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Deep complementary features for speaker identification in TV broadcast data

This work tries to investigate the use of a Convolutional Neural Network approach and its fusion with more traditional systems such as Total Variability Space for speaker identification in TV broadcast data. The former uses spectrograms for training, while the latter is based on MFCC features. The dataset poses several challenges such as significant class imbalance or background noise and music. Even though the performance of the Convolutional Neural Network is lower than the state-of-the-art, it is able to complement it and give better results through fusion. Different fusion techniques are evaluated using both early and late fusion.

Introduction

In the past few years, Convolutional Neural Networks (CNN) became widely used in image related domains providing stateof-the-art performance [START_REF] Szegedy | Going deeper with convolutions[END_REF]. At the same time Deep Neural Networks (DNN) were being applied more and more to monodimensional signals for tasks like language recognition [START_REF] Matejka | Neural network bottleneck features for language identification[END_REF], speech recognition [START_REF] Deng | Recent advances in deep learning for speech research at microsoft[END_REF] or speaker identification [START_REF] Richardson | Deep neural network approaches to speaker and language recognition[END_REF]. Lately, there was an increasing number of studies trying to address some of the related tasks (notably automatic speech recognition) with the use of CNN based systems with only spectrograms as input [START_REF] Ganapathy | Robust language identification using convolutional neural network features[END_REF][START_REF] Uzan | I know that voice: Identifying the voice actor behind the voice[END_REF]. However, such systems have not yet been widely explored for speaker identification. This study tries to give additional insight into the efficient use of CNN for this particular biometrics task.

Contribution In this paper, the use of convolutional neural networks (CNNs) for speaker identification is investigated. Additionally, a challenging dataset was selected, containing both noise and un-balanced speaker data. This CNN approach is compared to more traditional methods. Despite the lower CNN performance, the use of this deep complementary features in fusion improves on the state-of-the-art.

Outline The structure of this paper is as follows. Section 2 presents a short overview of the recent developments in connection to this study. Section 3 gives the overview of the methods proposed. This is followed by the presentation of the experimental framework in Section 4. The results are presented in Section 5. Section 6 contains the concluding remarks.

Related Works

In [START_REF] Palaz | Analysis of cnnbased speech recognition system using raw speech as input[END_REF] a speech recognition system is presented that uses raw speech as input, which is then processed by a 1D convolutional layer. The use of CNN with spectrograms was also explored previously: in [START_REF] Deng | A deep convolutional neural network using heterogeneous pooling for trading acoustic invariance with phonetic confusion[END_REF] a system dealing with phonetic confu-sion is presented, however convolution is done only along the frequency axis. An interesting approach was presented in [START_REF] Lee | Unsupervised feature learning for audio classification using convolutional deep belief networks[END_REF] where an unsupervised approach to feature learning is proposed. The algorithm is based on a convolutional deep belief network. Apart from that, Recurrent Neural Networks (RNN) were also successfully used with speech spectrograms, as it is suggested in [START_REF] Hannun | Deepspeech: Scaling up end-to-end speech recognition[END_REF] for automatic speech recognition.

An approach similar to this study is presented in [START_REF] Uzan | I know that voice: Identifying the voice actor behind the voice[END_REF]. In their paper, a CNN is trained using spectrograms in order to identify disguised voices. However, compared to our paper, this study considered a significantly smaller number of speakers with the explicit goal of identifying fraudulent behavior and different identities. In addition, no fusion approaches were explored. Apart from a more noiseless and balanced dataset, a different CNN architecture (based on AlexNet [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF]) is also used. Conversely, the base architecture used in our study is simpler and provides better performance [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF]. Some attempts were also made to use CNNs in noisy conditions. A recent study [START_REF] Mclaren | Application of convolutional neural networks to speaker recognition in noisy conditions[END_REF] uses 1D convolutions on filter banks. Surrounding frames are taken into account and serve as context to reduce noise impact.

In [START_REF] Anand | Convoluted feelings convolutional and recurrent nets for detecting emotion from audio data[END_REF], a study was done on emotion recognition by combination of audio and visual features. Similar to this study, spectrograms were used, and 1D and 2D CNNs were evaluated. In [START_REF] Ganapathy | Robust language identification using convolutional neural network features[END_REF], CNNs were used for the language identification task. Finally, speaker and language recognition experiments using neural networks were also presented in [START_REF] Richardson | Deep neural network approaches to speaker and language recognition[END_REF].

Method description

Speaker Identification Systems

Gaussian Mixture Model-Universal Background Model (GMM-UBM) [START_REF] Douglas A Reynolds | Speaker verification using adapted gaussian mixture models[END_REF] and Total Variability Space (TVS) [START_REF] Dehak | Front-end factor analysis for speaker verification[END_REF] speaker recognition systems are used in this study.

