant 

voxel assignments before and after these values. That is, at the cut off at z < -0.5, only those filter 

sizes were included where the number of deviants was at least half a standard-deviation below the 

average number of deviants across all filter sizes. In all subsequent steps, the analysis was thus 

restricted to the parcellations based on coactivation as estimated from the nearest 100 to 160 

experiments. 

 

2.6. Selection of cluster number 

We subsequently determined the optimal solution of k clusters (restricted to the selected filter sizes 

as outlined in the last paragraph). This was indicated by majority vote of three different criteria that 

describe cluster-separation and topological properties of the various cluster solutions. 

First, as a topological criterion, we considered the percentage of misclassified voxels 

(deviants) across filter sizes of a given cluster solution. This criterion indirectly reflects the amount of 

noise and potentially local effects in the clustering. In particular, the criterion addresses the across-

filter stability, that is, the average percentage of voxels for each filter size that were assigned to a 

different cluster, as compared to the most frequent assignment of these voxels across all filter sizes. 

Those k parcellations were considered good solutions whose percentages of deviants were not 

increased compared to the k-1 solution and, in particular, if the subsequent k+1 solution lead to a 

higher percentage of deviants. 

Second, as another topological criterion, we assessed the percentage of voxels not related to 

the dominant parent cluster compared to the K-1 solution. This measure is related to the hierarchy 

index (Kahnt et al., 2012) and corresponds to the percentage voxels that are not present in hierarchy, 
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K, compared to the previous K-1 solution. That is, voxels assigned e.g. to the blue cluster in the K = 3 

solution stemming from a subset of voxels previously assigned to the green cluster (in the K = 2 

solution) would be excluded if the majority of the blue cluster voxels actually stemmed from the red 

cluster (in the K = 2 solution). Good solutions for a given K cluster parcellation were those wherein 

the percentage of lost voxels was below the median across all possible solutions (i.e., cluster 

parcellations 3 - 6), where the respective clustering step resulted in a local minimum and/or the 

following clustering step featured a maximum in the percentage of lost (hierarchically inconsistent) 

voxels. 

Third, as a cluster-separation criterion, the change in inter- versus intra-cluster distance ratio 

was computed (Bzdok et al., 2015; Chang et al., 2009). This ratio is defined as the average distance 

between the cluster centers (i.e., inter-cluster distance) divided by the average distance of a given 

voxel to its own cluster center (i.e., intra-cluster distance). Increase in this ratio was computed by 

taking the first derivative. An increased ratio compared to the k-1 solution indicates a better 

separation of the obtained clusters. Conversely, good solutions do not show a larger inter-cluster 

distance and a smaller intra-cluster distance in the subsequent k+1 solution. 

These three different criteria estimating cluster stability conjointly allowed for an objective, 

cross-validated identification of the cluster solution with the highest within-cluster homogeneity and 

between-cluster heterogeneity based on seed-voxel-wise whole brain connectivity. 

 

2.7. Characterization of the clusters: task-dependent connectivity (MACM analysis) 

To determine the significant functional connectivity of the derived clusters, another meta-analytic 

connectivity modeling analysis (MACM) was performed. In the first step, we identified all 

experiments in the BrainMap database that featured at least one focus of activation in a particular 

cluster derived from the coactivation-based parcellation (CBP). CBP divides a volume of interest into 

distinct subregions by, first, computing the whole-brain connectivity profile for each individual voxel 
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in the VOI and, second, using the ensuing voxel-wise connectivity profiles to group the VOI voxels 

such that connectivity is similar for the voxels within a group and different between groups. That is, 

in contradistinction to the above MACM analyses, we did not select experiments activating at or 

close to a particular voxel but rather all those that activated in one of the CBP-derived clusters. Next, 

an ALE meta-analysis was performed on these experiments as described above.  

In contrast to the MACM underlying the coactivation-based parcellation, where ALE maps 

were not thresholded in order to retain the complete pattern of coactivation likelihoods, statistical 

inference was now performed. To establish which regions were significantly coactivated with a given 

cluster, ALE scores for the MACM analysis of this cluster were compared to a null-distribution 

reflecting a random spatial association between experiments with a fixed within-experiment 

distribution of foci (Eickhoff et al., 2009). This random-effects inference assesses above-chance 

convergence between experiments, not clustering of foci within a particular experiment. The 

observed ALE scores from the actual meta-analysis of experiments activating within a particular 

cluster were then tested against ALE scores obtained under a null-distribution of random spatial 

association yielding a p-value based on the proportion of equal or higher random values (Eickhoff et 

al., 2012). The resulting non-parametric p-values were transformed into Z-scores and thresholded at 

a cluster-level corrected threshold of p < 0.05 (cluster-forming threshold at voxel-level p < 0.001). 

Differences in coactivation patterns between the identified clusters were tested by 

performing MACM separately on the experiments associated with either cluster and computing the 

voxel-wise difference between the ensuing ALE maps. All experiments contributing to either analysis 

were then pooled and randomly divided into two groups of the same size as the two original sets of 

experiments defined by activation in the first or second cluster (Eickhoff et al., 2011). ALE-scores for 

these two randomly assembled groups, reflecting the null-hypothesis of label-exchangeability, were 

calculated and the difference between these ALE-scores was recorded for each voxel in the brain. 

Repeating this process 10,000 times then yielded a voxel-wise null-distribution on the differences in 

ALE-scores between the MACM analyses of the two clusters. The ‘true’ differences in ALE scores 
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were then tested against this null-distribution yielding a p-value for the difference at each voxel 

based on the proportion of equal or higher differences under label-exchangeability. The resulting p-

values were thresholded at p > 0.95 (95% chance of true difference), transformed into Z-scores, and 

inclusively masked by the respective main effects, i.e., the significant effects in the MACM for the 

particular cluster.  

