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Abstract. We give exact integral expressions of the third cluster or virial coefficients of binary mixtures of
ideal Bose or Fermi gases, with interspecies interactions of zero range and infinite s-wave scattering length.
In general the result depends on three-body parameters Rt appearing in three-body contact conditions,
because an Efimov effect is present or because the mixture is in a preefimovian regime with a mass ratio
close to an Efimov-effect threshold. We give a new, exact integral expression of Rt for the microscopic
narrow Feshbach resonance model. A divergence of Rt in the preefimovian regime at a scaling exponent
s = 1/2 is predicted and physically discussed. The analytical results are applied to typical species used in
cold atom experiments.

PACS. 67.85.-d Ultracold gases, trapped gases. – 21.45.-v Few-body systems

1 Introduction

The field of atomic quantum gases has been witnessing
in the last decade the emergence of a new paradigm, the
regime of resonant interactions, thanks to the possibility
of controlling at will the s-wave scattering length a via
magnetic Feshbach resonances [1,2,3,4]. This leads to a
rich interplay between strong few-body correlations and
many-body physics that was scarcely studied before. At
unitarity, where a−1 = 0 and the interaction is scale in-
variant, there are still some adjustable parameters, namely
the quantum statistics and the mass ratio of the particles,
that can deeply affect the many-body properties of the
gas.

The experimental studies have concentrated up to now
on the strongly interacting spin-1/2 Fermi gas, and in par-
ticular on the unitary Fermi gas. The gas equation of state
was measured both in the superfluid and normal phases,
and the coefficients of the cluster expansion of the pres-
sure in powers of the low fugacity, not to be confused with
the virial coefficients of the expansion in powers of the low
density, have been extracted up to order four [5,6]. These
coefficients constitute an intriguing bridge between few-
body and many-body physics.

Although they have not been experimentally realised
yet, less conventional phases with different manifestations
of superfluidity have been proposed, that take advantage
of a rich underlying few-body physics. With several com-
ponent fermions, trimer or tetramer states can exist [7,
8,9,10] and interact [11,12], which creates new channels

competing with the usual BCS pairing and opening the
door to new phases [13,14]. With resonantly interacting
spinless bosons, N -body bound states can exist [15], lead-
ing to a liquid-gas transition in addition to the expected
normal-superfluid transition [16,17].

In this paper, we present a general analytical calcula-
tion of the third cluster coefficient b3 of a two-component
gas at unitarity in the spirit of [18] with the harmonic reg-
ulator method of [19,20,21,22], building on the fact that
the trapped three-body unitary problem is soluble [23,
24] due to separability in hyperspherical coordinates [25].
As the particular case of unitary fermion-fermion mixture
was already treated [26], we complete the study by includ-
ing the unitary boson-boson and boson-fermion mixtures.
We adhere here to the philosophy of zero-range models,
replacing interparticle interaction potentials by contact
conditions on the three-body wavefunction, namely (i)
two-body Wigner-Bethe-Peierls contact conditions, that
are scale invariant at unitarity [27,28,29], and (ii) three-
body contact conditions on the hyperradial wavefunction:
(a) in general, these are also scale invariant (the hyperra-
dial wavefunction vanishes as a power law); (b) if the Efi-
mov effect [7,8,9] takes place however, they must involve
a three-body length scale Rt, the so-called three-body pa-
rameter [7,8,9,30], and a lower cut-off must be introduced
by hand in the geometric spectrum of trimers (to elimi-
nate trimer states of binding energy ≈ ℏ2/mrR

2
t or larger,

where mr is the two-species reduced mass, since they are
in general inconsistent with the zero range model); (c) last,
if no Efimov effect is present, but the mass ratio is close
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enough to an Efimov-effect threshold, they must also in-
volve a three-body parameter Rt, so that b3 has a smooth
variation as a function of the mass ratio across the thresh-
old [26] (also removing by hand in this case the trimer
state predicted by these modified contact conditions).

Two important issues must however be answered, be-
fore one proceeds with the calculation of b3. The first issue
is theoretical, it is a shortcoming of the zero-range model,
that cannot per se predict a value of b3 when a three-body
parameter comes into play, since the knowledge of Rt re-
quires a microscopic model [31,32,33,34]. In B−b boson-
boson mixtures, this issue is worsened because two three-
body parameters Rt must be introduced, RBBb

t and RbbB
t ,

so that one cannot even fully absorb Rt in a rescaling of
the temperature as done in [18]. The second issue is exper-
imental: when the Efimov effect is present in current ex-
periments, strong three-body losses take place even in the
zero-range limit kF b→ 0, where kF is a Fermi wavenum-
ber and b the interaction range, due to recombination into
strongly bound dimers [35,36]. This is due to the fact that
the probability that three atoms are within a radius b van-
ishes too slowly, only as b2, whereas the recombination rate
in such a close-atom configuration is ∝ ℏ/mrb

2 [37]. Up
to now, this has restricted thermal equilibrium bosonic
many-body studies to the strongly non-degenerate regime
[38,39], where only loss rates, not virial coefficients, can
be measured and compared to theory [38], and this has
restricted quantum degenerate bosonic studies to a non-
equilibrium regime [40,41,42].

