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Abstract. We use tools from geometric statistics to analyze the usual estimation procedure of a
template shape. This applies to shapes from landmarks, curves, surfaces, images etc. We demon-
strate the asymptotic bias of the template shape estimation using the stratified geometry of the
shape space. We give a Taylor expansion of the bias with respect to a parameter σ describing the
measurement error on the data. We propose two bootstrap procedures that quantify the bias and
correct it, if needed. They are applicable for any type of shape data. We give a rule of thumb to
provide intuition on whether the bias has to be corrected. This exhibits the parameters that control
the bias’ magnitude. We illustrate our results on simulated and real shape data.
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Introduction

The shape of a set of points, the shape of a signal, the shape of a surface, or the shapes in an
image can be defined as follows: the remainder after we have filtered out the position and the
orientation of the object [?]. Statistics on shapes appear in many fields. Paleontologists combine
shape analysis of monkey skulls with ecological and biogeographic data to understand how the
skull shapes have changed in space and time during evolution [?]. Molecular Biologists study
how shapes of proteins are related to their function. Statistics on misfolding of proteins is used
to understand diseases, like Parkinson’s disease [?]. Orthopaedic surgeons analyze bones’ shapes
for surgical pre-planning [?]. In Signal processing, the shape of neural spike trains correlates
with arm movement [?]. In Computer Vision, classifying shapes of handwritten digits enables
automatic reading of texts [?]. In Medical Imaging and more precisely in Neuroimaging, studying
brain shapes as they appear in the MRIs facilitates discoveries on diseases, like Alzheimer [?].

What do these applications have in common? Position and orientation of the skulls, proteins,
bones, neural spike trains, handwritten digits or brains do not matter for the study’s goal: only
shapes matter. Mathematically, the study analyses the statistical distributions of the equivalence
classes of the data under translations and rotations. They project the data in a quotient space,
called the shape space.

The simplest - and most widely used - method for summarizing shapes is the computation
of the mean shape. Almost all neuroimaging studies start with the computation of the mean
brain shape [?] for example. One refers to the mean shape with different terms depending on the
field: mean configuration, mean pattern, template, atlas, etc. The mean shape is an average of
equivalence classes of the data: one computes the mean after projection of the data in the shape
space. One may wonder if the projection biases the statistical procedure. This is a legitimate
question as any bias introduced with this step would make the conclusions of the study less
accurate. If the mean brain shape is biased, then neuroimaging’s inferences on brain diseases
will be too. This paper shows that a bias is indeed introduced for the mean shape estimation
under certain conditions.



Related work

We review works on the shape space’s geometry as a quotient space, and existing results on the
mean shape’s bias.

Shapes of landmarks: Kendall analyses The theory for shapes of landmarks is intro-
duced by Kendall in the 1980’s [?]. He considers shapes of k labeled landmarks in Rm. The
size-and-shape space, written SΣk

m, takes also into account the overall size of the landmarks’
set. The shape space, written Σk

m, quotients by the size as well. Both SΣk
m and Σk

m have a
Riemannian geometry, whose metrics are given in [?]. These studies model the probability dis-
tribution of the data directly in the shape space Σk

m. They do not consider that the data are
observed in the space of landmarks (Rm)k and projected in the shape space Σk

m. The question
of the bias is not raised.

Shapes of landmarks: Procrustean analyses Procrustean analysis is related to Kendall
shape spaces but it also considers shapes of landmarks [?]. Kendall analyses project the data
in the shape space by explicitly computing their coordinates in Σk

m. In contrast, Procrustean
analyses keep the coordinates in (Rm)k: they project the data in the shape space by ”aligning”
or ”registering” them. Orthogonal Procrustes analysis ”aligns” the sets of landmarks by rotating
each set to minimize the Euclidean distance to the other sets. Procrustean analysis considers
the fact that the data are observed in the space (Rm)k but does not consider the geometry of
the shape space. The bias on the mean shape is shown in [?] with a reducto ad absurdum proof.
But there is no geometric intuition given about how to control or correct the phenomenon.

Shapes of curves The curve data are projected in their shape space by an alignment
step [?], in the spirit of a Procrustean analysis. The bias of the mean shape is discussed in
the literature. Unbiasedness was shown for shapes of signals in [?] but under the simplifying
assumption of no measurement error on the data. Some authors provide examples of bias when
there is measurement error [?]. Their experiments show that the mean signal shape may converge
to pure noise when the measurement error on simulated signals increases. The bias is proven in
[?] for curves estimated from a finite number of points in the presence of error. But again, no
geometric intuition nor correction strategy is given.

Contributions and outline

We are missing a global geometric understanding of the bias. Which variables control its mag-
nitude? Is it restricted to the mean shape or does it appear for other statistical analyses? How
important is it in practice: do we even need to correct it? If so, how can we correct it? Our
paper is addressing these questions. We use a geometric framework that unifies the cases of
landmarks, curves, images etc.

Contributions We make three contributions. First, we show that statistics on shapes are biased
when the data are measured with error. We explicitly compute the bias in the case of the mean
shape. Second, we offer an interpretation of the bias through the geometry of the shape space.
In applications, this aids in deciding when the bias can be neglected in contrast with situations
when it must be corrected. Third, we leverage our understanding to suggest several correction
approaches.

Outline The paper has four Sections. Section 1 introduces the geometric framework of shape
spaces. Section 2 presents our first two contributions: the proof and geometric interpretation of
the bias. Section 3 describes our third contribution: the procedures to correct the bias. Section
4 validates and illustrates our results on synthetic and real data.
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1 Geometrization of template shape estimation

1.1 Two running examples

We introduce two simple examples of shape spaces. We will refer to them constantly to provide
intuition.

First, we consider two landmarks in the plane R2 (Figure 1 (a)). The landmarks are param-
eterized each with 2 coordinates. For simplicity we consider that one landmark is fixed at the
origin on R2. Thus the system is now parameterized by the 2 coordinates of the second landmark
only, e.g. in polar coordinates (r, θ). We are interested in the shape of the 2 landmarks, i.e. in
their distance which is simply r.

Second, we consider two landmarks on the sphere S2 (Figure 1 (b)). One of the landmark is
fixed at the origin of S2. The system is now parameterized by the 2 coordinates of the second
landmark only, i.e. (θ.φ). The shape of the two landmarks is the angle between them and is
simply θ.

X = (r, θ)
X = (θ, φ)

(a) (b)

θ

r

φ

θ

Fig. 1. Two landmarks, one in red and one in black, on the plane R2 (a) and on the sphere S2 (b). The landmark
in red is fixed at the origin of the coordinates. The system is entirely represented by the coordinates X of the
landmark in black.

1.2 Differential Geometry of shapes

The shape space is a quotient space The data are objects {Xi}ni=1 that are either sets of
landmarks, curves, images, etc. We consider that each object Xi is a point in a Riemannian
manifold M . We restrict in this paper to finite dimensional manifolds in order to avoid com-
plications. We have M = R2 in the plane example: a flat manifold of dimension 2. We have
M = S2 in the sphere example: a manifold of constant positive curvature and of dimension 2.

By definition, the objects’ shapes are their equivalence classes {[Xi]}ni=1 under the action of
some finite dimensional Lie group G: G is a group of continuous transformations that models
what does not change the shape. The action of G on M will be written with ”·”. In our examples,
the rotations are the transformations that leave the shape of the systems invariant. Let us take
g a rotation. The action of g on the landmark X is illustrated by a blue arrow in Figures ?? (a)
for the plane and (d) for the sphere. We observe that the action does not change the shape of
the systems: the distance between the two landmarks is preserved in (a), the angle between the
two landmarks is preserved in (d). The equivalence class of Xi is also called its orbit and written
OXi . The equivalence class/orbit of X is illustrated with the blue dotted circle in Figure ?? (a)
for the plane example and in Figure ?? (b) for the sphere example. The orbit of X in M is the
submanifold of all objects in M that have the same shape as X. The curvature of the orbit as
a submanifold of M is the key point of the results in Section ??.
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The shape space is by definition the space of orbits. This is a quotient space denoted Q =
M/G. One orbit in M , i.e. one circle in Figure ?? (b) or (e), corresponds to a point in Q. The
shape space is Q = R+ in the plane example. This is the space of all possible distances between
the two landmarks, see Figure ?? (c). The shape space is Q = [0, π] in the sphere example. This
is the space of all possible angles between the two landmarks, see Figure ?? (f).

