
HAL Id: hal-01349932
https://hal.science/hal-01349932v1

Preprint submitted on 29 Jul 2016 (v1), last revised 11 Jun 2018 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Long term aging : an adaptative weights dynamic
programming algorithm

Benjamin Heymann, Pierre Martinon, Frédéric Bonnans

To cite this version:
Benjamin Heymann, Pierre Martinon, Frédéric Bonnans. Long term aging : an adaptative weights
dynamic programming algorithm. 2016. �hal-01349932v1�

https://hal.science/hal-01349932v1
https://hal.archives-ouvertes.fr

LONG TERM AGING : AN ADAPTATIVE WEIGHTS DYNAMIC

PROGRAMMING ALGORITHM

BENJAMIN HEYMANN, PIERRE MARTINON, AND FRÉDÉRIC BONNANS

Abstract. We introduce a class of optimal control problems with periodic data. A state variable

that we call the age of the system represents the negative impact of the operations on the system

qualities over time: other things being equal, older systems have higher operating costs. Many
industrial problems relate to this class. If we envision to perform an optimization over a large

number of periods, there is a tradeoff between minimizing repeatedly the one-period criterion
in a short sighted way and taking into account the impact of the decision on the aging speed

(which modifies the minimal one period criterion). In general, because the aging process is slow,

short term optimization strategies- such as one period sliding horizon strategies- either neglect
it or use rule-of-thumb penalization terms in the criterion, which leads to suboptimal solutions.

On the other hand, for most applications it is unrealistic to envision a brute-force numerical

resolution by dynamic programming of the long term problem because of the computation burden.
We introduce a two-scale method to reduce this computation burden. The method relies on

Lagrangian duality and some monotony properties. We expose the theoretical foundations of

the method and discuss some practical aspects: approximation errors, asymptotic estimation,
computation burden, possible extensions, etc. Since our initial motivation was the difficulty to

take long term battery aging in Energy Management Systems into account, we implement the

method on a toy long term microgrid energy management problem.

1. Introduction

The aging of physical systems is almost never taken into account in decision making. This can
be a cause of sub-optimality. For instance, for many controlled industrial systems, a decision is
taken every day. The decision should minimize a tangible criterion, such as the operating cost
and is subject to some operating and physical constraints. As time goes on, the system gets older
and its physical qualities decrease. On the one hand, this slow aging process depends on how the
system is operated. On the other hand the aging of the system is responsible for a loss in efficiency
that increases the daily operating cost. Therefore, in an ideal world, the operator should take into
account the impact of the daily decision on the long term aging of the system. Nonetheless, this
is often technically challenging: because of the time scales involved, the long term optimization
problem requires a lot of time and memory to be solved (curse of dimensionality with respect to
the state variables). In this work the system aging process is modeled with a one dimensional age
variable a with values in a segment. The physical qualities of the system decrease as a increases.
We point out that the choice of an increasing variable to measure the aging process is arbitrary,
and we could have defined instead a decreasing health variable. Of course in this case the physical
qualities of the system would have been increasing in the health process.

Date: July 29, 2016.

2010 Mathematics Subject Classification. 93A13, 93C15, 90C39, 49L20, 49M27, 49M29.
CMAP, Inria, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128, Palaiseau, France.

1

2 BENJAMIN HEYMANN, PIERRE MARTINON, AND FRÉDÉRIC BONNANS

We introduce a class of optimal control problems with periodic data. If we envision to perform
an optimization over a large number of periods, there is a trade-off between minimizing repeatedly
the one-period criterion in a short sighted way and taking into account the impact of the decision
on the aging speed (which will later on in turn have an impact on the minimal one-period criterion).
Microgrid energy management relates to the framework proposed in this paper when considering
the aging of the battery. We discuss some existing approaches from this literature in §6.2. As far
as we know, it appears that when taken into account, aging is constrained or penalized but not
directly subject to a long term optimization. An important characteristic of our problem is the
existence of two time scales. Some other works on multi time scales problem consider averaging
techniques (see [5]).

A first essential observation is that if we knew an optimal aging profile over the whole time
horizon, then the long term problem could be decomposed into a sum of micro problems with
smaller time horizon, say one period. We could then use myopic approaches to solve the resulting
one period (or micro) problems. The reverse is also true: the long term (or macro) problem can
be reformulated by means of the micro problems. So we could precompute the solutions of the
micro problems off-line to solve the long term aging problem afterward with a macro dynamic
programming optimization. This is a first step to reduce the problem numerical complexity. It will
be detailed in §3.

Another essential observation is that aging is a slow process, so we could neglect the age varia-
tions within a period to solve simplified micro problems without truly impacting the performances.
Indeed, this would decrease by one the number of state variables. Yet it is still necessary to know
the age at the end of the period to solve the long term problem. Moreover, since we want to take
the age into account in the decision, we should be able to control the total aging over the period.
So we look for a method to control the total aging over a period without requiring the age to be a
state variable in the micro problem numerical resolution.

Our approach consists in penalizing the aging over the period in the criterion of the micro
problems. Then we map the penalization coefficients with the resulting agings. By doing so, we do
not need to keep track of the aging within the micro problems (see §4). We then optimize for each
period the penalization coefficient in the reformulation of the long term problem. Observe that even
if the penalization parameter could be interpreted as a Lagrangian multiplier, we will be performing
a minimization over this coefficient, which can be confusing. An alternative understanding is to see
this penalization parameters as a change of variable: instead of optimizing over the one-period age
increments, we optimize over the corresponding penalization coefficients. Figure 1 illustrates this
idea.

To sum-up, we propose a decomposition/parametrization method to solve a long term optimal
control problem incorporating an age variable. We use the fact that the age (as a state variable)
is slow to neglect its variations within a single period to limit the computation burden. We solve
a collection of one period, penalized, optimal control problems and associate the resulting total
agings with the corresponding coefficients, which allow us to perform a dynamic optimization over
the coefficients to solve the long term problem. Observe that we do not fix only one coefficient
for the whole problem as in penalization approaches: we control the penalization coefficients of
every single period. Then the aging-conscious on-line one-period decision can be computed for an
optimized time varying penalization parameter that incorporates the long term aging.

The long term and short term optimal control problems are presented in the next subsection,
followed by the technical assumptions we use in this work. We present the bi-level dynamic pro-
gramming in §3 and the adaptive weights approach in §4. We discuss the theoretical results and

LONG TERM AGING : AN ADAPTATIVE WEIGHTS DYNAMIC PROGRAMMING ALGORITHM 3

some possible refinements and variations in §5. The last section is dedicated to an application of this
approach to the microgrid energy management problem. Readers only interested in applications
might want to start with this last section.

In the proofs we will use LHS and RHS as shorthand’s for left-hand side and right-hand side.

2. Setting

2.1. Problem Formulation. We consider a system with two state variables: the age a and the
fast state c. The fast state should be interpreted as a form of wealth (available cash, energy,
inventory). This is why we will refer to the fast state as the charge, in reference to this idea and to
the toy microgrid model example proposed in the last section. The age a and the charge c follow a
T -periodic dynamics controlled by a time dependent parameter u:

(2.1)

{
ȧ(t) = Fa(a(t), c(t), u(t), t)

ċ(t) = Fc(a(t), c(t), u(t), t),

or equivalently if we set x = (a, c) and F = (Fa, Fc):

(2.2) ẋ(t) = F (x(t), u(t), t).

Think of T > 0 as the length of a day for instance. The whole horizon Ttot is a multiple of T , i.e.
Ttot = NT with N being a large integer (think of Ttot as the length of five years for example). The
control u is restricted to be in U = {u s.t. ∀t ∈ [0, Ttot], u(t) ∈ Ū}, and the charge c and the age a
should belong to respectively C and A, where Ū and C are compact subsets of Rn and R, and there
exists (a−, a+) such that A = [a−, a+] and a− ≤ a(0) ≤ a+.

The age a of the system is non-decreasing in time, i.e. Fa ≥ 0, and for all (u, t, c) ∈ Ū× [0, T]×C,
Fa(a+, c, u, t) = 0, which ensures that for all time t, a(t) ∈ [a−, a+]. One can interpret a = a+ as
the aging component of the system being definitely dead. Then Fa(a+, c, u, t) = 0 means that once
this component dead, it cannot get older anymore.

The behaviors of the system change as it get older. In fact, the older the system, the more effort
should be needed to complete a given task. The aging process should decrease the efficiency of the
system. In addition, as c is a form of wealth, the cost-to-go functions of our minimization problems
should be decreasing in c. Those notions are expressed in the monotonicity assumption (see. §2.2).

While the relevant time scale for the charge c is the period T , the dynamics of the age a is so
slow that one need to wait many periods to observe a non-microscopic change in a. Our objective is
to minimize the sum of an integral criterion and a non-decreasing final cost φ(aTtot) while verifying
some constraints. Like the dynamics, the (bounded) running cost `(u, t) is T -periodic. We end up
with the following optimal control formulation:

(2.3) P1(a0, c0, t0)

V1(a0, c0, t0) = inf
u∈U

∫ Ttot

t0

`(u(t), t)dt+ φ(aTtot)

(a(t0), c(t0)) = (a0, c0)

a(Ttot) ≤ amax
∀t ∈ [t0, Ttot], ϕ(c(t), u(t), t) ∈ A
(ȧ(t), ċ(t)) = (Fa(a(t), c(t), u(t), t), Fc(a(t), c(t), u(t), t)),

where A is a closed set, ϕ a continuous T periodic-function, and amax a final constraint. Problem
P1 is parametrized by the initial point (a0, c0, t0). The value function V1 associates any set of initial

4 BENJAMIN HEYMANN, PIERRE MARTINON, AND FRÉDÉRIC BONNANS

time and state variables with the corresponding minimal cost-to-go function. Under Lipschitz
conditions on Fa and Fc, the ordinary differential equation has a unique solution.The integrand `
satisfies the following properties:

• ` is bounded
• for all t ∈ [0, T], u→ `(u, t) is continuous
• for all u ∈ Ū , t→ `(u, t) is measurable.

