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Abstract

In this paper, we derive from the supersymmetry of the Witten
Laplacian Brascamp-Lieb’s type inequalities for general differential
forms on compact Riemannian manifolds with boundary. In addition
to the supersymmetry, our results essentially follow from suitable de-
compositions of the quadratic forms associated with the Neumann and
Dirichlet self-adjoint realizations of the Witten Laplacian. They more-
over imply the usual Brascamp-Lieb’s inequality and its generalization
to compact Riemannian manifolds without boundary.
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1 Introduction

1.1 Context and aim of the paper

Let V ∈ C2(Rn,R) be a strictly convex function such that e−V ∈ L1(Rn) and

let ν be the probability measure defined by dν := e−V∫
Rn e

−V dx
dx. The classical

Brascamp-Lieb’s inequality proven in [7] states that every smooth compactly
supported function ω satisfies the estimate∫

Rn

∣∣∣ω − Ä ∫
Rn
ω dν

ä ∣∣∣2 dν ≤ ∫
Rn

Ä
HessV

ä−1
(∇ω,∇ω) dν . (1.1)
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This inequality and suitable variants have since been e.g. used in works such
as [1–3,10,12,21,22] studying correlation asymptotics in statistical mechanics.
The latter works exploit in particular crucially some relations of the following
type and which at least go back to the work of Helffer and Sjöstrand [12]:

∥∥∥ η − 〈η, e−
V
2

‖e−V
2 ‖
〉 e

−V
2

‖e−V
2 ‖

∥∥∥2
= 〈 (∆(1)

V
2

)−1
Ä
dV

2
η
ä
, dV

2
η 〉, (1.2)

where η ∈ C∞c (Rn), 〈·, ·〉 and ‖ · ‖ stand for the usual L2(dx) inner product

and norm, dV
2

:= d+ dV
2

and ∆
(1)
V
2

is the Witten Laplacian acting on 1-forms

(or equivalently on vector fields) which is given by

∆
(1)
V
2

:= ∆
(0)
V
2

⊗ Id + HessV =
Ä
−∆+ |∇V

2
|2−∆

V

2

ä
⊗ Id + HessV . (1.3)

In the last relation,

∆
(0)
V
2

:= −∆ + |∇V
2
|2−∆

V

2
=
Ä
−div +∇V

2

äÄ
∇+∇V

2

ä
= d∗V

2
dV

2
(1.4)

denotes the Witten Laplacian acting on functions (or equivalently on 0-
forms). The Witten Laplacian, initially introduced in [24], is more generally
defined on the full algebra of differential forms and is nonnegative and es-
sentially self-adjoint (when acting on smooth compactly supported forms) on
the space of L2(dx) differential forms. It is moreover supersymmetric, which
essentially amounts, when restricting our attention to the interplay between
∆

(0)
V
2

and ∆
(1)
V
2

, to the intertwining relation

∀ η ∈ C∞c (Rn) , dV
2

∆
(0)
V
2

η = ∆
(1)
V
2

dV
2
η ,

which enables to prove relations of the type (1.2) (when ∆
(1)
V
2

is invertible).

The nonnegativity of ∆
(0)
V
2

together with the relations (1.2) and (1.3) then

easily leads to (1.1) when V is strictly convex (at least formally) taking fi-

nally ω := e
V
2 η. To connect to some spectral properties of ∆

(0)
V
2

, the relation

(1.2) together with the lower bound ∆
(1)
V
2

≥ c for some c > 0 – which is

in particular satisfied if HessV ≥ c – implies, according to formula (1.4), a

spectral gap greater or equal to c for ∆
(0)
V
2

(its kernel being Span{e−V
2 } as it

can be seen from (1.4)). In addition to the already mentioned [10,22] making
extra assumptions on V , we refer especially to the very complete [14] for
precise statements and proofs in relation with the above discussion.
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More generally, in the case of a Riemannian manifold without boundary Ω,
it is also well known that an inequality of the type (1.1) holds if one replaces
HessV (and the condition HessV > 0 everywhere) by the following quadratic
form, sometimes called the Bakry-Émery (-Ricci) tensor,

Ric + HessV (and if we assume its strict positivity everywhere) ,

Ric denoting the Ricci tensor. We refer for example to [5, Theorem 4.9.3] for a
precise statement whose proof relies on the supersymmetry of the counterpart
of the Witten Laplacian in the weighted space L2(Ω, e−V dVolΩ), sometimes
called the weighted Laplacian and more precisely defined when acting on
functions by

L
(0)
V := e

V
2

Ä
−∆ + |∇V

2
|2 −∆

V

2

ä
e−

V
2 = −∆ +∇V · ∇ .

This operator, unitarily equivalent to ∆
(0)
V
2

, is an important model of the

Bakry-Émery theory of diffusion processes and we refer especially in this di-
rection to the pioneering work of Bakry and Émery [4] or to the book [5]
for an overview of the concerned literature. On its side, the Bakry-Émery
tensor Ric + HessV – named after [4] but first introduced by Lichnerowicz
in [18] – is the natural counterpart of the Ricci tensor Ric in the weighted
Riemannian manifold (Ω, e−V dVolΩ) and we refer for example to [18,19] for
some of its geometric properties. Let us also mention e.g. [20] extending this
notion to metric measure spaces.

In this paper, we derive from the supersymmetry of the Witten Laplacian
Brascamp-Lieb’s type inequalities for general differential forms on a Rieman-
nian manifold with a boundary. In addition to the supersymmetry, our results
essentially follow from suitable decompositions of the quadratic forms associ-
ated with the self-adjoint Neumann and Dirichlet realizations of the Witten
Laplacian stated in Theorem 1.1. When restricting to the interplay between
0- and 1-forms, they imply in particular the already mentioned results in the
case of Rn or of a compact manifold with empty boundary as well as some
results recently obtained by Kolesnikov and Milman in [15] in the case of a
compact manifold with a boundary (see indeed Corollaries 1.3 and 1.4 and
the corresponding remarks).

1.2 Decomposition formulas

Let (Ω, g = 〈·, ·〉) be a smooth n-dimensional oriented connected and compact
Riemannian manifold with boundary ∂Ω. The cotangent (resp. tangent)
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bundle of Ω is denoted by T ∗Ω (resp. TΩ) and the exterior fiber bundle
by ΛT ∗Ω = ⊕np=0ΛpT ∗Ω. The fiber bundles T ∗∂Ω, T∂Ω, and ΛT ∗∂Ω =

⊕n−1
p=0ΛpT ∗∂Ω are defined similarly. The (bundle) scalar product on ΛpT ∗Ω

inherited from g is denoted by 〈·, ·〉Λp . The space of C∞, L2, etc. sections of
any of the above fiber bundles E, over O = Ω or O = ∂Ω, are respectively
denoted by C∞(O,E), L2(O,E), etc.. The more compact notation ΛpC∞,
ΛpL2, etc. will also be used instead of C∞(Ω,ΛpT ∗Ω), L2(Ω,ΛpT ∗Ω), etc.
and we will denote by L(ΛpT ∗Ω) the space of smooth bundle endomorphisms
of ΛpT ∗Ω. The L2 spaces are those associated with the respective unit vol-
ume forms µ and µ∂Ω for the Riemannian structures on Ω and on ∂Ω. The
ΛpL2 scalar product and norm corresponding to µ will be denoted by 〈·, ·〉ΛpL2

and ‖·‖ΛpL2 or more simply by 〈·, ·〉L2 and ‖·‖L2 when no confusion is possible.

