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Landau-Khalatnikov phonon damping in strongly interacting Fermi gases

H. Kurkjian, Y. Castin, A. Sinatra
Laboratoire Kastler Brossel, ENS-PSL, CNRS, UPMC-Sorbonne Universités and Collège de France, Paris, France

We derive the phonon damping rate due to the four-phonon Landau-Khalatnikov process in low
temperature strongly interacting Fermi gases using quantum hydrodynamics, correcting and extend-
ing the original calculation of Landau and Khalatnikov [ZhETF 19, 637 (1949)]. Our predictions
can be tested in state-of-the-art experiments with cold atomic gases in the collisionless regime.

PACS numbers:

Phonons, sound waves, low energy normal modes or
gapless collective excitations are ubiquitous in physics.
In uniform weakly-excited quantum many-body systems
with short-range interactions, they are described as
quasiparticles characterized by a dispersion relation ap-
proximately linear at low wavenumber, ωq∼cq with c the
speed of sound, and by a damping rate much smaller than
the eigenfrequency Γq ≪ ωq. Phonon damping plays
a central role in transport phenomena, such as thermal
conduction in dielectric solids, in hydrodynamic proper-
ties, such as temperature dependent viscosity and atten-
uation of sound in liquid helium [1, 2], and in macro-
scopic coherence properties, since it determines the in-
trinsic coherence time of bosonic and fermionic gases in
the condensed or pair-condensed regime [3–5]. In the ab-
sence of impurities the damping of low-energy phonons
is determined by phonon-phonon interactions that con-
serve energy and momentum and it crucially depends on
the curvature of the phonon dispersion relation [6, 7].
For a concave dispersion relation, Beliaev-Landau pro-
cesses involving three phonons are not resonant and the
2 ↔ 2 Landau-Khalatnikov process involving four quasi-
particles dominates at low q.

In this paper we consider an unpolarized gas of spin-
1/2 fermions prepared in thermal equilibrium at a tem-
perature T below the critical temperature, where a
macroscopic coherence between pairs of opposite spin
fermions appears. Compared to other many-body
fermionic systems, atomic gases offer the unique pos-
sibility to tune the interaction strength with an exter-
nal magnetic field close to a so-called Feshbach res-
onance, which allows experimentalists to explore the
crossover between the Bose-Einstein Condensate (BEC)
and Bardeen-Cooper-Schrieffer (BCS) regimes [8–16].
The dispersion relation of low energy excitations, describ-
ing the collective motion of the pair center of mass, has a
phononic start at small wavenumbers [17–22] and changes
from convex to concave in the BEC-BCS crossover, close
to the strongly interacting unitary limit [20, 22]. There-
fore, the damping caused by the 2 ↔ 2 processes should
be directly observable in cold Fermi gases, contrarily
to helium-4 and weakly-interacting Bose gases where
the convex dispersion relation supports Landau-Beliaev
damping. On the theoretical side, the original study of

Landau and Khalatnikov [1] is limited to the case where
one of the colliding phonons has a small wavenumber
compared to the other and it performs as we shall see
an unjustified approximation on the coupling amplitude.
Here, we give the general expression of the phonon damp-
ing rate in the concave dispersion relation regime at low
temperature, where it is dominated by the 2 ↔ 2 pro-
cesses, correcting and extending the original calculation
of [1]. In the whole paper we restrict to the so-called col-
lisionless regime where the phonon frequency times the
typical collision time in the gas is much larger than one,
ωqτc ≫ 1 [23, 24]. This is in general the case in superfluid
gases at low temperature [33].
The theoretical framework we use is the irrotational

quantum hydrodynamics of Landau and Khalatnikov [1]
with the Hamiltonian [34]

Ĥ =

∫

d3r

[

~
2

2m
∇φ̂ · ρ̂ ∇φ̂+ e0(ρ̂)

]

(1)

where e0(ρ̂) is the ground state energy density, m is the
mass of a particle, and the superfluid velocity field op-
erator v̂(r, t) = ~

m∇φ̂(r, t) is the gradient of the phase
field operator, canonically conjugated to the density field
operator [ρ̂(r, t), φ̂(r′, t)] = iδ(r − r

′). Assuming small

deviations of ρ̂(r, t) and φ̂(r, t) from their uniform spa-
tial averages, one finds the normal modes Fourier compo-
nents δρ̂q ∝ q1/2(b̂q+ b̂†−q

) and δφ̂q ∝ −iq−1/2(b̂q− b̂†−q
),

where the annihilation and creation operators of quasi-
particles b̂q and b̂†

q
obey bosonic commutation relations.