We use the standard flow notation i.e. for τ > 0, Xu,t+τ
x,t is the value of the solution of the first

order ordinary differential equation of the dynamics at time t+τ when the initial point is x = (a, c)

at time t and the control is u. We will use the notation au,t+τx,t (resp. cu,t+τx,t) to refer to the flow of
the age (resp. the charge). When the context will be clear, we will sometimes simply write X(t).

The dynamic programming principle applies and we can write the value function of problem P1

as the solution of:

(2.4) V1(a0, c0, t0) = inf
u∈U

∫ t0+T

t0

`(u(t), t)dt+ V1(Xu,t0+T
x0,t0 , t0 + T),

where the infimum is taken over controls such that ϕ(cu,tx0,0
, u(t), t) ∈ A for any t ∈ [t0, t0 + T].

Observe that problem P1 is not always feasible, the optimization is by construction performed over

the feasible V1(Xu,t0+T
x0,t0 , t0 + T). Now set t = tk = kT for k ∈ N, by T -periodicity of the data, we

get the formulation we will use throughout this article

(2.5) V1(a0, c0, tk) = inf
u∈Ua0,c0

∫ T

0

`(u(t), t)dt+ V1(Xu,T
x0,0

, tk),

where Ua0,c0 is the set of controls u ∈ UT = {u ∈ L∞(0, T) s.t. ∀t ∈ [0, T], u(t) ∈ Ū} such that

ϕ(cu,tx0,0
, u(t), t) ∈ A for any t ∈ [0, T].

We propose a bi-level approach to solve problem P1. First we introduce a collection of micro
problems

(2.6) Pµ1 (a0, δa, c0, cF)

V µ1 (a0, δa, c0, cF) = inf
u∈UT

∫ T

0

`(u(t), t)dt

(a(0), c(0)) = (a0, c0)

a(T) ≤ a0 + δa

c(T) ≥ cF
∀t ∈ [0, T], ϕ(c(t), u(t), t) ∈ A.
(ȧ(t), ċ(t)) = (Fa(a(t), c(t), u(t), t), Fc(a(t), c(t), u(t), t)).

The superscript µ stands for micro. The micro problem Pµ1 is in many ways similar to P1: the
dynamics, the mixed constraints and the integrand of the criterion are the same. The difference
is that the time horizon is only one period. Moreover, the final state condition on the age a and
the final cost φ(aTtot) are replaced by two final state conditions on the age a and the state c. The
problem is parametrized by δa, which represents the maximal amount of aging for the period. If
φ = 0 then for both P1 and Pµ1 the goal is to minimize the integral of the running cost ` over a
time horizon without increasing the age of the system a by more than a given quantity.

2.2. Assumptions. We make the following assumptions.

Assumption 1 (Slow aging). There exists a constant L > 0 such that

LONG TERM AGING : AN ADAPTATIVE WEIGHTS DYNAMIC PROGRAMMING ALGORITHM 5

• Fc is L-Lipschitz and uniformly bounded by L,
• Fa is L/T -Lipschitz and uniformly bounded by L/T .

Assumption 1 expresses that the aging process is slow. The dependence of LNa in N (which is
the number of periods in the macro problem P1) is needed to perform an asymptotic estimation.
(see §5.1). Assumption 1 is used in the proof of Lemma 5.1.

Assumption 2 (Monotonicity). (a) The value functions V µ1 and V1 are non decreasing in a0 and
non increasing in c0.
(b) The value function V µ1 is non-increasing in δa and non-decreasing in cF .

The first item of Assumption 2 corresponds to the fact that youth and wealth are always prefer-
able. The second item is just a remark that comes from the definition of V µ1 .

Assumption 3 (Regularity of the aging process). For any ε > 0, ∆ > 0, there exists ε1 > 0 such
that
if x0 = (a0, c0) ∈ A× C, u ∈ Ux0 and ∆ ≤

∫ T
0
Fa(X(t), u(t), t)dt ≤ ∆ + ε1,

then there exists u′ ∈ Ux0
such that

(2.7)

∫ T

0

Fa(X(t), u′(t), t)dt = ∆ and |
∫ T

0

[`(u(t), t)− `(u′(t), t)]dt| ≤ ε.

We can interpret ∆ as a maximum aging level. Assumption 3 ensures that if we set a maximum
aging level and a precision level, then we can modify any “almost admissible” control for the
maximum aging level into an admissible one, and the change in integral cost will not be more than
the precision level. This Assumption is used in the proof of Lemma 3.1.

3. Bilevel Dynamic Programming

3.1. Mathematical Justification. We start with the following (intuitive) result.

Lemma 3.1. For all (k, a0, c0) ∈ N×A× C,

(3.1) V1(a0, c0, tk) = inf
δa∈R+,cF∈C

V µ1 (a0, δa, c0, cF) + V1(a0 + δa, cF , tk+1).

Proof. LHS ≥ RHS: Set x0 = (c0, a0). First we establish that LHS ≥ RHS. Take a control

u ∈ Ux0
and set δa = au,Tx0,0

− a0 and cF = cu,Tx0,0
. By construction of δa and cF , u is admissible

for Pµ1 (a0, δa, c0, cF) so by definition of V µ1 ,
∫ T

0
`(u(t), t)dt ≥ V µ1 (c0, cF , a0, δa). Moreover, trivially

V1(Xu,T
x0,0

, tk+1) = V1(a0 + δa, cF , tk+1) therefore∫ T

0

`(u(t), t)dt+ V1(Xu,T
x0,0

, tk+1) ≥ V µ1 (c0, cF , a0, δa) + V1(a0 + δa, cF , tk+1) ≥ RHS.(3.2)

Since this is true for any u ∈ Ux0
, we can apply the dynamic programing principle (2.5) to get

LHS ≥ RHS. We point out that here we did not use the existence of minimizers.
LHS ≤ RHS Take δa and cF an ε-optimal decision for the RHS and u ∈ Ux0 an ε-optimal

control for Pµ1 (a0, δa, c0, cF). By definition of Pµ1 (a0, δa, c0, cF) and admissibility of u, cu,Tx0,0
≥ cF

and au,Tx0,0
≤ a0 + δa. By ε-optimality,

(3.3) RHS + 2ε ≥
∫ T

0

`(u(t), t)dt+ V1(a0 + δa, cF , tk+1)

6 BENJAMIN HEYMANN, PIERRE MARTINON, AND FRÉDÉRIC BONNANS

By monotonicity of V1,

(3.4) V1(a+ δa, cF , tk+1) ≥ V1(a+ δa, cu,Tx0,0
, tk+1) ≥ V1(au,Tx0,0

, cu,Tx0,0
, tk+1,).

Therefore,

(3.5) RHS + 2ε ≥
∫ T

0

`(u(t), t)dt+ V1(Xu,T
x0,0

, tk+1) ≥ LHS,

where we used the dynamic programming principle (2.5) and the fact that u ∈ Ux0
for the last

inequality. We can conclude that RHS = LHS. �

3.2. Complexity Analysis. We proceed with a complexity analysis of the previous results. As-
sume we characterize the discretization of the space and time grid with the integer parameters
Na, Nc, Nu and Nt, which are the discretization levels of a, c, u and one unit of time. On the
one hand, if we solve problem P1 directly by dynamic programming (for a fixed initial state), the
computation burden is proportional to NaNcNuNtTN . On the other hand if we use Lemma 3.1,
we first solve Pµ1 offline for each possible parameters. Problem Pµ1 computation burden for one
numerical resolution is proportional to NaNcNuNtT , but we need to solve it for each final param-
eters (cF , aF = a0 + δa), ie NaNc times (indeed, observe that one resolution solves the problem for
all possible initial states). Then we have to do the macro resolution (O(NaNcN)). So the total
cost with the micro/macro formulation is O(N2

aN
2
cNuNtT)+O(NaNcN), which can be competitive

against a brute-force dynamic programming if N is large compared to NaNc.
Consider a specific case where the charge c has to be the same at the beginning of each period.

In this case we get:

• Direct dynamic programming resolution: O(NaNcNuNtTN)
• One micro problem resolution: O(NaNcNuNtT)
• Number of parameters for the micro problem: O(Na)
• Resolution of the macro problem: O(N2

aN)
• Total computation burden for the bilevel approach: O(N2

aN) +O(N2
aNcNuNtT)

Then this approach becomes competitive compared to the direct DP approach if N is larger than
Na. Note that when solving the micro problem, the complexity is proportional to Na, but the grid
does not need to contain the whole A segment for a given set of final ages. The pseudo code of
such an algorithm is straightforward.

• Compute the value function of Pµ1 for all δa.
• Compute the value function of the macro problem using the previous results.

Now assume we do an online implementation (with periodic cF = ĉF): at the beginning of each
period, we compute an optimal control for the period, with a final constraint cF = ĉF . With direct
dynamics programming, either we recompute the value fonction every time (a), or we keep it in
memory (which requires a lot of ressources)(b). If we keep the whole value function in memory,
it requires a memory space proportional to NaNcNtNT , which is not realistic. If we only keep
the value function at the end of each period, then we only need a memory space proportional
to NaN , but we need to recompute the intermediate value function for a computation burden of
NaNcNuNtT .

With a bilevel approach, we can keep in memory either the whole value function of the macro
problem (c), the value functions of the micro problems at t = 0 for different maximal aging (d),
or the mapping of the optimal δa for each (a, t) (e). The first solution is similar to (a) and is not
realistic. The second solution requires a memory space of O(N2

a), which is not proportional to N .

