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Abstract –We derive the phonon damping rate due to the four-phonon Landau-Khalatnikov pro-
cess in low temperature strongly interacting Fermi gases using quantum hydrodynamics, correcting
and extending the original calculation of Landau and Khalatnikov [ZhETF, 19 (1949) 637]. Our
predictions can be tested in state-of-the-art experiments with cold atomic gases in the collisionless
regime.

Introduction. – Phonons, sound waves, low energy
normal modes or gapless collective excitations are ubiq-
uitous in physics. In uniform weakly-excited quantum
many-body systems with short-range interactions, they
are described as quasiparticles characterized by a disper-
sion relation approximately linear at low wavenumber,
ωq∼cq with c the speed of sound, and by a damping rate
much smaller than the eigenfrequency Γq ≪ ωq. Phonon
damping plays a central role in transport phenomena such
as thermal conduction in dielectric solids, and in hydro-
dynamic properties such as temperature dependent vis-
cosity and attenuation of sound in liquid helium [1, 2]. It
is also crucial for macroscopic coherence properties, since
it determines the intrinsic coherence time of bosonic and
fermionic gases in the condensed or pair-condensed regime
[3–5]. In the absence of impurities the damping of low-
energy phonons is determined by phonon-phonon inter-
actions that conserve energy and momentum and it cru-
cially depends on the curvature of the phonon dispersion
relation [6, 7]. For a concave dispersion relation, 1 ↔ 2
Beliaev-Landau processes involving three phonons are not
resonant and the 2 ↔ 2 Landau-Khalatnikov process in-
volving four quasiparticles dominates at low q.

In this paper we consider an unpolarized gas of spin-1/2
fermions prepared in thermal equilibrium at a tempera-
ture T below the critical temperature, where a macro-
scopic coherence between pairs of opposite spin fermions
appears. Compared to other many-body fermionic sys-
tems, atomic gases offer the unique possibility to tune the
interaction strength with an external magnetic field close

to a so-called Feshbach resonance. This allows experimen-
talists to explore the crossover between the Bose-Einstein
Condensate (BEC) and Bardeen-Cooper-Schrieffer (BCS)
regimes [8–16]. The dispersion relation of low energy
excitations, describing the collective motion of the pair
center of mass, has a phononic start at small wavenum-
bers [17–22] and changes from convex to concave in the
BEC-BCS crossover, close to the strongly interacting uni-
tary limit [20, 22]. Therefore, the damping caused by the
2 ↔ 2 processes should be directly observable in cold
Fermi gases, contrarily to helium-4 and weakly-interacting
Bose gases where the convex dispersion relation supports
Landau-Beliaev damping. On the theoretical side, the
original study by Landau and Khalatnikov of the 2 ↔ 2
damping rate [1] is limited to the case where one of the
colliding phonons has a small wavenumber compared to
the other and it performs as we shall see an unjustified
approximation on the coupling amplitude. Here, we give
the general expression of the phonon damping rate in the
concave dispersion relation regime at low temperature,
where it is dominated by the 2 ↔ 2 processes, correct-
ing and extending the original calculation of reference [1].
In the whole paper we restrict to the so-called collisionless
regime where the phonon frequency times the typical col-
lision time in the gas is much larger than one, ωqτc ≫ 1
[23, 24]. This is in general the case in superfluid gases at
low temperature 1.