One inserts the expansion of ρ̂ and φ̂ over these modes
in the Hamiltonian (1), which results in the series Ĥ =
E0 + Ĥ2 + Ĥ3 + Ĥ4 + . . . , where the index refers to the
order in b̂q and b̂†

q
.

In the concave dispersion relation regime considered in
this paper, the direct phonon coupling due to Ĥ3 is not
resonant, and the leading resonant coupling is a four-
phonon process. An effective interaction Hamiltonian
Ĥeff coupling an initial Fock state of quasiparticles |i〉
of energy Ei to a final one |f〉 of same energy Ef = Ei,
where two wavevectors q1 and q2 are annihilated and
two other wavevectors q3 and q4 are created, can then
be derived in second order perturbation theory by con-
sidering the direct coupling by Ĥ4 to first order and the
indirect coupling (involving a non-resonant intermediate
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state |λ〉) by Ĥ3 to second order,

〈f |Ĥeff |i〉 ≃ 〈f |Ĥ4|i〉+
∑

λ

〈f |Ĥ3|λ〉〈λ|Ĥ3|i〉

Ei − Eλ
≡ Ai→f (2)

The reader will notice that, for the purely linear dis-
persion relation ωq = cq predicted by Ĥ2, the denom-
inators in (2) diverge for aligned wavevectors because
the intermediate processes become resonant, for example
Ei−Eλ = ω1+ω2−ωq1+q2

= 0, with the short-hand no-
tation ωi ≡ ωqi

. Following Landau and Khalatnikov, we
regularize this divergence by including the actual curva-
ture of the spectrum [20, 22] in the energy denominators
[35]

~ωq =
q→0

~cq

[

1 +
γ

8

(

~q

mc

)2

+O

(

~q

mc

)4
]

. (3)

Here the speed of sound c is related to the ground state
gas density ρ and chemical potential µ by

mc2 = ρ
dµ

dρ
(4)

whereas the dimensionless curvature parameter γ < 0
must be measured or determined from a microscopic
theory. By introducing the dimensionless and state-
independent effective coupling amplitude Aeff ,

Ai→f =
√

nq1
nq2

(1 + nq3
)(1 + nq4

)
4mc2

ρL3
Aeff (5)

where nqi
are the phonon occupation numbers in the

initial Fock state |i〉, and by considering the six possible
intermediate states where a virtual phonon is created and
reabsorbed (or absorbed and recreated in the six corre-
sponding finite temperature diagrams) we find in a cubic
quantization volume of size L:

Ĥeff =
mc2

ρL3

∑

q1,q2,q3,q4

q1+q2=q3+q4

Aeff(q1,q2;q3,q4)b̂
†
q3
b̂†
q4
b̂q1

b̂q2

(6)
with the effective on-shell coupling amplitude

Aeff (q1,q2;q3,q4) =
1

16

√

~4ω1ω2ω3ω4

m4c8

(

ΣF

+
(ω1 + ω2)

2A1234 + ω2
q1+q2

B1234

(ω1 + ω2)2 − ω2
q1+q2

+
(ω1 − ω3)

2A1324 + ω2
q1−q3

B1324

(ω1 − ω3)2 − ω2
q1−q3

+
(ω1 − ω4)

2A1423 + ω2
q1−q4

B1423

(ω1 − ω4)2 − ω2
q1−q4

)

(7)

We introduced the angle-dependent coefficients

Aijkl = (3ΛF + uij)(1 + ukl)

+ (3ΛF + ukl)(1 + uij) + (1 + uij)(1 + ukl)(8)

Bijkl = (3ΛF + uij)(3ΛF + ukl) (9)

with uij = qi ·qj/qiqj and the thermodynamic quantities

ΣF ≡
ρ3

mc2
d3µ

dρ3
(10)