LONG TERM AGING : AN ADAPTATIVE WEIGHTS DYNAMIC PROGRAMMING ALGORITHM 7

Then we need to get the optimal aging by dynamic programming on the macro problem O(N2
aN)

and compute an optimal control O(NaNcNuNtT). The last possibility requires a Na × N table.
The online computation of the control will then require two states, which represents a computation
burden proportional to NaNcNuNtT . Note that this last possibility is equivalent to (b) for the
online phase.

The complexity analysis is summarized in Tables 1 and 2.
We point out that we have not used much of the problem specificity, as only Assumptions 2 is

needed in the proof of Lemma 3.1. Moreover, such online computation burden may be too big for
some applications. This is what motivates the next section.

4. Adaptative Weights

4.1. Preliminary results. Note that we could replace the final constraint and the final cost in P1

by a penalization on the age variation. We would get the criterion

(4.1)

∫ Ttot

t0

`(u(t), t)dt+ α[a(Ttot)− amax] + φ(aTtot).

where α ∈ R+ is a penalization coefficient. Since amax and â0 are constants over which we are not
optimizing, we get an equivalent optimization problem by using instead the criterion

(4.2)

∫ Ttot

t0

`(u(t), t)dt+ α

∫ Ttot

t0

Fa(X(t), u(t), t)dt+ +φ(aTtot).

We then get the penalized problem (with free final age)

(4.3) P2(a0, c0, α, t0)

V2(a0, c0, α, t0) = inf
u∈U

∫ Ttot

t0

[`(u(t), t) + αFa(X(t), u(t), t)]dt+ φ(aTtot)

Ẋ(t) = F (X(t), u(t), t)

(a(t0), c(t0)) = (a0, c0)

ϕ(c(t), u(t), t) ∈ A

Let us introduce the corresponding micro-problem:

(4.4) Pµ2 (a0, c0, cF , α)

V µ2 (a0, c0, cF , α) = inf
u∈U

∫ T

0

[`(u(t), t) + αFa(X(t), u(t), t)]dt

Ẋ(t) = F (X(t), u(t), t)

(a(0), c(0)) = (a0, c0)

ϕ(c(t), u(t), t) ∈ A
c(T) ≥ cF .

As the notations implies, Pµ2 is to P2 what Pµ1 is to P1: a one day version. Just note that the final
constraint in P1 is considered as fixed and is a parameter in Pµ1 whereas the penalization coefficient
is a parameter for both Pµ2 and P2. In addition, note that we cannot write a dynamic programming
principle directly with Pµ2 and P2 as we did for Pµ1 and P1 in Lemma 3.1.

If problem P1 is strictly feasible, then for α big enough the final constraint is satisfied by the
solutions of P2(a0, c0, α, t0) (see the proof of Lemma 6). A standard way to deal with aging is to

8 BENJAMIN HEYMANN, PIERRE MARTINON, AND FRÉDÉRIC BONNANS

replace P1(a0, c0, t0) by an approximation of P2(a0, c0, cF , α) where the age a is fixed:

(4.5) P̃2(a0, c0, α, t0)

V2(a0, c0, α, t0) = inf
u∈U

∫ Ttot

t0

[`(u(t), t) + αFa(a0, c(t), u(t), t)]dt+ φ(aTtot)

ċ(t) = Fc(a0, c(t), u(t), t)

(a(t0), c(t0)) = (a0, c0)

ϕ(c(t), u(t), t) ∈ A

To set α, practitioners would often compute a collection of solutions of P̃2 for different values of
α, and then take the best admissible solution in the sense of P1. Nonetheless such an approach
neglects the impact of the aging on the efficiency and more generally the fact that the dynamics
are coupled.

In addition, there may be a duality gap. In this case any (theoretical) solution of P2 admissible
for P1 is suboptimal for P1. Ekeland and Aubin propose an estimate of this sub-optimality in a
finite dimensional setting [1].

The following lemma is a relation between the value functions of the two micro problems Pµ2 and
Pµ1 .

Lemma 4.1. For any (a0, c0, cF , α) ∈ A× C2 × R+,

(4.6) V µ2 (a0, c0, cF , α) = inf
δa∈R+

V µ1 (a0, δa, c0, cF) + αδa

Proof. LHS ≥ RHS:

Take ε > 0, u ∈ Ux0
an ε-optimal solution of the LHS. Set δa = au,Tx0,0

− a0. By ε-optimality of u

(4.7) LHS + ε ≥
∫ T

0

`(u(t), t)dt+ αδa.

In addition note that u is admissible for Pµ1 (a0, δa, c0, cF) therefore by definition of V µ1 ,
∫ T

0
`(u(t), t)dt ≥

V µ1 (a0, δa, c0, cF). Then

(4.8) LHS + ε ≥ V µ1 (a0, δa, c0, cF) + αδa ≥ inf
δa∈R+

V µ1 (a0, δa, c0, cF) + αδa = RHS.

Therefore LHS ≥ RHS.
LHS ≤ RHS:
Take ε > 0, δa ∈ R+ an ε-optimal solution of the RHS and u ∈ Ux0

an ε-optimal solution of problem
Pµ1 (a0, δa, c0, cF). By ε-optimality

(4.9) RHS + ε ≥ V µ1 (a0, δa, c0, cF) + αδa and V µ1 (a0, δa, c0, cF) + ε ≥
∫ T

0

`(u(t), t)dt,

so

(4.10) RHS ≥
∫ T

0

`(u(t), t)dt+ αδa− 2ε.

Moreover, since u is Pµ1 (a0, δa, c0, cF)-admissible, δa ≥
∫ T

0
Fa(X(t), u(t), t)dt, so

(4.11) RHS ≥
∫ T

0

[`(u(t), t) + αFa(X(t), u(t), t)]dt− 2ε ≥ LHS − 2ε.

Therefore LHS ≤ RHS and the proof is done. �

LONG TERM AGING : AN ADAPTATIVE WEIGHTS DYNAMIC PROGRAMMING ALGORITHM 9

We point out that this result does not depend on φ and amax which are macro problem specific
parameters.

Corollary 4.2. For any (a0, c0, cF , δa, α) ∈ A× C2 × R2
+,

(4.12) V µ1 (a0, δa, c0, cF) ≥ V µ2 (a0, c0, cF , α)− αδa.

4.2. Nice Case: No Duality Jumps. To proceed we need some additional notations. First for
any x0 ∈ A× C, and any control u ∈ Ux0

, we define

(4.13) ∆a(u) =

∫ T

0

Fa(X(t), u(t), t))dt and L(u) =

∫ T

0

`(u(t), t)dt.

Note that for readability the initial conditions are kept implicit. For any (a0, c0, cF , α) ∈ A×C2×R+,
let

(4.14) Γ(a0, c0, cF , α) =

{
δa = lim

n
∆a(un);

un minimizing sequence of Pµ2 (a0, c0, cF , α)

}
Roughly speaking, given some (a0, c0, cF) ∈ A×C2, α→ Γ(a0, c0, cF , α) associates the penalization
coefficients with the set of optimal aging levels for Pµ2 . Lemma 4.3 is a key result for what follows.

Lemma 4.3. Let (a0, c0, cF , α,∆a) ∈ A× C2 × R2
+ such that ∆a ∈ Γ(a0, c0, cF , α). Then

(4.15) V µ1 (a0,∆a, c0, cF) = V µ2 (a0, c0, cF , α)− α∆a.

Proof. We deduce LHS ≥ RHS from Corollary 4.2, so we only need to show that LHS ≤ RHS.
Let ε > 0. By Assumption 3, there exists ε1 ≥ 0 such that if u2 ∈ Ux0

and ∆a ≤ ∆a(u2) ≤ ∆a+ ε1,
then there exists u′ ∈ Ux0 such that

(4.16) ∆a(u′) = ∆a and |L(u2)− L(u′)| ≤ ε.
By hypothesis, ∆a ∈ Γ(a0, c0, cF , α) so by definition of Γ there exists u2 ε-optimal for Pµ2 (a0, c0, cF , α)
that satisfies |∆a(u2)−∆a| ≤ min(ε1,

ε
α).

If ∆a(u2) ≤ ∆a, then

V µ2 (a0, c0, cF , α)− α∆a ≥ V µ2 (a0, c0, cF , α)− α∆a(u2)− ε ≥(4.17)

−2ε+ L(u2) ≥ −2ε+ V µ1 (c0, cF , a0,∆a).(4.18)

We used α|∆a(u2)−∆a| ≤ ε for the first inequality, the ε-optimality of u2 for the second inequality,
and the admissibility of u2 for Pµ1 (c0, cF , a0,∆a) in the third.

Else we have the existence of a control u′ satisfying (4.16). Then by ε-optimality of u2 for Pµ2 ,
(4.16) and ∆a(u2) > ∆a, and the fact that u′ is admissible for Pµ1 and ∆a(u′) = ∆a:

V µ2 (a0, c0, cF , α) ≥ −ε+ L(u2) + α∆a(u2) ≥(4.19)

−2ε+ L(u′) + α∆(u′) ≥(4.20)

−2ε+ V µ1 (c0, cF , a0,∆a) + α∆a.(4.21)

Then we can conclude. �

From Lemma 4.3 it is trivial that

Corollary 4.4. Let (a0, c0, cF , α, δa, u) ∈ A × C2 × R2
+ × UT and ε > 0 such that u is an ε-optimal

solution of Pµ1 (a0, δa, c0, cF) and ∆a(u) ∈ Γ(a0, c0, cF , α) then

(4.22) V µ1 (a0,∆a(u), c0, cF) = V µ2 (a0, c0, cF , α)− α∆a(u)

10 BENJAMIN HEYMANN, PIERRE MARTINON, AND FRÉDÉRIC BONNANS

Now we have the tools to prove one of our main results.

