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Jacobi Fiber Surfaces for Bivariate Reeb Space Computation

Julien Tierny and Hamish Carr

(a) (b) (c)
Fig. 1. The Reeb space R( f ) of a bivariate function f segments the domain M into regions where fibers, multivariate analogs of
level-sets, are made of a single connected component. This allows the automatic separation of volumetric regions that project to
the same areas in the continuous scatterplot (CSP). In this flow example (streamlines are shown in green and blue in (a), top), the
Reeb space of the velocity and curl magnitudes is used to segment the data into its main features (a). The largest regions of R( f )
are located before the obstacle (in blue, red and green (a), top). While these features are not important for the understanding of the
structure of the turbulent flow, their projections cover most of the CSP (red, blue and green polygons in (b), left). In particular, due to
the symmetry in the data, the blue and green regions nearly coincide in the CSP. Removing these regions from the projection results in
a less cluttered CSP, better revealing the projections of the turbulent features of the flow ((b), right). The user can further inspect these
features with localized CSPs (c). These visualizations are enabled by our new Reeb space computation algorithm, which computes
this segmentation in a minute and a half, while previous techniques either take days to compute or hours to approximate the result.

Abstract— This paper presents an efficient algorithm for the computation of the Reeb space of an input bivariate piecewise linear
scalar function f defined on a tetrahedral mesh. By extending and generalizing algorithmic concepts from the univariate case to the
bivariate one, we report the first practical, output-sensitive algorithm for the exact computation of such a Reeb space. The algorithm
starts by identifying the Jacobi set of f , the bivariate analogs of critical points in the univariate case. Next, the Reeb space is computed
by segmenting the input mesh along the new notion of Jacobi Fiber Surfaces, the bivariate analog of critical contours in the univariate
case. We additionally present a simplification heuristic that enables the progressive coarsening of the Reeb space. Our algorithm is
simple to implement and most of its computations can be trivially parallelized. We report performance numbers demonstrating orders
of magnitude speedups over previous approaches, enabling for the first time the tractable computation of bivariate Reeb spaces in
practice. Moreover, unlike range-based quantization approaches (such as the Joint Contour Net), our algorithm is parameter-free.
We demonstrate the utility of our approach by using the Reeb space as a semi-automatic segmentation tool for bivariate data. In
particular, we introduce continuous scatterplot peeling, a technique which enables the reduction of the cluttering in the continuous
scatterplot, by interactively selecting the features of the Reeb space to project. We provide a VTK-based C++ implementation of our
algorithm that can be used for reproduction purposes or for the development of new Reeb space based visualization techniques.

Index Terms—Topological data analysis, multivariate data, data segmentation

1 INTRODUCTION

As scientific data-sets become more intricate and larger in size, ad-
vanced data analysis algorithms are needed for their efficient visualiza-
tion and exploration. For scalar field visualization, topological analy-
sis techniques have shown to be practical solutions in various contexts
by enabling the concise and complete capture of the structure of the in-
put data into high-level topological abstractions such as contour trees
[8], Reeb graphs [35, 4, 44], or Morse-Smale complexes [20, 47, 11].
Such topological abstractions are fundamental data-structures that en-
able the development of advanced data analysis, exploration and vi-
sualization techniques, including for instance: small seed set extrac-
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tion for fast isosurface traversal [45, 9], feature tracking [42], transfer
function design for volume rendering [46], similarity estimation [43],
or application-driven segmentation and analysis tasks [29, 22, 19, 21].

However, with the ongoing development of computational re-
sources on the one hand and of sensing devices on the other, multivari-
ate scalar data-sets become more and more common. Such data-sets
represent functions that no longer map points of the domain to the real
line as it is the case for univariate scalar data, but to Euclidean spaces
of higher dimension, each dimension typically representing a variable
under investigation (temperature, pressure, velocity magnitude, etc.).
To enable the extension and the generalization of the topology based
visualization techniques mentioned above to this new type of data, the
core concepts and algorithms of topological data analysis first have
to be generalized to ranges of higher dimension than one, from the
univariate to the multivariate case. This paper addresses this problem
by presenting an efficient algorithm for the computation of the Reeb
space [15], a generalization of the notion of Reeb graph [37], from the
univariate to the bivariate case. Although the bivariate case is a very
specific case of multivariate data, we believe it constitutes an appeal-



ing first step, as the variables of multivariate data are often co-analyzed
and co-visualized in pairs in the form of two-dimensional scatterplots.

The notion of Reeb space and its properties were first investigated
by Edelsbrunner et al. [15], who introduce a dimension-independent
algorithm that admits in the bivariate case a quadratic complexity
O(ne× nT ) (where ne and nT stand for the number of edges and of
tetrahedra in the domain respectively). In comparison, our algorithm
has also a quadratic worst-case complexity but is output-sensitive,
which results in orders of magnitude speedups in practice. Carr and
Duke introduce a range-based quantization approach to approximate
the Reeb space with the notion of Joint Contour Net [6]. In contrast,
our algorithm is exact and parameter-free.

In this paper, we extend and generalize algorithmic concepts of the
univariate case to the bivariate one, which results in the definition of
a simple, efficient and practical algorithm for Reeb space computation
on bivariate data. In doing so, we present an extensive algorithmic
analogy between the univariate and the bivariate cases, which identi-
fies their similarities and highlights their core differences. Our algo-
rithm is simple to implement and most of its computations can be triv-
ially parallelized. Extensive experiments report orders of magnitude
speedups in comparison to previous approaches. Despite the simplic-
ity of our algorithm, we believe it constitutes an important practical re-
sult as it brings computation times from hours or days to a few dozens
of seconds, hence making bivariate Reeb space computation tractable
for the first time. We additionally present a simplification heuristic
that enables the progressive coarsening of the Reeb space. To demon-
strate the versatility and the utility of our approach, we introduce con-
tinuous scatterplot peeling, a technique exploiting the Reeb space to
reduce cluttering in continuous scatterplots, by separating regions in
the domain that overlap in the range. We also provide a lightweight
VTK-based C++ implementation of our algorithm that can be used
for reproduction purposes or for the development of new Reeb-space
based visualization techniques.

1.1 Related work

The related work can be classified into two main categories: topologi-
cal data analysis of univariate scalar fields (which we partially extend
in the current paper to bivariate fields) and visualization techniques for
bivariate and multivariate data.