Finally, we computed the specific coactivation pattern for all clusters, that is, brain regions 

significantly more coactivated with a given cluster than with any of the other ones. This specific 

cluster-wise coactivation pattern was computed by performing a conjunction analysis over the 

differences between this cluster and the remaining clusters (see Results section for details). 

 

2.8. Characterization of the clusters: task-independent connectivity (RSFC) 

Significant cluster-wise whole-brain connectivity was likewise assessed using resting-state 

correlations as an independent modality of functional connectivity for cross-validation across 

disparate brain states. RSFC fMRI images were obtained from the Nathan Kline Institute Rockland–

sample, which are available online as part of the International Neuroimaging Datasharing Initiative 

(http://fcon_1000.projects.nitrc.org/indi/pro/nki.html). In total, the processed sample consisted of 

10 minutes of resting-state images from 132 healthy participants between 18 and 85 years (mean 

age: 42.3 ± 18.08 years; 78 male, 54 female) with 260 echo-planar imaging (EPI) images per 

participant. Images were acquired on a Siemens TrioTim 3T scanner using blood-oxygen-level-

dependent (BOLD) contrast [gradient-echo EPI pulse sequence, repetition time (TR) = 2.5 s, echo time 

(TE) = 30 ms, flip angle = 80°, in-plane resolution=3.0 x 3.0 mm, 38 axial slices (3.0 mm thickness), 

covering the entire brain]. The first four scans served as dummy images allowing for magnetic field 

saturation and were discarded prior to further processing using SPM8 (www.fil.ion.ucl.ac.uk/spm). 

The remaining EPI images were then first corrected for head movement by affine registration using a 

two-pass procedure. The mean EPI image for each participant was spatially normalized to the MNI 

single-subject template (Holmes et al., 1998) using the ‘unified segmentation’ approach (Ashburner 
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and Friston, 2005). The ensuing deformation was then applied to the individual EPI volumes. Finally, 

images were smoothed by a 5-mm FWHM Gaussian kernel to improve signal-to-noise ratio and 

account for residual anatomical variations. 

The time-series data of each individual seed voxel were processed as follows (Fox et al., 

2009; Weissenbacher et al., 2009): In order to reduce spurious correlations, variance that could be 

explained by the following nuisance variables was removed: (i) The six motion parameters derived 

from the image realignment, (ii) the first derivative of the realignment parameters, and (iii) mean 

gray matter, white matter, and CSF signal per time point as obtained by averaging across voxels 

attributed to the respective tissue class in the SPM 8 segmentation (Reetz et al., 2012). All of these 

nuisance variables entered the model as first- and second-order terms (Jakobs et al., 2012). Data 

were then band-pass filtered preserving frequencies between 0.01 and 0.08 Hz since meaningful 

resting-state correlations will predominantly be found in these frequencies given that the BOLD-

response acts as a low-pass filter (Biswal et al., 1995; Fox and Raichle, 2007). 

To measure cluster-wise task-independent connectivity, time courses were extracted for all 

gray-matter voxels of a given cluster. The cluster time course was then expressed as the first 

eigenvariate of these voxels’ time courses. Pearson correlation coefficients between the time series 

of the CBP-derived LPL clusters and all other gray-matter voxels in the brain were computed to 

quantify RSFC. These voxel-wise correlation coefficients were then transformed into Fisher‘s Z-scores 

and tested for consistency across participants using a random-effects, repeated-measures analysis of 

variance. The main effect of connectivity for individual clusters and contrasts between them were 

tested using the standard SPM8 implementations with the appropriate non-sphericity correction. The 

results of these random-effects analyses were cluster-level corrected for multiple comparisons at p < 

0.05 (cluster-forming threshold at voxel-level: p < 0.001), analogous to the MACM-based difference 

analysis. The specific resting-state correlations for a given cluster were then computed by performing 

a conjunction analysis across the differences between a given cluster and the remaining ones, 

analogous to the MACM-based cluster analyses above. 
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2.9. Characterization of the clusters: conjunction across connectivity types and clusters 

To specify brain regions showing task-dependent and task-independent functional connectivity with 

the derived clusters in the LPL, we performed a conjunction analysis of the MACM and RSFC results 

using the strict minimum statistics (Nichols et al., 2005). Brain regions connected with individual 

clusters across both connectivity measures were characterized by computing the intersection (i.e., 

AND-conjunction) of the (cluster-level family-wise-error-corrected) connectivity maps from the two 

connectivity analyses detailed above. In this way, each LPL cluster was associated with a network of 

brain regions that are congruently connected to that cluster across two disparate brain states, i.e., 

mental operations in a task-focused and task-free setting. 

 

2.10. Characterization of the clusters: function (functional decoding) 

Finally, the identified clusters were individually submitted to functional decoding (Amft et al., 2014; 

Balsters et al., 2014; Muller et al., 2013). Note that this functional characterization constitutes a post-

hoc procedure that is subsequent to and independent of the connectivity analyses. The functional 

characterization was based on the BrainMap meta-data that describe each neuroimaging experiment 

included in the database. Behavioral domains code the mental processes isolated by the statistical 

contrasts (Fox et al., 2005) and comprise the main categories cognition, action, perception, emotion, 

and interoception, as well as their related sub-categories. Paradigm classes categorize the specific 

task employed (see http://brainmap.org/scribe/ for the complete BrainMap taxonomy). 