In the GMM-UBM approach, a Universal Background Model (UBM) is first trained on speech features extracted from multiple speakers using the Expectation-Maximization (EM) algorithm. Speaker-specific models are then obtained using Maximum a Posteriori (MAP) mean adaptation. Similarity scoring is done by calculation of log-likelihood ratio (LLR) on these models. Given a sequence of feature vectors X extracted from a test segment, LLR is computed as Λ(X) = log p(X|λ hyp ) -log p(X|λ ubm ), where λ hyp and λ ubm represent speaker-specific GMM and UBM model respectively.

After adaptation, models can also be represented as highdimensional supervectors of means of distributions. These supervectors can be represented as low-dimensional identity vec-Figure 1: A simplified overview of system, which highlights how the convolutional neural network was used in this study in contrast to a more traditional approach. tors (i-vector) using factor analysis. In this approach, mean supervectors Ms and M0 representing speaker-specific model and UBM respectively are extracted, and an i-vector, ws, is calculated using Ms = M0 + T ws. The low-rank rectangular matrix, T , representing the variability space of the i-vectors, is learned in an unsupervised manner using the Expectation-Maximization (EM) algorithm. In the case of having multiple tracks for speaker modeling, i-vectors extracted from each speech track are typically averaged and the average i-vector is used as the speaker model. Scoring can be done with cosine similarity metric, while pre-processing i-vectors before scoring can result in better performance.

In our setup, speaker identification is done by scoring a test segment versus all the speaker models. The speaker identity corresponding to the highest similarity score is chosen as the result of the identification test.

A UBM consisting of 1024 gaussians is trained on the training data for both systems. T matrix is then trained on the segmented training data. Segmentation outputs of conventional BIC-criterion [START_REF] Delacourt | Distbic: A speaker-based segmentation for audio data indexing[END_REF] are used. The dimension of output i-vectors is set to 500. MSR Identity Toolbox [START_REF] Seyed | Msr identity toolbox v1. 0: A matlab toolbox for speaker recognition research[END_REF] is used for all experiments. Similarity scoring is done by cosine similarity scoring between the test segment and the i-vector representing target identity. Similarity scoring is also done using probabilistic linear discriminant analysis (PLDA) [START_REF] Garcia | Analysis of i-vector length normalization in speaker recognition systems[END_REF] for additional comparison using the same toolkit. A wide range of different parameter values was tested to ensure the best possible performance. Length normalization [START_REF] Garcia | Analysis of i-vector length normalization in speaker recognition systems[END_REF] is used for increased performance.

Convolutional Neural Networks

In Figure 1 the general way in which the CNN algorithm is applied can be seen. For any given speech segment (Fig. 1a) the spectrograms are first extracted. Because they have a fixed size there are usually several overlapping spectrograms representing each segment. Next (Fig. 1b) , each spectrogram is fed to the convolutional neural network separately. This in turn produces an individual vector of potential speaker identities for every input (Fig 1c). Finally, to obtain a single vector for the speech track, the individual vectors are averaged.

The network used in this study is inspired by the general design proposed in [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] for image recognition. It was chosen as a starting point due to its relative structure simplicity and stateof-the-art performance. However, several changes were made in order to adapt it to this specific speaker identification task. The significant differences between the ImageNet dataset (containing images of everyday objects and animals among others), on which the reference network was originally trained, and the spectrogram data made it necessary to retrain the whole algo-rithm from scratch. Due to a less complex nature of the spectrogram data (monochromatic with similar patterns) a reduced version of the original model was introduced with no visible change in performance. The detailed structure can be found in Table 1. The visualization of this network is shown in Figure 2. full conn

1 × 1 × 2048 fc7 full conn 1 × 1 × 2048 fc8 full conn 1 × 1 × 821
Table 1: The structure of the network.

The network was trained from scratch on a set of grayscale spectrogram images with non-square dimensions. The model was trained for around 12 epochs. Every convolutional layer was followed by a rectified linear unit (ReLU), which serves as an activation function and is defined as f (x) = max(0, x). The first two fully connected layers (fc6, fc7) are followed by ReLU and dropout with the rate of 0.5. The output of the last fully connected layer (fc8) is used with the softmax function and corresponds to the target speakers (821 individual speakers in total).

Different to the initial design for image recognition, the proposed structure has fewer convolutional layers (from 8 down to 5), however the filter size for the first two is expanded. Adding additional convolutional layers did not improve performance. Average pooling layers were chosen instead of max pooling. The input to the network is a 48 × 128 pixel grayscale image of a spectrogram. Due to the overlap between the images, no random cropping or rotation is used during training. Caffe framework [START_REF] Jia | Caffe: Convolutional architecture for fast feature embedding[END_REF] was used for training and testing the net.