Topological data analysis of univariate scalar fields Over the
last two decades, topological data analysis has played a key role for the
development of advanced analysis, exploration and visualization algo-
rithms for univariate scalar fields. Topological techniques focus on the
efficient computation of high-level topological abstractions that cap-
ture in a concise and complete manner the structure of the data. Such
abstractions include the Reeb graph [37, 35, 4, 44] (and its loop free
variant the contour tree [8]) or the Morse-Smale complex [20, 47, 11].
These structural abstractions constitute fundamental data-structures
that facilitate, accelerate or automate various geometric algorithms in
visualization, including for instance small seed set extraction for fast
isosurface traversal [45, 9], feature tracking [42], transfer function de-
sign [46], similarity estimation [43], and application-driven segmenta-
tion and analysis tasks [29, 22, 19, 21]. We refer the reader to survey
articles [4, 11] for an extended discussion on the applications of topo-
logical data analysis to visualization. Among the existing topological
abstractions, the Reeb graph is a popular data-structure that represents
the evolution of the connectivity of the level sets of the input data, by
contracting connected components of level sets to points. We review
in the following some of the existing algorithms for its computation
and relate them to our extension to the bivariate case.
Vertex-based contouring: The first combinatorial algorithm for Reeb
graph computation on piecewise-linear 2-manifolds was introduced by
Shinagawa and Kunii [40]. It constructs the Reeb graph by first seg-
menting the domain along the level sets of each vertex. This step is
equivalent to considering the pre-image of all maximal range intervals
where no vertex projects. Next, the arcs of the Reeb graph are con-
structed by connecting adjacent components in the domain (Fig. 2(a)).
This results in a O(nv×nt) time complexity where nv and nt stand for

(a) [40], [15] (b) [3], [6] (c) [36], this paper
Fig. 2. Algorithmic analogy to the univariate case (left: input univariate
scalar field). The algorithms by Edelsbrunner et al. [15], by Carr and
Duke [6] and our approach are bivariate generalizations of the vertex-
based contouring [40], the quantized range contouring [3, 23, 48] and
the critical point contouring [36, 12] strategies, respectively.

the number of vertices and triangles of the input domain respectively.
We call such an approach a vertex-based contouring strategy.
Quantized range contouring: To accelerate the computation time
in practice, approximate algorithms based on range quantization have
been proposed [3, 23, 48]. These algorithms extract the connected
components of the pre-images of regularly sampled intervals of the
range, whose width is given by a user-defined range quantization pa-
rameter. The Reeb graph is then constructed by connecting adja-
cent components (Fig. 2(b)), resulting in a O(ni× nt) time complex-
ity (where ni stands for the number of range intervals). This strategy,
which we call quantized range contouring, speeds up Reeb graph com-
putation since fewer level sets are extracted (ni is typically orders of
magnitude smaller than nv) at the expense of an inaccurate extraction,
possibly discarding arcs of the Reeb graph whose image is shorter than
the user-defined range quantization threshold.
Critical point contouring: To combine the advantages of the two
previous strategies (accuracy and speed), Patane et al. [36] and Do-
raiswamy and Natarajan [12] independently introduced a similar strat-
egy, that we call critical point contouring. It is based on a central
idea in Morse theory [31] which states that the topology of the level
sets only changes in the vicinity of the critical points of the function
(points where its gradient vanishes). Thus, these algorithms compute
the Reeb graph by computing, for each critical point, the connected
component of level set passing through it. Next, the arcs of the Reeb
graphs are simply obtained by considering the partitions of the in-
duced domain segmentation (Fig. 2(c)). This strategy also results in a
quadratic time complexity O(nc×nt) for 2D domains and O(nc×nT )
for 3D domains, where nc stands for the number of critical points.
However, for most practical data-sets, nc is typically one to two orders
of magnitude smaller than nv, making this strategy much more efficient
than vertex-based contouring, while still guaranteeing an exact output
(unlike quantized range contouring). Other Reeb graph computation
techniques include algorithms with improved practical performance
[35, 44] or optimal time complexity [10, 34].

Multivariate data analysis and visualization The analysis and
visualization of multivariate data, functions which map each point of
the domain to a Euclidean space of dimension higher than one, has
gained a lot of attention lately, partly due to the prominence of this
type of data in numerical simulations. Several automatic and inter-
active techniques have been developed to investigate the correlation
between each represented variable (i.e. each dimension of the range),
including scatterplot based visualizations [1, 30], gradient-based cor-
relation analysis [39, 33] or interactive brushing techniques [25, 7].
A detailed review of all the techniques addressing multivariate data is
out of the scope of this paper and we refer the reader to survey articles
[18, 27] for comprehensive descriptions.

A first topological insight in the correlation of the components of
a multivariate function is given by the notion of Jacobi sets [13].
Hüttenberger et al. [24] use the notion of Pareto optimality to ex-
tract extremal structures in multivariate data. In particular, an extremal
point is identified if it locally dominates its neighbors for each com-
ponent of the multivariate function. Although these structures share
similarities with the Jacobi sets, it is not clear how they relate to the
topology of fibers (multivariate analogs of level sets). The notion
of Reeb space, the generalization of the concept of Reeb graph [37]
to the multivariate setting, was first investigated by Edelsbrunner et



al. [15], who describe a dimension-independent algorithm which can
be specialized to the bivariate case with a quadratic time complexity
(O(ne×nT ), where ne stands for the number of edges in the domain).
This algorithm constructs the Reeb space by gluing domain-incident
connected components of pre-images of chambers, which can be inter-
preted in the bivariate case as maximal convex polygons in the range,
delimited by the image of the set of all edges of the domain. This
strategy can be seen as the bivariate generalization of the vertex-based
contouring approach in the univariate case (Fig. 2(a)). To the best
of our knowledge, no implementation of this algorithm has ever been
documented so far. In this paper, we specialize and improve this algo-
rithm for the bivariate case. Carr and Duke [6] introduced an algorithm
that approximates the Reeb space by considering the connected com-
ponents of the pre-images of a pixel-based quantization of the range.
This corresponds to the bivariate generalization of the quantized range
contouring strategy (Fig. 2(b)). In particular, this algorithm approx-
imates exact chambers [15] with pixels, whose size is defined by a
user-defined range quantization threshold. Thus, as with the quantized
range contouring strategy in the univariate setting, this algorithm may
miss features in the Reeb space which project to sub-pixel regions in
the range. We refer the reader to [32] for a detailed theoretical discus-
sion regarding the convergence of this quantization approach. In this
paper, we present an algorithm that generalizes the critical point con-
touring strategy (Fig. 2(c)), which yields, similarly to the univariate
case, exact, parameter-free, output-sensitive and fast computations.

1.2 Contributions
This paper makes the following new contributions:

1. Approach: We generalize algorithmic concepts from the uni-
variate case to the bivariate one and provide a comprehensive
analogy between the two settings, identifying their similarities
and highlighting their core differences. We believe this yields a
simple and intuitive description of bivariate Reeb spaces, which
may facilitate their adoption in visualization applications.

2. Algorithm: We present an algorithm for bivariate Reeb space
computation that is simple, parameter-free, output-sensitive and
orders of magnitude faster than previous algorithms in practice.
Most of its computations can be trivially parallelized for im-
proved performances. We present a heuristical simplification
strategy that enables the interactive coarsening of the Reeb space.

3. Application: We present an application of the bivariate Reeb
space to Continuous Scatterplot Peeling, a technique that enables
the interactive clutter reduction in continuous scatterplots by se-
lecting the features of the Reeb space to project.

4. Implementation: We provide a lightweight VTK-based C++
implementation of our algorithm that can be used for reproduc-
tion purposes or for the development of new visualization tech-
niques based on Reeb spaces.