Forward inference on the functional characterization then tests the probability of observing 

activity in a brain region given knowledge of the psychological process, whereas reverse inference 

tests the probability of a psychological process being present given knowledge of activation in a 

particular brain region (Varoquaux and Thirion, 2014; Yarkoni et al., 2011). In the forward inference 

approach, a cluster’s functional profile was determined by identifying taxonomic labels for which the 
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probability of finding activation in the respective cluster was significantly higher than the a priori 

chance (across the entire database) of finding activation in that particular cluster. Significance was 

established using a binomial test (p < 0.05). That is, we tested whether the conditional probability of 

activation given a particular label [P(Activation|Task)] was higher than the baseline probability of 

activating the region in question per se [P(Activation)]. In the reverse inference approach, a cluster’s 

functional profile was determined by identifying the most likely behavioral domains and paradigm 

classes given activation in a particular cluster. This likelihood P(Task|Activation) can be derived from 

P(Activation|Task) as well as P(Task) and P(Activation) using Bayes’ rule. Significance was then 

assessed by means of a chi-square test (p < 0.05). In sum, forward inference assessed the probability 

of activation given a psychological term, while reverse inference assessed the probability of a 

psychological term given activation. 

In the context of quantitative functional decoding, it is important to appreciate that this 

approach aims at relating defined psychological tasks to the examined brain regions instead of 

claiming “a unique role” of a brain region for any psychological task (Poldrack, 2006; Yarkoni et al., 

2011). Put differently, an association of task X to brain region Y obtained in these analyses does not 

necessarily imply that neural activity in region Y is limited to task X. 

 

2.11. Anatomical localization 

The SPM Anatomy Toolbox (Eickhoff et al., 2007; Eickhoff et al., 2005) was used to allow for 

investigator-independent anatomical localization of imaging results. By means of maximum 

probability map (MPM), activation clusters were automatically assigned to the most likely 

cytoarchitectonic area. MPMs are drawn from earlier microscopic investigations, including the inter-

subject variability and aided by algorithmic definition of micro-anatomial borders of brain areas 

(Zilles and Amunts, 2010). Please note that not all activation clusters could thus be assigned to a 

cytoarchitectonic map. 
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3. Results 

3.1. Cluster number 

Several cluster validity metrics (cf. Eickhoff et al., 2015) were applied to weigh the various cluster 

solutions for the parietal VOI against each other (Figure 3). First, as a topological criterion, the 

percentage of misclassified voxels across filter sizes was lowest for solutions up to four clusters. This 

indicated that low cluster numbers exhibited the least noise across the different filter sizes. Second, 

as another topological criterion, the percentage of voxels not related to the dominant parent cluster 

was lower in the four-cluster solution than for solutions with more clusters. Dividing the parietal VOI 

into four clusters thus contained relatively few re-grouped voxels and therefore high continuity with 

their dominant parent cluster from the k-1 solution. Third, change of ‘inter-cluster/intra-cluster 

ratio’, another cluster-separation criterion, was higher for four clusters comparing to the three- and 

five-cluster solutions. This indicated that the four-cluster solution isolated each cluster well from the 

remaining ones. The four different measures of clustering quality thus unequivocally advocated the 

four-cluster solution as the most neurobiologically meaningful division model of the parietal VOI 

(Figure 4). 

 

3.2. Cluster topography 

Although the four-cluster solution emerged as the best-fitting model, it is instructive to consider the 

neighboring cluster solutions and their relations. In the three-cluster solution (Figure 2, top row), 

dorsal aspects of the VOI were separated into a single cluster (cytoarchitectonically assigned to hIP1, 

hIP3, and 7A; Choi et al., 2006), while ventral aspects of the VOI were separated into a rostro-ventral 

(most likely related to Wernicke's area, no cytoarchitectonic assignment) and a red caudo-ventral 

(cytoarchitectonically assigned to PGa and PGp; Caspers et al., 2006) cluster. In the four-cluster 

solution (Figure 2, middle row), the former dorsal cluster was further subdivided into a bigger green 

rostro-medial (cytoarchitectonically assigned hIP2, hIP3, and 7A; Choi et al., 2006; Scheperjans et al., 

2008) and a smaller caudo-lateral (cytoarchitectonically assigned to hIP1, hIP3, and PGa; Caspers et 
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al., 2008; Choi et al., 2006) cluster. In the five-cluster solution (Figure 2, bottom row), the former 

cluster was further subdivided into a medial (cytoarchitectonically assigned to hIP1, hIP3, and 7A; 

Choi et al., 2006; Scheperjans et al., 2008) and a lateral (cytoarchitectonically assigned to hIP1 and 

PGa; Caspers et al., 2008; Scheperjans et al., 2008) cluster. 

Note that k-means clustering was here applied independently several times to the same VOI. 

This procedure does not enforce hierarchically consistent cluster solutions (Jain, 2010; Jain et al., 

1999). Nevertheless, the rostro-ventral and caudo-ventral clusters emerged independently with 

consistent topography in all three clustering analyses. This means that the regional heterogeneity in 

the whole-brain connectivity was more prominent for these clusters than for the clusters emerging 

from the green cluster. In other words, the two clusters in the ventral VOI capture a more distinct 

connectional-functional segregation than the later emerging clusters in the dorsal VOI (Passingham et 

al., 2002). We will therefore focus on the four-cluster solution in this paper. 

 

3.3. Individual cluster connectivity 

We first assessed the cluster-level corrected meta-analytic coactivations (MACM) and resting-state 

functional connectivity (RSFC) of each LPL cluster individually (Figure 5, upper row). In MACM 

analyses, cluster 1 featured bilateral connectivity to the inferior parietal lobe (cytoarchitectonically 

assigned to PGa, PF, and PFm; Caspers et al., 2006), the superior/middle temporal gyrus (STG, MTG), 

superior temporal sulcus (STS), inferior frontal gyrus (IFG; cytoarchitectonially assigned to BA44/45; 

Amunts et al., 1999), anterior insula (AI), mid-cingulate gyrus (MCC)/supplementary motor cortex 

(SMA, cytoarchitectonically assigned to BA6), posterior cingulate cortex (PCC), and thalamus. 