1One can estimate τc ≃ 1/Γqth where ~cqth = kBT . Then for
excitation frequencies scaling as kBT , as in eq. (14), the condition
ωq ≫ Γq, satisfied for a weakly-excited gas, implies ωq ≫ Γqth
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Effective 2 ↔ 2 phonon coupling. – The theoret-
ical framework we use is the irrotational quantum hydro-
dynamics of Landau and Khalatnikov [1] with the Hamil-
tonian 2

Ĥ =

∫

d3r

[

~
2

2m
∇φ̂ · ρ̂ ∇φ̂+ e0(ρ̂)

]

(1)

where e0(ρ̂) is the ground state energy density, m is the
mass of a particle, and the superfluid velocity field op-
erator v̂(r, t) = ~

m∇φ̂(r, t) is the gradient of the phase
field operator, canonically conjugated to the density field
operator [ρ̂(r, t), φ̂(r′, t)] = iδ(r − r′). Assuming small

deviations of ρ̂(r, t) and φ̂(r, t) from their uniform spa-
tial averages, one finds the normal modes Fourier compo-
nents δρ̂q ∝ q1/2(b̂q + b̂†−q

) and δφ̂q ∝ −iq−1/2(b̂q − b̂†−q
),

where the annihilation and creation operators of quasi-
particles b̂q and b̂†

q
obey bosonic commutation relations.

One inserts the expansion of ρ̂ and φ̂ over these modes
in the Hamiltonian (1), which results in the series Ĥ =
E0 + Ĥ2 + Ĥ3 + Ĥ4 + . . . , where the index refers to the
order in b̂q and b̂†

q
.

In the concave dispersion relation regime considered in
this paper, the direct phonon coupling due to Ĥ3 is not res-
onant, and the leading resonant coupling is a four-phonon
process. An effective interaction Hamiltonian Ĥeff cou-
pling an initial Fock state of quasiparticles |i〉 of energy
Ei to a final one |f〉 of same energy Ef = Ei, where
two wavevectors q1 and q2 are annihilated and two other
wavevectors q3 and q4 are created, can then be derived
in second order perturbation theory by considering the di-
rect coupling by Ĥ4 to first order and the indirect coupling
(involving a non-resonant intermediate state |λ〉) by Ĥ3 to
second order,

〈f |Ĥeff |i〉 ≃ 〈f |Ĥ4|i〉+
∑

λ

〈f |Ĥ3|λ〉〈λ|Ĥ3|i〉

Ei − Eλ
≡ Ai→f (2)

The reader will notice that, for the purely linear dis-
persion relation ωq = cq predicted by Ĥ2, the denom-
inators in (2) diverge for aligned wavevectors because
the intermediate processes become resonant, for example
Ei −Eλ = ω1 +ω2 − ωq1+q2 = 0, with the short-hand no-
tation ωi ≡ ωqi . Following Landau and Khalatnikov, we
regularize this divergence by including the actual curva-
ture of the spectrum [20,22] in the energy denominators3

~ωq =
q→0

~cq

[

1 +
γ

8

(

~q

mc

)2

+O

(

~q

mc

)4
]

. (3)

which ensures the collisionless regime.
2In principle, this Hamiltonian has to be regularized by introduc-

ing an ultraviolet momentum cut-off or by discretizing the real space
on a lattice as in reference [5]. This however does not play a role
here.

3The quantum hydrodynamics Hamiltonian can be supplemented
by terms leading to a curved dispersion relation [25]. Except in the
energy denominator, this brings a negligible correction to the phonon
damping rate at low temperature.

Here the speed of sound c is related to the gas density ρ
and the ground state chemical potential µ by

mc2 = ρ
dµ

dρ
(4)

whereas the dimensionless curvature parameter γ < 0
must be measured or determined from a microscopic
theory. By introducing the dimensionless and state-
independent effective coupling amplitude Aeff ,

Ai→f =
√

nq1nq2(1 + nq3)(1 + nq4)
4mc2

ρL3
Aeff (5)

where nqi are the phonon occupation numbers in the ini-
tial Fock state |i〉, and by considering in eq. (2) the six
possible intermediate states |λ〉 where a virtual phonon is
created and reabsorbed (or absorbed and recreated in the
six corresponding finite temperature diagrams, in such a
way that the temperature dependence disappears) we find

Aeff (q1,q2;q3,q4) =
1

16

√

~4ω1ω2ω3ω4

m4c8

(

ΣF

+
(ω1 + ω2)