2 PRELIMINARIES

This section describes our formal setting (Sec. 2.1) and presents pre-
liminary results (Sec. 2.2) that will guide the definition of our algo-
rithm (next section). Introductions to fiber topology are also available
[38, 5]. To provide an intuitive description of the Reeb space, we will
develop in the following a running analogy between the univariate and
bivariate cases, discussing their similarities and differences.

2.1 Background
Let f : M → R2 be a bivariate piecewise-linear (PL) scalar field de-
fined on a PL 3-manifold M embedded in R3. It has values at the
vertices of M and is linearly interpolated on the simplices of higher
dimension. In the following, M and R2 will be called the domain and
the range respectively. f can be decomposed into two independent,
univariate PL scalar fields u : M → R and v : M → R:

∀p ∈M , f (p) = {u(p),v(p)} (1)

(a) (b) (c) (d)

Fig. 3. Given a point q = {qu,qv} ∈ R2, its fiber f−1(q) can be obtained
by considering the intersection of the level sets of its coordinates u−1(qu)
(a) and v−1(qv) (b). f−1(q) is shown with a white cylinder in (c) and its
restriction to the triangles of M are shown with black spheres (c,d).

Analogy: As it is often the case in the univariate case, we will assume
that f is generic in order to easily handle degeneracies. This implies
that the restriction of f to the vertices of M is injective (i.e. no two
vertices in M are equally valued by u and by v). In practice, this
guarantees that no edge of M collapses to a point in R2. However, in
contrast to the univariate case, additional requirements are needed. In
particular, the following, stronger condition has to be satisfied as well:

Definition 1 (Non-collinearity condition) For any pair of edges e1
and e2 of M , if the images f (e1) and f (e2) are not collinear, f is said
to satisfy the non-collinearity condition.

Such a condition guarantees for instance that no triangle and no
tetrahedron of M map to a line segment in R2. We will detail other
useful guarantees in the following that derive from this condition. The
non-collinearity and genericity conditions can easily be satisfied in
practice through a two-dimensional instance of simulation of sim-
plicity [17]. Such a process can be achieved symbolically, by re-
implementing the necessary predicates, or numerically. For ease of
implementation, we opted for the numerical alternative and the scalar
fields u and v are slightly perturbed with the following ε-expansions
[17], for each vertex vp of M , where O(vp) ∈ N is the offset position
of vp in memory and ε is an arbitrarily small constant:

u(vp)← u(vp)+ εO(vp)

v(vp)← v(vp)+ εO(vp)× εO(vp)
(2)

Since O(vp) is by construction injective, this ε-expansion intro-
duces for each vertex a unique perturbation, given by the vector
{εO(vp),εO(vp)×εO(vp)}. Moreover, since the slope of this pertur-
bation vector is also unique for each vertex (εO(vp)), this guarantees
that no vertex pair can be perturbed in a collinear manner, which is
sufficient to enforce the non-collinearity condition.

Definition 2 (Fiber) Let q = {qu,qv} ∈ R2 be a point in the range.
The fiber of q, noted f−1(q), is the pre-image of q onto M through f :

f−1(q) = {p ∈M | f (p) = q}
= {p ∈M | u(p) = qu} ∩ {p ∈M | v(p) = qv}

(3)

Fibers are multivariate analogs of level-sets. They can be made
of several connected components, called fiber components. By con-
struction (Eq. 3), f−1(q) is given by the intersection of the level sets
u−1(qu) and v−1(qv). Since both u and v are assumed to be generic,
the restrictions of u−1(qu) and v−1(qv) to the interior of a tetrahe-
dron of M are either empty or planar polygons (Figs. 3(a) and 3(b)).
Moreover, since f is assumed to satisfy the non-collinearity condition
(Def. 1), these restrictions cannot be coplanar. It follows that the re-
striction of a fiber to the interior of a tetrahedron of M is either empty
or a single line segment (Fig. 3(c)). Then the restriction of a fiber to the
interior of a triangle of M is either empty or a point. In the latter case,
the existence of such a point implies that the restrictions of the corre-
sponding fiber to the cofaces of the triangle (its at most two adjacent
tetrahedra) are non empty due to the continuity of the PL interpolant.
Hence such restrictions are line segments (Fig. 3(d)). In other words,
fibers cannot disconnect or disappear along the interior of the triangles
of M . Then, the only simplices of M across which fibers can change
their topology (appear, connect, disconnect or disappear) are its ver-
tices and edges. In particular, such configurations belong to the Jacobi
set of f [13].



(a) (b) (c)
Fig. 4. Jacobi edge classification. The input edge e, Lk−(e) and Lk+(e)
are represented with black, blue and green cylinders respectively in the
domain (top) and the range (bottom). Fibers crossing the edge e are
represented in yellow, orange and purple in each column. (a) Fibers
do not change their topology when crossing a regular edge. (b) Fibers
shrink to a point and disappear when crossing an extremum edge. (c)
Fibers merge (yellow to orange) and immediately split (orange to purple)
when crossing a saddle edge.

Analogy: In the univariate case, the topology of the level sets of a PL
scalar field can only change at certain vertices, called critical points
[2]. These can be extracted by considering the lower and upper links
of each vertex. A similar strategy can be derived in the bivariate case,
by considering the lower and upper links of each edge however.

The star St(e) of a simplex e is the set of simplices σ that contain
e as a face. The link Lk(e) of a simplex e is the set of faces of the
simplices of the star St(e), which do not intersect e.

Let de : Lk(e)→ R be the following univariate PL scalar field:

de(v) = 〈
−−−−−−→
f (v) f (v′), −−→n f (e) 〉 (4)

where 〈·, ·〉 denotes the dot product, −−→n f (e) the vector normal to the
image f (e) of the edge e, and v′ one of the vertices of e. This scalar
field can be interpreted as a range-based signed distance field from the
vertices of Lk(e) to f (e). Both

−−−−−−→
f (v) f (v′) and −−→n f (e) are guaranteed to

be different from the null vector since no edge can collapse to a point
through f (genericity condition).

The lower link Lk−(e) of an edge e is the subset of Lk(e) contain-
ing only vertices with negative de values: Lk−(e) = {σ ∈ Lk(e) | ∀v ∈
σ : de(v) < 0}. The upper link Lk+(e) is defined symmetrically:
Lk+(e) = {σ ∈ Lk(e) | ∀v∈ σ : de(v)> 0}. Given the non-collinearity
condition (Def. 1), there is no v ∈ Lk(e) such that de(v) = 0. Hence,
Lk−(e) and Lk+(e) cannot be both empty and a vertex v ∈ Lk(e) can
always be classified as either belonging to Lk−(e) or Lk+(e). This
definition of lower and upper links generalizes the univariate one.

Definition 3 (Jacobi edge) An edge e of M is regular if and only if
both Lk−(e) and Lk+(e) are simply connected. Otherwise, e is a Ja-
cobi edge of f .