Furthermore, cluster 1 was connected to the right precuneus. The cluster-level corrected RSFC of 

cluster 1 (Figure 5, middle row) featured the same set of connectivity targets, except for significant 

connectivity to the thalamus, with higher overall connectivity strengths. This was formally confirmed 

by the conjunction analysis between MACM and RSFC connectivity of cluster 1 (Figure 5, lower row). 
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Cluster 2 featured bilateral connectivity to the inferior parietal lobe (cytoarchitectonically 

assigned to PGa, PGp, and PFm), ventromedial-, frontopolar, and dorsomedial prefrontal cortex 

(vmPFC, FP, dmPFC), extending into the anterior ACC (rACC), PCC/precuneus, and MTG, extending 

into the left STS. Cluster 2 was also connected to the left IFG (extending into the AI), hippocampus 

(cytoarchitectonically assigned to CA; Amunts et al., 2005), extending into the amygdala, as well as 

superior frontal gyrus and dorsolateral prefrontal cortex (dlPFC). This connectivity profile was absent 

for the respective right hemispheric regions. These connectivity targets were confirmed by individual 

RSFC and its conjunction with MACM results. Yet, cluster 2 showed also significant RSFC to the right 

MTG. 

Clusters 3 and 4 showed highly similar connectivity patterns, although regionally differing in 

connectivity strength. Both clusters were connected to the bilateral inferior parietal lobe and 

intraparietal sulcus (IPS) (cytoarchitectonically assigned to hIP, PGa, and 7A; Choi et al., 2006), dlPFC, 

IFG (cytoarchitectonically assigned to BA44/45), AI, MCC/SMA (cytoarchitectonically assigned to 

BA6), thalamus, precuneus, primary visual cortex, and cerebellum (not shown). Both clusters were 

further connected to the left MTG. In individual and conjunction RSFC analysis, the significant 

connectivity targets of cluster 3 and 4 were confirmed by generally stronger correlation. Yet, cluster 

3 and 4 also showed RSFC to the bilateral inferior temporal gyrus. Additionally, cluster 3 showed 

additional RSFC to the PCC and precuneus, while cluster 3 did not show the thalamic connectivity 

observed in MACM. 

 

3.4. Specific cluster connectivity 

Given the overlap between the connectivity profiles of the LPL clusters, we investigated parts of the 

brain that were more strongly connected to a given cluster than the respective three other clusters 

(Figure 6). To this end, we isolated the brain regions that were selectively connected with a given 

cluster in contrast to all remaining clusters. For instance, to characterize the specific cluster 
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connectivity of cluster 1, we computed the AND conjunction across the three difference maps 

(clusters 1 - clusters2), (cluster 1 - cluster 3), and (clusters 1 - cluster 4). This procedure removed 

connectivity of cluster 1 that was shared with clusters 2, 3, and 4. This is because any voxel that is 

deemed to reflect specific connectivity of a given cluster had been determined to be statistically 

more associated with that cluster in three separate difference analyses with the respective three 

other clusters. 

According to MACM, cluster 1 featured highest connectivity strength to the bilateral STG 

(coinciding with Wernicke's area on the left side), STS, IFG, as well as aspects of the inferior parietal 

lobe (cytoarchitectonically assigned to PF/PFm). In the left hemisphere, cluster 1 was also specifically 

connected to the AI. These specific connectivity targets were confirmed by RSFC. Additionally, cluster 

1 feature highest RSFC to the MTG, temporal pole (TP), and mid/posterior cingulate cortex. The 

conjunction across specific MACM and RSFC corroborated the specific MACM profile of cluster 1, 

except for the left AI and IFG. 

Cluster 2, according to MACM, demonstrated the highest connectivity strength to the 

bilateral vmPFC/FP/dmPFC (Bzdok et al., 2013a), extending into the rACC, PCC, as well as aspects of 

the inferior parietal lobe (cytoarchitectonically assigned to PGp). Specific connectivity in the left 

hemisphere was observed in the SFG and MTG. Notably, cluster 2 yielded the most widespread 

selective connectivity to highly associative brain regions among all four clusters. RSFC confirmed 

these specific connectivities by conjunction analysis and showed additional distributed results by 

individual analysis in the midcingulate, medial temporal, visual, and anterior-cingulate regions. 

Cluster 3 featured highest MACM coupling with the bilateral IPS (cytoarchitectonically 

assigned to hIP1) and anterior aspects of dlPFC. Specific connectivity in the left hemisphere was 

observed in left inferior temporal gyrus (IFG) and anterior aspects of MCC/SMA. Individual and 

conjunction RSFC analysis confirmed this set of regions. Yet, a part of the PCC and the right IFG were 

only revealed by specific RSFC. 
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Cluster 4 featured highest MACM connectivity to bilateral superior parietal lobe 

(cytoarchitectonically assigned to area 7A), posterior aspects of MCC/SMA (cytoarchitectonically 

assigned to BA6), and posterior aspects of dlPFC, as well as AI, primary visual cortex (including 

fusiform gyrus), and cerebellum (not shown). Indeed, specific RSFC confirmed this entire set of 

regions by conjunction analysis, except for the visual cortex. 

 

3.5. Functional decoding of clusters 

We performed quantitative functional decoding by testing for BrainMap meta-data terms associated 

with activation in each cluster (Figure 7). For the sake of robustness, the description of functional 

associations will be concentrated on taxonomic associations that were determined to be statistically 

significant in both forward and reverse inference analyses. Note that the functional decoding analysis 

represents a descriptive post-hoc analysis of the functional profile of individual clusters rather than a 

direct comparison between different clusters. 

Importantly, both cluster 1 and 2 were congruently (i.e., across forward and reverse 

inference) functionally associated with general social cognition processing, including theory of mind, 

as well as semantic processing. Cluster 2 was further congruently functionally associated with explicit 

memory retrieval and episodic memory retrieval. 