Here we use as a microscopic model the (infinitely)
narrow Feshbach resonance model [43], where at unitar-
ity the effective range of two-body s-wave scattering is
negative (−2R∗) and much larger in absolute value than
the van der Waals length b of the interaction. This solves
the two aforementioned issues. It solves the theoretical
issue because the zero-energy E = 0− three-body prob-
lem can be solved analytically and Rt can be extracted
[44,45,46]; we refine the theory by (i) giving an integral
expression of Rt in terms of Efimov’s transcendental func-
tion Λ̄ℓ(s) (in [44,45], an infinite product representation
in terms of the infinite-number roots of Λ̄ℓ(s) was given;
in [46] the given integro-differential expression is only an
asymptotic expansion), (ii) by extending the zero-energy
solution and the calculation of Rt to the non-efimovian
case, for a mass ratio close to an Efimov-effect threshold.
It also solves the experimental issue: choosing a narrow
Feshbach resonance in the experiment is expected to re-
duce the efimovian three-body losses, now dominated by
the probability of having an atom and a closed-channel
molecule within a distance b [47]1, where a loss event can
take place with a rate ∝ ℏ/mrb

2 [37]. If one considers the
atom and the molecule as distinguishable non-interacting
particles as in [47], the probability of finding them at dis-
tances < b is O(b3) since their relative wavefunction is
O(1). One then predicts a O(kF b) three-body loss rate,
that vanishes in the zero-range limit. It remains of course

1 The probability of having three open-channel atoms within
a distance b with a relative angular momentum ℓ is O(b2ℓ+4)
for a narrow Feshbach resonance, see footnote 41 in [46].

the magnetic field stabilisation challenge due to the nar-
rowness of the resonance.

2 Third cluster coefficient in zero-range
models

The cluster expansion for the total pressure P of a mixture
of two species at thermal equilibrium in a cubic box in the
thermodynamic limit is defined as

Pλ3r
kBT

=
∑

(n1,n2)∈N2∗

bn1,n2
zn1
1 zn2

2 (1)

where the fugacities zi = exp(µi/kBT ) tend to zero at
fixed temperature T , µi is the chemical potential of species
i and λr = [2πℏ2/(mrkBT )]

1/2 is the thermal de Broglie
wavelength associated to the reduced mass

mr =
m1m2

m1 +m2
(2)

In what follows, we assume that there is no intraspecies
interaction and that the interspecies interaction is in the
unitary limit, that is with an infinite s-wave scattering
length and a negligible range. The homogeneous gas clus-
ter coefficients bn1,n2

are related to the ω → 0 limit Bn1,n2

of the cluster coefficients of the gas in isotropic trapping
potentials with the same trapping angular frequency ω for
both species [48],

Bn1,n2
=

(
mr

n1m1 + n2m2

)3/2

bn1,n2
(3)

which is easier to calculate in the unitary limit as ex-
plained in the introduction. Due to rotational invariance,
all the cluster coefficients, in particular the third order
ones, can be written as sums over all angular momentum
sectors contributions. Due to the absence of intraspecies
interactions, B3,0 and B0,3 have ideal gas values. On the
contrary, B2,1 differs from the zero, ideal-gas value. It is
the only nontrivial third order coefficient that we need
to calculate since B1,2 is obtained by exchanging the role
of species 1 and 2. We write its decomposition over the
angular momentum sectors as

B2,1 =
∑
ℓ∈N

(2ℓ+ 1)σℓ (4)

We shall restrict to low particle wavenumbers, much
smaller than 1/b, where b is now the interaction range or
the effective range if it is larger, so that we can use the
Wigner-Bethe-Peierls zero-range model, where the inter-
species interactions are replaced by boundary conditions
on the wavefunction. The resulting unitary three-body
problem can be solved analytically in free space [7,8,9]
and in isotropic harmonic traps [23,24]2. The three-body

2 The free space three-body problem can be solved analyti-
cally also for a finite scattering length [49].
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partition functions in the trap and ultimately the coef-
ficient B2,1 can be calculated. The result applies in the
temperature regime

kBT ≪ ℏ2

2mrb2
(5)

As we shall see, a central actor in our analytical ex-
pression is the Efimov transcendental function. It is an
even function of a single variable s that, in the angular
momentum sector ℓ ∈ N for the three-body 112 problem,
takes the form3 [46]:

Λ̄ℓ(s)
ℓ even
= 1− 2η

sin 2ν

∫ ν

0

dθPℓ

(
sin θ

sin ν

)
cos(sθ)

cos(sπ/2)
(6)

Λ̄ℓ(s)
ℓ odd
= 1 +

2η

sin 2ν

∫ ν

0

dθPℓ

(
sin θ

sin ν

)
sin(sθ)

sin(sπ/2)
(7)

with Pℓ a Legendre polynomial,

ν = arcsin
m1

m1 +m2
(8)

the mass angle and η = 1 (η = −1) if the species 1 is
bosonic (fermionic). An equivalent and useful writing can
be obtained from the hypergeometric form of [50,51]:

Λ̄ℓ(s) = 1− η(− sin ν)ℓ

2π1/2 cos ν

×
∑
k∈N

Γ (k + ℓ+1+s
2 )Γ (k + ℓ+1−s

2 )

Γ (k + ℓ+ 3
2 )

sin2k ν

k!
(9)

where Γ is Euler’s Gamma function.
As we shall see, in the realm of zero-range models, the