We denote by d the exterior differential on C∞(Ω,ΛT ∗Ω) and by d∗ its formal
adjoint with respect to the L2 scalar product. The Hodge Laplacian is then
defined on C∞(Ω,ΛT ∗Ω) by

∆ := ∆H := d∗d+ dd∗ = (d+ d∗)2 . (1.5)

For a (real) smooth function f , the distorted differential operators df and d∗f
are defined on C∞(Ω,ΛT ∗Ω) by

df := e−f d ef and d∗f := ef d∗ e−f , (1.6)

and the Witten Laplacian ∆f is defined on C∞(Ω,ΛT ∗Ω) similarly as the
Hodge Laplacian by

∆f := d∗fdf + dfd
∗
f = (df + d∗f )

2 . (1.7)

Note the supersymmetry structure of the Witten Laplacian acting on the
complex of differential forms: for every u in C∞(Ω,ΛpT ∗Ω), it holds

∆
(p+1)
f d

(p)
f u = d

(p)
f ∆

(p)
f u and ∆

(p−1)
f d

(p−1),∗
f u = d

(p−1),∗
f ∆

(p)
f u . (1.8)

The Witten Laplacian ∆
(p)
f (the superscript (p) means that we are consid-

ering its action on differential p-forms) extends in the distributional sense
into an operator acting on the Sobolev space ΛpH2 and is nonnegative and
self-adjoint on the flat space ΛpL2 = ΛpL2(dµ) once endowed with appropri-
ate Dirichlet or Neumann type boundary conditions (see indeed [11, 17] and

Section 3). These self-adjoint extensions are respectively denoted by ∆
t,(p)
f

and ∆
n,(p)
f , their respective domains being given by

D(∆
t,(p)
f ) =

¶
ω ∈ ΛpH2 , tω = 0 and td∗fω = 0 on ∂Ω

©
(1.9)
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and

D(∆
n,(p)
f ) =

¶
ω ∈ ΛpH2 , nω = 0 and ndfω = 0 on ∂Ω

©
. (1.10)

In the above two formulas, nη and tη stand respectively for the normal and
tangential components of the form η, see (2.1) and (2.2) in the following
section for a precise definition. For b ∈ {t,n}, the quadratic form associated

with ∆
b,(p)
f is denoted by Db,(p)

f . Its domain is given by

ΛpH1
b :=

¶
ω ∈ ΛpH1 , bω = 0 on ∂Ω

©
, (1.11)

and we have, for every ω ∈ ΛpH1
b,

Db,(p)
f (ω) := Db,(p)

f (ω, ω) = 〈dfω, dfω〉L2 + 〈d∗fω, d∗fω〉L2 . (1.12)

More details about these self-adjoint realizations are given in Section 3.

The different Brascamp-Lieb’s type inequalities stated in this work arise from
the following integration by parts formulas relating the quadratic forms Dt,(p)

f

and Dn,(p)
f with the geometry of Ω. In order to lighten this presentation, some

notations involved in these formulas will only be precisely defined in the next
section: ∂nf denotes the normal derivative of f along the boundary (see
(2.3)), Ric(p) and Hess(p)f respectively denote the smooth bundle symmetric
endormorphism of ΛpT ∗Ω defined from the Weitzenböck formula in (2.9) and
the one canonically associated with Hess f (see (2.24)), and, for b ∈ {n, t},
K(p)

b ∈ L(ΛpT ∗Ω
∣∣∣
∂Ω

) is defined by means of the second fundamental form of

∂Ω in (2.13)–(2.16).

Theorem 1.1. Let ω ∈ ΛpH1
b with b ∈ {n, t} and p ∈ {0, . . . , n}. It holds

Db,(p)
f (ω) = ‖efω‖2

Ḣ1(e−2fdµ)
+ 〈
Ä
Ric(p) + 2 Hess(p)f

ä
ω, ω〉L2

+
∫
∂Ω
〈K(p)

b ω, ω〉Λp dµ∂Ω − 2 1t(b)
∫
∂Ω
〈ω, ω〉Λp ∂nf dµ∂Ω , (1.13)

where 1t(b) = 1 if b = t and 0 if b = n, and

‖ · ‖2
Ḣ1(e−2fdµ)

:= ‖ · ‖2
H1(e−2fdµ) − ‖ · ‖2

L2(e−2fdµ) .

When f = 0, we recover Theorems 2.1.5 and 2.1.7 of [23] which were gen-
eralizing results in the boundaryless case due to Bochner for p = 1 and to
Gallot and Meyer for general p’s (see [6,9]). These results allow in particular
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to draw topological conclusions on the cohomology of Ω from its geometry.
When the boundary ∂Ω is not empty, the relative and absolute cohomologies
of Ω (corresponding respectively to the Dirichlet and Neumann boundary
conditions) have to be considered (see [23, Section 2.6]). To be more pre-
cise, note from Theorem 1.1 that for any p ∈ {0, . . . , n}, the (everywhere)
positivity of the quadratic form Ric(p) + 2 Hess(p)f together with the nonneg-
ativity of K(p)

n (resp. of K(p)
t − 2 ∂nf) implies the lower bounds (in the sense

of quadratic forms)

∆
b,(p)
f ≥ Ric(p) + 2 Hess(p)f > 0 ( b ∈ {t,n} )

for the Witten Laplacian and hence the triviality of its kernel which is iso-
morphic to the p-th absolute (resp. relative) cohomology group of Ω when
f = 0.

1.3 Consequences: Brascamp-Lieb’s type inequalities

We now define V := 2f , the probability measure ν associated with V by

dν :=
e−V∫

Ω e
−V dµ

dµ =
e−2f

‖e−f‖2
L2

dµ ,

and the weighted Laplacian acting on p-forms L
(p)
V by

L
(p)
V := ef ∆

(p)
f e−f . (1.14)

The latter operator acting on the weighted space ΛpL2(e−V dµ) is then uni-

tarily equivalent to ∆
(p)
f (acting on the flat space) and we denote by L

t,(p)
V and

L
n,(p)
V the nonnegative self-adjoint unbounded operators on ΛpL2(e−V dµ) as-

sociated with ∆
t,(p)
f and ∆

n,(p)
f via (1.14). Their respective domains are easily

deduced from (1.9), (1.10), and (1.14).

We denote moreover, for p ∈ {0, . . . , n}, by ΛpL2(dν), ΛpH1(dν), 〈·, ·〉L2(dν)

and ‖ · ‖L2(dν) the weighted Lebesgue and Sobolev spaces, L2 scalar product
and L2 norm. We also denote by ΛpH1

b(dν) the set of the ω ∈ ΛpH1(dν) such
that bω = 0 on ∂Ω, which is the domain of the quadratic form associated
with L

b,(p)
V according to (1.11) and (1.14). Since we are working on a com-

pact manifold, note that ΛpH1
b(dν) is nothing but ΛpH1

b (algebraically and
topologically).

Playing with the supersymmetry, we easily get from Theorem 1.1 the follow-
ing Brascamp-Lieb’s type inequalities for differential forms, where for any
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b ∈ {n, t} and p ∈ {0, . . . , n}, πb = π
(p)
b denotes the orthogonal projection

on Ker (L
b,(p)
V ).