Both cluster 3 and 4 were congruently associated with working memory and general 

cognitively demanding tasks, including delayed match to sample and n-back tasks, spatial processing, 

including mental rotation, as well as number processing, including counting. Only cluster 3 was 

congruently associated with Wisconsin card sorting test, while only cluster 4 was further congruently 

associated with visual processing, saccade generation, and attentional tasks, including stroop 

experiments. 
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4. Discussion 

We here used connectivity-based parcellation to investigate the functional heterogeneity of the left 

parietal lobe during social-cognition and language performance. We targeted the question whether 

both functions engage the same or different anatomical subregions within the left parietal lobe. 

Driven by regional differences in coactivation patterns derived from hundreds of neuroimaging 

studies archived in the BrainMap database (Fox and Lancaster, 2002), the VOI in the left parietal lobe 

was segregated into 3 to 6 clusters. Across clustering analyses, clusters emerging in the ventral 

versus dorsal VOI were more consistent. The four-cluster solution was identified as the most 

neurobiologically meaningful subdivision of the present VOI. As the first main finding, two clusters in 

the inferior VOI were significantly associated with both social cognitive and language processes. This 

suggests that the inferior parietal lobe is a convergence zone of social cognitive and language 

processing. As the second main finding, connectivity and functional decoding analyses indicated a 

rostro-versus caudo-ventral distinction of inferior VOI clusters (Figure 2, in blue and red), related to 

lower- versus higher-level aspects, respectively, of both social and language processes (see below for 

details). In contrast, clusters that emerged in the superior VOI (Figure 2, in orange) were 

connectionally and functionally related to domain-general attention and working-memory processes. 

On a methodological note, we relied on a data-guided meta-analytically-defined seed region 

for target volume definition to make a minimum of a-priori assumptions from neuroanatomical 

nomenclature or cognitive theory. Consequently, the VOI definition was functionally, rather than 

anatomically, motivated. This was accounted for by the word choice "LPL" and explains why this VOI 

exceeds the parietal lobe proper to include adjacent parts of the posterior superior temporal gyrus 

and posterior temporal sulcus (cf. Bzdok et al., 2013b; Mars et al., 2012). 
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4.1. Specific connectivity profiles of the four-cluster solution  

The rostro-ventral cluster 1 (blue) exhibited specific connectivity (i.e., connectivity that is stronger 

with cluster 1 than any other cluster in the LPL VOI) with the bilateral superior temporal gyrus and 

sulcus, inferior frontal gyrus, and regions in the left parietal lobe, as well as functional associations 

with general social cognitive and semantic processing. These areas have previously been associated 

with general aspects of task processing and stimulus-response processing in social cognition and 

language tasks (e.g., non-story based theory of mind processes, see Mar, 2011 for meta-analysis). 

Note that cluster 1 could not be assigned to any cytoarchitectonically defined region. This might 

explain the inconsistent labeling of this region in previous literature (see introduction and below). 

In contrast to cluster 1, the caudo-ventral cluster 2 (red) was specifically connected with the 

bilateral inferior parietal lobe, ventro- and dorsomedial prefrontal cortex (extending into the 

neighboring anterior cingulate cortex) and the posterior cingulate cortex, and left superior frontal 

gyrus and middle frontal gyrus. Functional decoding analysis revealed associations with general social 

cognitive, semantic and memory processing. Previous studies suggested that the above described 

regions subserve high-level associative functions, including the default mode of brain function 

(Buckner et al., 2008; Raichle et al., 2001). Accordingly, the observed connectivity profile for cluster 2 

converges with a previous resting-state correlation study that reported increased task-independent 

connectivity for a similarly located region with the default-mode network (Uddin et al., 2011). It was 

suggested that the default mode network maintains stimulus-independent thoughts or mind 

wandering (Konishi et al., 2015; Raichle et al., 2001; Weissman et al., 2006). It may set the stage for 

self-projection and scene construction in the constant switching between interoceptive and 

exteroceptive mind states (Buckner and Carroll, 2007; Li et al., 2015; Mars et al., 2013). 

Cytoarchitectonically, cluster 2 was here assigned to area PGa and PGp (Bzdok et al., 2013b; Caspers 

et al., 2006). While these regions are often labeled as either "temporo-parietal junction" or "angular 

gyrus" in neuroimaging studies, their proper anatomical borders are subject to debate (Decety and 

Lamm, 2007; Seghier, 2013). 
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The remaining two clusters in the dorsal VOI were characterized by highly similar connectivity 

profiles. The rostro-medial cluster 3 (orange) featured specific connectivity to bilateral IPS and 

anterior portions of the dorsolateral prefrontal cortex as well as left middle temporal gyrus / inferior 

temporal sulcus and anterior mid-cingulate cortex / supplementary motor area. Finally, the caudo-

lateral aspect of the dorsal VOI (green cluster 4) was connected to extended portions of the bilateral 

IPS, posterior supplementary motor area, and posterior dorsolateral prefrontal cortex / primary 

motor cortex, cerebellum, anterior insula, and primary visual cortex, including the right fusiform 

gyrus. Notably, cluster 3 and 4 featured connections to areas previously associated with general 

cognitive control processes (i.e., bilateral IPS, SMA / MCC and insula (Clos et al., 2013; Dehaene et al., 

2003; Dosenbach et al., 2006; Seeley et al., 2007)). This is consistent with these clusters' present 

functional associations such as working memory, n-back, spatial processing and number processing 

tasks. Cytoarchitectonically, the green cluster 3 was assigned to (cytoarchitectonically assigned hIP2, 

hIP3, and 7A; Choi et al., 2006; Scheperjans et al., 2008). The orange cluster 4 was assigned to 

neighboring regions (cytoarchitectonically assigned to hIP1, hIP3, and PGa; Caspers et al., 2008; Choi 

et al., 2006). 