ΛF ≡
ρ

3

d2µ

dρ2

(

dµ

dρ

)−1

(11)

To calculate the phonon damping rate from the ef-
fective Hamiltonian (6) we use a master equation ap-
proach as in [25]: the phonon mode of momentum ~q is
linearly coupled to the thermal reservoir containing all
the other phonon modes by an interaction Hamiltonian
Ĥint = R̂†b̂q + R̂b̂†

q
, where R̂† collects terms in b̂†

q3
b̂†
q4
b̂q2

from Ĥeff . The master equation gives an exponential re-
laxation of the average population of the mode q towards
its thermal equilibrium value with a rate

Γq =
(mc2)2

4π5~2ρ2

∫

d3q2 d
3q3|Aeff(q,q2;q3,q4)|

2

δ(ω3 + ω4 − ω2 − ωq) [n̄2(1 + n̄3 + n̄4)− n̄3n̄4] (12)

where q4 = q + q2 − q3 due to momentum conserva-
tion and we have used the notation n̄i ≡ n̄qi

to indicate
the phonon occupation numbers in thermal equilibrium.
The result (7)-(12) goes beyond that of Ref.[1] where the
authors concentrated on a single diagram for the inter-
mediate processes. This will have a significant impact
on the behavior of the damping rate as a function of q
as we will see. To go further analytically, we restrict to
sufficiently low temperature

ǫ ≡
kBT

mc2
≪ 1 (13)

so that only the (almost) linear region of the phonon
dispersion relation is explored and the integral (12) is
dominated by configurations in which the four involved
wavevectors are almost aligned. By introducing the
rescaled quantities

q̃i =
~cqi
kBT

; θ̃i =
θi

ǫ|γ|1/2
(14)

with θi the angles between qi and q and γ the curvature
parameter in the spectrum (3), and by expanding the
coupling amplitude (7) for ǫ → 0 at fixed q̃i and θ̃i, we
obtain the central result of this paper:

~Γq

ǫF
∼

ǫ→0

K

|γ|

(

T

TF

)7

Γ̃(q̃) (15)

In this formula ǫF = kBTF = ~
2k2F /2m is the Fermi

energy, K is an interaction-dependent thermodynamic
quantity

K = 2

(

3

4

)6
( ǫF
mc2

)3

(1 + ΛF )
4 (16)
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FIG. 1: Rescaled phonon damping rate due to 2 ↔ 2 phonon
processes in a spin-1/2 Fermi gas, as a function of the rescaled
wavenumber q̃ = ~cq/kBT . Due to these rescalings, see
Eq.(15), the result is universal and applies at sufficiently low
temperature in the whole region of the BEC-BCS crossover
where the dispersion relation is concave at low q. The dashed
straight lines show the asymptotic behaviors (21) and (22)

and the dashed curve at large q̃ is a fit of Γ̃/q̃2 by an affine
function of 1/q̃.

and the rescaled phonon damping rate Γ̃(q̃), shown
in Fig.1, is a universal function of the dimensionless
wavenumber. Explicitly

Γ̃(q̃) =

∫ ∞

0

dq̃2

∫ q̃+q̃2

0

dq̃3
q̃32 q̃

3
3(q̃ + q̃2 − q̃3)

q̃|v|

×
[1 + f(q̃2)]f(q̃3)f(q̃ + q̃2 − q̃3)

f(q̃)

×

∫ π

0

dφ

∫ π/2

0

dα sinα cosαΘ
(

−
v

u

)

|Ared|
2

(17)

where Θ(x ≥ 0) = 1, Θ(x < 0) = 0 is the Heaviside
function, f(x) = 1/(ex − 1) originates from the Bose
law, u and v are the following functions of q̃, q̃2, q̃3, α =
arctan θ3/θ2, and of the relative azimuthal angle φ of q2

and q3:

u =
q̃(q̃3 sin

2 α− q̃2 cos
2 α) + q̃2q̃3(1− sin 2α cosφ)

q̃ + q̃2 − q̃3
(18)

v =
1

4

[

q̃3 + q̃32 − q̃33 − (q̃ + q̃2 − q̃3)
3
]

(19)

We introduced in (17) the reduced coupling amplitude

Ared =
1

q̃2

(

cos2 α
(q̃+q̃2)2

− 3u
4v

) −
1

q̃3

(

sin2 α
(q̃−q̃3)2

− 3u
4v

)

−
1

q̃2 cos2 α−q̃3 sin2 α+u
(q̃2−q̃3)2

− 3u
4v (q̃ + q̃2 − q̃3)

(20)
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FIG. 2: Thermodynamic quantity (16) as a function of 1/kF a

where kF = (3π2ρ)1/3 is the Fermi wavenumber and a the s-
wave scattering length, from the measured equation of state
of the spin-1/2 Fermi gas [14, 26].