The shape space is a metric space We consider that the action of G on M is isometric with
respect to the Riemannian metric of M . This implies that the distance dM between two objects
in M does not change if we transform both objects in the same manner. In the plane example,
rotating the landmark X1 and another landmark X2 with the same angle does not change the
distance between them.

The distance in M induces a quasi-distance dQ in Q: dQ(OX1 , OX2) = inf
g∈G

dM (g · X1, X2).

The distance between the shapes of X1 and X2 is computed by first registering/aligning X1

onto X2 by the mean of g, and then using the distance in the ambient space M . In the plane
example, the distance between two shapes is the difference in distances between the landmarks.
One can compute it by first aligning the landmarks, say on the first axis of R2. Then, one uses
the distance in R2.

The shape space is stratified Both object space M and shape space Q are stratified because
of the notion of isotropy group. The isotropy group of Xi is the subgroup of transformations
of G that leave Xi invariant. For the plane example, every Xi 6= (0, 0) has isotropy group the
identity and (0, 0) has isotropy group the whole group of 2D rotations. Objects on the same
orbit, i.e. objects that have the same shape, have conjugate isotropy groups. The orbit type of
an orbit is the corresponding conjugate class.

Principal shapes are shapes with smallest isotropy group conjugation class. In the plane
example, R2 \ (0, 0) is the set of objects with principal shapes. It corresponds to R∗+ in the
shape space and is colored in blue on Figure ?? (c). Singular shapes are shapes with larger
isotropy group conjugation class. In the plane example, (0, 0) is the only object with singular
shape. It corresponds to 0 in R+ and is colored in red in Figure ?? (c).

The (connected components of) the orbit types form a stratification of M , called the orbit-
type stratification of M . The principal type is predominant in the following sense: the set of
principal strata, which we denote M∗, is open and dense in M . This means that there are
objects with non-degenerated shapes almost everywhere.

The stratification of M into orbit types strata gives a stratification of the shape space M/G.
Also, non-degenerated shapes are dense in the shape space.

We have focused on an intuitive introduction of the concepts. We refer to [?,?,?] for math-
ematical details. From now on, the mathematical setting is the following: we assume a proper,
effective and isometric action of a finite dimensional Lie group G on a finite dimensional Rie-
mannian manifold M .

1.3 Geometrization of generative models of shape data

We recall that the data are the {Xi}ni=1 that are sets of landmarks, curves, images, etc. We
interpret the data Xi’s as random realizations of the generative model:

Xi = Exp(gi · Yi, εi) i = 1...n, (1)

where the observed object Xi ∈ M is a shape Yi ∈ M/G ⊂ M with a given position or
parameterization gi ∈ G and observed with noise εi ∈ Tgi·YiM . Here Exp(p,u) denotes the
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X

g ·X

X

g ·X

(a) (b) (c)

(d) (e) (f)

Fig. 2. First line: Action of rotations on R2, with (a): action of rotation g ∈ SO(2) on point X ∈ R2 and orbit of
X in blue dotted line; (b) Stratification of R2 into principal orbit type (blue) and singular orbit type (red); (c)
shape space R+ = R2/SO(2) with a singularity (red dot). Second line: Action of SO(2) on S2 with (d): action of
rotation g ∈ SO(2) on point X ∈ S2 and orbit of X in blue dotted line; (e) Stratification of S2 into principal orbit
type (blue) and singular orbit type (red) (f) shape space [0, π] = S2/SO(2) with two singularities (red dots).

Riemannian exponential of u at point p. The Yi, gi, εi are themselves i.i.d. realizations of random
variables. Drawing them lead to the following three step interpretation of the generative model 1.

Step 1: Generate the shape Yi ∈M/G We assume that there is an probability density of shapes
in Q = M/G, with respect to the measure on Q induced by the Riemannian measure of M .
The Yi’s are i.i.d. samples drawn from this distribution. For example, it can be a Gaussian
as illustrated in Figure ?? on the shape spaces for the plane and sphere examples. This is the
variability that is meaningful for the statistical study, whether we are analyzing shapes of skulls,
proteins, bones, neural spike trains, handwritten digits or brains. We assume in this paper that
the distribution is simply a Dirac at Y which we call the template shape. This is the most
common assumption in these generative models [?,?,?,?].

(a) (b)

Fig. 3. Step 1 of generative model 1 for the plane example (a) and the sphere example (b). The black curve
illustrates the probability distribution function on shape space. This is a distribution on r ∈ R+ for the plane
example (a) and on θ ∈ [0, π] for the sphere example. The black square represents its expectation.
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Step 2: Generate its position/parameterization gi ∈ G We cannot observe shapes in Q = M/G.
We rather observe objects in M , that are shapes posed or parameterized in a certain way. We
assume that there is a probability distribution on the positions or parameterizations of G, or
equivalently a probability distribution on principal orbits with respect to their intrinsic measure.
We assume that the distribution does not depend on the shape Yi that has been drawn. The gi’s
are i.i.d. from this distribution. For example, it can be a Gaussian as illustrated in Figure ??
on the shape spaces for the plane and sphere examples.

(a) (b)

Fig. 4. Step 2 of generative model 1 for the plane example (a) and the sphere example (b). The blue dotted
curve illustrates the orbit of the shape drawn in Step 1. The black curve illustrates the probability distribution
function on this orbit. This is a distribution in angle θ ∈ [0, 2π] for the plane example (polar coordinates) and in
angle φ ∈ [0, 2π] for the sphere example (spherical coordinates).

Step 3: Generate the noise εi ∈ Tgi·YiM The observed Xi’s are results of noisy measurements.
We assume that there is a probability distribution function on Tgi·YiM representing the noise.
We further assume that this is a Gaussian centered at gi · Yi, the origin of the tangent space
Tgi·YiM , and with standard deviation σ, see Figures ??. The parameter σ will be extremely
important in the developments of Section, as we will compute Taylor expansions around σ = 0.

(a) (b)

σ
σ

Fig. 5. Step 2 of generative model 1 for the plane example (a) and the sphere example (b). The dotted curve
represents the isolevel at σ of the Gaussian distribution function on the ambient space.

Other generative models may be considered in the literature. We find in [?] the model:
Xi = gi · Exp(Yi, εi) and in [?] the model: Xi = gi · Yi.
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1.4 Learning the variability in shapes: estimating the template shape

Our goal is to unveil the variability of shapes in Q = M/G while we in fact observe the noisy
objects Xi’s in M . First, we focus on the case where the variability in the shape space is assumed
to be a Dirac at Y (Step 1 of generative model). Our goal is thus to estimate the template shape
Y .

One may consider the Maximum Likelihood estimate of Y :

ŶML = argmax
Y ∈Q

L(Y ) = argmax
Y ∈Q

n∑
i=1

log(P (Xi|Y ))

= argmax
Y ∈Q

n∑
i=1

log

(∫
g∈G

P (Xi|Y, g).P (g)dg

)
.

We have hidden variables, the g’s. The Expectation-Maximization (EM) algorithm would be
the natural implementation for computing the ML estimator. But the EM algorithm is compu-
tationally expensive, above all for tridimensional images. Thus, one usually relies on another
procedure that is an approximation of the EM. [?,?,?,?].

Estimating the template shape with the Fréchet mean in the shape space One initializes the
estimate with Ŷ = X1. Then, one iterates the following two steps until convergence:

(1) ĝi = argmin
g∈G

dM (Ŷ , g ·Xi), ∀i ∈ {1, ..., n},

(2) Ŷ = argmin
Y ∈M

n∑
i=1

dM (Y, ĝi ·Xi)
2.

(1) is an estimation of the hidden observations gi and an approximation of the E-step of the
EM algorithm. (2) is the M-step of the EM algorithm: the maximization of the surrogate in the
M-step amounts to the maximization of the variance of the projected data. This is exactly the
minimization of the squared distances to the data of (2).