Wigner-Bethe-Peierls model is not the end of the story,
as it only specifies two-body contact conditions. To se-
lect the appropriate zero-range model for the three-body
problem, one must discuss the existence of a root of Λ̄ℓ(s)
over the interval ]0, ℓ + 1[. Over this interval, Λ̄ℓ(s) is a
smooth function of s because the smallest positive pole
of the terms of the series (9) is at ℓ + 1. In the discus-
sion, one can take advantage of a first useful result: the
function s 7→ Λ̄ℓ(s) is monotonically decreasing (increas-
ing) over ]0, ℓ+1[ when η(−1)ℓ is positive (negative)4 and
tends to −∞ (+∞) when s → ℓ+ 1−. As a consequence,
it has either zero or one root in ]0, ℓ + 1[, depending on
the sign of Λ̄ℓ(0). We have at hand a second useful re-
sult: the function S 7→ Λ̄ℓ(iS) is monotonically increasing
(decreasing) over R+ when η(−1)ℓ is positive (negative)5

and tends exponentially rapidly to 1 at +∞ according to
eqs. (6,7). Then one faces only one of the three possible

3 The Efimov function is here divided by cos ν with respect
to previous references, hence the bar in the notation Λ̄ℓ(s).

4 Use eq. (9) and the fact that x 7→ Γ (x + a)Γ (a −
x) is positive and has a nonnegative logarithmic derivative∑

n∈N
2x

(a+n)2−x2 over [0, a[ ∀a > 0, see §8.362(1) in [52].
5 ∀a > 0, the logarithmic derivative of x 7→ Γ (a+ix)Γ (a−ix)

over R is
∑

n∈N
−2x

(n+a)2+x2 , see §8.362(1) in [52].

cases listed below; for η(−1)ℓ negative, only the first case
is actually accessible since Λ̄ℓ(s) is then > 1 over ]0, ℓ+1[.

1. The plain nonefimovian case: Λ̄ℓ(s) has only real
roots, and the smallest positive root is sℓ > 1. The hyper-
radial wavefunction F (R) is subjected to the boundary
condition6

F (R) =
R→0

O(Rsℓ) (10)

where the hyperradius R of the 112 system is the cor-
responding mass-weighted root-mean-square deviation of
the positions of the three particles from their center of
mass. Then the contribution σℓ of the angular momentum
ℓ to B2,1 as defined in eq. (4) is given by [18,26]

σℓ = −
∫
R+

dS

2π
ln Λ̄ℓ(iS) (11)

2. The preefimovian case: Λ̄ℓ(s) has only reals roots,
but the smallest positive root sℓ ∈]0, 1[. In the channel
associated to the root sℓ, there is an enriched boundary
condition [53,54,55], that must be used when sℓ is small
enough [26]7:

F (R) =
R→0

(R/Rt)
sℓ − (R/Rt)

−sℓ +O(R2−sℓ) (12)

where the length Rt is a three-body parameter. This pre-
dicts in free space a 112 bound state of degeneracy 2ℓ+1
and binding energy

Eglob =
2ℏ2

(2m1 +m2)R2
t

(
Γ (1 + sℓ)

Γ (1− sℓ)

)1/sℓ

(13)

that must be disregarded in the absence of three-body
resonance. Then [26]

σℓ = −
∫
R+

dS

2π
fℓ(S)−

∫
R+

dϵ∆(ϵ)βe−βϵ (14)

with β = 1/kBT ,

∆(ϵ) =
1

π
atan

th[ sℓ2 ln(ϵ/Eglob)]

tan( sℓ2 π)
(15)

and the smooth real-valued function on the real axis:

fℓ(S) ≡ ln

[
S2 + 1

S2 + s2ℓ
Λ̄ℓ(iS)

]
(16)

In this preefimovian case, the enriched zero-range model
has the same validity condition as in eq. (5) under the
generic assumption that Rt and b are of the same order of
magnitude [26].

6 More precisely, the three-body wavefunction is written in
the form ψ(r1, r2, r3) = ϕ(Ω)F (R)/R2 where Ω is the set of
hyperangles [7,8,9,25].

7 It shall not be used for sℓ > 1 as the wavefunction is not
square integrable in R = 0,

∫ R0

0
dRR|F (R)|2 = +∞ for any

finite R0.
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3. The Efimovian case: Λ̄ℓ(s) has real roots and a pair
of purely imaginary roots ±sℓ with sℓ = i|sℓ|. In the Efi-
movian channel, one must use the boundary condition [7,
8,9,30]

F (R) =
R→0

(R/Rt)
i|sℓ| − (R/Rt)

−i|sℓ| +O(R2) (17)

As F (R) has an infinite number of zeroes when R→ 0, the
model predicts in free space an infinite number of trimers
states of energies ϵq and degeneracy 2ℓ + 1, forming a
geometric sequence that we truncate by hand to make it
consistent with the zero-range assumption:

ϵq = −Eglobe
−2π(1+q)/|sℓ|,∀q ∈ N (18)

The global energy scale is an analytic continuation of
eq. (13):

Eglob =
2ℏ2

(2m1 +m2)R2
t

e[lnΓ (1+sℓ)−lnΓ (1−sℓ)]/sℓ (19)

with lnΓ the usual branch of the Γ function logarithm.
In addition to the zero-range condition (5), one requires
for the model to be valid that the ground trimer is in the
zero-range regime,

|ϵ0| ≪ Eglob (20)

that is |sℓ| ≲ 1.5. As |sℓ| is an increasing function of the
mass ratio m1/m2, this puts an upper bound on m1/m2.
Then [26]

σℓ = −
∫
R+

dS

2π
fℓ(S)−

∫
R+

dϵ∆(ϵ)βe−βϵ

+
∑
q∈N

(
e−βϵq − 1

)
(21)

where fℓ(S) is still given by eq. (16) and the new form of
the function ∆, 8

∆(ϵ) =
1

π
atan

tan( |sℓ|2 x)

th( |sℓ|2 π)
+

⌊
|sℓ|x
2π

⌉
(22)

remains a smooth function of x = ln(ϵ/Eglob) thanks to
the nearest-integer function in the last term.