The network gives predictions based on individual spectrograms. In order to be able to fuse the output with the output of the TVS system, the spectrograms are mapped to bigger speech segments. The mapping is done by averaging the scores of every spectrogram contained within a given segment. In Figure 3a an example of a spectrogram used for training is shown. Figure 3b represents the saliency map, i.e. a heatmap representing the most significant regions of the image used by the CNN to predict a given speaker. In this case it represents speaker with the highest response from the top layer. This was obtained by backpropagating the correct output from the last layer to the input layer in a similar way as it was done in [START_REF] Matthew | Visualizing and understanding convolutional networks[END_REF]. Note the heavy reliance on horizontal patterns.

Fusion

Fusion is often used to enhance results for speaker recognition systems, for example in [START_REF] Mclaren | Application of convolutional neural networks to speaker recognition in noisy conditions[END_REF]. Even if by itself a system gives inferior results, it still can help to improve the baseline performance. In this article, several attempts were made to fuse the CNN results with the output of the TVS system. Both early and late fusions were considered.

Late Fusion

A conventional late fusion of normalized predictions taken from both systems was used, which is the average of the two outputs.

A weighted sum of both outputs was also tested.

Duration-based Late Fusion

This strategy was proposed to give the CNN scores higher weights for short duration segments and lower ones for the long speech segments. CNN seems to produce comparable results to the TVS system on short segments, while the difference in performance grows with increasing duration. Fusion on the longer segments also seems to be less beneficial. This is illustrated in the bottom plot of Figure 5. In this case, fusion was calculated as s = (1 -tanh(d))scnn + sivec , where s corresponds to the scores provided by each system and d is the segment duration.

Early Fusion with Support Vector Machines

This strategy serves as early fusion, where a linear SVM is used for the final classification decision based on a concatenated normalized outputs of CNN's last hidden layer and i-vectors. Principal component analysis is applied to the CNN output in order to match the i-vector dimensionality (500 for each).

Experimental Setup 4.1. Dataset

The REPERE corpus [START_REF] Giraudel | The repere corpus: a multimodal corpus for person recognition[END_REF] was used in this study. The dataset contains a set of videos from two French television channels (LCP and BFM). There are 7 types of videos, ranging from news shows, debates to celebrity gossip and culture programs.

Only the audio track was used in the experiments. The dataset is quite challenging. The recording takes place both inside a studio setting and outside in public and noisy environments. Apart from this, music is often played in the background during certain presentations or interviews. Additionally, there is a significant imbalance between speakers, with anchors and top politicians both being often over-represented in the dataset. Total amount of speech per speaker for speakers present in both train / test sets helps to illustrate this and it is shown in Figure 4. Normalized histogram of the number of segments for each duration bin is also shown in Figure 5 for training and test data. It is important to mention that a big portion of speech segments fall below 2 seconds of speech. For the test set, 24.8% of speech segments are shorter than 2 seconds, and 70.4% are shorter than 10 seconds.

Experiments were done in a closed-set manner, where all the speakers in the training data are used for training models, while performance is evaluated only on test segments from speakers overlapping between training and test data. There are 821 speakers available in the training data, from which only 113 are observed in the test data.

Training data includes 9377 speech segments from 148 videos, while the test data contains 2410 segments from 57 videos. Training data and test data contain around 22 hours and around 6 hours of active speech respectively.

Features

Mel-Frequency Cepstral Coefficients (GMM-UBM, TVS)

Energy feature and Mel-Frequency Cepstral Coefficients (MFCCs) of 19 dimensions are extracted every 10 ms with a window length of 20 ms. These features along with their delta and delta-delta coefficients are concatenated. Static energy is used for silence removal using bi-gaussian distribution of frame log-energies. For each frame, a 59 dimensional feature vector is then obtained after application of feature warping [START_REF] Pelecanos | Feature warping for robust speaker verification[END_REF] on remaining features.

Spectrograms (CNN)

Spectrograms were extracted on 240 ms duration with a frequency of 25 Hz. This results in an overlap of 200 ms (83%) between neighboring spectrograms. For each spectrogram, first the corresponding audio segment was windowed every 5 ms with a window length of 20 ms. Then on each window, after applying Hamming windowing, log-spectral amplitude values were extracted. By discarding the symmetric part and the value corresponding to the highest frequency, a 48 by 128 matrix of values was obtained, which was used as input to the CNN (as an image). Additionally, a wider version of the spectrograms (having 640 ms in duration) were tested. However, their use with the CNN network led to the same performance. Therefore, they are omitted in this paper. In both training and testing phases, spectrograms containing speech from multiple speakers were discarded along with the ones not containing speech.