2A1234 + ω2
q1+q2

B1234

(ω1 + ω2)2 − ω2
q1+q2

+
(ω1 − ω3)

2A1324 + ω2
q1−q3

B1324

(ω1 − ω3)2 − ω2
q1−q3

+
(ω1 − ω4)

2A1423 + ω2
q1−q4

B1423

(ω1 − ω4)2 − ω2
q1−q4

)

(6)

We introduced the angle-dependent coefficients

Aijkl = (3ΛF + uij)(1 + ukl)

+ (3ΛF + ukl)(1 + uij) + (1 + uij)(1 + ukl)(7)

Bijkl = (3ΛF + uij)(3ΛF + ukl) (8)

with uij = qi · qj/qiqj and the thermodynamic quantities

ΣF ≡
ρ3

mc2
d3µ

dρ3
(9)

ΛF ≡
ρ

3

d2µ

dρ2

(

dµ

dρ

)−1

(10)

From the coupling amplitude Aeff we finally obtain the
sought low-energy effective Hamiltonian for the 2 ↔ 2
phonon process in a cubic quantization volume of size L:

Ĥeff =
mc2

ρL3

∑

q1,q2,q3,q4
q1+q2=q3+q4

Aeff(q1,q2;q3,q4)b̂
†
q3
b̂†
q4
b̂q1 b̂q2

(11)

The phonon damping rate. – To calculate the
phonon damping rate from the effective Hamiltonian (11)
we use a master equation approach as in reference [26]:
the phonon mode of momentum ~q is linearly coupled
to the thermal reservoir containing all the other phonon
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modes by an interaction Hamiltonian Ĥint = R̂†b̂q + R̂b̂†
q
,

where R̂† collects terms in b̂†
q3
b̂†
q4
b̂q2 from Ĥeff . The mas-

ter equation gives an exponential relaxation of the average
population of the mode q towards its thermal equilibrium
value with a rate

Γq =
(mc2)2

4π5~2ρ2

∫

d3q2 d
3q3|Aeff(q,q2;q3,q4)|

2

δ(ω3 + ω4 − ω2 − ωq) [n̄2(1 + n̄3 + n̄4)− n̄3n̄4] (12)

where q4 = q + q2 − q3 due to momentum conservation
and we have used the notation n̄i ≡ n̄qi to indicate the
phonon occupation numbers in thermal equilibrium. The
result (6),(12) goes beyond that of Ref. [1] where the au-
thors concentrated on a single diagram for the intermedi-
ate processes. This will have a significant impact on the
behavior of the damping rate as a function of q as we will
see. To go further analytically, we restrict to sufficiently
low temperature

ǫ ≡
kBT

mc2
≪ 1 (13)

so that only the (almost) linear region of the phonon
dispersion relation is explored and the integral (12) is
dominated by configurations in which the four involved
wavevectors are almost aligned. By introducing the
rescaled quantities

q̃i =
~cqi
kBT

; θ̃i =
θi

ǫ|γ|1/2
(14)

with θi the angles between qi and q and γ the curvature
parameter in the spectrum (3), and by expanding the cou-
pling amplitude (6) for ǫ → 0 at fixed q̃i and θ̃i, we obtain
the central result of this paper:

~Γq

ǫF
∼

ǫ→0

K

|γ|

(

T

TF

)7

Γ̃(q̃) (15)

In this formula ǫF = kBTF = ~
2k2F /2m is the Fermi en-

ergy, K is an interaction-dependent thermodynamic quan-
tity

K = 2

(

3

4

)6
( ǫF
mc2

)3

(1 + ΛF )
4 (16)

and the rescaled phonon damping rate Γ̃(q̃), shown in
fig. 1, is a universal, monotonically increasing function of
the dimensionless wavenumber. Explicitly