Theorem 1.2 (Brascamp-Lieb’s inequalities for differential forms).

1. Let p ∈ {0, . . . , n} and let us assume that K(p)
n ≥ 0 everywhere on ∂Ω

and that Ric
(p)
V := Ric(p) + Hess(p)V > 0 everywhere on Ω (in the sense

of quadratic forms). It then holds:

i) if p > 0, we have for every ω ∈ Λp−1H1
n(dν) such that d∗V ω = 0:

‖ω − πnω‖2
L2(dν) ≤

∫
Ω

¨Ä
Ric

(p)
V

ä−1
dω , dω

∂
Λp dν ,

ii) if p < n, we have for every ω ∈ Λp+1H1
n(dν) such that dω = 0:

‖ω − πnω‖2
L2(dν) ≤

∫
Ω

¨Ä
Ric

(p)
V

ä−1
d∗V ω , d

∗
V ω
∂

Λp dν .

2. Assume similarly that K(p)
t − ∂nV ≥ 0 everywhere on ∂Ω and that

Ric
(p)
V > 0 everywhere on Ω. It then holds:

i) if p > 0, we have for every ω ∈ Λp−1H1
t (dν) such that d∗V ω = 0:

‖ω − πtω‖2
L2(dν) ≤

∫
Ω

¨Ä
Ric

(p)
V

ä−1
dω , dω

∂
Λp dν ,

ii) if p < n, we have for every ω ∈ Λp+1H1
t (dν) such that dω = 0:

‖ω − πtω‖2
L2(dν) ≤

∫
Ω

¨Ä
Ric

(p)
V

ä−1
d∗V ω , d

∗
V ω
∂

Λp dν .

In the case p = 1, the points 1.i) and 2.i) of Theorem 1.2 take a simpler form.
Every ω ∈ Λ0H1(dν) satisfies indeed d∗V ω = 0. Moreover, we have simply

Λ0H1
n(dν) = H1(dν) and Ker (L

n,(p)
V ) = Span{1}

as well as

Λ0H1
t (dν) = H1

0 (dν) and Ker (L
t,(p)
V ) = {0} .

Defining the mean of u ∈ L2(dν) by 〈u〉ν := 〈u, 1〉L2(dν), we then immediately
get from Theorem 1.2 (together with (2.13) and (2.15)) the following (where
K1 denotes the shape operator defined in the next section, in (2.12))
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Corollary 1.3. i) Assume that the shape operator K1 is nonpositive ev-
erywhere on ∂Ω and that Ric + HessV > 0 everywhere on Ω. It then
holds: for every ω ∈ H1(dν),

‖ω − 〈ω〉ν‖2
L2(dν) ≤

∫
Ω

Ä
Ric + HessV

ä−1
(∇ω,∇ω) dν . (1.15)

ii) Assume similarly that −Tr (K1)−∂nV ≥ 0 everywhere on ∂Ω and that
Ric+HessV > 0 everywhere on Ω. It then holds: for every ω ∈ H1

0 (dν),

‖ω‖2
L2(dν) ≤

∫
Ω

Ä
Ric + HessV

ä−1
(∇ω,∇ω) dν . (1.16)

When Ω \ ∂Ω appears to be a smooth open subset of Rn, Ric and Ric(p)

vanish and the latter corollary as well as Theorem 1.2 then write in a simpler
way just relying on a control from below of HessV or Hess(p)V instead of
Ric

(p)
V = Ric(p) + Hess(p)V . One recovers in particular the usual Brascamp-

Lieb’s inequality when Ω = Rn: even if Ω has been assumed compact here,
we recover the estimate (1.1) for a probability measure dν on Rn using the

first point of Corollary 1.3 for the family of measures
Å

1
ν(B(0,N))

dν
∣∣∣
B(0,N)

ã
N∈N

and letting N → +∞ since B(0, N) is convex; see also [14].

The above results can be useful for semiclassical problems involving the low
spectrum of semiclassical Witten Laplacians (or equivalently of semiclassi-
cal weighted Laplacians) in large dimension, such as problems dealing with
correlation asymptotics, under some suitable (and uniform in the dimension)
estimates on the eigenvalues of HessV (and then of Hess(p)V ) on some parts
of Ω. We refer for example to [1–3, 12] or to the more recent [8] for some
works exploiting this kind of estimates. Let us recall that we consider in
this setting, for a small parameter h > 0, f

h
and V

h
instead of f and V , and

h2∆
(p)
f
h

instead of ∆
(p)
f for the usual semiclassical Schrödinger operator form.

Note then from Ric
(p)
V
h

= h−1(hRic(p) + Hess(p)V ) that the curvature effects

due to Ric(p) become negligible at the semiclassical limit h → 0+ under the
condition Hess(p)V > 0 everywhere on Ω. To apply Theorem 1.2 for any
small h > 0 in the Neumann case under this condition then only requires
the additional h-independent condition K(p)

n ≥ 0 everywhere on ∂Ω. In the

Dirichlet case, the required additional condition becomes hK(p)
t − ∂nV ≥ 0,

which requires in particular ∂nV ≤ 0 everywhere on ∂Ω. The point ii) of
Corollary 1.3 is thus irrelevant in this case.
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Let us lastly underline that to prove Theorem 1.2 (and then Corollary 1.3),
we only use the supersymmetry structure and the relation

∆
b,(p)
f ≥ Ric(p) + 2 Hess(p)f > 0

implied by Theorem 1.1 together with the hypotheses of Theorem 1.2. How-
ever, a control from below of the restriction ∆

b,(p)
f

∣∣∣
Ran df

for the points 1.i)

and 2.i) (resp. of ∆
b,(p)
f

∣∣∣
Ran d∗

f

for the points 1.ii) and 2.ii)) would actually be

sufficient as it can be seen by looking for example at the further relation (4.8)
generalizing (1.2) (see also Proposition 3.3 for more details about the latter
restrictions). The specific form of the nonnegative first term in the r.h.s. of
the integration by parts formula (1.13) stated in Theorem 1.1 is moreover
not used, i.e. only its nonnegativity comes into play. When p = 1, we can
easily slightly improve Corollary 1.3 taking advantage of this nonnegative
term which allows to compare ∆

b,(1)
f

∣∣∣
Ran df

(or equivalently L
b,(1)
V,h

∣∣∣
Ran d

) with

the so-called N -dimensional Bakry-Émery tensor

RicV,N := Ric + HessV − 1

N − n
dV ⊗ dV , (1.17)

where N ∈ (−∞,+∞] and, when N = n, RicV,n is defined iff V is con-
stant. The hypotheses of Corollary 1.3 require in particular the (everywhere)
positivity of RicV,+∞ and we have more generally the

Corollary 1.4. In the following, we assume that N ∈ (−∞, 0] ∪ [n,+∞].

i) Assume that K1 ≤ 0 everywhere on ∂Ω and that RicV,N > 0 everywhere
on Ω. It then holds: for every ω ∈ H1(dν),

‖ω − 〈ω〉ν‖2
L2(dν) ≤

N − 1

N

∫
Ω

Ä
RicV,N

ä−1
(∇ω,∇ω) dν .

ii) Assume similarly that −Tr (K1)−∂nV ≥ 0 everywhere on ∂Ω and that
RicV,N > 0 on Ω. It then holds: for every ω ∈ H1

0 (dν),

‖ω‖2
L2(dν) ≤

N − 1

N

∫
Ω

Ä
RicV,N

ä−1
(∇ω,∇ω) dν .