 

4.2. Left inferior parietal lobe engagement in social cognition and language: Evidence for distinct 

functional modules 

To the best of our knowledge, no previous neuroimaging study has aimed at the dissociation 

between high-level social and language processes in the LPL area (cf. Kobayashi et al., 2007; Straube 

et al., 2010). This suggests that these cognitive processes might be too closely entangled to be 

successfully teased apart by contemporary MRI technology and available neuroimaging repositories. 

It is thus enticing to speculate that both social and language functions might rely on identical neural 

mechanisms for problem solving. This notion is supported by our observation of a strongly 

overlapping functional association with social cognition and semantic processes in cluster 1 and 2. 

Indeed, functional decoding analyses revealed that clusters 1 and 2 were congruently (i.e., across 
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forward and reverse functional inference) associated with social cognition and semantics. It is hence 

possible that neural tissue in cluster 1 and 2 solves computational problems that are shared by, but 

not specific to, social or linguistic processing problems. In fact, a similar interpretation was proposed 

for the right temporo-parietal junction (Decety and Lamm, 2007; Kobayashi et al., 2006). 

However, cluster 2 (but not 1) was additionally associated with cognitively more complex and 

demanding tasks such as episodic or explicit memory retrieval and syntactic processing. Episodic and 

explicit memory retrieval strongly draws on complex semantic processing and contributes to social 

cognitive processes (see section 4.4.). Syntactic processing, on the other hand, is a core language 

process that is closely intermingled with semantic processing. It refers to the hierarchical sequencing 

of words and their meanings (Price, 2010) and is mandatory for sentence processing in both social 

cognitive and language tasks. Together, this favors a more specialized contribution of cluster 2 to 

high-level social cognitive and language functions, including semantic integration and sentence 

processing. Hence, we propose distinct functional modules within the LPL, with the rostro-ventral 

cluster 1 (blue) being engaged in lower-level aspects of stimulus processing and external task 

response (i.e., perception-action cycles) and the caudo-ventral red cluster being engaged in complex 

semantic computations. This notion is supported by our finding that cluster 1 showed a more 

bilateral connectivity pattern, while the functional connectivity profile of cluster 2 was more strongly 

left-lateralized (Binder et al., 2009). This further converges with recent functional-anatomical models 

of language (e.g., Hickok and Poeppel, 2004; Hickok and Poeppel, 2007). These models favor a 

bilateral organization of low-level speech functions and early cortical processes of speech perception, 

which engage, among others, the posterior STG (coinciding with our blue cluster 1). In contrast, more 

complex conceptual linguistic functions are proposed to be more strongly left-lateralized (see also 

Hickok, 2009).  

The notion of distinct functional modules was also proposed for the right TPJ area (Bzdok et 

al., 2013b; Mars et al., 2011; Schurz et al., 2014). Consequently, the here observed rostro-caudal 

increase in cognitive complexity in the left-hemispheric inferior parietal lobe might mirror a similar 
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shift from more rostral lower-order to more caudal complex computation in the right-hemispheric 

inferior parietal lobe (Caspers et al., 2011). 

This contention goes hand-in-hand with recent models of social cognition. For instance, 

Schaafsma and colleagues (2015) suggested that social cognition can be subdivided in two processing 

streams. A rapid, automatic processing stream might not require verbal competence. In contrast, a 

slower, deliberative verbal form is featured when we consciously reflect about social cognitive 

processes. Accordingly, a recent meta-analysis provided evidence for an involvement of a more 

anterior region in the left pSTG / STS (coinciding with the blue cluster 1) in non-verbal and non-story 

theory of mind processing. In contrast, a more posterior region in the left angular gyrus / temporal 

parietal junction (coinciding with the red cluster 2) was associated with theory of mind stories that 

hinge on verbal processing analysis (Mar, 2011). A functional-anatomical dissociation of low-level vs. 

higher level processing facets would be further supported by several previous neuroimaging studies 

on language (Vigneau et al., 2006). These authors suggested that the processing of verbal material 

follows a rostro-caudal information flow in left temporo-parietal regions. Low-level auditory 

semantic analyses were associated with the posterior portion of the pSTG / STS (coinciding with blue 

cluster 1), while a region in the angular gyrus of the LPL (coinciding with red cluster 2) would be 

engaged in semantic analysis. The present and previous results thus converge to social cognition and 

language processes functionally overlapping and likely recruiting very similar neural networks with 

different LPL nodes as a function of task complexity.  

 

4.3. Contributions of cluster 1 to social cognition and language: low-level processing facets 

With respect to the precise functions of the blue cluster 1, previous studies associated a similarly 

located area in the pSTG / STS with hierarchically lower social processes like gaze (Calder et al., 2002) 

or the observation of whole-body motion or unexpected body motion (Van Overwalle, 2009). This 

author argued that these processes likely reflect an orientation response in line with the action or 

attention of the observed actor. Accordingly, increased task-related activity of the left pSTG / STS 
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was also found during person vs. object processing (Abraham et al., 2008), (non-verbal) theory of 

mind cartoons vs. non-theory of mind cartoons (Vollm et al., 2006) or false beliefs vs. false photo 

tasks (Aichhorn et al., 2009). It was suggested that the false-belief task might simply be more 

executively demanding than the photo task. This contention assumed that false-belief tasks require 

the reconciliation of a discrepancy between someone’s belief and the current state of the world 

(Cohen et al., 2014). Hence, these contrasts might express domain-general executive demanding 

processes rather than domain-specific social cognitive processes (Sabbagh et al., 2006).  