Theorem 4.5. Let (a0, c0, αn, u) ∈ A×C ×Rn+×U and ε > 0 such that u is an ε-optimal solution

for P1(a0, c0, 0) and (ak+1 − ak) ∈ Γ(ak, ck, ck+1, αn), where ak = au,tkx0,0
and ck = cu,tkx0,0

. Then for
all k = 0 . . . N − 1

(4.23) |V1(ak, ck, tk)− inf
(α,cF ,δa)

{V µ2 (a0, c0, cF , α)− αδa+ V1(ak + δa, cF , tk+1)}| ≤ ε,

where the optimization is performed over the (α, δa, cF) such that α ∈ R+, cF ∈ C and δa ∈
Γ(ak, ck, cF , α).

Proof. Without loss of generality, we deal with the case k = 0. First note that the restriction uT
of u to [0, T] is an ε-optimal solution for Pµ1 (a0, a1 − a0, c0, c1).

By ε-optimality, admissibility of uT for Pµ1 (a0, a1 − a0, c0, c1), Corollary 4.4 and the fact that
a1 − a0 ∈ Γ(a0, c0, c1, α0),

V1(a0, c0, 0) + ε ≥ L(uT) + V1(a1, c1, T) ≥ V µ1 (a0, a1 − a0, c0, c1) + V1(a1, c1, T)(4.24)

≥ V µ2 (a0, c0, c1, α0)− α0(a1 − a0) + V1(a0 + a1 − a0, c1, T)(4.25)

≥ inf
α,δa,cF

V µ2 (a0, c0, cF , α)− αδa+ V1(a0 + δa, cF , T)(4.26)

Therefore RHS ≤ LHS + ε.
For any (α, δa, cF) ∈ R+ × R+ × C such that δa ∈ Γ(a0, c0, cF , α), by Lemma 4.3 and Lemma

3.1:

V µ2 (a0, c0, cF , α)− αδa+ V1(a0 + δa, cF , T) =(4.27)

V µ1 (a0, δa, c0, cF) + V1(a0 + δa, cF , T) ≥ V1(a0, c0, 0).(4.28)

Therefore RHS ≥ LHS and the conclusion follows. �

We point out that the result is still true if we want to fix the ck as operational constraints. Under
the hypothesis of the previous theorem, assume that Γ is a singleton, then V1 can be computed by
dynamic programming over α. We will get a similar result in the next section as a consequence of
Theorem 4.12. Note that since in Pµ2 there is no final constraint on the age a we could approximate
this problem by fixing the age in the dynamics. With Assumption 1 we should be able to get an
error estimate. Last but not least, beware that the optimal α in Theorem 4.5 is not the α that
would relate by duality two macro problems P1 and P2.

4.3. Some comments on Γ. We say that Pµ1 (a0, δa, c0, cF) is strictly feasible if there exists u ∈
Ux0 such that ∆a(u) < δa. We start with the following classical result:

Lemma 4.6. If problem Pµ1 (a0, δa, c0, cF) is strictly feasible, then there is an α0 such that for α
bigger than α0,

∀∆a ∈ Γ(a0, c0, cF , α),∆a ≤ δa.(4.29)

Proof. Since Pµ1 (a0, δa, c0, cF) is strictly feasible, there exists u ∈ Ux0 such that ∆a(u) < δa.
Assume that there exists αn an increasing sequence such that

αn → +∞ and ∀n ∈ N,∃∆an ∈ Γ(a0, c0, cF , αn),∆an > δa.(4.30)

Then

n(∆an −∆a(u)) ≥ n(δa− δa(u))(4.31)

LONG TERM AGING : AN ADAPTATIVE WEIGHTS DYNAMIC PROGRAMMING ALGORITHM 11

Then for n big enough, since ` is bounded, we would have L(u)+n∆a(u) < V µ2 (a0, c0, cF , n), which
is absurd. �

The result of the next lemma is clear to the intuition: Γ should be decreasing in α.

Lemma 4.7. Let (a0, c0, cF) ∈ A× C2, then for any 0 ≤ α1 < α2,

(δ1, δ2) ∈ Γ(a0, c0, cF , α1)× Γ(a0, c0, cF , α2)⇒ δ1 ≥ δ2(4.32)

Proof. To simplify, we omit (a0, c0, cF) because they do not intervene in the proof. Assume that
for some non-negative α1 < α2, there exist some (δ1, δ2) such that δ1 < δ2. Then by corollary 4.2

V µ2 (α2) ≤ V µ1 (δ1) + α2δ1.(4.33)

This implies with Lemma 4.3 that

α2(δ2 − δ1) ≤ V µ1 (δ1)− V µ1 (δ2)(4.34)

Then since α1 < α2 and δ2 − δ1 > 0

α1(δ2 − δ1) < V µ1 (δ1)− V µ1 (δ2)(4.35)

which in turn implies that

V µ1 (δ2) + α1δ2 < V µ1 (δ1) + α1δ1 = V µ2 (α1),(4.36)

which is not coherent with the optimality of V µ2 (α1). We conclude that δ1 ≥ δ2. �

Since the data are bounded, Γ is included in a compact set. Since Pµ2 has a value, and u→ ∆(u)
is valued in a compact set, Γ is not empty. We display in Figure 1 a sketch of Γ as a function of
α (the other variables being fixed). By Lemma 4.7 Γ is non-increasing. There is no reason a priori
why it could not be locally constant. Indeed, even the solution of Pµ2 could be locally constant with
respect to α. Observe that Γ not necessarily a singleton: we can have some jumps. In addition it
is not necessarily convex valued.

Lemma 4.8. Let (a0, c0, cF , α,∆a1,∆a2) ∈ A×C2×R2
+ such that ∆ai ∈ Γ(a0, c0, cF , α) for i = 1, 2

then

(4.37) V µ1 (a0,∆a1, c0, cF)− V µ1 (a0,∆a2, c0, cF) = α(∆a2 −∆a1)

Proof. This is a direct consequence of Lemma 4.3. �

4.4. Generic Case. In general we do not have any guarantee of the existence of the α’s as in
Theorem 4.3. In relation with problem Pµ2 , we introduce for any (x0, cF , α) ∈ (A× C)× C × R+

(4.38) ∆−(x0, cF , α) = inf
u∈S(x0,cF ,α)

lim inf
n→+∞

∆a(un),

and

(4.39) ∆+(x0, cF , α) = sup
u∈S(x0,cF ,α)

lim sup
n→+∞

∆a(un),

where

(4.40) S(x0, cF , α) = {u ∈ (UT)N; (un)n∈N minimizing sequence of Pµ2 (x0, cF , α)}.

In addition, we denote by Γ̂ the set

(4.41) Γ̂(x0, cF , α) = {∆−(x0, cF , α),∆+(x0, cF , α)}

12 BENJAMIN HEYMANN, PIERRE MARTINON, AND FRÉDÉRIC BONNANS

Figure 1. An example of Γ(α) profile: This drawing summarize the possible
behaviors of ∆a(α), i.e the influence of the penalization parameter over the aging in
the micro problem. It can be either continuous and strictly decreasing or constant,
or it may “jump” for a given value of α. If there is a jump at α = α0 then we
cannot a priori say that Γ(α0) is a singleton. In addition, it may happen that Γ
’misses’ some values at α0.

which is either a 2-uplet if there is a jump, and a singleton otherwise. The set Γ̂ corresponds to the
minimal and maximal optimal age increments for a given α. Last, we denote by γ the quantity:

(4.42) γ = sup
(x0,cF ,α)∈(A×C)×C×R+

{ lim
α−<α

∆+(x0, cF , α
−)− lim

α+>α
∆−(x0, cF , α

+)},

which corresponds to the size of the biggest possible duality jump. By monotonicity of Γ with
respect to α, γ is non negative, and by Assumption 1, γ is finite. We denote by P3(xk, tk) for
k = 0 . . . N − 1 the problem

(4.43) V3(xk, tk) = inf
(xi,αi)

N−1∑
i=k

{V µ2 (xi, ci+1, αi)− αi(ai+1 − ai)}+ φ̃(aN),

where the optimization is performed over the (xi, αi)i=k+1,...,N ∈ (A × C × R+)N−k such that for
any i = k . . . N − 1,

(ai+1 − ai) ∈ Γ̂(xi, ci+1, αi)(4.44)

and φ̃(a) = φ(a) if a < amax, +∞ else.

Lemma 4.9. Let (a0, c0, cF , α, δa) ∈ A× C2 ×R2
+, such that δa ∈ Γ̂(a0, c0, cF , α), then

(4.45) V µ1 (a0, c0, cF , δa) = V µ2 (a0, c0, cF , α)− αδa

Proof. We just observe that Γ̂(x0, cF , α) ∈ Γ(x0, cF , α) and apply Lemma 4.3. �

LONG TERM AGING : AN ADAPTATIVE WEIGHTS DYNAMIC PROGRAMMING ALGORITHM 13

Lemma 4.10. Let (x, k) ∈ A× C × [0 . . . N − 1], then V3(x, tk) ≥ V1(x, tk).

Proof. By Lemma 3.1, we have

V1(x, tk) = inf
xi

N−1∑
i=k

V µ1 (xi, ci+1, ai+1 − ai) + φ̃(aN).(4.46)

and by lemma 4.9 and the definition of V3,

V3(x, tk) = inf
xi

N−1∑
i=k

V µ1 (xi, ci+1, ai+1 − ai) + φ̃(aN).(4.47)

where the optimization is performed over the xi such that there exist (αi)i=k+1,...,N to satisfy 4.44.
QED. �

Remember the definition of γ in (4.42).

Lemma 4.11. For any (x0, cF , u) ∈ (A × C) × C × UT such that u is admissible for problem
Pµ1 (a0,∆a(u), c0, cF), there exists α such that

(4.48) dist(∆a(u), Γ̂(x0, cF , α)) ≤ γ.