The conditions on the mass ratio to have an Efimov
effect are known. For η = +1 there is an Efimov effect in
the sector ℓ = 0 for all mass ratios, in the sector ℓ = 2 for
m1/m2 > 38.6301 . . ., in the sector ℓ = 4 for m1/m2 >
125.764 . . ., etc. For η = −1 there is an Efimov effect in
the sector ℓ = 1 for m1/m2 > 13.6069 . . . [57], in the
sector ℓ = 3 for m1/m2 > 75.9944 . . . [58], etc. In fig. 1,
corresponding to η = 1, we plot the imaginary part of
s0 as a function of the mass angle (with a comparison to
its Taylor expansions at small and large mass ratio); we
also plot the real and imaginary parts of s2 close to the
Efimov-effect threshold.

8 One has also ∆(ϵ) = |sℓ|x
2π

+ 1
π
Im ln

(
1− e−π|sℓ|e−i|sℓ|x

)
[56], which leads to −

∫
R+ dϵ∆(ϵ)βe−βϵ = |sℓ|

π
{ 1
2
ln(eγβEglob)−∑

n∈N∗ e
−nπ|sℓ| Re[Γ (−in|sℓ|)(βEglob)

in|sℓ|]} as in [18], γ =
0.577 215 . . . being Euler’s constant.
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Fig. 1. Real or imaginary part of sℓ as a function of the mass
ratiom1/m2 in the 112 problem for η = 1 (particles of species 1
are identical bosons) in angular momentum sector (a) ℓ = 0 (s0
is always purely imaginary), (b) ℓ = 2 (s2 switches from real
to purely imaginary for m1/m2 = 38.6301 . . . at the vertical
dotted line). In (a) one uses the mass angle ν = arcsin m1

m1+m2
∈

[0, π
2
] as a parameter, to cover all mass ratios, and Im s0 is

divided by tan ν to form a bounded quantity. Solid lines: from
a numerical solution of the transcendental equation Λ̄ℓ(sℓ) = 0.
Dashed lines in (a): Taylor expansions for a low mass ratio ν →
0+, Im s0/ tan ν = 4

π
√
3

[
1 +

(
1

3π2 − 7
90

)
(1− cos 2ν) +O(ν4)

]
,

and for a large mass ratio ν → π
2
− as in [46], Im s0/ tan ν =

Ω
[
1 + 3+Ω

6(1+Ω)
(1 + cos 2ν)

]
+ O[(π

2
− ν)4] where the constant

Ω obeys Ω expΩ = 1. Vertical dotted lines in (a): the mass
ratios m1/m2 = 1 and 3 +

√
12 where cos 2ν = ± 1

2
.

3 Three-body parameter for a narrow
Feshbach resonance

For the narrow Feshbach resonance microscopic interac-
tion model, we now show how to obtain a new analytical
expression for the three-body parameter and we discuss
the interval of mass ratio where the enriched preefimovian
model shall be used instead of the plain nonefimovian one.

The starting point is the equivalent of the Skorniakov–
Ter-Martirosian integral equation [59] for the 112 three-
body problem on a narrow Feshbach resonance. It can be
obtained either using modified two-body contact condi-
tions [43] or a two-channel model with separable potentials
of range tending to zero [46,60,61,62,63,64]. In the sector
of angular momentum ℓ, both models lead for 1/a = 0 and
at negative energy E = −ℏ2q2/2mr in the center-of-mass
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frame to

[qrel(k) + q2rel(k)R∗]d(k) =

η

∫
R+

dk′

π

∫ 1

−1

du
Pℓ(u)k

′2d(k′)

q2 + k2 + k′2 + 2kk′u sin ν
(23)

with Pℓ the Legendre polynomial of degree ℓ, qrel(k) ≡
|q + ik cos ν| and R∗ > 0 is the Feshbach length such that
the 12 scattering amplitude at energy E in the center-
of-mass frame is fq = −1/(iq + q2R∗). One has taken
advantage of rotational invariance by the following ansatz
for the unknown function:

D(k) = Y m
ℓ (k̂)d(k) (24)

where k̂ ≡ k/k is the direction of k and Y m
ℓ is a spherical

harmonic. In the two-channel model (assuming for simplic-
ity the absence of direct open channel interaction) D(k)
is the closed channel probability amplitude of having one
particle of wavevector k and one molecule of wavevector
−k. In the model of [43] D(k) is the Fourier transform of
the regular part A(x) of the wavefunction,

D(k) =

∫
d3x e−ik·xA(x) (25)

such that ψ(r1, r2, r3) ∼ A(r3−R12)
r12

when the distance
impurity-first identical particle r12 → 0 at fixed positions
R12 of their center-of-mass and r3 of the second identi-
cal particle. In the zero-range limit and in the angular
momentum sector ℓ, it is related to the hyperradial wave-
function F (R) by

A(x) ∝ Y m
ℓ (x̂)x−1F

(
R =

x sin1/2 ν

1 + sin ν

)
(26)

In the zero-energy limit E = 0−, there is scale invari-
ance of the integral operator in eq. (23), which becomes
a convolution product when one uses X = ln(kR∗ cos ν)
as the new variable. Then one takes the Fourier transform
of d(k)k2 with respect to X as the new unknown func-
tion; it obeys a solvable finite difference equation. Fourier
transforming back and using the residue theorem, one can
calculate analytically the X → −∞, that is the k → 0
behavior of d(k), allowing one to access the three-body
parameter Rt.