If Lk−(e) or Lk+(e) is empty, e is called an extremum edge. Other-
wise, if e is neither regular nor an extremum edge, it is called a saddle
edge. As shown in Fig. 4(b), the number of fiber components in St(e)
goes from 0 to 1 (or 1 to 0) when crossing an extremum edge in the
range. Thus, fiber components either appear or disappear when cross-
ing an extremum edge. In contrast, this number does not evolve when
crossing a regular edge (Fig. 4(a)). Finally, similar to saddles in 2D
for the univariate case, the number of fiber components suddenly de-
creases to one at a saddle edge and increases again after crossing it
(Fig. 4(c)). In conclusion, the topology of fibers only changes when
crossing Jacobi edges: components appear or disappear on extremum
edges and components merge or disconnect on saddle edges. The set
of all Jacobi edges is called the Jacobi set [13].
Analogy: Given the generalization to the bivariate case of the notions
of lower and upper links, note that the definition of a Jacobi edge is a

direct extension of that of a critical point in the univariate case [14].
Therefore, we will consider that Jacobi edges are analogs of critical
points in the univariate case. However, Jacobi edges lose many of the
nice properties of their univariate analogs. In particular, they are not
isolated (two Jacobi edges can share a vertex) and their images are
not necessarily disjoint (the images of two Jacobi edges can intersect).
As discussed later on, this complicates the design of topological algo-
rithms in the bivariate case.

As illustrated in Fig. 4, the topology of the fibers can only change
in the vicinity of Jacobi edges. The notion of the Reeb space enables
a more global understanding of these topological events [15]:

Definition 4 (Reeb space) Given a point p ∈ M and its image
f (p) = q ∈ R2, let f−1(q)p be the connected component of the fiber
f−1(q) which contains p. The Reeb space R( f ) is a two-dimensional
complex defined as the quotient space R( f ) = M / ∼ by the equiva-
lence relation p1 ∼ p2, which holds if:{

f (p1) = f (p2) = q
p2 ∈ f−1(q)p1

Analogy: The notion of Reeb space is obtained with a direct extension
to the bivariate case of the Reeb graph definition [37]. Intuitively, fiber
components are retracted to points and such points will be adjacent
in R( f ) if the corresponding fiber components are also adjacent in
M . Note that, unlike the univariate case, the Reeb space is no longer
a simplicial complex. In particular, it is locally homeomorphic to a
subset of R2 but it is not manifold in the vicinity of the equivalence
classes of Jacobi edges. Given an isovalue qu, if one restricts Def. 4
to the subset u−1(qu) ⊂M , note that the corresponding Reeb space
becomes equal by definition to the Reeb graph of the restriction to the
subset u−1(qu) of the function v : M → R. In other words, cutting a
bivariate Reeb space along an isovalue of one function yields the Reeb
graph of the other function on the corresponding level-set (Fig. 5).

2.2 Reeb space characterization and computation
In this subsection, we introduce novel notions that further characterize
the Reeb space and which are central to our algorithm. As discussed
above, the Reeb space is made of two-dimensional cells that locally
connect in a non-manifold way. Each of these cells represents a region
of the domain where fibers are made of a single connected component,
and which can be further characterized as follows.

Definition 5 (3-sheet) Let S be a connected, three-dimensional subset
of M . S is said to satisfy the retraction condition if for each point p∈ S
with f (p) = q∈R2, the restriction of f−1(q) to S is equal to f−1(q)p.
If so, S is called a 3-sheet.

Intuitively, a 3-sheet can be interpreted as a connected region of
M which, given the equivalence relation that defines the Reeb space
(Def. 4), completely captures the equivalence class of each of its
points. Note that the union of adjacent 3-sheets in M forms a valid
3-sheet as well, as long as it satisfies the retraction condition.

(a) (b) (c) (d)
Fig. 5. Relation between the Reeb space and the Reeb graph on a
simple bivariate example (the X and Y 3D coordinates serve as input
bivariate function). (a) Input bivariate function (left: green and blue per-
pendicular lines denote u and v level-sets). (b) Given an isovalue qu, the
restriction to u−1(qu) of v : M →R is shown by the colored surface (from
blue to green). The critical points [2] of this restriction (blue spheres:
extrema, white sphere: saddle) are located on the Jacobi set of f (ex-
tremum and saddle edges are shown in blue and white respectively). (c)
Reeb graph of the restriction. (d) The Reeb space can be interpreted as
a continuous stacking of such Reeb graphs, as qu continuously evolves.



(a) (b)
Fig. 6. Generalization of the critical point contouring strategy (toy exam-
ple from Fig. 5). (a) Input bivariate function in the domain and the range
(right, each colored polygon is a chamber ). (b) The image (right) of
the Jacobi set of f (left: extremum and saddle edges are shown in blue
and white respectively) also segments f (M )⊂R2 into colored polygons
within which the topology of the fibers is guaranteed not to change.

The vertex-based contouring strategy [40, 15] can be specialized
to the bivariate setting by considering the pre-image of chambers and
gluing the connected components of such pre-images if they are inci-
dent in M . Such chambers would then be defined as maximal convex
polygons in the range where no edge of M projects (Fig. 6(a)). Since
the topology of the fibers can only change across the edges of M , the
connected components of the pre-images of chambers are then valid
3-sheets. To construct such 3-sheets, one first needs to construct the
boundaries in M of the chamber pre-images. These are given by con-
sidering the union of the pre-image of the image of all edges of M .

Definition 6 (2-sheet) Let e be an edge of M . Its image f (e) is a line
segment in R2 and the pre-image of f (e) is called the 2-sheet of e.

Since f is assumed to satisfy both the genericity and the non-
collinearity condition, f (e) is indeed a line segment and the corre-
sponding 2-sheet is indeed a 2-dimensional object in M . The compu-
tation of such 2-sheets can be achieved with the notion of fiber surface
[7, 28], which is defined as the pre-image of a curve through a bivari-
ate function. This computation requires O(nT ) steps, for each of the ne
edges of M , yielding an overall time complexity of O(ne×nT ) steps
(where nT is the number of tetrahedra in M ). The above strategy is a
bivariate specialization of the vertex-based contouring [40, 15].

However, the Reeb space can be computed much more efficiently,
by generalizing the critical point contouring strategy [36, 12], which
we do with our approach. In particular, as described in the previous
subsection, the topology of the fibers can only change when crossing
a certain sub-set of the edges of M : the Jacobi set. Therefore, to
construct the Reeb space, one can consider larger 3-sheets, being the
connected components of the pre-images of multiple adjacent cham-
bers. In particular, one can consider the pre-image of maximal convex
polygons in the range where no Jacobi edge projects (Fig. 6(b)). To
construct such extended 3-sheets, one needs to construct their bound-
aries in M , which is given by the notion of Jacobi fiber surface:

Definition 7 (Jacobi fiber surface) The 2-sheet of an extremum edge
and of a saddle edge are called extremum and saddle Jacobi fiber
surfaces respectively.