Proof. We know that for α ∈ R+ big enough, δ ∈ Γ̂(x0, cF , α) implies δ ≤ ∆a(u). Take α0 the

infimum of those α. Then if there exists δ ∈ Γ̂(x0, cF , α0) such that δ = ∆a(u) we just take α = α0

and we are done. Else by definition of α0, for all α− < α, ∆+(x0, cF , α
−) > ∆a(u) and for all

α+ > α, ∆−(x0, cF , α
+) ≤ ∆a(u). This rewrites, for all δ ∈ Γ̂(x0, cF , α)

(4.49) ∆−(x0, cF , α
+)− δ ≤ ∆a(u)− δ ≤ ∆+(x0, cF , α

−)− δ
Taking the limit in α− and α+, we get

(4.50) |∆a(u)− δ| ≤ γ
i.e.

(4.51) dist(∆a(u), Γ̂(x0, cF , α)) ≤ γ.
�

The next result contains one of the main ideas of the paper: the set of the xi satisfying 4.44 is
rich enough to approximate a trajectory with a precision of γ.

Theorem 4.12. Let x0 ∈ A×C and u ∈ U admissible for P1(x0, 0). Then there exist (α, δa) ∈ R2N
+

such that for all k = 0, . . . , N :

(4.52) δak ∈ Γ̂(a0 +

k−1∑
j=0

δaj , ck, ck+1, αk)

(4.53)

k−1∑
i=0

δai ≤ a(tk)− a0

(4.54)

k−1∑
i=0

δai ≥ a(tk)− a0 − γ,

whereand ck = c(tk).

14 BENJAMIN HEYMANN, PIERRE MARTINON, AND FRÉDÉRIC BONNANS

Proof. First note that (4.53) and (4.54) are satisfied for k = 0. Now consider k = 0, . . . , N such
that the three properties are satisfied until (k − 1). If there exist α such that

(4.55) a(tk+1)− a(tk) ∈ Γ̂(a0 +

k−1∑
j=0

δaj , ck, ck+1, αk)

then set δak = a(tk+1)− a(tk) and αk = α. and then the three properties are still trivially satisfied
for k. Else, we apply Lemma 4.11 to justify the existence of an αk such that

(4.56) dist(a(tk+1)− a(tk), Γ̂(a0 +

k−1∑
j=0

δaj , ck, ck+1, αk) ≤ γ.

then if

(4.57)

k−1∑
j=0

δaj + ∆+(a0 +

k−1∑
j=0

δaj , ck, ck+1, αk) ≤ a(tk+1)− a0

then we set δak = ∆+(a0 +
∑k−1
j=0 δaj , ck, ck+1, αk) Then constraints (4.52) and (4.53) are satisfied.

We need to check that (4.54) is also satisfied. To see this, observe that

k−1∑
j=0

δaj + ∆+(a0 +

k−1∑
j=0

δaj , ck, ck+1, αk)(4.58)

≥ a(tk)− a0 − γ + ∆+(a0 +

k−1∑
j=0

δaj , ck, ck+1, αk)(4.59)

≥ a(tk+1)− a0 + ∆+(a0 +

k−1∑
j=0

δaj , ck, ck+1, αk)− (a(tk+1)− a(tk))− γ(4.60)

≥ a(tk+1)− γ,(4.61)

where we applied, the induction and the fact that ∆+(a0+
∑k−1
j=0 δaj , ck, ck+1, αk) ≥ a(tk+1)−a(tk).

Else we set δak = ∆−(a0 +
∑k−1
j=0 δaj , ck, ck+1, αk). We have

k−1∑
j=0

δaj + ∆−(a0 +

k−1∑
j=0

δaj , ck, ck+1, αk)(4.62)

> a(tk+1)− a0 −∆+(a0 +

k−1∑
j=0

δaj , ck, ck+1, αk)−∆−(a0 +

k−1∑
j=0

δaj , ck, ck+1, αk)(4.63)

> a(tk+1)− a0 − γ(4.64)

and
k−1∑
j=0

δaj + ∆−(a0 +

k−1∑
j=0

δaj , ck, ck+1, αk)(4.65)

≤ a(tk)− a0 + ∆−(a0 +

k−1∑
j=0

δaj , ck, ck+1, αk)(4.66)

≤ a(tk+1)− a0(4.67)

LONG TERM AGING : AN ADAPTATIVE WEIGHTS DYNAMIC PROGRAMMING ALGORITHM 15

which concludes the induction. �

We point out that the proof of this result is constructive. We propose in the next result an a
posteriori error estimate based on this construction. Since a(tk) is the age of the system piloted by

the ε-optimal solution u and a0 +
∑k
i=1 δai is the age of the system piloted by the solution we are

building with adaptative weights, relation (4.52) means that the system is always in better shape
(i.e. younger) in the solution we are building, and at the same time, it cannot be more than γ
better (reminder: γ is the maximal diameter of Γ).

Theorem 4.13 (Error Estimate). For any ε-optimal solution of P1(a0, c0, t0), the construction of
the previous theorem gives the estimate:

(4.68) V3(a0, c0, t0)− V1(a0, c0, t0) ≤
N−1∑
k=0

αk(a(tk+1)− a(tk)− δak) + ε

Note that (a(tk+1) − a(tk) − δak) = 0 when there is no jump at αk, which can be numerically
checked. Thus the theorem give an a posteriori estimate of the error when optimizing with an
adaptative weights approach. For instance, if the structure of the problem allows us to claim that
there are no jumps, then we do not make any approximation error.

Proof. Take ε > 0 and u ∈ U an ε-optimal control for problem P1(c0, a0, t0). We apply Theorem
4.12 to u.

We have

(4.69) V3(c0, a0) ≤
N∑
k=1

{V µ2 (a0 +

k−1∑
j=0

δaj , ck, ck+1, αk)− αkδak}+ φ̃(a+

N−1∑
k=0

δak)

We deal with the first term of the RHS. According to Lemma 4.9, for all k = 0 . . . N − 1

(4.70) V µ2 (a0 +

k−1∑
j=0

δaj , ck, ck+1, αk)− αkδak = V µ1 (a0 +

k−1∑
j=0

δaj , δak, ck, ck+1)

Therefore

V µ2 (a0 +

k−1∑
j=0

δaj , ck−1, ck, αk)− αkδak − V µ1 (a(tk), a(tk+1)− a(tk), ck, ck+1)(4.71)

= V µ1 (a0 +

k−1∑
j=0

δaj , δak, ck, ck+1)− V µ1 (a(tk), a(tk+1)− a(tk), ck, ck+1)(4.72)

= V µ1 (a0 +

k−1∑
j=0

δaj , δak, ck, ck+1)− V µ1 (a0 +

k−1∑
j=0

δaj , a(tk+1)− a(tk), ck, ck+1) +(4.73)

V µ1 (a0 +

k−1∑
j=0

δaj , a(tk+1)− a(tk), ck, ck+1)− V µ1 (a(tk), a(tk+1)− a(tk), ck, ck+1)(4.74)

The second difference is negative because V µ1 is decreasing in its first variable and a0 +
∑k−1
j=0 δaj ≤

a(tk) by construction. We thus concentrate on the first difference. If there is no jump, this quantity

16 BENJAMIN HEYMANN, PIERRE MARTINON, AND FRÉDÉRIC BONNANS

is zero. Otherwise, we need to compare (simplifying the notations) V µ1 (δak) and V µ1 (a(tk+1)−a(tk).
By definition of Pµ2 , we have

(4.75) V µ1 (a(tk+1)− a(tk)) + αk(a(tk+1)− a(tk)) ≥ V µ2 (αk).

Remember that by definition the pair (αk, δak) satisfies δak ∈ Γ̂(a0 +
∑k−1
j=0 δaj , ck, ck+1, αk). We

can apply Lemma 4.9 to get

(4.76) V µ2 (αk) = V µ1 (δak) + αkδak.

Therefore, combining relations (4.75) and (4.76) we get

(4.77) V µ1 (δak)− V µ1 (a(tk+1)− a(tk)) ≤ αk(a(tk+1)− a(tk)− δak)

Therefore if we denote by Kjumps the k ∈ [0..N − 1] such there is a jump in the construction:

V3(a0, c0, t0)− V1(a0, c0, t0) ≤(4.78) ∑
k∈Kjumps

αk(a(tk+1)− a(tk)− δak) + φ̃(a0 +

N−1∑
k=0

δak)− φ(a(tN))(4.79)

≤
∑

k∈Kjumps

αk(a(tk+1)− a(tk)− δak).(4.80)

Since a(tN) ≥ a0 +
∑N−1
k=0 δak by construction, φ is monotone decreasing and u is admissible for

P1(x0, t0). �

4.5. Complexity Analysis. We denote by Nα the number of elements in the discretization of α.
We get the following offline computation burden for the adaptative weights algorithm if we neglect
the age variations in the micro problem.

• Micro problem: O(NcNuNtT)
• Parameters for micro: O(NαNaNc)
• Macro: O(NaNcNαN)
• Total bilevel: O(NaNαN) +O(NαNaN

2
cNuNtT)

We proceed with a complexity analysis for the case where we have the constraint ctk = c0 and
we neglect the age variations in the micro problem:

• Micro problem: O(NcNuNtT)
• Parameters for micro: O(NαNa)
• Macro: O(NaNαN)
• Total bilevel: O(NaNαN) +O(NαNaNcNuNtT)

If Na and Nα are of the same order, then the offline computation burdens for the adaptive weights
and bilevel dynamic programming algorithms are of the same order. We then store an Na × Nα
matrix. The online optimization complexity is proportional to NaNαN +NcNuNtT .

The complexity analysis is summarized in Tables 1 and 2.