This procedure was already implemented in [44,45,46]
in the Efimovian case sℓ = i|sℓ|. We push it to sublead-
ing order to obtain a validity condition for the zero-range
model:

d(k) =
k→0

C(−sℓ)(kR∗ cos ν)
−sℓ−2

[
1− kR∗ cos ν

Λ̄ℓ(1− sℓ)

]
+

C(sℓ)(kR∗ cos ν)
sℓ−2

[
1− kR∗ cos ν

Λ̄ℓ(1 + sℓ)

]
+ o(kR∗)

−1 (27)

with9

C(s) = Γ (−2s)
Γ (1 + vℓ,0 + s)

Γ (vℓ,0 − s)

×
∏
n∈N∗

Γ (uℓ,n − s)Γ (1 + vℓ,n + s)

Γ (vℓ,n − s)Γ (1 + uℓ,n + s)
(28)

where the uℓ,n, n ≥ 1, are the positive roots and vℓ,n =
ℓ+ 1+ 2n, n ≥ 0, the positive poles of Λ̄ℓ(s) in ascending
order. Using eqs. (17,26) to obtain A(x) in the zero-range
model and Fourier transforming it as in eq. (25) one gets10(

qglobR∗

2

)2sℓ

=
C(−sℓ)
C(sℓ)

ℓ∏
k=0

k − sℓ
k + sℓ

(29)

where

Eglob ≡
ℏ2q2glob
2mr

(30)

is related to the three-body parameter by eq. (19). This ex-
tends reference [46] to the case of two bosons and one im-
purity. Remarkably, we have found a new analytical form
not requiring the computation of the roots uℓ,n, n ≥ 1, of
the transcendental function Λ̄ℓ(s):

11

(
qglobR∗

2

)2sℓ

=
Γ (1 + 2sℓ)Γ (vℓ,0 − sℓ)Γ (2− sℓ)

Γ (1− 2sℓ)Γ (vℓ,0 + sℓ)Γ (2 + sℓ)

× exp

[
−i

∫ +∞

0

dS
fℓ(S − isℓ)− fℓ(S + isℓ)

th(πS)

]
(31)

where the function fℓ is given by eq. (16). This is as ex-
plicit as it can be since Λ̄ℓ(s) is known explicitly thanks
to eqs. (6,7)12.

The way of solving the zero-energy integral equation
can be extended to the preefimovian regime 0 < sℓ < 1.13

9 A better estimate of the remainder in eq. (27) is O(kR∗)
α

with α = min(uℓ,1−2, 0) for sℓ ∈ iR+ and α = −sℓ for sℓ ∈]0, 1[
(in which case ℓ ≥ 1).
10 One uses

∫ +∞
0

dxx
1
2 Jℓ+ 1

2
(x)x−s = 2

1
2
−s Γ ( 2+ℓ−s

2
)

Γ ( 1+ℓ+s
2

)
, where

the Bessel function J originates from the spherical harmonics
expansion of a plane wave.
11 We use the identity Γ (u+s)Γ (u+1+s)Γ (v−s)Γ (v+1−s)

Γ (u−s)Γ (u+1−s)Γ (v+s)Γ (v+1+s)
=

exp
{
−i

∫
R+

dx
thπx

[lnΨ(x− is)− lnΨ(x+ is)]
}

with Ψ(z) =
u2+z2

v2+z2
and u, v > 0. It holds for all s ∈ iR+, and also for

0 < s < u, v. It is clearly obeyed at s = 0, and its logarithmic
derivative with respect to s results from the formula §8.361(3)
in [52], d

dz
lnΓ (z) = ln z − 1

2z
−

∫
R+

2tdt
(t2+z2)[exp(2πt)−1]

with

Re z > 0.
12 For sℓ ∈ iR+, one takes the logarithm of eq. (31) to ex-
press qglobR∗ univocally in terms of the usual branch of the
function lnΓ (z), and one may take the numerically more conve-

nient form 2i
∫ |sℓ|
0

dSfℓ(S)+i
∫
R+ dS

(
1− 1

th(πS)

)
[fℓ(S+|sℓ|)−

fℓ(S − |sℓ|)] for the argument of the exponential function in
eq. (31).
13 The only subtle point is to shift the integration line defining
the Fourier representation of k2d(k) considered as a function of
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All the results (27-31) of the efimovian case directly extend
to the preefimovian case. For 0 < sℓ < 1/2 the right-hand
side of eq. (31) is positive. For 1/2 < sℓ < 1 it is negative;

this means that R2sℓ
t is negative, leading in eq. (12) to a

boundary condition F (R) =
R→0

(R/|Rt|)sℓ +(R/|Rt|)−sℓ +

O(R2−sℓ) not supporting any more a three-body bound
state as discussed in [53].