The restriction of the Jacobi fiber surface of an extremum edge e to
its star St(e) coincides with e (Fig. 4(b)). Otherwise, like its constitut-
ing fibers (in orange, Fig. 4), it is manifold for regular edges (Fig. 4(a))
and non-manifold for saddle edges, precisely along e (Fig. 4(c)).

As discussed in the experiment section, the number of Jacobi edges
(noted n j) is orders of magnitude smaller than ne for practical data-
sets, making this strategy appealing for performance improvement, re-
sulting in a time complexity of O(n j×nT ) steps.

In practice, this strategy can be further improved. In particular, for
a given saddle edge s, only the connected component of the Jacobi
fiber surface that passes through it needs to be considered. Indeed, as
illustrated in Fig. 4(c), when crossing f (s) in the range, only the fiber
components in the vicinity of s will disconnect or re-connect, precisely
at s. In contrast, fiber components which do not touch s in M when
crossing f (s) in the range will then have their connectivity unchanged.
This means that such components belong to a unique 3-sheet before
and after crossing f (s).

Fig. 7. Reeb space of a bivariate example (top, inset: f (M ) ⊂ R2, the
X and Y 3D coordinates serve as input bivariate function). In this data-
set, each topological handle yields a pair of 3-sheets (highlighted by
colored, aligned arrow pairs, top) as illustrated by the black fiber which
is made of two connected components (black arrows, bottom). Extrema
Jacobi fiber surfaces (blue, bottom) contribute to the separation of these
regions from the rest of the object, where fibers are made of a single
connected component (other colors, bottom).

The decomposition of M into 3-sheets along Jacobi fiber sur-
faces then produces a direct representation of the Reeb space R( f ),
where each 3-sheet in M denotes a two-dimensional cell in R( f ),
and where adjacent 3-sheets in M denote adjacent two-dimensional
cells in R( f ). At this point, note that the union of two adjacent 3-
sheets can still respect the retraction condition and therefore constitute
a valid, larger 3-sheet if no saddle Jacobi fiber surface separates them.
Indeed, such a configuration implies that a fiber component can travel
from one 3-sheet to the other, without disconnecting or reconnecting.
To complete our characterization of the Reeb space, we introduce the
following two notions:

Definition 8 (1-sheet) A connected component of the Jacobi set in M
is called a 1-sheet.

Note that in general, 1-sheets are not necessarily 1-manifolds. Thus,
for completeness, we finally introduce the following notion:
Definition 9 (0-sheet) A vertex of the Jacobi set of f which is not ex-
actly adjacent to two Jacobi edges is called a 0-sheet.
Analogy: Jacobi edges and Jacobi fiber surfaces are bivariate analogs
of the notions of critical points and critical contours in the univariate
case respectively. However, unlike the univariate case where only sad-
dle critical contours need to be considered [36, 12], the Jacobi fiber
surfaces of extrema edges also need to be considered in the bivariate
case. Fig. 7 illustrates this for a bivariate function defined on a bitorus.
In particular, each topological handle yields a pair of non-mergeable
3-sheets: an orange-red pair and a cyan-green pair (highlighted by
aligned arrow pairs of matching color, top). As illustrated by the black
fiber (bottom), fibers in these areas are made of two connected com-
ponents, while they are made of only one component anywhere else
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Fig. 8. Algorithm overview on the toy example from Fig. 5. Our algorithm
computes the Reeb space by constructing sheets in order of increasing
dimension. First, 1-sheets are constructed as connected components of
the Jacobi set (a). Second, the corresponding 2-sheets are constructed.
Extrema and saddle Jacobi fiber surfaces are shown in blue and white
respectively (b). Here only the red and yellow extrema edges yields
non-empty 2-sheets (c). Third, the 3-sheets are extracted as the con-
nected components delimited by the 2-sheets (d). Finally, an expansion
process merges adjacent 3-sheets that are not separated by any saddle
Jacobi fiber surface (e). Within each 3-sheet of the output Reeb space
(f), each fiber is made of a single connected component, as shown with
cylinders of matching color (inset: schematic view of the Reeb space).

(yellow, purple, red and green fibers). In that configuration, both ex-
tremum and saddle Jacobi fiber surfaces are indeed needed to properly
delimit the 3-sheets on the handles from the rest of the object, which
constitutes a distinct 3-sheet (in blue, top) where the yellow, purple,
red and green fibers belong (bottom). Finally, since the images of
multiple Jacobi edges are not necessarily disjoint, note that multiple
Jacobi fiber surfaces can intersect in M .

3 ALGORITHM

Our algorithm naturally and concisely follows from the properties dis-
cussed in the previous section and an overview of it is given in Fig. 8.
This section additionally describes the parallelization of our approach
and presents a heuristic approach to Reeb space simplification.

As discussed in our characterization of the Reeb space (Sec. 2.2),
the topology of the fibers can only change when crossing the Jacobi
edges of f . Therefore, as illustrated in Fig. 8, our algorithm con-
structs the Reeb space by extracting the connected components of the
pre-image of maximal convex polygons in the range where no Jacobi
edge projects (Fig. 6(b)). The computation of such components (called
3-sheets in the previous section) first requires the extraction of their
boundaries (2-sheets), which itself requires the computation of the Ja-
cobi set (1-sheets). Thus, our algorithm computes the Reeb space by
constructing such sheets in order of increasing dimension, as detailed
in the following subsections.

3.1 1-sheet computation
1-sheets are constructed as connected components of the Jacobi set
of f . Jacobi edges are first extracted according to the classification
presented in Fig. 4. Such a classification is a local operation, that
requires for each edge e ∈M the construction of its link Lk(e) and
the evaluation of its range distance field de (Eq. 4). Once the Jacobi
edges have been identified, the 0-sheets are extracted as the vertices
of the Jacobi set which are not adjacent to exactly two Jacobi edges.
Finally, each connected component of the Jacobi set is extracted with
a standard breadth-first search pass.

3.2 2-sheet computation
2-sheets, or Jacobi fiber surfaces, are constructed, for each Jacobi edge
e, as the pre-image of f (e). Such a pre-image can be obtained with

(a) (b)

Fig. 9. Fiber surface computation within a tetrahedron given a line seg-
ment {v,v′} ∈ R2 (the orientation axes on the left denote a range view,
as opposed to a domain view). First (a), the level set d−1

e (0) is computed
(green triangle, right). Second (b), this level set is clipped (blue polygon,
right) by linear interpolation to the points that strictly projects to {v,v′}.