The procedure converges because it decreases at each step a cost bounded below by zero.
The estimator computed with this procedure is:

Ŷ = argmin
Y ∈M

n∑
i=1

min
g∈G

d2M (Y, g ·Xi). (2)

The term min
g∈G

d2M (Y, g ·Xi) in Equation ?? is the distance in the shape space between the shapes

of Y and Xi. Thus, we recognize in Equation ?? the Fréchet mean on the shape space. The
Fréchet mean is a definition of mean on manifolds [?]: it is the point that minimizes the squared
distances to the data in the shape space. All in all, one projects the probability distribution
function of the Xi’s from M to M/G and computes its ”expectation”, in a sense made precise
later.

We illustrate the procedure with the examples of the plane and the sphere. We take X1,
X2, X3 three objects in R2 in Figure ?? (a) and on S2 in Figure ?? (b). Step (1) is the
registration/alignment step. One filters out the position/parameterization component, i.e. the
coordinate on the orbit. One projects the objects X1, X2, X3 in the shape space Q using the
blue arrows. Step (2) is the computation of the Fréchet mean of the registered data.

We implemented the generative model and the estimation procedure on the plane and
the sphere in shiny applications available online: https://nmiolane.shinyapps.io/shinyPlane and
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(a) (b)

Fig. 6. Template shape estimation for the plane example (a) and the sphere example (b). The 3 black crosses
in R2 (a) or S2 (b) represent the 3 data. The 3 dotted blue curves are their orbits. The 3 curved blue arrows
represent their registration, i.e. their projection in the shape space. The 3 black crosses in R+ (positive x-axis)
(a) or [0, π] (b) represent the registered data. The template shape estimate is the Fréchet mean of the registered
data.

(a) (b)

(c) (d)

Fig. 7. Screenshot of https://nmiolane.shinyapps.io/shinyPlane and https://nmiolane.shinyapps.io/shinySphere.
Simulated data (grey points), template shape (green), registered data (black points), template shape estimate
(orange). Induced distributions on the shapes, template shape (green), template shape estimate (orange).

https://nmiolane.shinyapps.io/shinySphere. We invite the reader to look at the web pages and
play with the different parameters of the generative model. Figure ?? shows screen shots of the
applications.
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Our main result is to show that this procedure gives an inconsistent estimate of the template
shape Y of the generative model. The estimator Ŷ converges when the number of data goes
to infinity. However it has an asymptotic bias with respect to the parameter Y it is designed

to estimate: Bias(Ŷ , Y ) = mathbbE
[
LogY Ŷ

]
. This is a vector at the tangent space of M/G

at the real parameter Y . The vector represents how much one has to shoot from Y to get the

estimated parameter Ŷ . It simply writes Bias(Ŷ , Y ) = E
[
Ŷ − Y

]
for linear spaces.

We could also consider the variance of the estimator. The variance is defined as Varn(Ŷ ) =
E[dM (Y,E[Y ])2]. In the limit of an infinite sample, we have: Var∞(Ŷ ) = 0. This is why we focus
on the asymptotic bias.

2 Quantification and correction of the asymptotic bias

2.1 Asymptotic bias of the template’s estimator on examples

We first compute the asymptotic bias for the examples of the plane and the sphere to give the
intuition.

The probability distribution function of the Xi’s comes from the generative model. This
is a probability distribution on R2 for the plane example, parameterized in polar coordinates
(r, θ) like Figure 1. So we can compute the projected distribution function on the shapes, which
are the radii r here. This is done simply by integrating out the distribution on θ, the position
on the circles. This gives a probability distribution on R+ for the plane example. We write it
f : r 7→ f(r). We remark that f does not depend on the probability distribution function on
the θi’s of Step 2 of the generative model. We can also compute f : θ 7→ f(θ) in the sphere
example: we integrate over φ the probability distribution function on (θ, φ).

Figure ?? (a) shows f for the plane example, for a template r = 1. We plot it for two
different noise levels σ = 0.3 and σ = 3. Note that here f is the Rice distribution. Figure ??
(b) shows f for the sphere example, for a template θ = 1. We plot it for different noise levels
and σ = 0.3 and σ = 3. In both cases, the x-axis represents the shape space which is R+ for the
plane example and [0, π] for the sphere example. The green vertical bar represents the template
shape, which is 1 in both cases. The red vertical bar is the expectation of f in each case. It is
Ŷ , the estimate of Y We see on these plots that f is not centered at the template shape: the
green and red bars do not coincide. f is skewed away from 0 in the plane example and away
from 0 and π in the sphere example. The skew increases with the noise level σ. The difference
between the green and red bars is precisely the bias of Ŷ with respect to Y .

1 2 31 2 3

1.2

0.8

0.4

1.2

0.8

0.4

2 4 6 108 2 4 6 108

1.2

0.8

0.4

1.2

0.8

0.4

P.d.f. P.d.f. P.d.f. P.d.f.

x x x x

(a) (b)

Fig. 8. (a) Induced distributions on the distance r between two landmarks in R3 for real distance y = 1 (in green)
and noise level σ = 0.3 and σ = 3. (b) Induced distributions on the angle x between the two landmarks on S3,
for real angle y = 1 and noise levels σ = 0.3 and σ = 3. In both cases the mean shape estimate ŷ is shown in red.

Figure ?? shows the bias of Ŷ with respect to Y , as a function of σ, for the plane (left) and
the sphere (right). Increasing the noise level σ takes the estimate Ŷ away from Y . The estimate
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is repulsed from 0 in the plane example: it goes to ∞ when σ → ∞. It is repulsed from 0 and
π in the sphere example: it goes to π/2 when σ → π. One can show numerically that the bias
varies as σ2 around σ = 0 in both cases. This is also observed on the shiny applications [?] at
https://nmiolane.shinyapps.io/shinyPlane and https://nmiolane.shinyapps.io/shinySphere.

0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

1.0

2.0

3.0

0.0 σ σ

BiasBias

Fig. 9. Asymptotic bias on the mean shape estimate Ŷ with respect to the noise level σ for r = 1 in the plane
example (a) and θ = 1 in the sphere example (b). The bias is quadratic near σ = 0. Increasing σ takes the
estimate Ŷ away from 0 in shape space Q = R+ (a) and away from 0 and π in shape space Q = [0, π] (b).

These examples already show the origin of the asymptotic bias of Ŷ . The bias comes from
the curvature of the template’s orbit. Figure ?? shows the template’s orbit in blue, in (a) for
the plane and (b) for the sphere. In both cases the black circle represents the level set σ of
the Gaussian noise. The probability of generating an observation Xi outside of the template’s
shape orbit is bigger than the probability of generating it inside: the grey area in the black
circle is bigger than the white area in the white circle. There will be more registered data that
are greater than the template. Their expected will therefore be greater than the template and
thus biased. We prove this in the general case in the next section.

(a) (b)

σ σ

d d

Fig. 10. The external curvature of the template’s orbit creates the asymptotic bias, in the plane example (a) and
the sphere example (b). The blue curve represents the template’s orbit. The ball of radius σ represents a level set
of the Gaussian distribution of the noise in R2 (a) and S2 (b). The grey-colored area represents the distribution
of the noise that generates data outside the orbit of Y . There is a higher probability that the data are generated
”outside” the orbit. The template shape estimate is biased towards greater radii (a) or towards angles closer to
π/2 (b).
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2.2 Asymptotic bias of the template’s estimator for the general case

We show the asymptotic bias of Ŷ in the general case and prove that it comes from the external
curvature of the template’s orbit. We show it for Y a principal shape and for a Gaussian noise
of variance σ2, truncated at 3σ. Our results will need the following definitions of curvature.

The second fundamental form h of a submanifold O of M is defined on TXO × TXO by
h(v, w) = (∇vw)⊥ ∈ NXO, where (∇vw)⊥ denotes the orthogonal projection of covariant deriva-
tive ∇vw onto the normal bundle. The mean curvature vector H of O is defined as: H = Tr(h).
Intuitively, h and H are measures of extrinsic curvature of O in M . For example an hypersphere
of radius R in Rm has mean curvature vector ||H|| = m−1

R .

Theorem 1. The probability distribution function on the shapes induced by the generative model
is:

f(x) =
1

cqσq
exp

(
−x

Tx

2σ2

)c0p + cp
∑
ij

(
δij −

1

6
ROij −

∑
a

1

2
haij(x)xa

)
σ2 +O(σ4)

 .