The limiting behaviors of the normalized universal
Landau-Khalatnikov damping rate (17)

Γ̃(q̃) ∼
q̃→0

16π5

135
q̃3 +O(q̃4) (21)

Γ̃(q̃) ∼
q̃→∞

16πζ(5)

3
q̃2 +O(q̃) (22)

are shown in Fig.1 as dashed straight lines. Here ζ is
the Riemann zeta function. Equations (21)-(22) disagree
with Eqs.(7.6) and (7.12) in [1], even for the order in q̃,
our results being subleading by two orders. This is due
to the fact that the diagrams neglected by Landau and
Khalatnikov in the calculation of the effective amplitude
Aeff turn out to interfere destructively with the suppos-
edly leading term that they keep.
We now discuss the main result (15) and the possi-

bility to test it in state-of-the-art experiments with cold
fermionic gases. In Fig.2 we use the measured equation
of state of the spin-1/2 Fermi gas [14, 26] to plot the ther-
modynamic quantity K in (16) as a function of 1/kF a.
The curvature parameter γ appearing in the phonon dis-
persion relation (3) has not yet been measured in strongly
interacting Fermi gases. We plot in Fig.3 the prediction
of [22] which relies on the Random Phase Approximation
and coincides with that of other approximate theories
[18, 20]. We plot it separately so that, once an experimen-
tal value will be available, it can be used in (15). To give
a numerical example, we choose the interaction strength
such that the coefficient of the quintic term in the ex-
pansion (3) vanishes, 1/kF a ≃ −0.39 according to [22].
The corresponding value of the curvature is γ ≃ −0.30
and the thermodynamic constant is K ≃ 4.2. The tem-
perature should be sufficiently low and the wavenumber
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FIG. 3: Curvature parameter γ in the phonon dispersion rela-
tion (3) as predicted by [22], as a function of 1/kF a where kF
is the Fermi wavenumber and a the s-wave scattering length.
The dashed lines mark the two points where either the cubic
(1/kF a = −0.144) or the quintic (1/kF a = −0.389) correction
to the dispersion relation (3) vanishes.

q much smaller than 2∆/~c to avoid the excitation of the
fermionic branch [27, 28]. By choosing T = 0.055TF [29]
and q̃ = 10/3, corresponding to ǫ = kBT/mc2 ≃ 0.15,
~q/mc ≃ 0.5, and Γ̃ ≃ 504, and for the typical value
TF = 1µK, one obtains Γq ≃ 1.4 s−1. A damping rate of
this order should be measurable in state-of-the-art exper-
iments in the time domain [30], and it may be accessible
in the future also in the frequency domain [31]. As ex-
pected, it is d in the collisionless regime since the angular
frequency ωq is much larger than the thermalization rate,
that we estimate by the damping rate at the typical ther-
mal wavenumber qth = kBT/~c: one finds Γ̃(1) ≃ 26 and
Γqth

/ωq ≃ 3× 10−6.

In conclusion we have calculated the Landau-
Khalatnikov low-temperature phonon damping rate in
strongly interacting Fermi gases. Our expression, thanks
to an appropriate rescaling of the wavenumber, takes a
universal functional form that applies in the whole region
of the BEC-BCS crossover where the phononic dispersion
relation has a concave start. This includes the strongly
interacting regime and opens the door to an experimental
observation with ultracold atomic gases. As the phonon
dispersion relation has a convex rather than concave start
in liquid helium [6, 7], such an observation would be un-
precedented and would open a new era in the exploration
of low-temperature dynamics of macroscopically coherent
quantum many-body systems.
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