Results and Discussion

Table 2 gives the accuracy for the baseline systems and the CNN. The segment accuracy for the CNN is generated as explained in Section 3.2. We see that CNN is slightly lower in performance than baseline approaches for speaker identification. In Table 3 the results of fusion are presented. The last two columns give partial results for segments shorter and longer than 2 seconds, respectively. Apart from the standard accuracy, a duration based accuracy is also given, i.e. the duration of the data predicted correctly versus the total duration of the data.

The rather poor performance of the single CNN approach when compared to TVS may be attributed to several different factors. First of all, the unbalanced speaker dataset where some speakers (like high level politicians or news anchors and presenters) are heavily over represented, while others may appear for just a few seconds. The second factor could be connected to the nature of the corpus. Live and mostly spontaneous (especially in the case of debates) TV broadcasts usually come with significant noise (street noises, crowds, other voices) or background music. This may, in fact, disproportionally affect the raw spectrograms over the MFCC features.

A relatively low performance was given also by the PLDA approach, even though a grid search was done in order to choose the best hyper-parameters possible. This can be explained by the dependency of PLDA performance on the availability of a large training set (as discussed for example in [START_REF] Aronowitz | Inter dataset variability compensation for speaker recognition[END_REF]). In the training data used in this study, only 375 speakers out of 821 had more than two segments, whereas thousands of multi session speakers are usually used for successful estimation of the PLDA hyper-parameters. The late fusion approaches represented by CNN+TVS and durCNN+TVS seem to work much better than the early fusion based on the SVM. Both late fusion approaches were able to be better than both the CNN and the TVS. Based on the partial accuracy results, it seems that the main improvement of fusion is for the shorter speech segments. The duration based accuracy reveals the underlining imbalance of the dataset, where the improvement of the number of segments correctly classified does not necessarily imply a higher duration score.

Method

Conclusion and Future Work

In this paper, we proposed an approach which uses the output of a CNN network trained on spectrograms to improve the performance of a TVS system based on MFCC features. The tests were carried out on a broadcast TV dataset, which included reallife issues such as environmental noise and imbalance between speakers, with encouraging results.

As for future work, a multimodal CNN system using both speech and faces extracted from the video may be used to try to enhance the performance. We also intend to use Recurrent Neural Networks (RNNs) for better use of temporal information and possible improvement over longer speech segments. Artificially increasing the CNN training set is another perspective since it has been proven efficient for several image related tasks. Also, the influence of time-and frequency-based features extracted by the CNN may require further insight.

  name type filter size output size / stride input: 48 × 128 grayscale image of spectro. conv1 convolution 7 × 7/1 40 × 122 × 64 pool1 ave pooling 2 × 2/2 20 × 61 × 64 conv2 convolution 5 × 5/1 18 × 59 × 128 pool2 ave pooling 2 × 2/2 9 × 30 × 128 conv3 convolution 3 × 3/1 9 × 30 × 256 conv4 convolution 3 × 3/1 9 × 30 × 256 pool3 ave pooling 2 × 2/2 5 × 15 × 256 conv5 convolution 3 × 3/1 5 × 15 × 512 fc6

Figure 2 :Figure 3 :

 23 Figure 2: The visualization of the CNN used in this study. A spectrogram is taken as input and is convolved with 64 different filters (with the size of 7×7) at the first layer with the stride equal to 1. The resulting 64 feature maps are then passed through the ReLU function (not visible here) and downsampled using average pooling. A similar process continues up to the fully connected layers (f6, which takes conv5 as input, and fc7) and the final output layer (corresponding to the number of speakers in the train set).
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 45 Figure 4: Total amount of speech per speaker for speakers present in both train / test sets of REPERE corpus. Speakers are sorted according to total speech duration in training set.

Table 2 :

 2 CNN and baseline accuracy (% on the test set) estimated at the speaker segments level.

		Accuracy	Trained on
	CNN	67.41	Spectrograms
	PLDA	70.50	MFCC
	GMM-UBM	71.16	MFCC
	TVS	72.78	MFCC
	Method	Stand.	Dur.	<= 2s > 2s
		Acc.	Acc.	Acc.	Acc.
	CNN	67.41 76.00	40.93	76.32
	TVS	72.78 83.74	48.99	81.58
	early:SVM:CNN+TVS 69.05 75.27	51.63	75.41
	late:CNN+TVS	75.89 83.61	58.45	82.27
	lat:dur:CNN+TVS	75.10 84.07	56.12	82.04

Table 3 :

 3 Fusion results with standard accuracy and duration based accuracy (on test set).
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