Here x is the Riemannian logarithm x = LogY [X] of the shape [X] at the template shape Y , h is
the second fundamental form of the orbit of x, R is the Ricci curvature, cq, cp, c

0
p are constants

independent of x and σ.

Proof. The proof is given in Appendix ??.

The exponential in the expression of f belongs to a Gaussian distribution centered at x = 0.
This is a Riemannian Gaussian centered at the template shape Y , because x are coordinates
at the tangent space of M/G at Y . However the whole distribution f differs from the Gaussian
because of the x-dependent term in the right parenthesis. This induces a skew of the distribution
away from the singular shapes, as observed for the examples in Figure ??.

Theorem 2. The asymptotic bias of the template’s shape estimation writes:

Bias(Ŷ , Y ) =
σ2

2
H(Y ) +O(σ3). (3)

Here H is the mean curvature vector of the template shape’s orbit and σ2 the variance of the
noise on the objects.

Proof. The proof is given in Appendix ??.

This generalizes the quadratic behavior observed in the examples on Figure ??. The asymp-
totic bias has a geometric origin: it comes from the external curvature of the template’s orbits,
see Figure ??.

We can vary two parameters in equation ??: Y and σ. The external curvature of orbits
generally increases when Y is closer to a singularity of the shape space (see Section 1) [?]. The
singular shape of the two landmarks in R2 arises when their distance is 0. In this case, the mean
curvature vector is H(Y ) = 1

d : it is inversely proportional to d, the radius of the orbit. d is also
the distance of Y to the singularity 0.
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2.3 Limitations and extensions

Beyond Y being a principal shape Our results are valid when the template Y is a principal
shape. This is a reasonable assumption as the set of principal shapes is dense in the shape
space. What happens when Y approaches a singularity, i.e. when Y changes stratum in the
stratified space Q? Taking the limit d → 0 in the coefficients of the Taylor expansion is not a
legal operation. Therefore, we cannot conclude on the Taylor expansion of the Bias for d → 0.
Indeed, the Taylor expansion may even change order for d → 0. We take M = Rm with the
action of SO(m) and the template Y = (0, ..., 0):

Bias(Ŷ , Y ) =
√

2
Γ (m+1

2 )

Γ (m2 )
σ. (4)

The bias is linear in σ in this case.

Beyond σ << 1 The assumption σ << 1 is reasonable as we hope that the noise on the data
is not too large. Nevertheless it would be very interesting to study the asymptotic bias for any
σ, including large noises (σ → +∞). The distribution over the Xi’s in M will be spread on the
whole manifold M . We cannot rely on local computations on M (at the scale of σ) anymore.
We have to make global assumptions on the manifold M .

The plane example is the canonical example of a flat manifold. The sphere example is the
canonical example of manifold with constant (positive) curvature. The bias as a function of
σ is plotted in Figure ??. It leads us to the conjecture that the estimate converges towards
a barycenter of shape space’s singularities when the noise level increases. Singularities have a
repulsive action on the estimation of each template’s shape. Such repulsive force acts on each
estimators. As a result, the estimators of the mean shape finds an equilibrium position: the
barycenter.

Beyond one Dirac in Q: several templates We have considered so far that there is a unique
template shape Y : the generative model has a Dirac distribution at Y in the shape space.
What happens for other distributions? We assume that there are K template shapes Y1, ..., YK .
Observations are generated in M from each template shape Yk with the generative model of
Section 2. Our goal is to unveil the structure of the shape distribution, i.e. the K template
shapes here, given the observations in M . The distributions on shapes projected on the shape
space is a mixture of probability density functions of the form of equation ??. Its modes are
related to the template shapes. The K-means algorithm is a very popular method for data
clustering. We study what happens if one uses K-means algorithms on shapes generated with
the generative model above.

The goal is to cluster the shape data in K distinct and significant groups. One performs a
coordinate descent algorithm on the following function:

J(c, µ) =
∑
i

dQ(Xi, µci)
2. (5)

In other words, one minimizes J by successively minimizing on the assignment labels c’s and
the cluster’s centers µ’s. Given the c, minimizing J with respect to the µ’s is exactly the
simultaneous computation of K Fréchet means in the shape space. One looks for meaningful
well separated clusters (high inter-clusters dissimilarity) whose members are close to each other
(high intra-cluster similarity). In other words, the quality of the clustering is evaluated by the
following criterion:

D = min
clusters i,j

dQ(ci, cj)

max
i

diam(ci)
, (6)
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which is the dissimilarity between clusters quotiented by the diameter of the clusters. In the
absence of singularity in the shape space, the projected distribution looks like Figure ?? (a)
and D ∝ 1

σ . The criterion is worse in the presence of singularities.
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1.0

1.5

r r

P.d.f P.d.f

Fig. 11. Two clusters of template shapes for the plane example: r1 = 1 (blue) and r2 = 2 (dark red). Noise levels:
σ = 0.3 (left) and σ = 3 (right). The 2 clusters are hardly distinguishable when the noise increases.

Figure ?? illustrates this behavior for the plane example. We consider any two clusters i, j
and call Ŷi, Ŷj the estimated centroids. The criterion D writes:

D ≡ ŷi − ŷj
σ

∼
σ→+∞

Γ
(
m+1
2

)
√

2mΓ
(
m
2

) y2i − y2j
σ2

= O

(
1

σ2

)
.

Even in the best case with correct assignments to the clusters i and j, the K-means algorithm
looses an order of validation when computed on shapes.

Beyond the finite dimensional case Our results are valid when M is a finite dimensional manifold
and G a finite dimensional Lie group. Some interesting examples belong to the framework of
infinite dimensional manifold with infinite dimensional Lie groups. This is the case for the
LDDMM framework on images [?]. It would be important to extend these results to the infinite
dimensional case.

We take M = Rm with the action of SO(m). We have a analytic expression of f in this case
[?]. Figure ?? shows the influence of the dimension m for the probability distribution functions
on the shape space and for the Bias. The bias increases with m. This leads to think that it
appears in infinite dimensions as well.

3 Correction of the systematic bias

We propose two procedures to correct the asymptotic bias on the template’s estimate. They rely
on the bootstrap principle [?], more precisely a parametric bootstrap. As such, they are directly
applicable to any type of data. We assume that we know the variance σ̂2 from the experimental
setting.

3.1 Iterative Bootstrap

The first procedure is called Iterative Bootstrap. Algorithm ?? details it. Figure ?? illustrates
it on the plane example.
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Fig. 12. Probability distributions functions (noise σ = 0.3) and bias for Rm for m = 2, m = 10, m = 20 and
m = 100. Template shape is r = 1.
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Fig. 13. Algorithm ?? Iterative bootstrap procedure on the plane example for n → +∞. (a) Initialization, (b)

Generate bootstrap sample from Ŷ0 and compute the corresponding estimate Ŷ0
∗
, compute the bias Ŷ0− Ŷ ∗

0 , (c)
Correct Ŷ0 with the bias to get Ŷ1, (d) Generate bootstrap sample from Ŷ1 and iterate as in (b), (e) Get Ŷ2 etc.

Algorithm ?? starts with the usual template’s estimate Ŷ0 = Ŷ , see Figure ?? (a). At each
iteration, we correct Ŷ with a better approximation of the bias. First, we generate bootstrap
data by using Ŷ as the template shape of the generative model. We perform the template’s
estimation procedure with the Fréchet mean in the shape space. This gives an estimate Ŷ ∗0 of
Ŷ0. The bias of Ŷ0∗ with respect to Ŷ0 is Bias(Ŷ ∗0 , Ŷ0). It gives an approximation of the bias

Bias(
ˆ̂
Y, Ŷ ), see Figure ?? (b). We correct Ŷ by this approximation of the bias. This gives a new

estimate Ŷ1, see Figure ?? (c). We recall that the bias Bias(
ˆ̂
Y, Ŷ ) depends on Y , see Theorem

??. Ŷ1 is closer to the template Y than Ŷ0. Thus, the next iteration gives a better approximation

Bias(Ŷ ∗1 , Ŷ1) of Bias(
ˆ̂
Y, Ŷ ). We correct the initial Ŷ with this better approximation of the bias,

etc. The procedure is written formally for a general manifold M in Algorithm ??.