5. Discussion

5.1. Asymptotic Analysis. We propose in this subsection an asymptotic error estimate. The
derivation of the estimate relies mostly on Assumption 1, which by the way we did not use in the

LONG TERM AGING : AN ADAPTATIVE WEIGHTS DYNAMIC PROGRAMMING ALGORITHM 17

Offline Computation burden
Approach offline
BF NaNcNuNtTN
Bilevel N2

aN
2
cN +N2

aN
2
cNuNtT

AWA NαNaN
2
cN +NαNaN

2
cNuNtT

Table 1. The offline computation burdens for the general case

Computation burden
Memory requirement

Approach offline online
BF (b) NaNcNuNtTN NaNcNuNtT NaN

Bilevel
(d) N2

aN +N2
aNcNuNtT N2

aN +NaNcNuNtT N2
a

(e) ” NaNcNuNtT NaN
AWA NaNαN +NαNaNcNuNtT NaNαN +NcNuNtT NaNα

Table 2. The computation burdens for the case where c has to be the same at
the beginning of each period

previous sections. We now express formally the approximation of V µ2 envisioned in the complexity
analysis:

(5.1) P̃µ2 (a0, c0, cF , α)

Ṽ µ2 (a0, c0, cF , α) = inf
u∈U

∫ T

0

[`(u(t), t) + αFa(a0, c(t), u(t), t)]dt

ċ(t) = Fc(a0, c(t), u(t), t)

(a(0), c(0)) = (a0, c0)

ϕ(c(t), u(t), t) ∈ A
c(T) ≥ cF .

This approximation consists in neglecting the evolution of a in the micro optimal control problem.

We then set ∆̃a(u) =
∫ T

0
Fa(a0, c(t), u(t), t)dt and define Γ̃ for P̃µ2 the same way we defined Γ̂ for

Pµ2 . Last we define Ṽ3 by replacing Γ̂ and V µ2 by Γ̃ and Ṽ µ2 in the definition of V3 and Ũx as the

set of controls u ∈ UT = {u ∈ L∞(0, T) s.t. ∀t ∈ [0, T], u(t) ∈ Ū} such that ϕ(c̃u,tx0,0
, u(t), t) ∈ A for

any t ∈ [0, T], where c̃ is the flow corresponding to the dynamics (5.1).
First we estimate with Gronwall’s lemma the error made on the trajectories.

Lemma 5.1. There exists a constant K such that for any (a0, c0, u, t) ∈ A× C × UT × [0, T],

(5.2) |a0 − au,tx0,0
| ≤ K/N and |cu,tx0,0

− c̃u,tx0,0
| ≤ K/N,

and

(5.3) |∆a(u)− ∆̃a(u)| ≤ K/N2.

Proof. We get the first inequality using Fa ≤ L/N , the second inequality by combining the L-
Lipschitzianity of Fc, the first inequality and Gronwall lemma. We get (5.3) combining the L/N -
Lipschitziannity of Fa with (5.2). �

We continue with the error estimate.

18 BENJAMIN HEYMANN, PIERRE MARTINON, AND FRÉDÉRIC BONNANS

Theorem 5.2. Let x0 = (a0, c0) ∈ A × C. Let (αi, ai, ci) be some minimizers of V3(x0, 0). Let

ui ∈ Uai,ci be a minimizer of Pµ2 (ai, ci, ci+1, αi) such that ui ∈ Ũai,ci . Let ψ ∈ R → R and C ≥ 0
be such that

• ai+1 − ai ∈ Γ̃(xi, ci+1, ψ(αi))
• | ψ(αi)− αi |≤ C
• αi ≤ NC

Then

Ṽ3(x0, 0)− V3(x0, 0)

N
≤ 3CK

N
(5.4)

Proof. Set δai = ai+1 − ai. By definition of Ṽ3, we have

Ṽ3(x0, 0)− V3(x0, 0) ≤(5.5)
N−1∑
i=0

Ṽ µ2 (xi, ci+1, ψ(αi))− V µ2 (xi, ci+1, αi) + (αi − ψ(αi))δai + φ(an)− φ(an)(5.6)

≤
N−1∑
i=0

inf
u∈Ũxi

[L(u) + ψ(αi)∆̃a(u)]− inf
u∈Uxi

[L(u) + αi∆a(u)] + (αi − ψ(αi))δai(5.7)

≤
N−1∑
i=0

inf
u∈Ũxi

[L(u) + ψ(αi)∆̃a(u)]− inf
u∈Ũxi

[L(u) + αi∆a(u)] + CK/N(5.8)

≤
N−1∑
i=0

sup
u∈Ũxi

[ψ(αi)∆̃a(u)− αi∆a(u)] + CK/N(5.9)

≤
N−1∑
i=0

CK

N
+
αiK

N2
+
CK

N
≤ 3CK(5.10)

�

The reverse result can be proved similarly.
To give an intuition of the estimate of α, observe that Γ(x0, cF , Nα) is equal to a constant divided

byN for any α.

5.2. Extensions. In this subsection we propose some possible extensions for the adaptative weights
algorithm.

5.2.1. Obstacle. In many applications, it is possible to buy off the shelf spare parts to replace
worn components. Hence we may want to introduce the possibility to buy a replacement in the
optimization problem. This could be done with an impulse control: for a fixed price p, we should
be able to reset the age a to zero. We would get the following dynamic programming principle:

(5.11) V3(a, c, tk) = min{ inf
cf ,α,δa

V µ2 (a, c, cf , α)−αδa+V3(a+ δa, cf , tk+1), V3(0 + δa, cf , tk+1) + p}

5.2.2. Periodicity. We can include seasonality by having different kinds of periods. For instance,
we could model winter and summer days. In this case, one need to perform an offline pre-processing
for each kind of day.

LONG TERM AGING : AN ADAPTATIVE WEIGHTS DYNAMIC PROGRAMMING ALGORITHM 19

5.2.3. Short-term and long term Randomness. With Markovian dynamics and final constraints in
expectancy, the same arguments should apply. The algorithm should work with stochastic dynamics.
Moreover, we could add an integer state with Markovian dynamics to model the type of ’days’.

5.2.4. Infinite Horizon. If we add an actualization rate, the arguments should apply for infinite
horizon. Then one needs to replace the macro dynamic programing algorithm by either a policy
iteration algorithm or a value iteration algorithm.

5.3. Algorithm. We propose a bi-level approach that consists in an offline and an online part. For
readability we assume that c should have the same value at the end of each period c̃. We already
defined ∆a(u) and L(u). The inputs of the algorithm are the discretization grids of the age and
the parameters, namely Ia and Iα. We denote by k0 the current period number and by a0 the
current age. We use the notation φ̃(a) = φ(a) if a < amax, +∞ else. For a table T indexed by Ia
FT is an interpolation of T over the grid. The output of the offline algorithm is the pair of tables
(∆α,a0 ,Lα,a0). The output of the online algorithm is a control u∗ ∈ UT .

Data: Ia, Iα
Result: ∆α,a0 Lα,a0
for α ∈ Iα do

for a0 ∈ Ia do
Solve Pµ2 (a0, c̃, c̃, α) ;

Compute an optimal control u for Pµ2 (a0, c̃, c̃, α) ;

∆α,a0 ← ∆a(u) and Lα,a0 ← L(u) ;

end

end
Algorithm 1: offline Algorithm

Data: k0, a0, Ia, Iα, ∆α,a0 , Lα,a0
Result: u∗

Initialize Ṽ:,: ∈ Ia × [k0 + 1 . . . N];

Ṽ:,: ← +∞;

Ṽ:,N ← φ̃(:);

for k ← N − 1 to k0 + 1 do
for a ∈ Ia do

for α ∈ Iα do

Ṽa,k ← min{Lα,a + F Ṽ (a+ ∆α,a, k + 1); Ṽa,k} ;

end

end

end

α∗ ← argminIα{Lα,a − α∆α,a0 + Ṽ (a0 + ∆α,a0 , k0 + 1)};
Compute an optimal control u∗ for Pµ2 (a0, c̃, c̃, α

∗) ;

Return u∗;
Algorithm 2: online Algorithm

20 BENJAMIN HEYMANN, PIERRE MARTINON, AND FRÉDÉRIC BONNANS

6. Simulation and Implementation on a Microgrid Model

6.1. Problem Presentation. A microgrid is an electric system that includes electricity generation
units (dispatchable and non dispatchable) and a battery to store energy for later use. Although
the battery price is a non negligible part of the total infrastructure cost, the battery aging is rarely
taken into account in the control of the grid: this is the source of sub-optimality we propose to
deal with. The profusion and complexity of battery aging models is a reason why, to the extent
of our knowledge, no generic optimization tools have been proposed yet. It is nonetheless natural
to model the aging through a quantity representing the age of the battery that would increase as
the battery is used. The scope of our framework is the models for which the battery age dynamics
is a controlled first order ordinary differential equation. We use a severity factor model for the
aging and solve the simplified optimal control formulation (introduced in [11] and [10] by dynamic
programming.

Here is a brief description of the microgrid we consider. The electricity is produced by some
non dispatchable units (solar panels) and a dispatchable unit (a diesel generator or the network
for instance). At each instant, there is an instantaneous demand (non controllable) for electricity.
If there is a production surplus, one can store this surplus in the battery. If there is not enough
electricity produced at this instant, and there is some energy left in the battery, one can use the
battery to fill the gap or increase the production from the dispatchable unit. Note that the battery
is not a perfect storage: if one unit of energy is stored in an empty battery, the total amount of
energy we can get from the battery is strictly lower than 1. Of course, there is a cost associated
with the production of electricity from the dispatchable unit.

A more detailed and technical description of the system, with the underlying equations, is pro-
posed in §6.3. As already discussed, the battery state can be described by two variables: the state
of charge c and the age a. The state of charge c is a normalized quantity that is the ratio of energy
stored in the battery over the maximum quantity the battery can store. It is zero when the battery
is empty, and 1 when the battery is full.