Note that 1
N

appears here as a natural parameter and that N ∈ (−∞, 0] ∪
[n,+∞] is equivalent to 1

N
∈ [−∞, 1

n
] with the convention 1

0
= −∞.

This result corresponds to the cases (1) and (2) of Theorem 1.2 in the recent
article [15] to which we also refer for more details and references concerning
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the N -dimensional Bakry-Émery tensor and its connections with the Bakry-
Émery operators Γ and Γ2 (see (2.21) and (2.22) in the following section, and
also [5]). The authors derive these formulas from the so-called generalized
Reilly formula stated in Theorem 1.1 there, which somehow generalizes, in
the weighted space setting, the statement given by Theorem 1.1 when p = 1
and ω has the form dfη, to arbitrary ω = dfη which are not assumed tangen-
tial nor normal. We also mention the related work [16] of the same authors.

Note lastly that for N > n, Corollary 1.4 does not provide any improvement
in comparison with Corollary 1.3 in the semiclassical setting, that is when
V is replaced by V

h
where h → 0+, because of the term − 1

(N−n)h2
dV ⊗ dV

involved in RicV
h
,N (see indeed (1.17)).

1.4 Plan of the paper

In the following section, we recall general definitions and properties related
to the Riemannian structure and to the Witten and weighted Laplacians. We
then give the basic properties of the self-adjoint realizations ∆

t,(p)
f and ∆

n,(p)
f

in Section 3. Lastly, in Section 4, we prove Theorem 1.1, Theorem 1.2, and
Corollary 1.4.

2 Geometric setting

2.1 General definitions and properties

Let us begin with the notion of local orthonormal frame that will be fre-
quently used in the sequel. A local orthonormal frame on some open set
U ⊂ Ω is a family (E1, . . . , En) of smooth sections of TΩ defined on U such
that

∀ i, j ∈ {1, . . . , n} , ∀x ∈ U , 〈Ei, Ej 〉x = δi,j .

According for example to [23, Definition 1.1.6] and to the related remarks,
it is always possible to cover Ω with a finite family (since Ω is compact) of
opens sets U ’s such that there exists a local orthonormal frame (E1, . . . , En)
on each U . Such a covering is called a nice cover of Ω.

The outgoing normal vector field will be denoted by ~n and the orientation is
chosen such that

µ∂Ω = i~n µ ,

where i denotes the interior product. Owing to the Collar Theorem stated
in [23, Theorem 1.1.7], the vector field ~n ∈ C∞(∂Ω, TΩ

∣∣∣
∂Ω

) can be extended
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to a smooth vector field on a neighborhood of the boundary ∂Ω. Moreover,
taking maybe a finite refinement of a nice cover of Ω as defined previously,
one can always assume that the local orthonormal frame (E1, . . . , En) corre-

sponding to any of its elements U meeting ∂Ω is such that En
∣∣∣
∂Ω

= ~n.

For any ω ∈ ΛpC∞, the tangential part of ω on ∂Ω is the form tω ∈
C∞(∂Ω,ΛpT ∗Ω

∣∣∣
∂Ω

) defined by:

∀σ ∈ ∂Ω , (tω)σ(X1, . . . , Xp) := ωσ(XT
1 , . . . , X

T
p ) , (2.1)

with the decomposition Xi = XT
i ⊕ x⊥i ~nσ into the tangential and normal

components to ∂Ω at σ. More briefly, it holds tω = i~n(~n[ ∧ ω). The normal
part of ω on ∂Ω is then defined by:

nω := ω|∂Ω − tω = ~n[ ∧ (i~nω) ∈ C∞(∂Ω,ΛpT ∗Ω
∣∣∣
∂Ω

). (2.2)

Here and in the sequel, the notation [ : X 7→ X[ stands for the inverse
isomorphism of the canonical isomorphism ] : ξ 7→ ξ] from T ∗Ω onto TΩ
(defined by the relation 〈ξ], X〉 := ξ(X) for every X ∈ TΩ).

For a (real) smooth function f and a smooth vector field X, we will use the
notation

∇Xf := X · f = df(X) ,

the normal derivative of f along the boundary being in particular defined by

∂nf := 〈∇f, ~n 〉 = ∇~nf . (2.3)

We will also denote by ∇ : C∞(Ω, TΩ)× C∞(Ω, TΩ)→ C∞(Ω, TΩ) the Levi-
Civita connection on Ω and by∇X(·) the covariant derivative (in the direction
of X) of vector fields as well as the induced covariant derivative on ΛpT ∗Ω.
The second covariant derivative is then the bilinear mapping on TΩ defined,
for X, Y ∈ C∞(Ω, TΩ) by

∇2
X,Y := ∇X∇Y −∇∇XY .

When f is a smooth function, ∇2
X,Y f is simply the Hessian of f . It is in this

case a symmetric bilinear form and has the simpler writing

Hess f(X, Y ) := ∇2
X,Y f = (∇X df)(Y ) = 〈∇X∇f, Y 〉 . (2.4)

The Bochner Laplacian ∆B on C∞(Ω,ΛT ∗Ω) is defined as minus the trace
of the bilinear mapping (X, Y ) 7→ ∇2

X,Y . For any local orthonormal frame
(E1, . . . , En) on U ⊂ Ω, ∆B is in particular given on U by

∆B = −
n∑
i=1

Ä
∇Ei
∇Ei
−∇∇Ei

Ei

ä
. (2.5)
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The Hodge and Bochner Laplacians ∆(p) and ∆
(p)
B are related by the Weitzen-

böck formula: there exists a smooth bundle symmetric endormorphism Ric(p)

belonging to L(ΛpT ∗Ω) such that (see [23, p. 26] where the opposite conven-
tion of sign is adopted)

∆
(p)
B = ∆(p) − Ric(p) . (2.6)

This operator vanishes on 0-forms (i.e. on functions) and Ric(1) is the element
of L(Λ1T ∗Ω) canonically identified with the Ricci tensor Ric. We recall that
Ric is the symmetric (0, 2)-tensor defined, for X, Y ∈ TΩ, by

Ric(X, Y ) := Tr
Ä
Z 7−→ R(Z,X)Y

ä
, (2.7)

where R denotes the Riemannian curvature tensor which is defined, for every
X, Y, Z ∈ TΩ, by

R(X, Y )Z :=
Ä
∇2
X,Y −∇2

Y,X

ä
Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z . (2.8)

More generally, for any local orthonormal frame (E1, . . . , En) on U ⊂ Ω,
Ric(p) is defined on U for any p ∈ {1, . . . , n} byÄ

Ric(p)ω
ä
(X1, . . . , Xp)

:= −
n∑
i=1

p∑
j=1

ÅÄ
R(Ei, Xj)

ä(p)
ω
ã

(X1, . . . , Xj−1, Ei, Xj+1, . . . , Xp) , (2.9)

where
Ä
R(Ei, Xj)

ä(1) ∈ L(Λ1T ∗Ω) is canonically identified with R(Ei, Xj) viaÅÄ
R(Ei, Xj)