In Algorithm ??, ΠB
A denotes the parallel transport from TAM to TBM . For linear spaces,

LogP1
P2 =

−−−→
P1P2, ExpP1

(u) = P1 + u, ΠP2
P1

(u) = u.
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Algorithm 1 Corrected template shape estimation with Iterative Bootstrap

Input: Objects {Xi}ni=1, noise variance σ2

Initialization:
Ŷ0 = Frechet({[Xi]}ni=1)
k ← 0
Repeat:

Generate bootstrap sample {X(k)∗

i }ni=1 from NM (Yk, σ
2)

Ŷk = Fréchet({[X(k)∗ ]i}ni=1)

Biask = LogYk
Ŷk

Ŷk = ExpŶ0

(
−Π Ŷ0

Ŷk
(Biask)

)
k ← k + 1
until convergence: ||LogŶk+1

Ŷk|| < ε

Output: Ŷk

Algorithm ?? is a fixed-point iteration Y (k+1) = F (Y (k)) where:

F (X) = ExpŶ (−Π Ŷ
X (Bias)) where: Bias = LogXX̂. (7)

In a linear setting we have simply F (X) = Ŷ −
−−→
XX̂. One can show that F is a contraction and

that Y , the template shape, is the unique fixed point of F (using the local bijectivity of the
Riemannian exponential and the injectivity of the estimation procedure). Thus the procedure
converges to Y in the case of an infinite number of observations n→ +∞. Figure ?? illustrates
the convergence for the plane example, with a Gaussian noise of standard deviation σ = 1. The
template shape Y = 1.2 was initially estimated at Ŷ = 4.91. Algorithm ?? corrects the bias.

1 2 3 4 5

1

2

3

4

5

Y = 1.2 Ŷ0 = 4.91

F

∆

Fig. 14. F of the fixed-point procedure and first 2 iterations for σ = 1, m = 3. ∆ is the first diagonal. The initial
estimate is biased Ŷ0 = 4.91. The Iterative Bootstrap converges towards the template shape Y = 1.2.

Figures ?? and ?? show the iterations of Iterative Bootstrap for the plane and the sphere
example.

3.2 Nested Bootstrap

The second procedure is called the Nested Bootstrap. Algorithm ?? details it. Figure ?? illus-
trates it on the plane example.

Algorithm ?? starts like Algorithm ?? with Ŷ0 = Ŷ , see Figure ?? (a). It also performs a
parametric bootstrap with Ŷ (0) as the template, computes the bootstrap replication Ŷ ∗0 and the
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Fig. 15. Convergence of Algorithm ??, Iterative Bootstrap for the plane example. The different colors represent
the variance of the noise.
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Fig. 16. Convergence of Algorithm ??, Iterative Bootstrap, for the sphere example. The different colors represent
the variance of the noise.

Y Ŷ0 = Ŷ
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−Bias(Ŷ ∗
0 , Ŷ0)
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Ŷ ∗
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−Bias(Ŷ ∗∗
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0 )
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(e)

Fig. 17. Algorithm ?? Nested Bootstrap on the plane example for n → +∞. (a) Initialization, (b) Generate

bootstrap sample from Ŷ0; compute the estimate Ŷ0
∗
, compute the bias Ŷ(0)− Ŷ ∗

0 , (c) Generate bootstrap sample

from Ŷ0∗ ; compute the estimate Ŷ0
∗∗

, compute the bias Ŷ ∗
0 − Ŷ ∗∗

0 , (d) compute the blue arrow, i.e. the bias of
Bias(Ŷ ∗∗

0 , Ŷ ∗
0 ) as an estimate of Bias(Ŷ ∗

0 , Ŷ0), (e) Correct Ŷ with the bias-corrected bias.
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approximation Bias(Ŷ ∗0 , Ŷ0) of Bias(Ŷ , Y ), see Figure ?? (b). Now Algorithm ?? differs from
Algorithm ??. We want to know how biased is Bias(Ŷ ∗0 , Ŷ0) as an estimate of Bias(Ŷ , Y )? This
is a valid question as the bias depends on the template Y , see Theorem ??. We want to estimate
this dependence. We perform a bootstrap, nested in the first one, with Ŷ (0)∗ as the template. We
compute the estimate Ŷ ∗∗0 and the approximation Bias(Ŷ ∗∗0 , Ŷ ∗0 ) of Bias(Ŷ ∗0 , Ŷ0), see Figure ??
(c). We observe how far Bias(Ŷ ∗∗0 , Ŷ ∗0 ) is from Bias(Ŷ ∗0 , Ŷ0). This gives the blue arrow, which
is the bias of Bias(Ŷ ∗∗0 , Ŷ ∗0 ) as an estimate of Bias(Ŷ ∗0 , Ŷ0), see Figure ?? (d). The blue arrow
is an approximation of how far Bias(Ŷ ∗0 , Ŷ0) is from Bias(Ŷ , Y ). We correct our estimation of
the bias (in red) by the blue arrow. We correct Ŷ by the bias-corrected estimate of its bias, see
Figure ?? (e).

Algorithm 2 Corrected template shape estimation with Nested Bootstrap

Input: Objects {Xi}ni=1, noise variance σ2

Initialization:
Ŷ0 = Frechet({[Xi]}ni=1)
Bootstrap:
Generate bootstrap sample {X∗

i }ni=1 from NM (Ŷ0, σ
2)

Ŷ ∗
0 = Fréchet({[X∗]i}ni=1)

Bias = LogŶ0
Ŷ ∗
0

Nested Bootstrap:
For each i:

– Generate bootstrap sample {X∗∗
i }nk=1 from NM (Ŷ ∗

0 , σ
2)

– Ŷ ∗∗
0,i = Fréchet({[X∗∗]i}nk=1)

Bias(Bias) = LogŶ0
Ŷ ∗
0 −Π Ŷ0

Ŷ ∗
0

LogY ∗
0
Ŷ ∗∗
0

Ŷ1 = ExpŶ0
(−Bias− Bias(Bias))

Output: Ŷ1

3.3 Comparison

One may use the Iterative Bootstrap or the Nested Bootstrap depending on the experimental
setting. We illustrate them both on the plane example in Figure ??.

The advantages of the Iterative Bootstrap are the following. It corrects perfectly the bias
of Ŷ in the case of a very large number of observations n. It can be used to experimentally
compute the mean curvature vector H of each orbit of a group action. One probes the orbit’s
curvature by ”feeling it” with a Riemannian Gaussian on M and projecting on the shape space.
Its drawbacks are the following. It works only with very large n. It is not robust as it uses the
generative model several times. If the generative model is far from being true, then the iterative
bootstrap fails.

The advantages of the Nested Bootstrap are the following. It is a standard statistical proce-
dure that is more robust with respect to variations of the generative model. Even if generative
model is different from the one that we assume, the Nested Bootstrap performs well. Moreover,
it does not need as many data as the Iterative Bootstrap. Its drawback is that it does not correct
perfectly the bias, especially when the noise is important.

These simulations give a rule of thumb for when the bias needs to be corrected. This is when
the noise σ is comparable to the distance of the template Y to the singularity.
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Iterative bootstrap

Iterative bootstrap

Nested bootstrap

Nested bootstrap

Signal-Noise ratio = 1

Signal-Noise ratio = 0.33

Fig. 18. Comparison of the Iterative bootstrap and the Nested bootstrap on simulation with two different Signal-
Noise ratio, which is Y

σ
, the ratio of the template Y on the noise level σ.

4 Applications to simulated and real data

4.1 Simulated triangles

We perform a simulation using the iterative bootstrap on triangles. We randomly generate
n = 105 triangles in R2. The mean triangle is chosen by taking two coordinates randomly from
a uniform distribution on [0, 1]. Then we add bivariate Gaussian noise on each landmark. These
experiments are illustrated in Figure ??.

Iterations

2 4 6 8

s=0.1

s=0.2

s=0.3

0
.0

0
.1

Bias

Fig. 19. Convergence of Algorithm ??, Iterative Bootstrap for the triangles. The different colors represent the
variance of the noise.
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The number of iterations required for the convergence of Algorithm 1 with respect to the
noise level are shown in Figure ??. We observe the convergence in the three experiments for less
than 10 iterations.