the algorithm described in [28] which presents an approach for the
computation of pre-images of curves through bivariate functions. For
completeness, we sketch its main steps here. Given a line segment
in R2 (in our current case, f (e)), the algorithm visits each tetrahe-
dron of T ∈M and applies the following procedure. The level set
d−1

e (0) is first computed (Eq. 4). This corresponds to the set of points
of T that project in R2 to the line that carries f (e) (Fig. 9(a)). Sec-
ond, this surface is further clipped to select only the points of T that
strictly project within f (e). To achieve this, a linear parameterization
t : d−1

e (0)→ R is first evaluated. This parameterization is set to 0 and
1 at the two extremities of f (e) (v and v′ in Fig. 9(b)) and its values
for the projected vertices of d−1

e (0) ( f (A), f (B) and f (C) in Fig. 9(b))
are given by linear interpolation in the range. Finally, the clipped fiber
surface is obtained by considering the pre-image of the interval [0,1]
onto d−1

e (0) through t. We refer the reader to [28] for further details.
As discussed in the previous section, for a given saddle edge s, only

the connected component of its Jacobi fiber surface that passes through
it needs to be considered for Reeb Space computation. Therefore, for
such a Jacobi edge s, we construct its Jacobi fiber surface with the
above algorithm by visiting M in a breadth-first search fashion, start-
ing in s and propagating to adjacent tetrahedra only if the current tetra-
hedron T is indeed intersected by the fiber surface. This strategy ef-
fectively builds the connected component of Jacobi fiber surface that
passes through s, while avoiding an exhaustive visit of all the tetra-
hedra of M . This improvement cannot be applied to the extremum
Jacobi fiber surfaces however since fibers disappear when crossing an
extremum edge (Fig. 4). Then, as a consequence, given an extremum
edge e, the restriction of the pre-image of f (e) to St(e) is only e itself.

3.3 3-sheet computation

Once the 2-sheets have been extracted in M , the 3-sheets can be con-
structed as connected components of M delimited by the Jacobi fiber
surfaces. This is obtained through a breadth-first search traversal of
the tetrahedra of M , which stops when hitting a 2-sheet. In order to
capture the geometry of the boundaries of the 3-sheets accurately, the
tetrahedra crossed by Jacobi fiber surfaces should be re-meshed along
them, which can be achieved through constrained triangulation [41].

As described in the previous section, at this point, the union of two
adjacent 3-sheets can form itself a valid 3-sheet if no saddle Jacobi
fiber surface separates them. Therefore, we merge adjacent 3-sheets
that satisfy this criteria in a last step, as illustrated in Fig. 8(e).

3.4 Parallelism

Most of the steps described so far are local operations which can be
trivially parallelized as follows. First, the classification of the edges of
M as Jacobi or regular can be achieved in parallel (i.e. the ne edges of
M are approximately equally distributed among the n threads). The
subsequent breadth-first search that identifies the 1-sheets is intrinsi-
cally sequential. However, as illustrated in the experimental section,
the computation time of this last step is negligible in practice with re-
gard to that of the Jacobi edge classification. Next, the computation
of the Jacobi fiber surfaces is also achieved in parallel on a per Jacobi
edge basis (i.e. the n j Jacobi edges of f are approximately equally
distributed among the n threads). Again, the subsequent breadth-first
search that constructs the 3-sheets is intrinsically sequential. However,
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Fig. 10. Simplification sequence for the Reeb space of a silhouette example. Each orientation axis denotes a range view, as opposed to a domain
view (bottom right). The X and Y 3D coordinates serve as input bivariate function. The 1-sheets get progressively simplified (top right), yielding
simpler and simpler silhouettes. Along the simplification (from left to right), the Reeb space contains 6152, 83, 5 and 3 3-sheets respectively.

Table 1. Running time of the different steps of the algorithm (in sec-
onds). nT and n j are the numbers of tetrahedra in M and Jacobi edges
of f . The columns JE, 1S, 2S, 3S and P represent the computation time
for the Jacobi edge classification, the extraction of the 1-, 2- and 3-
sheets respectively and the parallel version of our algorithm (12 cores).

Data-set nT n j JE 1S 2S 3S Total P Speedup

Water dimer 302,715 9,742 0.6 0.0 164.7 18.5 183.8 27.4 6.7
Gargoyle 1,098,602 21,689 3.0 0.0 754.3 5.7 762.9 71.7 10.6
Mechanical 1,482,764 11,486 3.3 0.0 345.7 4.8 353.9 32.6 10.9
Bitorus 2,555,904 976 5.7 0.0 65.4 0.7 71.8 6.9 10.4
Vortex street 5,060,475 8,654 10.1 0.0 904.4 15.3 929.8 92.0 10.1

the computation time of this last step is negligible in practice with re-
gard to that of the Jacobi fiber surface computation (Sec. 4).

3.5 Simplification
While the theoretical extension of topological persistence [16] to the
bivariate case is out of the scope of this paper, we observed in practice,
as it is the case in the univariate setting, that the simplification of the
Reeb space is often beneficial. We therefore introduce the following
heuristic for the progressive coarsening of the Reeb space, which is
inspired by the univariate case. We first evaluate the area of the pro-
jection of each 3-sheet in R2 by summing the area of the projection
of each of its tetrahedra. This measure, noted a(S), will serve as an
importance score for each 3-sheet S. Next, given a user defined sim-
plification score α , the 3-sheet S∗ that minimizes a is merged with
the maximizer of a among its adjacent neighbors if a(S∗) < α . This
merging process involves the concatenation of the sheets’ list of tetra-
hedra and the update of the importance score. The merging procedure
is iteratively repeated until a(S∗) becomes greater than α . Along this
simplification sequence, we also prune 1-sheets (as well as the cor-
responding 2-sheets) if they contain saddle edges and if they become
adjacent to only one 3-sheet (which implies that they no longer sepa-
rate 3-sheets). The resulting sequence is illustrated in Fig. 10.

4 RESULTS AND DISCUSSION

In this section, we present practical results obtained with a VTK-based
C++ implementation of the algorithm (provided as additional mate-
rial). Experiments were performed on a desktop computer with two
Xeon CPUs (2.6 GHz, 6 cores each) with 64GB of RAM.

4.1 Time requirement
Given an input tetrahedral mesh M with nT tetrahedra and ne edges,
our algorithm first starts by classifying edges as Jacobi or regular in
O(ne) steps. Next, the 1-sheets are constructed with a breadth first
search traversal of the n j Jacobi edges in O(n j) steps. Then, the Jacobi
fiber surface of each Jacobi edge is computed, requiring O(n j × nT )
steps overall. Finally, 3-sheets are constructed and expanded in linear
time. Therefore, the overall complexity of our approach is dominated
by the quadratic term induced by the Jacobi fiber surface computation.
This observation is confirmed by the numerical experiments reported
in Tab. 1, where the column JE, 1S, 2S and 3S report the computation

Table 2. Running time comparison with the Joint Contour Net [6] (1
thread, 2 quantizations) and the chamber approach [15] (parallel). Run-
ning times are provided in seconds. The bold numbers indicate the
speedups obtained by our algorithm.

Data-set nT JCN-1 [6] JCN-100 [6] Chambers-P [15]

Water dimer 302,715 20.3 0.1 290.4 1.6 1,388.4 50.7
Gargoyle 1,098,602 226.5 0.3 2,011.6 2.6 8,654.6 120.7
Mechanical 1,482,764 490.0 1.4 5,649.2 16.0 8,116.6 249.0
Bitorus 2,555,904 521.5 7.3 4,903.7 68.3 23,361.2 3,385.7
Vortex street 5,060,475 587.7 0.6 15,660.0 16.8 103,862.0 1,128.9

time, with one thread, for the Jacobi edge classification and the extrac-
tion of the 1-, 2- and 3-sheets respectively. In particular, the Jacobi
fiber surface extraction clearly dominates the process, with 95% of the
computation time on average.