The age a is also a normalized quantity in [0, 1]. We set a = 0 for a brand new battery and a = 1
for a dead one. Obviously, we need to precise the dynamics of a and c so that the model makes
sense from a physics perspective. Such dynamics can be found in the literature (see §6.2). Very
often in the literature instead of the notion of age we find the concept of state of health h = 1− a.
We prefer the notion of age in this work, to stay coherent with the previous sections.

In order to make the document self contained and the results reproducible we use analytical
inputs for the solar power production and for the power consumption (load)

6.2. Battery Aging Model. As noted by Koller et al. in [12], battery based solutions for energy
storage present the advantage of being deployable without any consideration of the geographic
factors and within short schedule thanks to their modularity. In [15] the authors propose three
ways to model battery aging: a physico-chemical model, a weighted Amp-hour (Ah) throughput
model (or charge counting model) and an event oriented model. In [4] Borhan et al. propose a
model predictive control approach where the aging is penalized in the criterion. They implement
a weighted Ah throughput model. In [12] Koller et al. propose a discrete time, model predictive
control where the aging factor is the Depth of Discharge (DoD), which is modeled with piece-wise
affine dynamics.

In [9] Haessig et al. propose a simulation that includes an aging model in order to perform a cost
analysis, yet the optimization of the operations is not in the scope of this work. In his PhD thesis
[7] Haessig describes a battery aging model (among others) based on the total amount of energy

LONG TERM AGING : AN ADAPTATIVE WEIGHTS DYNAMIC PROGRAMMING ALGORITHM 21

exchanged during the lifetime of the battery. In [14] Riffonneau et al. use a a discrete time dynamic
programming approach to solve an optimal power flow problem. The battery aging is proportional
to the discharge of the battery. It linearly decreases the capacity of the battery.

In [13], Palma et al. integrate the battery aging in a rolling horizon strategy model. The aging is
taken into account in the model using a working zones approach as proposed in [6] and the penalty
parameter is the investment cost of the battery.

As argued in the final comments of [7] instead of using a penalization approach, one could impose
a maximal aging constraint. The supporting argument is that the appropriateness of an aging profile
depends on the time horizon over which the battery is supposed to be in operation. Then in [8]
Haessig et al. propose to implement an aging constraint by introducing the notion of exchangeable
energy for exchanged energy counting aging model.

To our knowledge there are basically three approaches in the literature to take battery aging
into account in an optimization model:

• Some constraints on the control and state variables (for instance to avoid extreme State of
Charge values). This requires deciding which constraints to implement. The aging is not
directly taken into account in the optimization process. The constraints can be too or not
enough conservative.

• A penalization of the aging. This requires choosing an aging model and a penalization
parameter.

• An aging constraint. This requires choosing an aging model and the aging level. In addition,
one may need a heuristic to implement this constraint if a direct numerical optimization is
too burdensome.

Observe that ideally, we should perform an optimization over the whole remaining existence of
the microgrid and take into account the impact of the aging on the battery performance. If the
battery scheduled lifetime is shorter than the microgrid one, then the optimal aging profile should
take into account the possibilities and the conditions (price, etc.) to buy a new battery. Then
it appears that in this very idealistic viewpoint, the optimal control of the microgrid would take
into account the aging without requiring the implementation of any penalization or constraint. The
aging penalization and the aging constraint are in fact rule of thumbs to incorporate those long
term considerations.

Nonetheless, it is hard to conciliate long term optimization and the modeling of the aging related
performances variations. Moreover, the numerical resolution of the optimal control formulation
problem needs to be fast enough if one envisions a real online implementation.

Note that the adaptative weights approach presented in this paper allows for a long term offline
optimization. The output of the offline optimization is a closed loop optimal penalization parameter
which can be then used as input for the online (and short term) optimal control problem. Since
the age variation within a single day has a negligible impact on the performance, we can neglect
those variations for the numerical resolution of the online optimal control problem. By doing so,
the online problem approximation is one dimensional an can be solved efficiently with dynamic
programming.

Note that this approach should work as long as we have a continuous time model for the aging
(i.e. an ordinary differential equation). In the following we will apply our framework to a severity
factor model based on the state of charge of the battery. The whole quantitative formulation is
presented in §6.3.

22 BENJAMIN HEYMANN, PIERRE MARTINON, AND FRÉDÉRIC BONNANS

6.3. The Optimal Control Formulation. We implement the adaptative weights framework on
a simplified version of the continuous time optimal control formulation we introduced in [11] and
extended to a stochastic setting in [10]. The unit of time is the hour and T = 24 corresponds to a
day. The long term optimal control problem writes

(6.1) P1(a0, c0, t0)

V1(a0, c0, t0) = inf
u∈U

∫ Ttot

t0

`(u(t))dt

(a(t0), c(t0)) = (a0, c0)

a(Ttot) ≤ amax
c(t) ∈ [0.1, 1]

(ȧ(t), ċ(t)) = (Fa(a(t), c(t), u(t), t), Fc(a(t), c(t), u(t), t)),

The control u corresponds to the power produced by the dispatchable unit (a diesel generator). If
the battery is full and renewable production is greater than demand, we can disconnect the battery.
To simplify the model, we implement this by allowing u to be negative. So we have the integral
cost

(6.2) `(u) = β(u+)2,

is a quadratic (and so convex) function associated with the generator consumption of fuel. The
value of β as well as the other model parameters are detailled in Table 3. Observe that only the
product of Ubat and Ahbat matters, so to decrease the number of parameters, we only indicate their
product. If we denote by Ps(t) the power produced by the solar panels and by PL(t) the load then
the state of charge dynamics is

(6.3) Fc(c, u, t) =
ρi(a)Pi(a, c, u, t)− Po(a, c, u, t)/ρo

C

with Pi(a, c, u, t) = (−u−Ps(t)+Pl(t))+ being the power that gets into the battery and Po(a, c, u, t) =
(−u−Ps(t)+Pl(t))

− being the power that gets out of the battery. We make the choice for simplicity
purpose to model the aging impact on the performances by decreasing the efficiency ratio ρi:

(6.4) ρi(a) = (1− a)ρ

Where ρ is the initial coefficient for a = 0. We denote by C the capacity of the battery. In order to
make our numerical experiment reproducible, we take T periodic functions with analytic expression
for the data input. The functions were chosen to be realistic enough. For t ∈ [0, 24]

(6.5) PS(t) = max(0, 13− 0.3(4t− 48)2)

and

(6.6) PL(t) = 3 + 3e−0.1(4t−32)2 + 12e−0.03(4t−74)2 .

The aging dynamics corresponds to a severity factor model

(6.7) Fa(a(t), c(t), u(t), t) = η(c)
Po(a, c, u, t)

UbatAhbat

where

(6.8) η(c) =
(−4c2 + 5)

5

LONG TERM AGING : AN ADAPTATIVE WEIGHTS DYNAMIC PROGRAMMING ALGORITHM 23

Figure 2. On the left: the severity factor, assuming the aging is stronger when
the battery is depleted, as a function of c This function was originally obtained
by interpolation of a piece-wise constant severity factors model. Note that in the
model the battery aging happens only when energy is taken from the battery.
On the right: solar production and load during the day. Observe that the solar
production only happens during mid-day, whereas the load profile has a constant
component and two peaks, one in the morning and one in the evening.
For both plots, we made the choice to use analytic expressions to produce synthetic
data.

Constant Interpretation Value
β running cost coef. 0.5
ρi efficiency factor (in) 0.95
ρo efficiency factor (out)) 0.95
UbatAhbat * 12.5

Table 3. Model Contants

is the severity factor (see Figure 2) and Ubat, Ahbat are parameters that depend on the battery
(see3). We set a− = 0 and a+ = 1000. For the numerical experiment, we will set amax = 500 and
N = 600.

6.4. Implementation.

6.4.1. Periodicity. We impose that at the end of each day, the charge c should be equal to c̄, which
is a parameter decided upfront. The origine of this additional constraint is operational. Indeed, in a
real setting, the optimization is performed regularly on a 24-hours sliding horizon window. Without
any final constraint, the optimization program will tend to deplete the battery at the end of its
horizon (end of the world effect). What is often done to deal with the undesirable effect is to impose
that the battery at the end of the time horizon should be as charged as at the beginning. This is

24 BENJAMIN HEYMANN, PIERRE MARTINON, AND FRÉDÉRIC BONNANS

Parameter Na Nc Nu Nt
Value 100 100 100 4

Table 4. Discretization parameters

algorithm micro (total) macro total AWA bruteforce
Comp. time 12.8 min 0.2 sec 12.8 min > 10 hours

Table 5. The computing times

more or less what we implement here. In dynamic programming, we cannot in general impose hard
equality constraints such as cT = c̄ when doing numerics. So we implement the periodicity of the
daily final state of charge using a penalty function (in the running cost for the long term bruteforce
problem, in the final constraints for the micro problem):

(6.9) Ψ(c) =

{
(c− c̄)M1 if c ≥ c̄
M2 else

.

Where M1 and M2 are two penalty parameters.

6.4.2. Discretization and numerical resolution. We display in Figure 4 the discretization parame-
ters. N,T. We take α between 0 and 500 with a discretization of 10 points, to which we add a
α = +∞ point. We use a discretization of 20 points for the adaptive weights algorithm.

We use the optimal control toolbox BocopHJB (see [2] and [3]) to solve the optimal control
problems. The macro algorithm is coded in the R scripting language. We performed the com-
putation on laptop running OSX 10 with 1.3 GHz and 4 logical cores. The computing times are
displayed in Table 5.