It is important to appreciate that our cluster 1 is located in the “classical semantic” 

Wernicke’s area in the pSTG (Geschwind, 1970). Its neuroanatomical borders remain 

cytoarchitectonically under-researched. The pSTG / STS was previously associated with pre-lexical 

speech and covert articulation (Price, 2010) or the processing of syntactically correct but meaningless 

pseudo-words with low semantic demands (Hickok et al., 2003). Virtual lesions induced by 

transcranial magnetic stimulation (TMS) (Andoh et al., 2006) favored a pSTG contribution to auditory 

working memory and sound representations, consistent with our line of interpretation for cluster 1 

above. Moreover, anodal transcranial direct current stimulation over this area facilitated novel 

object learning of non-words, probably via enhancing phonological retrieval and working memory 

(Fiori et al., 2011; Meinzer et al., 2014).  

 

4.4. Contributions of cluster 2 to social cognition and language: complex task functions 

In contrast to cluster 1, the red cluster 2 was associated with more complex task functions, such as 

explicit memory processing, in our study. This ties in with previous studies assigning this region a role 

in semantic working memory (Vigneau et al., 2006) or autobiographical memory (Spreng et al., 2009). 

Particularly, autobiographical memory inevitably draws on self-projection, mentalizing, and mental-

scene construction. Of note, these mental imagery processes require semantic processing and are 

associated with increased activation of the default-mode network, including the angular gyrus 

(Nelson et al., 2010; Schacter et al., 2007). Similarly, several studies demonstrated increased task-
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related activity of the left angular gyrus / temporo-parietal junction during theory of mind stories as 

compared with unlinked sentences or stories that do not require theory of mind (Fletcher et al., 

1995; Kobayashi et al., 2007). Moreover, the social cognition literature provides evidence for a 

contribution of this area to de-novo generation of meaning representations and contextual 

construction during event elaboration when participants had to recall past events or imagine future 

events (Addis et al., 2007). Please appreciate that these processes are very likely to draw on semantic 

knowledge retrieval (Binder et al., 1999). 

Language studies have further demonstrated that stroke-induced lesions of the angular gyrus 

(overlapping our cluster 2) impaired processing of passive reversible sentences (e.g., “the niece was 

kicked by the father”) and complex object cleft constructions (e.g., “It was the niece that the father 

kicked”) (Newhart et al., 2011). This suggests a role of the angular gyrus in complex working memory 

and syntax. Hence, this region might represent an amodal gateway that mediates reciprocal 

interactions between the sensory processing of words and objects and the symbolic association of 

their meanings (Vigneau et al., 2006). A high-level integrative semantic function of the angular gyrus 

is supported by presurgical electrode recordings (Lien et al., 2014) and neurological lesion studies 

(Hart and Gordon, 1990). Moreover, temporary perturbation of angular gyrus function impaired 

performance on semantic category judgments and the processing of acoustically degraded sentences 

with high-predictable endings (Sliwinska et al., 2014). Taken together, present and previous evidence 

converges to a core contribution of intact angular gyrus function (coinciding with red cluster 2) to 

semantic processing on the word and sentence level.  

 

4.5. Contributions of cluster 3 and 4 to social cognition and language: General aspects of task 

processing 

We found evidence for two additional functionally distinct modules in the dorsal VOI (i.e., cluster 3 

and 4). Both clusters revealed highly similar connectivity profiles and were related to general aspects 

of task-maintenance required for successful social cognition and language performance (Corbetta et 
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al., 2008; Hartwigsen et al., 2014). These processes include domain-general functions such as 

attention, low-level working memory, executive selection and perception, which are likely recruited 

for tasks outside the core domain-specific social cognitive or language functions. We would thus 

argue that the reported activation of the respective regions in fMRI studies of social cognition and 

language most likely reflects general cognitive processing facets that do not necessarily indicate a 

causal contribution to the core facets of both functions. 

Indeed, previous neuroimaging studies have reported increased activation of an area in the 

left anterior intraparietal sulcus (aIPS) (overlapping with the orange cluster 3) for spatial working 

memory and attention tasks as well as symbolic and non-symbolic locations (Zago et al., 2008), 

spelling (Bitan et al., 2005) or phonological working memory processes during language and n-back 

tasks (Awh et al., 1996; Smith et al., 1998). Ossmy and colleagues (2014) suggested that the aIPS 

contributes to reading by processing the relative letter positions. A role of the aIPS in more general 

processes required for higher-level cognitive functions is further supported by previous virtual lesion 

studies (Whitney et al., 2012). Hence, perturbation of the aIPS disrupted both semantic and non-

semantic control demands, indicating that this region plays a wider role in cognition beyond the 

semantic domain, including the processing of perceptual task demands with low conceptual content 

(Jefferies and Lambon Ralph, 2006). Accordingly, increased neural activity in the aIPS region was 

previously associated with a general increase in the cognitive load and task difficulty (Dosch et al., 

2009; Vogeley et al., 2004).  

In accordance with the results from our functional decoding analyses, a region overlapping 

with the green cluster 4 was associated with attentional processes during social cognition tasks 

(Addis et al., 2009) or visuo-spatial processes during navigation tasks (Spreng et al., 2009), as well as 

action observation and imitation (Caspers et al., 2010). A contribution of cluster 4 to attention-

related and executive functions was further supported by several neuroimaging studies that found 

increased activity in this area when participants had to cooperate with either human or computer 

partners in an economic game (Rilling et al., 2004). Both situations require strong risk-benefit 
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calculations and executive processes that flank more genuine cooperative and social processes. 

Indeed, the study by Rilling and collaborators (2004) reported stronger activation in this area for the 

cooperation with a computer than a human partner, which might reflect allocation of attentional 

resources when the subjects were trying to elucidate the computer’s strategy and the optimal 

response to it. 