ä(1)
ω
ã

(X) = ω
Ä
R(Ei, Xj)X

ä
andÄ

R(Ei, Xj)
ä(p)

=
ÅÄ
R(Ei, Xj)

ä(1)
ã(p)

,

where for any A ∈ L(Λ1T ∗Ω), (A)(p) is the element of L(ΛpT ∗Ω) satisfying
the following relation on decomposable p-forms:

(A)(p)
Ä
ω1 ∧ · · · ∧ ωp

ä
=

p∑
i=1

ω1 ∧ · · · ∧ Aωi ∧ · · · ∧ ωp . (2.10)

To end up this part, we recall the definition of the second fundamental form
of ∂Ω before defining the operators K(p)

b , b ∈ {t,n}, involved in Theorem 1.1
and in its corollaries. The second fundamental form K2 of ∂Ω is the symmet-
ric bilinear mapping defined by

K2 :
T∂Ω× T∂Ω −→ TΩ

∣∣∣
∂Ω

(U, V ) 7−→ (∇UV )⊥ := 〈∇UV, ~n〉~n
(2.11)
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and it satisfies:

∀ (U, V ) ∈ T∂Ω× T∂Ω , 〈K1(U), V 〉~n = K2(U, V ) ,

where K1 ∈ L(T∂Ω) is the shape operator of ∂Ω which is defined by:

∀U ∈ T∂Ω , K1(U) := −∇U ~n . (2.12)

The mean curvature of ∂Ω is defined as the trace of the bilinear mapping
(U, V ) 7→ 〈K2(U, V ), ~n〉 or equivalently as the trace of the shape operator K1.
Note also that with our choice of orientation for ~n, Ω is locally convex iff
〈K2(·, ·), ~n〉 (or equivalently K1, in the sense of quadratic forms) is nonposi-
tive.

Lastly, the smooth bundle endormophisms K(p)
b ∈ L(ΛpT ∗Ω

∣∣∣
∂Ω

), where b ∈
{n, t} and p ∈ {0, . . . , n}, are defined by means of K1 and K2 as follows:

1. For any p ∈ {0, . . . , n}, K(p)
n ∈ L(ΛpT ∗Ω

∣∣∣
∂Ω

) vanishes on 0-forms and:

i) for any ω ∈ Λ1T ∗Ω, K(1)
n ω is tangential and

(K(1)
n ω)(XT + x⊥~n) = −ω

Ä
K1(XT )

ä
= ω

Ä
∇XT ~n

ä
, (2.13)

where K1 is the shape operator defined in (2.12),

ii) for any p ∈ {1, . . . , n} and ω ∈ ΛpT ∗Ω, K(p)
n ω is tangential and for

any XT
1 , . . . , X

T
p ∈ T∂Ω,Ä

K(p)
n ω
ä
(XT

1 , . . . , X
T
p ) =

Ä
(K(1)

n )(p)ω
ä
(XT

1 , . . . , X
T
p ) , (2.14)

where the notation (A)(p) has been defined in (2.10).

2. For any p ∈ {0, . . . , n}, K(p)
t ∈ L(ΛpT ∗Ω

∣∣∣
∂Ω

) vanishes on 0-forms and:

i) for any ω ∈ Λ1T ∗Ω, K(1)
t ω is normal and

(K(1)
t ω)(XT + x⊥~n) = −x⊥ Tr (K1)ω

Ä
~n
ä
, (2.15)

ii) for any p ∈ {1, . . . , n} and ω ∈ ΛpT ∗Ω, K(p)
t ω is normal and for

any local orthonormal frame (E1, . . . , En) on U ⊂ Ω such that

En
∣∣∣
∂Ω

= ~n (with U ∩ ∂Ω 6= ∅) and XT
1 , . . . , X

T
p ∈ T∂Ω, we have

on U ∩ ∂Ω:Ä
K(p)

t ω
ä
(~n,XT

1 , . . . , X
T
p−1)

:= −
n−1∑
i=1

ÅÄ
K2(Ei, ·)

ä(p)
ω
ã

(Ei, X
T
1 , . . . , X

T
p−1) , (2.16)

13



where
Ä
K2(Ei, ·)

ä(p)
=
ÅÄ
K2(Ei, ·)

ä(1)
ã(p)

andÅÄ
K2(Ei, ·)

ä(1)
ω
ã

(X) = ω
Ä
K2(Ei, X)

ä
.

Note that the point 2.ii) is nothing but the statement of 2.i) when p = 1.

2.2 Witten and weighted Laplacians

Using the following relations dealing with exterior and interior products (re-
spectively denoted by ∧ and i), gradients, and Lie derivatives (denoted by
L),

(df∧)∗ = i∇f as bounded operators in L2(Ω,ΛpT ∗Ω ) , (2.17)

df = d+ df ∧ and d∗f = d∗ + i∇f , (2.18)

LX = d ◦ iX + iX ◦ d and L∗X = d∗ ◦ (X[ ∧ ·) +X[ ∧ d∗ , (2.19)

the Witten Laplacian (df + d∗f )
2 has the form

∆f = (d+ d∗)2 + |∇f |2 +
Ä
L∇f + L∗∇f

ä
. (2.20)

When acting on 0-forms, the Witten Laplacian is then simply given by

∆
(0)
f = ∆ + |∇f |2 + ∆f

and is unitarily equivalent to the following operator acting on the weighted
space L2(e−2fdµ), sometimes referred to as the weighted Laplacian (or Bakry-
Émery Laplacian) in the literature (see e.g. [15]),

L
(0)
V := ∆ +∇V · ∇ where V := 2f .

More precisely, it holds

∆
(0)
f = e−

V
2 L

(0)
V e

V
2 .

The operator L
(0)
V has consequently a natural supersymmetric extension on

the algebra of differential forms, acting in the weighted space ΛL2(e−2fdµ),
which is simply defined for any p ∈ {0, . . . , n} by the formula (1.14) that we
recall here:

L
(p)
V := ef ∆

(p)
f e−f where V := 2f .
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To connect more precisely to the literature dealing with the Bakry-Émery
theory of diffusion processes (see [5] for an overview), the operators L

(0)
V and

L
(1)
V are related to the carré du champ operator of Bakry-Émery Γ and to its

iteration Γ2 via the relations∫
Ω

Γ(ω) e−2fdµ =
∫

Ω

Ä
L

(0)
V ω

ä
ω e−2fdµ =

∫
Ω
〈dω, dω〉Λ1 e−2fdµ (2.21)

and ∫
Ω
Γ2(ω)e−2fdµ =

∫
Ω

Ä
L

(0)
V ω

ä2
e−2fdµ =

∫
Ω
〈L(1)

V dω, dω〉Λ1e−2fdµ, (2.22)

where ω is a smooth function supported in Ω \ ∂Ω (see in particular [5] for
many details and references about this notion).