Interestingly, at a mass ratio m1/m2 such that sℓ =
1
2 ,

qglob and 1/Rt vanish as 1−2sℓ due to the first Γ factor in
the denominator of eq. (31) and to Γ (z) ∼ 1/z for z → 0,
suggesting a three-body resonance. If it was a veritable
three-body resonance, however, one would believe in the
boundary condition (12) at any energy scale much smaller
than the interaction-range energy scale ℏ2/(2mrR

2
∗); for

sℓ − 1
2 small and negative, there would be a trimer state

of binding energy Eglob. This is in contradiction with a nu-
merical solution of eq. (23) for η = −1 [46] and for η = 1.
To identify the correct energy scale Elim below which the
predictions of the enriched zero-range model (12) can be
trusted, we require that for klim cos ν ≡ (2mrElim)

1/2/ℏ
the subleading term in eq. (27) is comparable to the lead-
ing term14:

klimR∗ cos ν = |Λ̄ℓ(1− sℓ)| (32)

As Λ̄ℓ(s) ∝ s − sℓ close to its root sℓ, Λ̄ℓ(1 − sℓ) van-
ishes as 1 − 2sℓ when sℓ → 1/2, so klim cos ν ≃ qglob and
Elim ≃ Eglob. This explains the absence of trimer state
even for qglobR∗ ≪ 1. One can thus calculate the 112 clus-
ter coefficient on a narrow Feshbach resonance close to
sℓ = 1/2 using the enriched zero-range model (12) only
under the condition

kBT ≪ Eglob (33)

When sℓ is very close to 1/2, kBT becomes in practice
> Eglob and one must return to the usual zero-range model
(10), under the validity condition (5) written for b = R∗.
Eq. (27) then indeed becomes

d(k)
sℓ=

1
2=

k→0
(kR∗ cos ν)

−5/2 − (kR∗ cos ν)
−3/2[const

+ ln(kR∗ cos ν)] +O[ln(kR∗ cos ν)(kR∗ cos ν)
−1/2] (34)

The leading term corresponds to the usual boundary con-
dition (10), and the subleading one is negligible within
logarithmic accuracy for kR∗ cos ν ≪ 1.

For sℓ significantly away from 1/2 from below, or for sℓ
purely imaginary, the enriched zero-range models (12,17)
still predict the existence of a trimer state of binding en-
ergy Eglob, which is incorrect on a narrow Feshbach reso-
nance. This means that these models are never correct at

X: rather than integrating over the line R+i0+ as in eq. (66) of
[46], one must integrate over a line R+iγ, sℓ < γ < 1+vℓ,0, to
pass in between the highest pole isℓ of the Fourier transform
originating from a root of Λ̄ℓ and the lowest pole i(1 + vℓ,0)
originating from a pole of Λ̄ℓ.
14 The corresponding condition for sℓ ↔ −sℓ involves Λ̄ℓ(1 +
sℓ) and is less stringent.

37.25 37.5 37.75 38 38.25 38.5
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/m
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k
B
T

/(
/ h

2
/2

m
rR

*2
)

0-parameter theory valid

1-parameter theory valid

Fig. 2. For η = +1 in the ℓ = 2 sector, validity zone in the
plane (mass ratio, temperature) of the usual zero-parameter
zero-range theory (black hatched) and of the enriched one-
parameter zero-range theory (red hatched) for the calculation
of the cluster coefficient B2,1 at unitary on a narrow Feshbach
resonance of Feshbach length R∗. Below the black solid line,
the sum of the terms of degree −s2 − 1 and s2 − 2 in k is more
than 3 times smaller than the term of degree −s2−2 in eq. (27),
for k cos ν = (2mrkBT )

1/2/ℏ. Below the red solid line, the sum
of the terms of degree −s2 − 1 and s2 − 1 in k is more than 3
times smaller than the sum of the terms of degree −s2 − 2 and
s2 − 2. Red dashed line: when kBT = Eglob. At the borders of
the mass interval, s2 = 1/2 and s2 = 0 respectively.

the energy scale Eglob. In the virial calculation, we thus
take as their qualitative validity conditions

kBT ≪ Eglob,
ℏ2

2mrR2
∗

(35)

which automatically includes the constraint obtained above
close to sℓ = 1/2. The quantitatively determined temper-
ature regimes where the usual zero-parameter zero-range
model and the enriched one-parameter zero-range model
can be used to calculate the third cluster coefficient for a
mass ratio leading to sℓ ∈ [0, 1/2] are represented in fig. 2,
taking as an example the bosonic case η = +1 in the sector
ℓ = 2. They confirm the above qualitative analysis.

In fig. 3, we have plotted the three-body parameter Rt,
or more conveniently qglobR∗, as a function of the mass ra-
tio m1/m2, in the bosonic case η = 1, for ℓ = 0 at all mass
angles and on a vicinity of the Efimov-effect threshold for
ℓ = 2. On the efimovian side, we also compare Eglob to
the values −ϵq exp[2π(q + 1)/|sℓ|], for the first few trimer
states q = 0, q = 1, etc. of the narrow Feshbach resonance
model, which at the level of accuracy of the zero-range
theory coincide with Eglob.