In practice, as illustrated in Tab. 1, the computation time for the Ja-
cobi fiber surfaces is indeed related to the number of Jacobi edges n j.
In particular, the minimum overall computation time is observed for
the data-set which minimizes its number of Jacobi edges (the Bitorus
data-set) although it is one of the largest in terms of number of tetra-
hedra nT . Reciprocally, the second longest computation occurs for the
data-set that maximizes n j although it is one of the smallest in terms of
nT . This shows that the practical running time of our algorithm is more
dependent on the topological complexity of the input bivariate function
f than on the size of M . This demonstrates the output-sensitive nature
of our algorithm since the number of 3-sheets in the Reeb space is de-
pendent on the topological complexity of f (expressed as the number
of Jacobi edges).

As discussed in Sec. 3.4, most of the computations of our algorithm
can be trivially parallelized. However, two sub-routines (the extraction
of the 1- and 3-sheets) involve breadth-first search traversals, which
are intrinsically sequential procedures. As reported in Tab. 1, the sum
of these two steps only represent 3% of the computation time on aver-
age. Therefore, these two sequential sub-routines should not penalize
the overall parallel performance. In practice, we implemented shared-
memory parallelism with OpenMP and performance numbers are re-
ported in the column P in Tab. 1 (using 12 cores). The corresponding
speedup with regard to the sequential version of our algorithm (next
column) is equal to 9.7 on average (out of 12 ideally), which indicates
an efficient parallelization. In particular, the practical effect of this
parallelization is to bring the computation time down to an interval
between a few seconds and a minute and a half for all of our data-sets.

4.2 Comparison

Tab. 2 provides a computation time comparison with prior approaches.
We first compare to the Joint Contour Net (JCN) [6] with a sequential
C++ implementation provided by the authors of the technique. As
discussed in Sec. 1.1, this algorithm approximates the Reeb space by
considering the connected components of the pre-image of a pixel-
based quantization of the range. The pixel-size in this quantization
approach is a user-defined parameter. We report experiments for two



values of this parameter, chosen such that the range gets quantized by a
1x1 and a 100x100 rasterization respectively. The former quantization
(1x1) will obviously approximate the Reeb space with only one pixel
and it will therefore miss all of its features. We believe the second
quantization (100x100) provides a modest yet reasonable rasterization
resolution. The columns JCN-1 and JCN-100 of Tab. 2 report the cor-
responding computation times. While it takes minutes of computa-
tion for the 1x1 rasterization, it reaches hours of computation for the
100x100 rasterization, for most of our data-sets. The bold numbers in
these columns indicate the speedup obtained with the sequential ver-
sion of our algorithm. These indicate an average speedup of 21 over
the 100x100 rasterized JCN, which is further increased to 218 if we
compare to the parallel version of our algorithm. In addition to this
two order of magnitude speedup, in contrast to the JCN, our approach
is parameter-free and directly computes the exact Reeb space.

Next we compare to a bivariate specialization of the dimension-
independent algorithm presented by Edelsbrunner et al. [15], which
we discussed in Sec. 2.2. We recall that no implementation of this al-
gorithm has been documented so far to the best of our knowledge. We
therefore implemented this approach ourselves in C++ by considering
in particular the 2-sheet of each edge of the input mesh. Due to the
extremely long computation times obtained by this approach, we par-
allelized it on a per edge basis and the computation times reported in
the column Chambers-P of Tab. 2 have been obtained with 12 cores.
Even when parallelized, this approach typically requires several hours
of computation (more than 24 hours for the largest data-set, implying
days of computation in sequential mode). This illustrates that this al-
gorithm is not tractable in practice. The bold numbers in this column
indicate the speedup obtained by the parallel version of our algorithm,
reporting from one to three orders of magnitude speedups.

In conclusion, in contrast to approximation techniques based on
range quantization, our approach computes the exact Reeb space while
still providing orders of magnitude speedups with regard to existing al-
gorithms. We believe this is an important result for the applicability of
the Reeb space to visualization as it brings its computation time from
hours or days down to less than two minutes (column P, Tab. 1).

4.3 Limitations
In the univariate setting, in the vicinity of critical points, level sets
change their topology, but not necessarily their connectivity. For in-
stance, an isosurface can change its genus in the vicinity of a saddle
while maintaining its number of connected components. Thus, the
critical point contouring strategy will tend in practice to compute un-
needed critical contours in these configurations, for which no branch-
ing actually occurs in the Reeb graph. Our approach suffers from the
same limitation: fiber components change their topology when cross-
ing a saddle Jacobi edge but not necessarily their connectivity. For in-
stance, a fiber can evolve from a closed to an open curve in the vicinity
of a Jacobi edge. Such an edge will trigger the computation of a Ja-
cobi fiber surface in our approach although fibers do not necessarily
disconnect there. This implies unnecessary computations.

Moreover, in the univariate setting, the time performance of the crit-
ical point contouring strategy deteriorates and converges towards that
of the vertex-based contouring strategy for pathological cases of scalar
fields that resemble random fields since for such fields, the number of
critical points is no longer negligible with regard to the number of ver-
tices in the mesh. The same limitation applies to our work. However,
as illustrated in our experiments, we found that the number of Jacobi
edges was sufficiently low for practical data-sets to guarantee good
performances, even for noisy bivariate fields (Fig. 10(a)).

Finally, unlike the univariate case, extrema edges also need to be
considered in the generalization of the critical point contouring to the
bivariate case (Fig. 7). However in practice, the corresponding Jacobi
fiber surface may be empty or may not contribute to the structure of
the Reeb space (Fig. 8), which implies unnecessary computations.

5 APPLICATION: CONTINUOUS SCATTERPLOT PEELING

To demonstrate its versatility and utility, we apply our algorithm to
bivariate data segmentation tasks. As described in Sec. 2.2, for each
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Fig. 11. Reeb space driven visualization of a water dimer (a, top). Al-
though the continuous scatterplot (CSP) of the electron density and its
gradient magnitude does not exhibit clear discontinuities above the di-
agonal (a, bottom), some of the largest 3-sheets of the Reeb space
overlap in this area (inset zoom). Each of these layers can be visualized
in an independent CSP (b, bottom). Four of them have a very simi-
lar shape (red, blue, green and yellow). These correspond to covalent
bonds between oxygen and hydrogen atoms, which are captured by the
corresponding 3-sheets (b, top). The remaining 3-sheet (cyan) denotes
the hydrogen bond linking the two molecules.

point q ∈ R2, each of the connected components of f−1(q) will be lo-
cated in a distinct 3-sheet. In other words, the segmentation of M into
the 3-sheets of R( f ) enables the automatic separation of the regions
of the domain which overlap in the range.