 

4.6. The role of the left vs. right parietal lobe in social cognition and language  

More generally, the present study focused on the left PL. This is because it is the most relevant 

macroscopical intersection between social and language processes (see Binder et al., 2009; Mar, 

2011). On the one hand, high-level social cognition is well known to modulate neural activity in a 

widespread network including the bilateral PL. Indeed, previous studies demonstrated that the right 

inferior PL also plays a key role in social cognition tasks (Bzdok et al., 2013b; Decety and Lamm, 2007; 

Koster-Hale et al., 2013). Language functions, on the other hand, typically modulate neural activity in 

strongly left-lateralized brain regions. It was argued that the reported activation of the right inferior 

PL during social cognition tasks might be of particular relevance for reflecting on another person's 

true and false beliefs (Dohnel et al., 2012; Kobayashi et al., 2006; Saxe and Kanwisher, 2003). We 

would thus argue that the shared subprocesses across social cognition and semantic processing are 

most closely associated with intact left inferior parietal lobe function.  

 

5. Conclusions 

Present and previous findings converge to three conclusions. First, theory of mind and language 

related processing facets are unlikely to be clearly dissociable in the LPL based on large quantities of 

fMRI measurements. More specifically, any cluster discovered in the parietal VOI that turned out to 

be congruently functionally associated with social tasks (i.e., the blue cluster 1 and the red cluster 2) 

also featured significant functional association with language tasks, and vice versa. This concurs with 

the closely intertwined relationship between the development of social cognitive and language 
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capabilities in children (Heyes and Frith, 2014), human cultural evolution (Tomasello, 1999), the 

anthropology of contemporary human societies (Mesoudi et al., 2006), and general brain physiology 

(Binder et al., 2009; Bzdok et al., 2012). 

 Second, while cluster 1 and 2 were both congruently associated with social-cognitive and 

language tasks, our data provide evidence for distinct functional modules in the rostro-caudal LPL. 

Cluster 1 might predominantly subserve lower-level processing facets in social cognition and 

language and cluster 2 might be more engaged in higher-level facets of these processes. Accordingly, 

only cluster 2 showed specific connectivity to the entirety of the default-mode network and 

additional functional association with advanced cognitive processes, including explicit and episodic 

memory recall.  

 Third, the orange cluster 3 and green cluster 4 showed neither connectional nor functional 

evidence for a domain-specific involvement in either social or language cognitive processes. Rather, 

the observed connectivity patterns and functional task associations of these two clusters can be 

explained by involvement in general-purpose visual, spatial and attentional processes. These appear 

to be frequently co-recruited by social and language cognition in the intact human brain. 
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Figure captions 

Figure 1: VOI definition 

The functional volume of interest (VOI) was intended to capture consistent left parietal lobe (LPL) 

activation underlying social-cognitive and language tasks. One coordinate-based meta-analysis (left 

column) previously issued a significant activation clusters related to theory of mind (Bzdok et al., 

2012). A second coordinate-based meta-analysis (middle column) on all language-associated 

neuroimaging experiments (i.e., orthography, speech, syntax, semantics, and phonology) hosted in 

the BrainMap database issued another significant activation cluster in the LPL. The social-cognition 

and language related activation clusters were merged to a single composite VOI (right column). This 

constituted the basis for all subsequent analyses. 
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Figure 2: Anatomy of different cluster solutions 

Sagittal slices of the 3 (upper row), 4 (middle row), and 5 (bottom row) cluster solutions from 

connectivity-based parcellation of the VOI in the left parietal lobe (Figure 1). Coordinates in MNI 

space. 
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Figure 3: Different clustering criteria for model selection 

Three different estimates of model fit advocated the superiority of the four-cluster solution. (A) The 

percentage of misclassified voxels across filter sizes, (B) the percentage of voxels that lost their 

parent cluster with increasing clustering number showed sudden increase for solutions with more 

than four clusters, and (C) the change in the ratio of inter- versus intra-cluster distance accelerated 

from three to four cluster, yet dropped afterwards. Diverging criteria hence converged to the four-

cluster solution as the best fitting model given the data. Asterisks indicate statistically significant 

differences and the bars indicate the standard deviation across filter sizes. 
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Figure 4: Rendering of the four cluster solution 
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Figure 5: Individual connectivity 

Individual functional connectivity patterns of the subregions of the four-cluster solution as 

determined using meta-analytic connectivity modeling (MACM; top two rows), resting-state 

connectivity (RSFC; middle two rows), and the conjunction of both methods (MACM & RSFC; bottom 

two rows). The significant results are rendered on left/right lateral and medial views of brain regions. 

Functional connectivity patterns of each cluster in the parietal VOI as individually determined using 

meta-analytic connectivity modeling (MACM). All results survived a cluster-corrected threshold of p < 

0.05, corrected for multiple comparisons. The color bar on the bottom indicates z-values. 
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Figure 6: Specific connectivity 

Specific functional connectivity patterns of the subregions of the four-cluster solution as determined 

using meta-analytic connectivity modeling (MACM; top two rows), resting-state connectivity (RSFC; 

middle two rows), and the conjunction of both methods (MACM & RSFC; bottom two rows). The 

significant results are rendered on left/right lateral and medial views of brain regions. Specific 

connectivity reflects stronger functional connectivity to a given cluster in the parietal VOI than to 

any of the three other clusters according to meta-analytic connectivity modeling (MACM). The color 

bar on the bottom indicates z-values. 
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Figure 7: Functional forward and reverse decoding 

Each cluster's significant association with psychological terms (Behavioral Domains and Paradigm 

Classes) from the BrainMap database (http://www.brainmap.org). Forward inference determines 

above-chance brain activity given the presence of a psychological term, whereas reverse inference 

determines the above-chance probability of a psychological term given the observed brain activity. 

All functional associations survived a significance threshold of p < 0.05. The x-axis displays relative 

probability values. Note that the functional decoding analysis represents a descriptive post-hoc 

analysis of the functional profile of individual clusters rather than a direct comparison between 

different clusters. The x-axis indicates relative probability values. 

 