4.2 Real triangles: shape of the Optic Nerve Head

Now we go to real triangle data. We have 24 images of Rhesus monkeys’ eyes, acquired with a
Heidelberg Retina Tomograph [?]. For each monkey, an experimental glaucoma was introduced
in one eye, while the second eye was kept as control. One seeks a significant difference between
the glaucoma and the control eyes. On each image, three anatomical landmarks were recorded:
S for the superior aspect of the retina, N for the nose side of the retina, and T for the side of
the retina closest to the temporal bone of the skull. The data are matrices {Xi}ni=1 where the
landmark coordinates form the rows. For the ONH example, M is the space of 3 landmarks in
3D, M = (R3)3 and the rotations act isometrically on each object Xi.

Analysis This simple example illustrates the estimation of the template shape. We use the
following procedure to compute the mean shape for each group. We initialize Ŷ with X1 and
repeat the following two steps until convergence:

(1) ∀i ∈ {1, ..., n}, R̂i = argmin
R∈SO(3)

||Ŷ −Xi.R||2, (register to the current mean shape),

(2) Ŷ =
1

n

n∑
i=1

Xi.R̂i (update the mean shape estimate).

Figure ?? shows the mean shapes Ŷ control of the control group (left) and Ŷ glaucoma of the
glaucoma group (right) in orange, while the initial data are in grey. The difference between the
two groups is quantified by the distance between their means: ||Ŷ control− Ŷ glaucoma|| = 21.84µm.
We want to determine if this analysis presents an bias that significantly changes the estimated
shape difference between the groups.
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Fig. 20. Triangles data in grey for the control group (left) and the glaucoma group (right). In orange, the
estimated template shapes. Distances are measured in µm.

We use the nested bootstrap to compute an approximation of the asymptotic bias on each
mean shape, for a range of noise’s standard deviation in {100µm, 200µm, 300µm, 400µm}. The
asymptotic bias on the template shape of the glaucoma group is {0.1µm, 0.11µm, 0.12µm,
0.13µm} and of the control group is {0.27µm, 0.42µm, 0.55µm, 0.67µm}. The corrected template
shape differences are {22.01µm, 22.08µm, 22.14µm, 22.18µm}. In particular, for σ = 400µm, we
observe that the bias in the template shape are respectively 0.67µm for the healthy group and
0.13µm for the glaucoma group. This follows the rule-of-thumb: the bias is more important for
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the healthy group, for which the overall size is smaller than the glaucoma group, for a same
noise level. The bias of the template shape estimate accounts for less than 1µm in this case,
which is less than 0.1% of the shapes’ sizes. This computation guarantees that this study has
not been significantly affected by the bias.

4.3 Protein shapes in Molecular Biology

We estimate the impact of the bias on statistics on protein shapes.
A standard hypothesis in Biology is that structure (i.e. shape) and function of proteins are

related. Fundamental research questions about protein shapes include structure prediction -
given the protein amino-acid sequence, one tries to predict its structure - and design - given the
shape, one tries to predict the sequence needed.

One relies on experimentally determined 3D structures gathered in the Protein Data Base
(PDB) [?]. They contain errors on the protein’s atoms coordinates. Average errors range from
0.01 Å to 1.76 Å, which is of the magnitude of the length of some covalent bonds. These values
are averaged over the whole protein and in general, the main-chain atoms are better defined
than the side-chain atoms or the atoms at the periphery. This is illustrated on Figure where
we have plot the B-factor (related to coordinates errors [?]) as a colored map on the atoms for
proteins of PDB-codes 1H7W and 4HBB.

Fig. 21. Errors on atoms coordinates represented by the B-factor, for proteins 1H7W (left) and 4HBB (right).
Atoms at the periphery of the proteins tend to have more errors, which appear in yellow-red colors.

Protein’s radius of gyration A biased estimate of a protein shape has consequences for studies
on proteins folding. Stability and folding speed of a protein depend on both the estimated shape
of the denatured state (unfolded state) and of the native state (folded state). One may study
if compact initial states yield to faster folding. The protein compactness is represented by the
protein’s Radius of Gyration, defined as: R2

g = 1
N

∑N
non H atoms i(ri − RC)2, where N is the

number of non-hydrogen atoms, ri, RC are resp. the coordinates of atoms and centers and mi

their mass. Note that we assume (as it is usually the case) that all masses mi for non-hydrogen
atoms are equal and that hydrogen atoms have mass 0. Error on atoms coordinates give a bias
on the estimate of the Radius of Gyration:

B(R2
g) = R̄g

2 (N − 1)

N

3

2α2
. (8)

The radius of protein HJSJ (85 residues) is known to be around 10 Å. The error on R2
g is of

0.3% with an average error of positions on the atoms of 0.3Å. It is 8.6% for an error of 1.7Å.

20



The error will be greater if one consider binding sites at the periphery of the proteins rather
than the whole protein. Indeed sites’ size is smaller and they have less atoms.

One could think about doing clustering on radii of Gyration using the K-means algorithm
on shapes. The index D of Section ?? is:

D =
Rσ1

2 −Rσ2 2

σ
=
R2

1 −R2
2

σ
+ 3σ

(
N1 − 1

N1
− N2 − 1

N2

)
. (9)

Clustering on radii of gyration may lead to a misleading indicator.D indicates that the clustering
performs better that it actually does.

False positive probability in protein’s motif detection The relation between a protein’s shape
and function is linked to its motifs, which define the supersecondary structure. Motifs have
biological properties: for example the helixturnhelix motif [?]is responsible for the binding of
DNA within several prokaryotic proteins. Automatic motif detection is another challenge in
the study of protein shapes. We investigate the impact of bias on the false positive probability
estimation in motif detection.

Let us consider a set {Pi}ni=1 of proteins each with Ni atoms. One is interested in the motifs
of k atoms that can be detected in the protein’s set, where k < N . We define σ that represents
an allowed error zone. The number of detected motifs increases if: (i) one decreases k, or (ii) one
increases σ, or (iii) increases n. Thus how many detected motifs actually come from chance, with
respect to the parameters k, σ, n? The false positives probability indicates when one detects
truth and when one detects noise. The usual estimate of the false positive probability is P = V0

Vl .
Here V0 is the volume of the error zone allowed. Vl is the total volume of the protein [?], thus
the a ball of radius the Radius of Gyration. Thus Vl may be biased and overestimated. The
probability of false positive is underestimated.

We consider the example of [?]. One tries to find motifs between the tryptophan repressor
of Escherichia coli (PDB code 2WRP) and the CRO protein of phage 434 (PDB code 2CRO).
These two proteins are known to share the helix-turn-helix motif. The radius of Gyration of

2WRP is Rg = 20Å, the total volume is: Vl = 4
3πR

3
g ' 33510Å

3
. We assume an error zone that

takes the form of a diagonal covariance matrix with standard deviations σ = 0.35Å. We get the

error zone volume: V0 = χ3 4
3πσ

3 = 4.06Å
3

and the estimation of the false positive probability:
P = 1.2× 10−4. We find that P is underestimated by 0.27% using the expression of the Radius
of Gyration’s bias.

4.4 Brain template in Neuroimaging

We apply the rule of thumb of Section ?? to determine when the bias needs a correction in
the computation of a brain template from medical images. Here M and G will be infinite
dimensional. Nevertheless we apply our results to get intuition for this application.

In neuroimaging, a template is an image representing a reference anatomy. Computing the
template is often the first step in medical image processing. Then, the subjects’ anatomical
shapes may be characterized by their spatial deformations from the template. These deformations
may serve for (i) a statistical analysis of the subject shapes, or (ii) for automated segmentation by
mapping the template’s segmented regions into the subject spaces. In both cases, if the template
is not centered among the population, i.e. if it is biased, then the analyzes and conclusions could
be biased. We are interested in highlighting the variables that control the template’s bias.

The framework of Large Deformation Diffeomorphic Metric Mapping (LDDMM) [?] embeds
the template estimation in our geometric setting. The Lie group of diffeomorphisms acts on the
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space of images as follows:

ρ : Diff(Ω)× L2(Ω)→ L2(Ω), (φ, I) 7→ φ · I = I ◦ φ−1. (10)

The isotropy group of I writes: GI = {φ ∈ Diff(Ω)|I ◦φ−1 = I}. Its Lie algebra gI consists of the
infinitesimal transformations whose vector fields are parallel to the level sets of I: gI = {v|∀x ∈
Ω,∇I(x)T .v(x) = 0}. The orbit of I is : OI = {I ′ ∈ L2(Ω)|∃φ ∈ Diff(Ω) s.t. I ′ ◦ φ−1 = I}.