Γ̃(q̃) =

∫ ∞

0

dq̃2

∫ q̃+q̃2

0

dq̃3
q̃32 q̃

3
3(q̃ + q̃2 − q̃3)

q̃|v|

×
[1 + f(q̃2)]f(q̃3)f(q̃ + q̃2 − q̃3)

f(q̃)

×

∫ π

0

dφ

∫ π/2

0

dα sinα cosαΘ
(

−
v

u

)

|Ared|
2

(17)

where Θ(x ≥ 0) = 1, Θ(x < 0) = 0 is the Heaviside func-
tion, f(x) = 1/(ex−1) originates from the Bose law, u and

1 2 3 4 5 6 7
argsh q~

0

10

20

30

40

50

Γ~ (q~
)/

q~2
Fig. 1: Rescaled phonon damping rate due to 2 ↔ 2 phonon
processes in a superfluid spin-1/2 Fermi gas, as a function of
the rescaled wavenumber q̃ = ~cq/kBT , or more precisely of its
inverse hyperbolic sine. Due to these rescalings, see eq. (15),
the result is universal and applies at sufficiently low tempera-
ture in the whole region of the BEC-BCS crossover where the
dispersion relation is concave at low q. The dashed straight
lines show the limiting behaviors (21) and (22) and the dot-
dashed curve at large q̃ is a fit of Γ̃(q̃)/q̃2 by an affine function
of 1/q̃.

v are the following functions of q̃, q̃2, q̃3, α = arctan θ3/θ2,
and of the relative azimuthal angle φ of q2 and q3:

u =
q̃(q̃3 sin

2 α− q̃2 cos
2 α) + q̃2q̃3(1− sin 2α cosφ)

q̃ + q̃2 − q̃3
(18)

v =
1

4

[

q̃3 + q̃32 − q̃33 − (q̃ + q̃2 − q̃3)
3
]

(19)

We introduced in eq. (17) the reduced coupling amplitude

Ared =
1

q̃2

(

cos2 α
(q̃+q̃2)2

− 3u
4v

) −
1

q̃3

(

sin2 α
(q̃−q̃3)2

− 3u
4v

)

−
1

q̃2 cos2 α−q̃3 sin2 α+u
(q̃2−q̃3)2

− 3u
4v (q̃ + q̃2 − q̃3)

(20)

The limiting behaviors of the normalized universal
Landau-Khalatnikov damping rate (17)

Γ̃(q̃) =
q̃→0

16π5

135
q̃3 +O(q̃4) (21)

Γ̃(q̃) =
q̃→∞

16πζ(5)

3
q̃2 +O(q̃) (22)

are shown in fig. 1 as dashed straight lines. Here ζ is the
Riemann zeta function. Equations (21)-(22) disagree with
Eqs.(7.6) and (7.12) in reference [1], even for the order in
q̃, our results being subleading by two orders. This is due
to the fact that the diagrams neglected by Landau and
Khalatnikov in the calculation of the effective amplitude
Aeff turn out to interfere destructively with the supposedly
leading term that they keep.
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Fig. 2: Thermodynamic quantity (16) as a function of 1/kF a
where kF = (3π2ρ)1/3 is the Fermi wavenumber and a the s-
wave scattering length, from the measured zero-temperature
equation of state of the spin-1/2 Fermi gas [14,27].