Coming back to the Witten Laplacian, we have the following formula:

∆
(p)
f = (d+ d∗)2 + |∇f |2 + 2 Hess(p)f + ∆f . (2.23)

This relation is not very common in the literature dealing with semiclassical
Witten Laplacians – i.e. where one studies h2∆ f

h
at the limit h → 0+ –

which motivated this work, at least when Ω is not flat. We find generally
there the formula (2.20) (see e.g. [11, 17] and references therein) and we
thus give a proof below (see also [13] for another proof). Let us, before,
specify the sense of (2.23). There, Hess(0)f = 0, Hess(1)f is the element
of L(Λ1T ∗Ω) canonically identified with Hess f , and Hess(p)f is the bundle
symmetric endomorphism of ΛpT ∗Ω defined by

Hess(p)f :=
Ä
Hess(1)f

ä(p)
(see (2.10) for the meaning of (A)(p)) . (2.24)

Denoting also by Hessf the bundle symmetric endomorphism of TΩ defined
by 〈Hessf X, Y 〉 := Hessf(X, Y ) (i.e. by Hessf X = ∇X∇f), remark that
we have for any p ∈ {1, . . . , n} and ω ∈ ΛpT ∗Ω:

Hess(p)f ω(X1, . . . , Xp) =
p∑
i=1

ω(X1, . . . ,Hessf Xi, . . . , Xp) . (2.25)

Proof of formula (2.23): Let us first recall that the covariant derivative ∇X

on ΛpT ∗Ω induced by the Levi-Civita connection is defined by

(∇Xω)(Y1, . . . , Yp) := ∇X

Ä
ω(Y1, . . . , Yp)

ä
−

p∑
k=1

ω(Y1, . . . ,∇XYk, . . . , Yp) (2.26)

15



and satisfies in particular the relations

∇X

Ä
〈ω, η〉Λp

ä
= 〈∇Xω, η〉Λp + 〈ω,∇Xη〉Λp (2.27)

and
∇X

Ä
ω1 ∧ ω2

ä
= (∇Xω1) ∧ ω2 + ω1 ∧ (∇Xω2) . (2.28)

The differential d and ∇ are moreover related by the relation

dω(X0, . . . , Xp) =
p∑

k=0

(−1)k(∇Xk
ω)(X0, . . . , Ẋk, . . . , Xp) , (2.29)

where ω ∈ ΛpT ∗Ω and the notation Ẋk means that Xk has been removed
from the parenthesis. Furthermore, if (E1, . . . , En) is a local orthonormal
frame on U ⊂ Ω, the codifferential d∗ is given there by

d∗ = −
n∑
i=1

iEi
∇Ei

. (2.30)

Hence, we deduce from (2.25) and from the relation relating LX and ∇X ,

(L(p)
X ω)(X1, . . . , Xp) = (∇Xω)(X1, . . . , Xp) +

p∑
i=1

ω(X1, . . . ,∇Xi
X, . . . , Xp)

which arises from (2.26), (2.29), and (2.19), the following equality:

L(p)
∇f = ∇∇f + Hess(p)f . (2.31)

Taking now a local orthonormal frame (E1, . . . , En) on an open set U ⊂ Ω,
we deduce from (2.28), (2.30), and (2.19) the following relations (on U):

L∗,(p)∇f ω =
n∑
i=1

Å
(∇Ei

df) ∧ iEi
ω − df(Ei)∇Ei

ω −
Ä
∇Ei

df(Ei)
äã
ω

= −∇∇f ω + (∆f)ω +
n∑
i=1

(∇Ei
df) ∧ iEi

ω . (2.32)

Lasty, we have
n∑
i=1

Ä
(∇Ei

df)∧iEi
ω
ä
(X1, . . . , Xp)

=
n∑
i=1

p∑
k=1

(−1)k+1(∇Ei
df)(Xk)(iEi

ω)(X1, . . . , Ẋk, . . . , Xp)

=
p∑

k=1

(−1)k+1ω(Hess f Xk, X1, . . . , Ẋk, . . . , Xp)

=
p∑

k=1

ω(X1, . . . ,Hess f Xk, . . . , Xp) (2.33)
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and formula (2.23) for the Witten Laplacian then follows from (2.20) and
(2.31)–(2.33).

3 Self-adjoint realizations of the Witten Lapla-

cian

In the sequel, we will use for any (ω, η) ∈
Ä
ΛpH1

ä2
the more compact notation

D(p)
f (ω, η) := 〈dfω, dfη〉Λp+1L2 + 〈d∗fω, d∗fη〉Λp−1L2

as well as
D(p)
f (ω) := D(p)

f (ω, ω)

and
D(p)(ω, η) := D(p)

0 (ω, η) and D(p)(ω) := D(p)(ω, ω) .

Let us also recall, for b ∈ {n, t}, the definition of ΛpH1
b given in (1.11):

ΛpH1
b =

¶
ω ∈ ΛpH1 , bω = 0 on ∂Ω

©
.

In particular, Λ0H1
n = H1

n is simply H1(Ω) while H1
t = H1

0 (Ω). Moreover,
since the boundary ∂Ω is smooth, the space

ΛpC∞b := {ω ∈ ΛpC∞ , bω = 0 on ∂Ω}

is dense in
Ä
ΛpH1

b , ‖ · ‖ΛpH1

ä
.

The following lemma states two Green’s identities comparing D(p)(·) and

D(p)
f (·) on the space of tangential or normal p-forms. We refer to [11, Sec-

tion 2.3] and [17, Section 2.2] for a proof.

Lemma 3.1. We have the two following identities:

i) for any ω ∈ ΛpH1
t ,

D(p)
f (ω) = D(p)(ω) + ‖ |∇f |ω‖2

ΛpL2 + 〈(L∇f + L∗∇f )ω, ω〉ΛpL2

+
∫
∂Ω
〈ω, ω〉Λp ∂nf dµ∂Ω , (3.1)

ii) for any ω ∈ ΛpH1
n,

D(p)
f (ω) = D(p)(ω) + ‖ |∇f |ω‖2

ΛpL2 + 〈(L∇f + L∗∇f )ω, ω〉ΛpL2

−
∫
∂Ω
〈ω, ω〉Λp ∂nf dµ∂Ω . (3.2)
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We now compile in the following proposition basic facts about Witten Lapla-
cians on manifolds with boundary proven in [11, Section 2.4] and in [17, Sec-
tion 2.3].

Proposition 3.2. i) For b ∈ {n, t} and p ∈ {0, . . . , n}, the nonnegative

quadratic form ω → D(p)
f,h(ω) is closed on ΛpH1

b. Its associated self-

adjoint Friedrichs extension is denoted by
Ä
∆

b,(p)
f , D(∆

b,(p)
f )

ä
.

ii) For b ∈ {n, t} and p ∈ {0, . . . , n}, the domain of ∆
b,(p)
f is given by

D(∆
b,(p)
f ) =

¶
u ∈ ΛpH2, bω = 0 , bd∗fω = 0 and bdfω = 0 on ∂Ω

©
.

We have moreover:

∀ω ∈ D(∆
b,(p)
f ) , ∆

b,(p)
f ω = ∆

(p)
f ω in Ω

and the equalities nd∗fω = 0 and tdfω = 0 are actually satisfied for any
ω ∈ ΛpH2 ∩ ΛpH1

b.

iii) For b ∈ {n, t} and p ∈ {0, . . . , n}, ∆
b,(p)
f has a compact resolvent.

iv) For b ∈ {n, t} and p ∈ {0, . . . , n}, the following commutation relations
hold for any v ∈ ΛpH1

b:

– for every z ∈ %(∆
b,(p)
f ) ∩ %(∆

b,(p+1)
f ),

(z −∆
b,(p+1)
f )−1 d

(p)
f v = d

(p)
f (z −∆

b,(p)
f )−1 v

– and for every z ∈ %(∆
b,(p)
f ) ∩ %(∆

b,(p−1)
f ),

(z −∆
b,(p−1)
f )−1 d

(p−1),∗
f v = d

(p−1),∗
f (z −∆

b,(p)
f )−1 v .