With our new expression (31), some explicit analytical
results for the three-body parameter can be obtained in
the limit of a heavy m2/m1 ≫ 1 or a light m2/m1 ≪ 1
impurity particle 2, in the case η = +1 of bosonic particles
1 in the sector ℓ = 0. In the heavy impurity limit ν → 0+,
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Fig. 3. Value of qglobR∗ giving the global energy scale Eglob =
ℏ2q2glob/2mr [or equivalently the three-body parameter Rt ac-
cording to eqs. (13,19)] for two identical bosons of species 1
and a particle of a different species 2 interacting with an infi-
nite s-wave scattering length on a narrow Feshbach resonance,
as a function of the mass ratio m1/m2 or the mass angle
ν = arcsin m1

m1+m2
, in the angular momentum sector ℓ = 0

for (a) and ℓ = 2 for (b). Thick solid line: exact value eq. (31),
both for the preefimovian case restricted to sℓ ∈]0, 1/2] [in (b)
to the left of the vertical dotted line] and for the efimovian
case sℓ ∈ iR+ [everywhere in (a) and to the right of the verti-
cal dotted line in (b)]. Symbols and thin lines: in the efimovian
case, from the estimates Eglob ≃ −ϵq exp[2π(q + 1)/|sℓ|] (ex-
act for q → +∞ or |sℓ| → 0), where ϵq is the energy of the
qth trimer state, q ∈ N, obtained numerically from eq. (23)
when possible (q = 0: pluses, q = 1: crosses, q = 2: cir-
cles); when m1/m2 → +∞ the low lying part of the spec-
trum becomes hydrogenoid [46] (rather than geometric) and
(−2mrϵq)

1/2R∗/ℏ → +∞, hence the deviations from the thick
solid line. In (a) the dashed oblique straight lines are the ex-
pansions (36) and (37), the latter being in reality useful over
a very limited range, see magnification in the inset, and the
vertical dotted lines are at the mass ratios m1/m2 = 1 and
3 +

√
12 where cos 2ν = ± 1

2
. In (b) qglob vanishes at the mass

ratio such that s2 = 1/2 but this is not a veritable three-body
resonance (see text). The Feshbach length R∗ is related to the
two-body effective range by re = −2R∗ at unitarity.

we obtain the expansion

qglobR∗

2
=

ν→0+
e−π/4

[
1 +

(
17

27
− 1

9π2
+

19π

72

)
sin2 ν

+O(sin4 ν)

]
(36)

In the light impurity limit ν → π
2
−, the analytical expan-

sion takes the form15:

qglobR∗

2
=

ν→π
2

−
eJ0

{
1 +

[
2ΩJ2

3(Ω + 1)
+

1

12Ω2

− 2

3Ω
+

1

24(1 +Ω)

]
cos2 ν +O(cos3 ν)

}
(37)

where we introduced Ω = 0.567 143 . . . solving Ω expΩ =
1 and the integrals

J0 ≡
∫ 1

0

dτ ln
eΩτ + τ − 1

τ
= 0.505 560 . . . (38)

J2 ≡
∫ 1

0

dτ
τeΩτ

eΩτ + τ − 1
= 0.194 862 . . . (39)

The leading term in the right-hand side of eq. (37) agrees
with [46], the subleading one is new. The ν → 0+ and
ν → π

2
− expansions are plotted as dashed lines in fig. 3a.

4 Application to concrete atomic mixtures

As an illustration of the analytical expressions obtained in
this paper, we plot in fig. 4 the third harmonic-regulated
cluster coefficient B2,1 as a function of temperature for
realistic unitary boson-boson mixtures (η = 1), taking
atomic species 7Li, 41K and 87Rb that have already been
experimentally cooled to ultralow temperatures. We in-
clude the case of a unit mass ratio as it corresponds to the
same atomic species taken in two different internal states.
We recall that the homogeneous gas cluster coefficients
are given by eq. (3). To control the numerical truncation
in the sum over ℓ in eq. (4), we use the large-ℓ equivalent
resulting from footnote 11 of [18]:

σℓ ∼
ℓ→+∞

η(−1)ℓ

π sin 2ν
Qℓ

(
1

sin ν

)
(40)

where Qℓ(z) =
∫ 1

−1
du
2

Pℓ(u)
z−u is a Legendre function of the

second kind16. Relevant quantities, such as mass ratio,
Efimov exponent s0, global energy scale Eglob and ground
state trimer energy ϵ0, are given in the table. Compar-
ing Eglob and −ϵ0e2π/|s0| indicates to which extent the
ground trimer is in the zero-range regime, which is al-
ready marginally the case for the rubidium-lithium mix-
ture. Knowing the value of ϵ0 also gives the crossover tem-
perature kBT ≈ |ϵ0| between the low-temperature trimer-
dominated regime B2,1 ∼ exp(β|ϵ0|) and the high-tempe-

rature strongly dissociated regime B2,1 ≈ |s0|
2π ln(βEglob),

see [18] and our footnote 8.

15 In the integral over S under the exponential in eq. (31),
one must treat separately the contribution of S = O(1) and
of S ≈ |s0|. The former contribution leads in ln(qglobR∗) to a
term linear in π/2− ν that exactly cancels the one originating
from the logarithm of the Γ factors in the prefactor of eq. (31).
16 From relation 8.723(2) of [52] one further hasQℓ(1/ sin ν) ∼
(π/ℓ)1/2 tanℓ(ν/2) sin(ν/2)/ cos1/2 ν for ℓ → +∞ but keeping
Qℓ renders the estimate much more precise at moderately high
ℓ, for small ν.
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Table 1. For all possible combinations of the bosonic species 7Li, 41K and 87Rb, physical quantities of the three-body 112
problem that are relevant for the associated third cluster coefficient B2,1 (see text). The X − X′ case, with unit mass ratio,
corresponds to a given atomic isotope taken in two different internal states. The interaction between species 1 and 2 is described
by the narrow Feshbach resonance model of Feshbach length R∗. The corresponding ground state trimer energy ϵ0 [when not
too small to be obtained numerically from eq. (23)] and the global energy scale Eglob related to the three-body parameter by
eq. (19) are given in units of ℏ2/2mrR