The ”shape space” is by definition the space of orbits. Two images that are diffeomorphic
deformations of one another are in the same orbit. They correspond to the same point in the
shape space. Topology of an image is defined as the image’s properties that are invariant by
diffeomorphisms. Consequently, the shape space is the space of the images topology, represented
by the topology of their level sets. We get a stratification of the shape space when we gather
the orbits by orbit type. A stratum is more singular than another, if it has higher orbit type,
i.e. larger isotropy group.

The manifold M has an infinite stratification. One changes stratum every time there is a
change in the topology of an image’s level sets. Singular strata are toward simpler topology.
”Principal” strata are toward a more complicated topology. Indeed, the simpler the topology
of the level sets is, the higher is the ”symmetry” of the image. Thus the larger is its isotropy
group. Note that strata with smaller isotropy group (more detailed topology) do not represent
”singularities” from the point of view of a given image and do not influence the bias. In fact,
such strata are at distance 0: an infinitesimal local change in intensity can create a maximum
or minimum, thus complexifying the topology.

Using the rule-of-thumb of Section ??, the template’s bias depends on its distance d to the
next singularity, at the scale of σ the intersubjects variability. The template is biased in the
regions where the difference in intensity between maxima and minima is of the same amplitude
as the variability. The template may converge to pure noise in these regions.

Conclusion

We introduced tools of statistics on manifolds to study the properties of template’s shape
estimation in Medical imaging and Computer vision. We have shown its asymptotic bias by
considering the shape space’s geometry. The bias comes from the external curvature of the
template’s orbit at the scale of the noise on the data. This provides a geometric interpretation
for the bias observed in [?,?]. We investigated the case of several templates and the performance
K-mean algorithms on shapes: clusters are less well separated because of each centroid’s bias.
The variables controlling the bias are: (i) the distance in shape space from the template to a
singular shape and (ii) the noise’s scale. This gives a rule-of-thumb for determining when the
bias is important and needs correction. We proposed two procedures for correcting the bias:
an iterative bootstrap and a nested bootstrap. These procedures can be applied to any type of
shape data: landmarks, curves, images, etc. They also provide a way to compute the external
curvature of an orbit.

Our results are exemplified on simulated and real data. Many studies use the template’s
shape estimation algorithm in Molecular Biology, Medical Imaging or Computer vision. Their
estimations are necessarily biased. But these studies often belong to a regime where the bias is
not important (less than 0.1%). For example, the bias is important in landmark shapes analyses
when the landmarks’ noise is comparable to the template shape’s size. Studies are rarely in this
regime. We have considered shapes belonging to infinite dimensional shape spaces. Our results
do not apply to the infinite dimensional case. We have used them to gain intuition about it. The
bias might be more important in infinite dimensions and need the correction we have suggested.
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Fréchet mean on quotient spaces may have a bias., Proceedings of the fifth international workshop on Math-
ematical Foundations of Computational Anatomy (MFCA’15), 2015, pp. 131–142.

4. S. Allassonnière and E. Kuhn, Convergent stochastic expectation maximization algorithm with efficient
sampling in high dimension. application to deformable template model estimation, Computational Statistics
& Data Analysis, 91 (2015), pp. 4 – 19.

5. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov,
and P. E. Bourne, The protein data bank, Nucleic Acids Res, 28 (2000), pp. 235–242.

6. J. Bigot and B. Charlier, On the consistency of Fréchet means in deformable models for curve and image
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A Proofs of the theorems

Here X is a point in M . We consider that X belongs to a principal orbit O = OX . This will
have no impact on the integration because the set of principal orbits is dense in M . We write
π(X) the projection of X in the shape space.

We write the template shape Y . We write its estimate Ŷ . We take a normal coordinate
system centered at the template Y . We have the decomposition X = (XO, XH) ∈ TYO ⊕ H,
where O is the orbit of Y . We note that π(X) 6= ExpYXH , so that XH are not the coordinates
of π(X) in the normal coordinate system at Y , see Figure ??.

We denote m the dimension of M , p the dimension of the principal orbits and q the dimension
of the quotient space. We write coordinates in Q with indices a, b.. ∈ [1, q] and coordinates in
an orbit with indices i, j... ∈ [1, p].

The generative model implies the following Riemannian normal distribution on the objects:

F (X) =
1

CM (σ)
exp

(
−
d2M (X,Y )

2σ2

)
with CM (σ) =

∫
M

exp

(
−
d2M (X,Y )

2σ2

)
dM(X). (11)

The distance dM (X,Y ) expressed in the normal coordinate system at Y is simply dM (X,Y )2 =
XTX. The Riemannian measure dM(X) at X in the normal coordinate system at Y has the
Taylor expansion: dM(X) = dX − 1

6

∑
A,B,C RABACX

BXCdX + O(||X||3). We recognize the
Riemannian curvature tensor R.

We truncate the Riemannian Gaussian:

F (X) =
1

Sm(
√

2π)mσm
exp

(
−X

TX

2σ2

)
, (12)

where S is the normalization coefficient coming of the univariate truncated Gaussian at σ/2.
BM , BO and BQ refer to geodesic balls of radius σ/2 in their respective spaces. We denote
CM = Sm(

√
2π)mσm and remark that CM = CHCO = Sq(

√
2π)qσq.Sp(

√
2π)pσp where q is the

dimension of the quotient space and p the dimension of the principal orbits.
In the following ’NCS’ means ’normal coordinate system’.

A.1 Proof a lemma.

Lemma 1. The coordinates of π(X) in a NCS at TYM are:

π(X)H = XH −
1

2
XT
O .h(X).XO +O(||XO||3), and π(X)O = 0.

Proof. We represent O in Tπ(X)M as the graph of a smooth function from Tπ(X)O to Nπ(X)O,
around XO = 0 by:

I : Tπ(X)O 7→ TXM = Tπ(X)O ⊕Nπ(X)O

XO 7→ I(XO) = (XO, G(XO)).

The local graph G is: G(XO) = −1
2X

T
O .h(X).XO+O(||XO||3). Its 0-th and 1-th order derivatives

are zero because the graph goes through π(X) and is tangent at Tπ(X)O. Its second order
derivative is h(X) and represents the best quadratic approximation of the graph.
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Fig. 22. Summary of the notations used in the proofs.

The coordinate of ExpYXH in a NCS centered at π(X) is G(XO). Conversely, the coordinate
of π(X) in a normal coordinate system centered at ExpYXH is −G(XO).

We need the coordinate of π(X) in the NCS at Y . We parallel transport −G(XO) from
ExpYXH to Y : π(X)H = XH +Π(−G(XO))→Y . The 0-th order term of the parallel transport
at ExpYXH in a NCS at Y is 0:

Π(−G(XO))→Y = −G(XO) +O(||XO||3).

This concludes.

A.2 Proof of Theorem ??

Proof. We take an NCS at Y . We denote x the coordinate of π(X) in the shape space. We
compute the induced probability distribution f on shapes by integrating the distribution on the
orbit of X out of F (X):

f(x) =
1

CM

∫
BO

exp

(
−
d2M (Y,X)2

2σ2

)
dO(XO).

The point X has coordinates (XO, x+G(XO)) where XO is the integration coordinate.

d2M (Y,X) = xTx+XT
OXO −

1

2

∑
a

XT
Oha(x)XOxa +O(||XO||3),

⇒ exp
(
d2M (Y,X)

)
= exp

(
−x

Tx

2σ2

)(
1 +XT

OXO −
1

2

∑
a

XT
Oha(x)XOxa +O(||XO||3)

)
.

Plugging this into the expression of the induced probability distribution function gives:

f(x) =
1

CM
exp

(
−x

Tx

2σ2

)∫
BO

(
1 +XT

OXO −
1

2

∑
a

XT
Oha(x)XOxa +O(||XO||3)

)
dO(XO)

=
1

CH
exp

(
−x

Tx

2σ2

)
((1) + (2) + (3)) ,
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where:

(1) =
1

CO

∫
BO

dO(XO),

(2) = xa
∑
ij

(
δij −

1

2
hij(x)

)
1

CO

∫
BO

XOiXOjdO(XO),

(3) =
1

CO

∫
BO

O(||XO||3)dO(XO).