Physical discussion and observability. – We now
discuss the main result (15) and the possibility to test it
in state-of-the-art experiments with cold fermionic gases.
In fig. 2 we use the measured equation of state of the
spin-1/2 Fermi gas [14, 27] to plot the thermodynamic
quantity K in eq. (16) as a function of 1/kFa. The cur-
vature parameter γ appearing in the phonon dispersion
relation (3) has not yet been measured in strongly inter-
acting Fermi gases. We plot in fig. 3 the prediction of
reference [22] which relies on the Random Phase Approxi-
mation and coincides with that of other approximate the-
ories [18,20]. We plot it separately so that, once an exper-
imental value will be available, it can be used in eq. (15).
To give a numerical example, we choose the interaction
strength such that the coefficient of the quintic term in
the expansion (3) vanishes, 1/kFa ≃ −0.39 according to
reference [22]. From the measured equation of state, the
value of the sound velocity is c ≃ 0.43~kF/m and the
parameter ΛF obeys 1 + ΛF ≃ 0.866, leading to the ther-
modynamic constant K ≃ 4.2. The predicted value of
the curvature parameter is γ ≃ −0.30 [22]. The tempera-
ture should be sufficiently low and the wavenumber q much
smaller than 2∆/~c to avoid the excitation of the fermionic
branch [28, 29]. By choosing T = 0.073TF , larger than
the temperature already achieved in reference [30], and
q̃ ≡ ~cq/kBT = 5/2, one obtains ǫ ≡ kBT/mc2 ≃ 0.20,
~q/mc ≃ 0.50, q ≃ 0.21kF , ~cq/2∆ ≈ 0.2 and Γ̃ ≃ 265.
For the typical value TF = 1µK with 6Li atoms, one ob-
tains 2π/q ≃ 6µm, ωq/2π ≃ 3.8 kHz and c ≃ 2.2 cm/s.
Eq. (15) then predicts Γq ≃ 5s−1, that is a phonon lifetime
Γ−1
q

≃ 190 ms and a mode quality factor ωq/Γq ≃ 4600.4

Qualify factors of this order of magnitude have been ob-

4As expected, this is in the collisionless regime since the angular
frequency ωq is much larger than the thermalization rate, that we

-0.5 -0.4 -0.3 -0.2 -0.1 0
1/k

F
a

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

γ R
PA

-0.389 -0.144

Fig. 3: Curvature parameter γ obtained with the RPA in ref-
erence [22] for the phonon dispersion relation (3), as a func-
tion of 1/kF a where kF is the Fermi wavenumber and a the
s-wave scattering length. The dashed lines mark the two
points where either the cubic (1/kF a = −0.144) or the quintic
(1/kF a = −0.389) correction to the linear dispersion relation
in eq. (3) vanishes.

served for the transverse monopole mode of an atomic
Bose-Einstein condensate [31].

The possibility of trapping cold atoms in flat bottom
potentials [32] opens the way to a direct test of our pre-
diction in a spatially homogeneous system. In the box
trapping potential, a Glauber coherent state of phonons
in a standing-wave mode with a well-defined wavevector
q along a trap axis can be created by laser Bragg excita-
tion of the condensate of pairs in the strongly interacting
Fermi gas [33–35], on top of the preexisting background of
thermal phonons. One simply matches the frequency dif-
ference and the wavevector difference of two laser standing
waves to the eigenfrequency ωq and the wavevector q of
the desired phonon mode. The subsequent decay of the
phonon coherent state can be monitored by measuring in

situ the spatial modulation of the density at wavevector q
using the bosonizing imaging techniques of reference [13].
Note that in Bragg spectroscopy the density is usually de-
termined after a time-of-flight which amounts to making
a measurement in Fourier space. This is appropriate for
q ≫ kF where the scattered atoms separate from the Fermi
sea of unscattered atoms. Here on the contrary q ≪ kF
and the measurement is best performed in real space. In
weakly interacting Bose gases, damping times of a fraction
of a second have been measured in experiments without
being affected by extraneous damping mechanisms [31],
and the Bragg technique has allowed to measure the Bo-
goliubov dispersion relation [36] and to observe the zero-
temperature 1 → 2 Beliaev damping [37] with a successful

estimate by the damping rate at the typical thermal wavenumber
qth = kBT/~c: one finds Γ̃(1) ≃ 26 and Γqth/ωq ≃ 2× 10−5.
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comparison of their q-dependence to theory.
To be complete, let us analyse in more detail the ex-