6.5. Results for the micro problem. Before commenting the results of the numerical experiment
for the adaptive weights dynamic programming algorithm (that we will refer to as AWA), it is worth
having a closer look at the micro problem (one day time horizon). We display in Figure 3 three
simulations for (α, a) equal to (0, 0) (solid line), (0, 400) (dot and dash) and (250, 0) (dot). We see
that the increase in age or α is associated with a decrease in the total aging within the day. This is
done by diminishing the use of the battery: the maximal value of c is greater for the red curve. The
explanations are different for the case a = 400 and α = 250. For the first one, because the battery
efficiency is poor, the quantity that gets effectively stored in the battery is low, so that there is
not much to take from the battery during the peaks. The diesel needs to compensate the battery
age. For the second one, the battery is efficient, but its use is penalized, so the diesel generator is
used during the load peak to decrease the quantity of energy taken from the battery. Observe that,
unlike what is seen in the two other cases, the control is flat for a new battery with no penalty.
The aging occurs during the two load peaks for all profiles, when the battery is discharging.

We display ∆a(α) for α = 0 in Figure 4 (solid curve). Observe that this picture is qualitatively
similar to the sketch in Figure 1. Yet it is likely that some jumps are the result of the discretization.

We display in Figure 4 and 5 ∆a(α) and L(α) with respect to α for two values of a and make
the following observations:

• monotonicity of ∆a(α): we observe that ∆a(α) is monotone in a. Then it seems that some
discretization artifacts occur.

LONG TERM AGING : AN ADAPTATIVE WEIGHTS DYNAMIC PROGRAMMING ALGORITHM 25

0

5

10

15

da
ta

−5

0

5

10

u

0.7

0.8

0.9

c

0.0

0.3

0.6

0.9

1.2

0 5 10 15 20 25

a

Figure 3. Three simulations for (α, a) equal to (0, 0) (solid), (0, 400) (dot and
dash) and (250, 0) (dot). The bell shaped curve correspond to the solar production
Ps and the other one to the load PL.

26 BENJAMIN HEYMANN, PIERRE MARTINON, AND FRÉDÉRIC BONNANS

Figure 4. ∆a(α) for a = 0 (solid line) and a = 450 (dashed line)

Figure 5. L(α) for a = 0 (solid line) and a = 450 (dashed line)

• regularity of ∆a(α): There seem to be smooth and non smooth ranges for α. It is probable
that some of the jumps are due to the discretization choice.

• as expected L(α) and ∆a(α) are respectively non-decreasing and non-increasing with respect
to α for a fixed.

Remark on the periodicity of c. We chose to impose a periodicity condition on the charge c for
simplicity (in particular, the results are easier to represent) and because it makes sense from an
operational perspective (see for instance [13]). We compare in Figure 6 the optimal trajectories
(computed by dynamic programming) with and without this periodicity condition.

We now proceed with the analysis of the macro part of the adaptative weights algorithm.

LONG TERM AGING : AN ADAPTATIVE WEIGHTS DYNAMIC PROGRAMMING ALGORITHM 27

Figure 6. The age a trajectories for a(0) = 0 and a(0) = 100. The solid lines
correspond to the periodic case and the dotted line to the unconstrained case. The
periodicity constraint increases the overall aging.

Figure 7. Two trajectories computed with AWA for a(0) ∈ {0, 100}

6.6. Results for the macro dynamic programming phase of AWA (adaptative weights
algorithm). We display in Figure 7 two trajectories corresponding to two different initial ages. We
observe that as long as the age is far from amax, the lines look smooth. We display in Figures 8 and
9 the daily weights and the age increments along those same trajectories. The oscillations of the
weights have two possible explanations: first the discretization of the set to which α belongs, second,
a jump in ∆a, which the oscillations smooth out on average. As explained in the discretization
section, on Figure 8 the maximal value of the dotted curve (a(0) = 100) corresponds to α = +∞
as we have added such point in the discretization of α to freeze the aging.

28 BENJAMIN HEYMANN, PIERRE MARTINON, AND FRÉDÉRIC BONNANS

Figure 8. The daily weights along the trajectories for a(0) ∈ {0, 100}

Figure 9. The daily age increments along the trajectories for a(0) ∈ {0, 100}

6.7. Comparison with the bruteforce results. We display in Figures 10 and 11 the envelopes
of c and u for a(0) = 0 obtained with the bruteforce dynamic programming algorithm. We see that
the battery utilization rate decreases as time goes on, while the diesel generator’s increases. We
observe that the state of charge c is always slightly above its expected terminal value during the
first month, which is possible since the constraint is implemented through a piecewise linear penalt,
for numerical reasons.

Last but not least we display on the same plot in Figure 12, two pairs of trajectories computed
with AWA and a bruteforce dynamic programming approach for two initial ages. The corresponding
values are displayed in Table 6.

LONG TERM AGING : AN ADAPTATIVE WEIGHTS DYNAMIC PROGRAMMING ALGORITHM 29

0.65

0.70

0.75

0.80

0.85

0.90

0 200 400 600

period

c

Figure 10. Envelope of c obtained by dynamic programming for the long term problem

2

4

6

8

0 200 400 600

time

u

Figure 11. Envelope of u obtained by dynamic programming for the long term problem

start. age. AWA BF (AWA-BF)/BF
a(0) = 0 106544 105213 0.012
a(0) = 100 116901 111279 0.050

Table 6. Estimates of the value function

7. Conclusion

We have introduced the adaptive weight dynamic programming algorithm (AWA), which is a
decomposition technique for problems with periodic data. We tested this algorithm on a toy micro
grid problem to integrate the battery aging within the decision process. The trajectories and the

30 BENJAMIN HEYMANN, PIERRE MARTINON, AND FRÉDÉRIC BONNANS

Figure 12. The age profile computed with AWA (solid line) and bruteforce dy-
namic programming (dotted line) for two initial age values.

value functions obtained with AWA are close to those obtained with a bruteforce approach, and
the computing times are way smaller.

References

[1] J.-P. Aubin and I. Ekeland. Estimates of the duality gap in nonconvex optimization. Mathematics of Operations

Research, 1(3):225–245, 1976.
[2] F. Bonnans, D. Giorgi, B. Heymann, P. Martinon, and O. Tissot. Bocophjb 1.0. 1–user guide. Technical report,

2015.

[3] F. Bonnans, P. Martinon, D. Giorgi, V. Grélard, B. Heymann, L. Jinyan, S. Maindrault, and O. Tissot. Bocop
- a collection of examples. Technical report, 2016.

[4] H. Borhan, M. A. Rotea, and D. Viassolo. Optimization-based power management of a wind farm with battery
storage. Wind Energy, 16(8):1197–1211, 2013.

[5] F. Chaplais. Averaging and deterministic optimal control. SIAM journal on control and optimization, 25(3):767–

780, 1987.
[6] D. Guasch and S. Silvestre. Dynamic battery model for photovoltaic applications. Progress in Photovoltaics:

Research and applications, 11(3):193–206, 2003.

[7] P. Haessig. Dimensionnement et gestion d’un stockage d’énergie pour l’atténuation des incertitudes de produc-
tion éolienne. PhD thesis, Cachan, Ecole normale supérieure, 2014.

[8] P. Haessig, H. Ben Ahmed, and B. Multon. Energy storage control with aging limitation. In PowerTech, 2015

IEEE Eindhoven, pages 1–6. IEEE, 2015.
[9] P. Haessig, B. Multon, H. Ben Ahmed, S. Lascaud, and L. Jamy. Aging-aware nas battery model in a stochastic

wind-storage simulation framework. In PowerTech (POWERTECH), 2013 IEEE Grenoble, pages 1–6. IEEE,
2013.

[10] B. Heymann, F. Bonnans, J Frédéric Bonnans Silva, and G. Jimenez. A stochastic continuous time model for
microgrid energy management. 2016.

[11] B. Heymann, J. F. Bonnans, P. Martinon, F. Silva, F. Lanas, and G. Jimenez. Continuous optimal control

approaches to microgrid energy management. 2015.

[12] M. Koller, T. Borsche, A. Ulbig, and G. Andersson. Defining a degradation cost function for optimal control of
a battery energy storage system. In PowerTech (POWERTECH), 2013 IEEE Grenoble, pages 1–6. IEEE, 2013.

[13] R. Palma-Behnke, C. Benavides, F. Lanas, B. Severino, L. Reyes, J. Llanos, and D. Saez. A microgrid energy
management system based on the rolling horizon strategy. IEEE Transactions on Smart Grid, 4:996–1006, 2013.

LONG TERM AGING : AN ADAPTATIVE WEIGHTS DYNAMIC PROGRAMMING ALGORITHM 31

[14] Y. Riffonneau, S. Bacha, F. Barruel, and S. Ploix. Optimal power flow management for grid connected PV
systems with batteries. Sustainable Energy, IEEE Transactions on, 2(3):309–320, 2011.

[15] D. U. Sauer and H. Wenzl. Comparison of different approaches for lifetime prediction of electrochemical

systems—using lead-acid batteries as example. Journal of Power Sources, 176(2):534–546, 2008.

	1. Introduction
	2. Setting
	2.1. Problem Formulation
	2.2. Assumptions

	3. Bilevel Dynamic Programming
	3.1. Mathematical Justification
	3.2. Complexity Analysis

	4. Adaptative Weights
	4.1. Preliminary results
	4.2. Nice Case: No Duality Jumps
	4.3. Some comments on
	4.4. Generic Case
	4.5. Complexity Analysis

	5. Discussion
	5.1. Asymptotic Analysis
	5.2. Extensions
	5.3. Algorithm

	6. Simulation and Implementation on a Microgrid Model
	6.1. Problem Presentation
	6.2. Battery Aging Model
	6.3. The Optimal Control Formulation
	6.4. Implementation
	6.5. Results for the micro problem
	6.6. Results for the macro dynamic programming phase of AWA (adaptative weights algorithm)
	6.7. Comparison with the bruteforce results

	7. Conclusion
	References