In the spirit of the above point iv), we have also the following Witten-Hodge-
decomposition which will be useful when proving Corollary 1.4:

Proposition 3.3. For b ∈ {n, t} and p ∈ {0, . . . , n}, it holds

ΛpL2 = Ker ∆
b,(p)
f ⊕⊥ Ran

Ä
df
∣∣∣
Λp−1H1

b

ä
⊕⊥ Ran

Ä
d∗f
∣∣∣
Λp+1H1

b

ä
(3.3)

=: Kb,(p) ⊕⊥ Rb,(p) ⊕⊥ R∗,b,(p) ,

the spaces Rb,(p) and R∗,b,(p) being consequently closed in ΛpL2. Denoting
moreover by πRb,(p) and πR∗,b,(p) the orthogonal projectors on these respective
spaces, the following relations hold in the sense of unbounded operators:

πRb,(p) ∆
b,(p)
f ⊂ ∆

b,(p)
f πRb,(p) and πR∗,b,(p) ∆

b,(p)
f ⊂ ∆

b,(p)
f πR∗,b,(p) . (3.4)
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In particular, for A ∈ {(Kb,(p))⊥, Rb,(p), R∗,b,(p)}, the unbounded operator

∆
b,(p)
f

∣∣∣
A

with domain D(∆
b,(p)
f )∩A is well defined, self-adjoint, invertible on

A, and it holds for every v ∈ ΛpH1
b ∩ (Kb,(p))⊥:Ä

∆
b,(p+1)
f

∣∣∣
(Kb,(p+1))⊥

ä−1
df v =

Ä
∆

b,(p+1)
f

∣∣∣
Rb,(p+1)

ä−1
df v

= df
Ä
∆

b,(p)
f

∣∣∣
(Kb,(p))⊥

ä−1
v (3.5)

and Ä
∆

b,(p−1)
f

∣∣∣
(Kb,(p−1))⊥

ä−1
d∗f v =

Ä
∆

b,(p−1)
f

∣∣∣
R∗,b,(p−1)

ä−1
d∗f v

= d∗f
Ä
∆

b,(p)
f

∣∣∣
(Kb,(p))⊥

ä−1
v . (3.6)

Proof. The orthogonality of the sum appearing in the r.h.s. of (3.3) follows
easily from the distorted Green’s formula valid for any (ω, η) ∈ Λp−1H1 ×
ΛpH1,

〈dfω, η〉ΛpL2 = 〈ω, d∗fη〉Λp−1L2 +
∫
∂Ω
〈ω, i~nη〉Λp dµ∂Ω , (3.7)

which is a straightforward consequence of (2.17)–(2.18) and of the usual
Green’s formula:

〈dω, η〉ΛpL2 = 〈ω, d∗η〉Λp−1L2 +
∫
∂Ω
〈ω, i~nη〉Λp dµ∂Ω . (3.8)

Moreover, since ∆
b,(p)
f has a compact resolvent, the self-adjoint operator

∆̃
b,(p)
f on (Kb,(p))⊥ := Ker (∆

b,(p)
f )⊥,

∆̃
b,(p)
f := ∆

b,(p)
f

∣∣∣
(Kb,(p))⊥

: D(∆
b,(p)
f ) ∩ Ker (∆

b,(p)
f )⊥ −→ Ker (∆

b,(p)
f )⊥ ,

is invertible and hence any u ∈ ΛpL2 has the form

u = πf,bu + ∆
b,(p)
f v = πf,bu + df

Ä
d∗fv
ä

+ d∗f
Ä
dfv
ä
, (3.9)

for some uniquely determined v ∈ D(∆
b,(p)
f ) ∩ (Kb,(p))⊥, denoting by πf,b =

π
(p)
f,h,b the orthogonal projection on (Kb,(p))⊥. This implies (3.3).

Let us now prove (3.4) and take then u ∈ D(∆
b,(p)
f ). It holds

πRb,(p) ∆
b,(p)
f u = df

Ä
d∗fu
ä

and πR∗,b,(p) ∆
b,(p)
f u = d∗f

Ä
dfu
ä

(3.10)

and, according to (3.9), we have moreover

πRb,(p)u = df
Ä
d∗fv
ä

and πR∗,b,(p)u = d∗f
Ä
dfv
ä

(3.11)

19



where v =
Ä
∆̃

b,(p)
f

ä−1
(u − πf,bu) ∈ D(∆

b,(p)
f ) ∩ (Kb,(p))⊥. Using now iv) of

Proposition 3.2, we have for every z ∈ R, z < 0,

df d
∗
f

Ä
∆

b,(p)
f − z

ä−1
(u− πf,bu) =

Ä
∆

b,(p)
f − z

ä−1
df d

∗
f (u− πf,bu)

−→
z→0−

Ä
∆̃

b,(p)
f

ä−1
df d

∗
f (u− πf,bu). (3.12)

Since moreover
Ä
∆

b,(p)
f −z

ä−1
(u−πf,bu) = v+z

Ä
∆

b,(p)
f −z

ä−1
v, it also holds

df d
∗
f

Ä
∆

b,(p)
f − z

ä−1
(u− πf,bu) = df d

∗
f v + z

Ä
∆

b,(p)
f − z

ä−1
df d

∗
f v

−→
z→0−

df
Ä
d∗f v
ä

(3.13)

and we deduce from (3.12) and (3.13) that

df d
∗
f v ∈ D(∆

b,(p)
f ) and ∆

b,(p)
f df d

∗
f v = df d

∗
f (u− πf,bu)

= df
Ä
d∗f u

ä
,

which proves the first equality of (3.4) according to (3.10) and (3.11). The
second equality of (3.4) is proven similarly after establishing the analogous
versions of (3.12) and (3.13) with df d

∗
f replaced by d∗f df . The last part of

Proposition 3.3 then follows easily, using again iv) of Proposition 3.2 as in
(3.12) and (3.13) to obtain (3.5) and (3.6).

4 Proofs of the main results

4.1 Proof of Theorem 1.1

We first prove Theorem 1.1 in the case f = 0. As shown in [23], it implies
in particular Gaffney’s inequalities which state the equivalence between the
norms ‖ · ‖ΛpH1 and

»
D(p)(·) + ‖ · ‖2

ΛpL2 for tangential or normal p-forms.

Theorem 4.1. Let ω ∈ ΛpH1
b with b ∈ {n, t}. We have then the identity

‖ω‖2
Ḣ1 = D(p)(ω)− 〈Ric(p)ω, ω〉L2 −

∫
∂Ω
〈K(p)

b ω, ω〉Λp dµ∂Ω ,

where Ric(p) ∈ L(ΛpT ∗Ω) and K(p)
b ∈ L(ΛpT ∗Ω

∣∣∣
∂Ω

) have been respectively

defined in (2.9) and in (2.13)–(2.16), and

‖ · ‖2
Ḣ1 := ‖ · ‖2

H1 − ‖ · ‖2
L2 .
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The statement of Theorem 4.1 is essentially the statement of [23, Theo-
rem 2.1.5] and the content of its proof in the case tω = 0, and is closely
related to the statement of [23, Theorem 2.1.7] in the case nω = 0. We have
nevertheless to compute the exact form of K(p)

n and especially of K(1)
n in the

latter case. We also give a complete proof in the case tω = 0 for the sake of
clarity.