perimental proposal. In reference [32] the flat bottom
trap has an elongated cylindric shape. For simplicity,
we model it by an infinite square well potential in the
three dimensions with widths Lx = Ly ≡ L⊥ < Lz of
rounded up values L⊥ = 50µm and Lz = 100µm.5 The
phonon mode functions are then products of sine func-

tions 23/2

V 1/2

∏

α=x,y,z sin(qαrα), where qαLα/π = nα ∈ N
∗

and V = L2
⊥Lz is the trap volume. During the short

time interval 0 < t < τ , two retro-reflected far-off-
resonant Bragg laser beams illuminate the trapped gas.
They induce a conservative lightshift potential W (r, t) =
W0|E(r, t)|

2 where E(r, t) is the reduced, dimensionless
positive-frequency part of the laser electric field. In second
quantized form this gives rise to the phonon-light coupling
Hamiltonian

ĤW =

∫

d3rW (r, t)δρ̂(r) (23)

Following the values of the physical parameters given
above, we take the phonon mode to be excited in the
transverse ground state nx = ny = 1 with a wavenum-
ber qz ≃ 0.5mc/~ along z, that is nz = 33. To optimally
excite this mode, we choose E(r, t) = sin(k1 · r)e−iω1t +
i cos(k2 · r)e−iω2t. Here ki and ωi, the wavevectors and
the angular frequencies of the laser standing waves, obey
k2 = k1+qzez and ω2 = ω1−ωq, with ωq the angular fre-
quency of the phonon mode and ez the unit vector along
z. In practice the wavevectors k1 and k2 are in the opti-
cal domain, with submicronic wavelength, so k1 ≃ k2 ≫ q

5One may wonder if this is large enough for our infinite-system
theory to apply. This will be the case if the typical spacing between
the discrete values of ω3 + ω4 − ω2 − ωq in the argument of the
Dirac distribution in eq. (12) is ≪ Γq/2. In the decay process of
an unstable state, the energy is indeed conserved within ±~Γq/2.
We estimate the typical spacing by 1/ρstates(ωq) with the density of
states

ρstates(ω) =

typ∑
q2,q3

δ(ω3 + ω4 − ω2 − ω)

where the typical values of q2 and q3 are at an angle at most ǫ
with respect to q. Also we impose q2 < 〈q〉th where ~c〈q〉th =

π4

30ζ(3)
kBT is the mean phonon thermal energy. The wavenumber q3

is automatically limited by q + q2 as in eq. (17). Replacing
∑

k by
V

∫
d3k/(2π)3 in the thermodynamical limit, and taking the ǫ → 0

limit as in Γq, we obtain ρstates(ωq)Γq/2 ∼ (L̄/L0)6 with L̄3 = V
the trap volume and

L0 =
4π~

3mc

~kF

mc
ǫ−7/3π−1/3(1 + ΛF)

−2/3(Γ̃I)−1/6

where the integral

I =

∫ π4

30ζ(3)

0
q̃22dq̃2

∫ q̃+q̃2

0
q̃23dq̃3

×

∫ 1

0
R3dR

∫ π/2

0
sinα cosαdα

∫ π

0

dφ

π
δ(uR2 + v)

is evaluated numerically, I ≃ 2.445. The thermodynamic limit is
reached for L̄ > L0. In our numerical example L̄ ≃ 63µm is indeed
larger than L0 ≃ 50µm.

and the condition k2 = k1 + qzez is achieved by introduc-
ing a small angle between them. In the resulting optical
potential

W (r, t) = W0

{

1−
1

2
[cos(2k1 · r)− cos(2k2 · r)]

+ [sin(qzz)− sin((k1 + k2) · r)] sin(ωqt)

}

(24)

the time-independent part is non-resonant and can be ne-
glected. In the time dependent part, the second sine term
excites a mode of wavevector k1 + k2 far from resonance
and can also be omitted. One is left for 0 < t < τ with
the effective Bragg Hamiltonian 6