2
∗. For the considered mass ratios, the Efimov effect takes place in the sector ℓ = 0 only,

and sℓ > 1 in all other sectors. The non-efimovian part Bnon efim
2,1 of B2,1 is the sum of the first term in eq. (21) for ℓ = 0 and of

all ℓ > 0 contributions in eq. (4), it is temperature and three-body-parameter independent.

species 1 species 2 m1/m2 Im s0 −ϵ0 −ϵ0e2π/|s0| Eglob Bnon efim
2,1

7Li 87Rb 0.080728 0.055037 – – 0.845022 −0.13645
7Li 41K 0.17128 0.108458 6.12× 10−26 0.884(1) 0.884068 −0.14692
41K 87Rb 0.47132 0.246214 9.13× 10−12 1.104669 1.104669 −0.17285
X X′ 1 0.413697 4.07× 10−7 1.606453 1.606449 −0.20539

87Rb 41K 2.12171 0.644404 1.55× 10−4 2.663601 2.662428 −0.25361
41K 7Li 5.8383 1.073851 1.50× 10−2 5.221479 5.125277 −0.31954
87Rb 7Li 12.3873 1.521051 1.29× 10−1 8.038473 7.329207 −0.20990
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Fig. 4. Third harmonic-regulated cluster coefficient B2,1 as a
function of temperature, for unitary binary mixtures of typi-
cal bosonic atomic species 7Li, 41K and 87Rb in ultracold gas
experiments. There is no intraspecies interaction. The inter-
species interaction is treated in the zero-range model with scale
invariant two-body and three-body contact conditions, except
in the efimovian ℓ = 0 sector where the three-body conditions
involve a parameter Rt as in eq. (17), with a value obtained
from the narrow Feshbach resonance model of Feshbach length
R∗, see eqs. (19,31). The zero-range model has an applicability
limited to the low temperature regime (35), and to not-too-
large atomic mass ratios so that the ground trimer remains in
the zero-range limit. Here mr = m1m2

m1+m2
is the reduced mass

of the two species, and XXX′ corresponds to a mixture of two
different internal states of the same atomic isotope.

5 Conclusion

We have considered thermal equilibrium binary mixtures
of bosonic or fermionic particles with no intraspecies in-
teractions, but with unitary interspecies interactions of
infinite s-wave scattering length and of true and effective
ranges much smaller than the thermal de Broglie wave-
length, a situation that can be realised experimentally

with ultracold atoms. The properties of the system cru-
cially depend on the mass ratio of the two species.

Generalising previous results, we have obtained within
the zero-range model analytical expressions for the third
virial or cluster coefficients, involving integrals of the loga-
rithm of Efimov transcendental functions. This was made
possible by the scale invariance of the two-body Wigner-
Bethe-Peierls contact conditions. In general, the result de-
pends on three-body parameters Rt appearing in three-
body contact conditions, either because the Efimov effect
takes place (a scaling exponent s is purely imaginary), or
because the system is in the preefimovian regime (a scal-
ing exponent s is real and close to zero, because the mass
ratio is close to an Efimov-effect threshold).

To predict the value of the three-body parameters, we
have taken the microscopic model of an infinitely narrow
Feshbach resonance of Feshbach length R∗, which is also
expected to suppress three-body particle losses in an ex-
periment. We have then obtained a new analytical expres-
sion for Rt, in the form of an integral involving again the
logarithm of the Efimov transcendental function, both in
the efimovian and in the preefimovian regimes. It is found
that Rt diverges for s = 1/2, but that this is not a verita-
ble three-body resonance, because the three-body contact
conditions faithfully represent the true microscopic inter-
action only at energy scales much lower than ℏ2/mrR

2
t

(and than ℏ2/mrR
2
∗, obviously), withmr the reduced mass

of the two species. In particular, in the narrow Feshbach
resonance model, there exists no trimer state in the preefi-
movian regime, contrarily to the prediction of the zero-
range model.

Finally, we have applied this analytical work to explicit
calculations of the third cluster coefficients as functions of
temperature for all binary combinations of three bosonic
atomic species routinely used in cold atom experiments.
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alhães, S.J.J.M.F. Kokkelmans, G.V. Shlyapnikov, C. Sa-
lomon, Phys. Rev. Lett. 91, 020402 (2003)

3. C.A. Regal, M. Greiner, D.S. Jin, Phys. Rev. Lett. 92,
040403 (2004)

4. M. Zwierlein, C. Stan, C. Schunck, S. Raupach, A. Ker-
man, W. Ketterle, Phys. Rev. Lett. 92, 120403 (2004)

5. S. Nascimbène, N. Navon, K. Jiang, F. Chevy, C. Salomon,
Nature 463, 1057 (2010)

6. Mark J.H. Ku, A.T. Sommer, L.W. Cheuk, M.W. Zwier-
lein, Science 335, 563 (2012)

7. V. Efimov, Sov. J. Nucl. Phys. 12, 589 (1971)
8. V. Efimov, Nucl. Phys. A 210, 157 (1973)
9. A. Bulgac, V. Efimov, Sov. J. Nucl. Phys. 22, 296 (1975)

10. O.I. Kartavtsev, A.V. Malykh, J. Phys. B 40, 1429 (2007)
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