Based on this observation, we introduce continuous scatterplot
peeling, a technique which enables the segmentation of the data into
overlapping layers in the continuous scatterplot (CSP) [1]. Given the
segmentation of M into the 3-sheets of R( f ), we let users iterate
through them in decreasing order of projection area (which also cor-
responds to the importance score a(S) used in our simplification al-
gorithm, Sec. 3.5). This process enables the review of the different
3-sheets of the segmentation in decreasing order of importance, both
in the domain and the range. Next, users can select whether or not they
wish to include the corresponding layer (the corresponding 3-sheet) in
the continuous scatterplot. We finally compute the final continuous
scatterplot(s) for the layers selected by the user with an implementa-
tion provided by the original authors of the technique. Figs. 1, 11 and
12 present several visualizations obtained with this technique.

Fig. 1 presents a classical vortex street flow simulation (flow turbu-
lence behind an obstacle). The Reeb space of the flow velocity and
curl magnitudes enables an automatic segmentation of the domain. In
particular, the 3 largest 3-sheets of R( f ) correspond to regions before
the obstacle (Fig. 1(a), top). These regions have little interest for the
application, however they overlap most of the CSP (Fig. 1(b), left).
Note that due to the symmetry of the vortex street, the blue and green
3-sheets overlap nearly perfectly in the CSP. Thanks to the segmenta-
tion of M into the 3-sheets of the Reeb space, these regions can be
easily removed from the projection, which results in a less cluttered
CSP (Fig. 1(b), right), better revealing the projections of the turbulent
features of the flow. At this point, some of the largest remaining 3-
sheets are shown (Fig. 1(a), bottom), capturing the geometry of the
turbulent flow in the domain. These 3-sheets can be independently
visualized in the CSP. In particular, the top, center and bottom CSPs
(Fig. 1(c)) represent the regions with matching colors in the domain
(top, center and bottom regions of the vortex street respectively).

Fig. 11 shows a Reeb space driven visualization of a water dimer.
In quantum chemistry, molecular simulations are often analyzed in the
light of two scalar fields: the electron density and a function of its
gradient magnitude [26]. Such a bivariate function is represented in a
CSP (Fig. 11(a), bottom), where points on the diagonal are known to
correspond to regions of space where no chemical interaction occurs.
The automatic segmentation of this data into the 3-sheets of the Reeb



space indicates 5 large 3-sheets that project off this diagonal (zoom).
Although the CSP does not exhibit clear discontinuities in these ar-
eas, these 5 3-sheets all overlap. Our Reeb space based segmentation
enables the independent CSP visualization for each of these regions
(Fig. 11(b), bottom). Note that four of these CSPs are very similar in
shape. They correspond to 3-sheets that capture the covalent bonds
between the hydrogen and oxygen atoms (matching colors, Fig. 11(b),
top). The remaining 3-sheet (cyan) exhibits a CSP of different shape:
the corresponding region in the domain denotes the hydrogen bond
linking the two molecules, as expected by the chemists. Note that this
subtle, yet important feature projects to a small cyan area in the range.
This means that a JCN approximation of the Reeb space may miss this
feature for insufficient quantization thresholds.

Fig. 12 presents the Reeb space driven visualization of a flow sim-
ulation within a mechanical piece (Fig. 12(a)). The considered input
bivariate function is given by the flow velocity and curl magnitudes.
Originally, the Reeb space counts 4863 3-sheets. Our Reeb space
simplification algorithm (Sec. 3.5) progressively merges adjacent 3-
sheets in increasing order of range area, until a user threshold of 5%
of the overall area of f (M ) is reached. At this threshold, this simpli-
fication results in the automatic identification of 7 remaining 3-sheets
(Fig. 12(b)). These correspond to the main features of the flow: its two
inlets (dark and light blue), its two outlets (orange and red) and three
interleaved regions in the turbulence area (inset zoom). Once pro-
jected, this simplified Reeb space (Fig. 12(c), right) enables an easier
understanding of the structure of the CSP, as compared to the original
Reeb space (center). The overlap of the projected 3-sheets can be ad-
dressed by CSP peeling, to inspect layers independently (Fig. 12(d)).

6 CONCLUSION

In this paper, we presented an efficient algorithm for the computation
of Reeb spaces of bivariate functions defined on tetrahedral meshes.
By developing a comprehensive analogy with the univariate case, we
believe we have given a simple and intuitive presentation of bivariate
Reeb spaces. We detailed and discussed the core algorithmic simi-
larities and differences between the univariate and the bivariate set-
tings. As a result, we presented an algorithm that extends to the bi-
variate case the critical point contouring strategy used for fast Reeb
graph computation in the univariate setting. This results in an effi-
cient, output-sensitive and parallel technique for Reeb space compu-
tation. While our algorithm is very simple, it yields several orders of
magnitude speedups with regard to previous work, as detailed through
our experimental results. We believe this is an important practical re-
sult for the applicability of the Reeb space to scientific visualization as
it brings its computation time from hours or days down to a few dozens
of seconds, hence making bivariate Reeb space computation tractable
for the first time.

We demonstrated the utility of our algorithm by using the Reeb
space as a semi-automatic segmentation tool for bivariate data. In
particular, we showed that it could be used to separate overlapping
features in the continuous scatterplot, hence reducing its clutter and
enabling further localized inspections. Beyond this application, we be-
lieve this work opens several exciting avenues for the generalization of
topology based techniques to bivariate data, including for instance fea-
ture similarity estimation (as suggested in Fig. 11), automatic feature
segmentation for quantitative analysis, silhouette and Jacobi set sim-
plification (as suggested in Fig. 10), 2-dimensional skeletal structure
extraction for shape modeling (as suggested in Fig. 5), etc. We hope
that our companion C++ implementation will help the community in
the development of such Reeb space based visualization techniques.

ACKNOWLEDGMENTS
This work is partially supported by the Bpifrance grant “AVIDO” (Programme
d’Investissements d’Avenir, reference P112017-2661376/DOS0021427) and the EPSRC
grant EP/J013072/1. The author would like to thank the anonymous reviewers for their
thoughtful remarks and suggestions. Special thanks go to Joshua A. Levine for his careful
proofreading and precious feedback. The vortex street data-set (Fig. 1) has been kindly
provided by Robert Geist and Joshua A. Levine.

This paper is dedicated to my daughter Amy.

(a) (b)

(c)

(d)

Fig. 12. Continuous scatterplot peeling for the flow velocity and curl
magnitudes within a mechanical piece. The color shade from blue
to green indicates integration time (a). While the Reeb space initially
counts 4863 3-sheets, after simplification, only 7 remain (b). These
3-sheets correspond to two inlet and two outlet regions, as well as 3
regions in the area of turbulence (inset zoom). Flow velocity and curl
magnitudes correspond to the X and Y axes in the continuous scatter-
plot (c). The projection of the simplified Reeb space (c, right) yields less
clutter than the original one (c, center, blue and white cylinders denote
the projections of extrema and saddle edges). However, several pro-
jected 3-sheets still overlap. Continuous scatterplot peeling enables the
visualization of each of these layers independently (d, matching colors).
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