Ĥres
W ≃ 2~Ω(b̂q + b̂†

q
) sin(ωqt) (25)

of Rabi frequency Ω = W0[ωqρV/(16~mc2)]1/2. Integrat-
ing the Heisenberg equations of motion for the phonon
annihilation operator b̂q and taking the expectation value

in the initial t = 0 thermal state7, one finds 〈b̂q(τ)〉 =
Ω[τe−iωqτ − sin(ωqτ)/ωq] where the second term, which
is the off-resonant effect of the negative-frequency part of
sin(ωqt), is zeroed by the choice τ = π/ωq ≃ 130µs. At
the end of the Bragg pulse, this gives a z-modulation of
the gas density that will subsequently decay to zero due to
scattering of thermal phonons. Since absorption imaging
gives in general access to an integrated density, we give
the density modulation integrated along x and y:

δ̄ρ(z, t) =
t>τ

πW0ρL
2
⊥

2mc2
sin(qzz) cos(ωqt)e

−Γqt/2 (26)

6As the lightshift potential W0 sin(qzz) sin(ωqt) is x- and y-
independent, it actually couples to several transversally excited
phonon modes during the Bragg pulse. Only the even x-parity
and even y-parity states are populated, nx = 2sx + 1 and ny =
2sy + 1, (sx, sy) ∈ N2, with normalised amplitudes csx,sy =

2L−2
⊥

∫ L⊥

0 dxdy sin xπnx
L⊥

sin
yπny

L⊥

= 8π−2

nxny
. In the main text we

have presented a monomode calculation assuming |c0,0|2 = 1 as if
only the transversally fundamental mode was excited. In reality, the
result in eq. (26) has to be weighted by |c0,0|2 and the transversally
excited modes give additional time dependent contributions to the
integrated density modulation that dephase in a time of the order
of t⊥ = qL2

⊥
/(2π2c) ≃ 6 ms, that is ≃ 140/ωq and ≃ 0.03/Γq.

Since
∑

sx,sy
|csx,sy |

2 converges rather rapidly to unity, the rele-

vant nx and ny are indeed ≪ nz, and the angular frequency dif-

ferences ω(nx,ny ,nz) − ω(1,1,nz) ≃ t−1
⊥

[sx(sx + 1) + sy(sy + 1)],
with the obvious notation ωq = ω(1,1,nz), etc. To summarize,

eq. (26) becomes δ̄ρ(z, t) =
πW0ρL

2
⊥

2mc2
sin(qzz){|c0,0|2 cos(ωqt) +

Re[f(t) exp(−iωqt)]}e−Γqt/2 with the periodic function

f(t) =
∑

(sx,sy)∈N2∗

|csx,sy |
2e−i[sx(sx+1)+sy(sy+1)]t/t⊥

Since ωqt⊥ ≫ 1, f(t) plays the role of an envelope function and
mainly its modulus matters. For our square well potential |c0,0|2 ≃
0.657 and |f(t)| < 0.343. This shows that the contributions of the
excited modes and their Hamiltonian dephasing are rather harmless
and cannot imitate a complete damping of the phonon mode.

7A similar calculation, but with bosons and periodic boundary
conditions, was done in reference [38].
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Conclusion. – We have calculated the Landau-
Khalatnikov low-temperature phonon damping rate in
strongly interacting superfluid Fermi gases. Our expres-
sion, thanks to an appropriate rescaling of the wavenum-
ber, takes a universal functional form, plotted in fig. 1,
that applies in the whole region of the BEC-BCS crossover
where the phononic dispersion relation has a concave start.
This includes the strongly interacting regime and paves
the way to an experimental observation with ultracold
atomic gases. As the phonon dispersion relation has a
convex rather than concave start in liquid helium [6, 7],
such an observation would be unprecedented and would
open a new era in the exploration of low-temperature dy-
namics of macroscopically coherent quantum many-body
systems.
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