The Lie group action is isometric so the Riemannian metric splits onto TXH ⊕ TXO at any
point. Moreover, the Taylor expansion of the metric around X still respects the splitting at the
third order. The measure dO(XO) for XO close enough to X is the restriction of this Taylor
expansion to the orbit. We have:

gO(XO)ij = gO(X)ij −
∑
k,l

1

3
ROikjlX

k
OX

l
O +O(||XO||3), (13)

so that: dO(XO) =
√
|det(gO(XO)ij)|dXO = dXO − 1

6

∑
k,lR

O
klX

k
OX

l
OdXO + O(||X3

O||) where
R is the Ricci curvature.

We recognize a moment in (1) and (2), so that:

(1) =
1

CO

∫
BO

dO(XO)

=
1

CO

∫
BO

1− 1

6

∑
k,l

ROklX
k
OX

l
O +O(||X3

O||)

 dXO

= c0p −
1

6

∑
k,l

ROkl
σ2

(
√

2π)pSp

(2) = xa
∑
ij

(
δij −

1

2
hij(x)

)
1

CO

∫
BO

XOiXOjdXO

= xa
∑
ij

(
δij −

1

2
hij(x)

)
σ2

(
√

2π)pSp
.

We denote cp = 1
(
√
2π)pSp

.

For the last term (3), we assume again that the graph of the orbit is smooth enough so
that it admits a Taylor serie at XO = 0, ie: O(||XO||3) =

∑∞
k=3

∑
i1,..,ik

ck,XXOi1 ...XOik . By
plugging this, we get the moments with the same manipulation as in the proof of Theorem 1.
As the moments of order 3 (and of odd order) are zero: (3) = O(σ4).

Gathering the results gives:

f(x) =
1

CH
exp

(
−x

Tx

2σ2

)c0p + cp
∑
ij

(
δij −

1

6
ROij −

∑
a

1

2
haij(x)xa

)
σ2 +O(σ4)

 .

A.3 Proof of Theorem ??

Proof. We show this result for a multivariate truncated Gaussian at σ/2 in each coordinate. We
call S the coefficient of the univariate truncated Gaussian at σ/2.

26



We want to compute the systematic bias. To this aim, we compute the mean of the distri-
bution of shapes in Q, in a coordinate system centered at the real Y . It writes:

Bias(Y, Ŷ ) =
1

CM

∫
BM

π(X) exp

(
−X

TX

2σ2

)
dM(X). (14)

The coordinates of X in the Euclidean coordinate system at Y are simply (XO, XH). Thus
d2M (Y,X) = XT

HXH +XT
OXO. From the lemma above:

π(X) = (0, XH +
1

2
XT
Oh(x)XO +O(||XO||3)). (15)

We plug this in the integral, to get:

Bias(Y, Ŷ ) =
1

CM

∫
BM

(
XH +

1

2
XT
Oh(x)XO +O(||XO||3)

)
. exp

(
−
XT
HXH +XT

OXO

2σ2

)
dX,

where only the 0-th order of the volume element expansion dM(X) = dX +O(||X||2) matters.

Integrating the element XH on the centered Gaussian gives 0:

Bias(Y, Ŷ ) =
1

CM

∫
BM

1

2
XT
Oh(x)XO exp

(
−
XT
HXH +XT

OXO

2σ2

)
dXHdXO

+
1

CM

∫
BM

O(||XO||3)) exp

(
−
XT
HXH +XT

OXO

2σ2

)
dXHdXO.

We denote (1) the first term of the sum and (2) the second term of the sum. We compute
them independently.

(1) =
1

2CM

∑
i,j

∫
BQ

hij(x)

(∫
BO

XOiXOj exp

(
−
XT
OXO

2σ2

)
dXO

)
exp

(
−
XT
HXH

2σ2

)
dXH

=
1

2CH

∑
i,j

∫
BQ

hij(x)

(
1

CO

∫
BO

XOiXOj exp

(
−
XT
OXO

2σ2

)
dXO

)
exp

(
−
XT
HXH

2σ2

)
dXH

=
σ2(1 + κ)

2CH

∑
i,j

∫
BQ

hij(x)δij exp

(
−
XT
HXH

2σ2

)
dXH ,

where the last line comes from the definitions of the moments of the truncated Gaussian.

We recognize the definition of the trace:

(1) =
σ2(1 + κ)

2CH

∑
i

∫
BQ

hii(x) exp

(
−
XT
HXH

2σ2

)
dXH

=
σ2(1 + κ)

2CH

∫
BQ

H(x) exp

(
−
XT
HXH

2σ2

)
dXH .

We perform a change of variable in the integral XH → X ′H so that XH = σX ′H , x = σx′

and dXH = σqdX ′H . This gives:

(1) =
σ2(1 + κ)

2CH

∫
BQ

H(σx′) exp

(
−
XT
HXH

2

)
dXH .
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We perform a Taylor expansion under the integration, in σ, using the chain rule:

(1) =
σ2(1 + κ)

2CH

∫
BQ

(
H(0) +

q∑
a=1

x′a
∂H

∂x′a
(0)σ +O(σ2)

)
exp

(
−
XT
HXH

2

)
dXH .

Again, the terms in XH
′
a integrate to 0. We have:

(1) =
σ2(1 + κ)

2CH

∫
BQ

H(0) exp

(
−
XT
HXH

2

)
dXH +O(σ4)

= H(0)
σ2(1 + κ)

2CH

∫
BQ

exp

(
−
XT
HXH

2

)
dXH +O(σ4).

The term
∫
BQ

exp
(
−XT

HXH
2

)
dXH is precisely the normalization constant of the truncated Gaus-

sian CH = Sq(
√

2π)q, so that:

(1) = H(0)
σ2(1 + κ)

2
+O(σ4).

The coefficient κ comes from the fact that we have truncated the Gaussian. Its expression is
independent of σ because we have truncated at a multiple of σ. Now we show that the second
term (2) is of order σ4.

(2) =
1

CM

∫
BM

OX(||XO||3) exp

(
−
XT
HXH +XT

OXO

2σ2

)
dXHdXO.

We assume that the local graph of the orbit is smooth enough so that it has a multivariate
Taylor serie: O(||XO||3) =

∑∞
k=3

∑
i1,..,ik

ck,XXOi1 ...XOik . We have:

(2) =
1

CM

∫
BM

 ∞∑
k=3

∑
i1,..,ik

ck,XXOi1 ...XOik

 exp

(
−
XT
HXH +XT

OXO

2σ2

)
dXHdXO.

Here the ck depend on XH . We first perform a majoration on each on them by a Ck (integration
on a compact ball).

‖(2)‖ ≤ 1

CM

∞∑
k=3

Ck
∑
i1,..,ik

∫
BH

∥∥∥∥∫
BO

XOi1 ...XOik exp

(
−
XT
HXH +XT

OXO

2σ2

)
dXO

∥∥∥∥ dXH

=
1

CM

∞∑
k=3

Ck
∑
i1,..,ik

∫
BH

exp

(
−
XT
HXH

2σ2

)
dXH .

∥∥∥∥∫
BO

XOi1
..XOik

exp

(
−
XT
OXO

2σ2

)
dXO

∥∥∥∥ .
We compute:

∫
BQ

exp
(
−XT

HXH
2σ2

)
dXH = CH so that:

‖(2)‖ ≤ 1

CO

∞∑
k=3

Ck
∑
i1,..,ik

∥∥∥∥∫
BO

XOi1 ...XOik exp

(
−
XT
OXO

2σ2

)
dXO

∥∥∥∥
=
∞∑
k=3

Ck
∑
i1,..,ik

1

CO

∥∥∥∥∫
BO

XOi1 ...XOik exp

(
−
XT
OXO

2σ2

)
dXO

∥∥∥∥ ,
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where we recognize the moment of the truncated Gaussian, which are non zero only for even
power. This gives: (2) = O(σ4).

Gathering the computations of (1) and (2), we get the formula of the bias:

Bias(Y, Ŷ ) = H(0)
σ2(1 + κ)

2
+O(σ4).
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