Proof. By density of ΛpC∞b in ΛpH1
b for b ∈ {t,n}, it is sufficient to prove

Theorem 4.1 for ω ∈ ΛpC∞b . Moreover, it follows from the Weitzenböck
formula (2.6) and from the Green’s formulas for the Hodge and Bochner
Laplacians,

D(p)(ω) = 〈∆ω, ω〉ΛpL2 +
∫
∂Ω

Ä
〈i~ndω, ω〉Λp − 〈d∗ω, i~nω〉Λp−1

ä
dµ∂Ω (4.1)

and

‖ω‖2
ΛpḢ1 = 〈∆Bω, ω〉ΛpL2 +

∫
∂Ω
〈∇~nω, ω〉Λpdµ∂Ω , (4.2)

that for any ω ∈ ΛpC∞, the expression

‖ω‖2
ΛpḢ1 −D(p)(ω) + 〈Ric(p)ω, ω〉ΛpL2

reduces to the boundary integral∫
∂Ω

Ä
〈∇~nω, ω〉Λp − 〈i~ndω, ω〉Λp + 〈d∗ω, i~nω〉Λp−1

ä
dµ∂Ω

and we have then just to check that for any ω in ΛpC∞b , it holds

〈K(p)
b ω, ω〉Λp = 〈i~ndω, ω〉Λp − 〈d∗ω, i~nω〉Λp−1 − 〈∇~nω, ω〉Λp , (4.3)

where K(p)
b ∈ L(ΛpT ∗Ω

∣∣∣
∂Ω

) has been defined in (2.13)–(2.16).

Case nω = 0 :

We have then 〈d∗ω, i~nω〉Λp = 0 and

〈i~ndω, ω〉Λp − 〈∇~nω, ω〉Λp = 〈i~ndω −∇~nω, ω〉Λp = 〈t
Ä
i~ndω −∇~nω

ä
, ω〉Λp ,

the last equality following again from nω = 0. It is then sufficient to show
that for any ω in ΛpC∞n , it holds

K(p)
n ω = t

Ä
i~ndω −∇~nω

ä
. (4.4)
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Taking now p tangential vector fields X1, . . . , Xp and denoting for simplicity
~n by X0, we deduce from (2.29) that:

(iX0dω −∇X0ω)(X1, . . . , Xp) = dω(X0, X1, . . . , Xp)− (∇X0ω)(X1, . . . , Xp)

=
p∑

k=1

(−1)k(∇Xk
ω)(X0, . . . , Ẋk, . . . , Xp) .

Moreover, using (2.26), the tangentiality of X1, . . . , Xp, and nω = 0, we have
for any k ∈ {1, . . . , p}:

(∇Xk
ω)(X0, . . . , Ẋk, . . . , Xp) = ∇Xk

Ä
ω(X0, . . . , Ẋk, . . . , Xp)

ä
−

∑
k 6=`=0,...,p

ω(X0, . . . ,∇Xk
X`, . . . , Ẋk, . . . , Xp)

= − ω(∇Xk
X0, . . . , Ẋk, . . . , Xp)

= (−1)kω(X1, . . . ,∇Xk
X0, . . . , Xp) .

Hence, it holds for any ω ∈ ΛpC∞n and p tangential vector fields X1, . . . , Xp,

(i~ndω −∇~nω)(X1, . . . , Xp) =
p∑

k=1

ω(X1, . . . ,∇Xk
~n, . . . , Xp) ,

the r.h.s. being nothing but
Ä
K(p)

n ω
ä
(X1, . . . , Xp) according to (2.13) and

(2.14). This proves (4.4) and then concludes the proof in the case nω = 0.

Case tω = 0 :

We have here 〈i~ndω, ω〉Λp = 0 and from (4.3), we are then led to compute
more precisely

〈d∗ω, i~nω〉Λp−1 + 〈∇~nω, ω〉Λp = 〈~n[ ∧ d∗ω +∇~nω, ω〉Λp

= 〈n
Ä
~n[ ∧ d∗ω +∇~nω

ä
, ω〉Λp

= 〈~n[ ∧ (d∗ω + i~n∇~nω), ω〉Λp ,

the second to last equality following from tω = 0 and the last one from
nω = ~n[ ∧ (i~nω). To conclude, it then remains to show that for any ω in
ΛpC∞t , it holds

K(p)
t ω = −n

Ä
~n[ ∧ d∗ω +∇~nω

ä
= −~n[ ∧ (d∗ω + i~n∇~nω) . (4.5)

Denoting by (E1, . . . , En) a local orthonormal frame such that En = ~n on ∂Ω
and using (2.30), we get

−n
Ä
~n[ ∧ d∗ω +∇~nω

ä
= ~n[ ∧

Ä n−1∑
i=1

iEi
∇Ei

ω
ä
.
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Taking now p− 1 tangential vector fields X1, . . . , Xp−1, we then have:

−n
Ä
~n[ ∧ d∗ω +∇~nω

ä
(~n,X1, . . . , Xp−1) =

n−1∑
i=1

(∇Ei
ω)(Ei, X1, . . . , Xp−1) ,

where, for any i ∈ {1, . . . , n−1}, using (2.26), the tangentiality of the vector
fields X1, . . . , Xp−1, tω = 0, and denoting for simplicity Ei by X0,

(∇X0ω)(X0, X1, . . . , Xp−1) = ∇X0

Ä
ω(X0, X1, . . . , Xp−1)

ä
−

p−1∑
`=0

ω(X0, . . . ,∇X0X`, . . . , Xp−1)

= −
p−1∑
`=0

ω(X0, . . . , (∇X0X`)
⊥, . . . , Xp−1)

= −
p−1∑
`=0

ω(X0, . . . ,K2(X0, X`), . . . , Xp−1)

= −
ÅÄ
K2(X0, ·)

ä(p)
ω
ã

(X0, . . . , Xp−1) ,

where the notation
Ä
K2(X0, ·)

ä(p)
ω has been defined at the line following

(2.16). Consequently, it holds for any ω ∈ ΛpC∞t and p− 1 tangential vector
fields X1, . . . , Xp−1,

−n
Ä
~n[ ∧ d∗ω +∇~nω

ä
(~n,X1, . . . , Xp−1)

= −
n−1∑
i=1

ÅÄ
K2(Ei, ·)

ä(p)
ω
ã

(Ei, X1, . . . , Xp−1)

=
Ä
K(p)

t ω
ä
(~n,X1, . . . , Xp−1) ,

which proves (4.5) and concludes the proof of Theorem 4.1.

We end up this subsection with the proof of Theorem 1.1.

Proof of Theorem 1.1. According to (2.23), (2.20), Lemma 3.1, and to The-
orem 4.1, we have just to show the identity

‖efω‖2
ΛpḢ1(e−2fdµ)

= ‖ω‖2
ΛpḢ1 + 〈(|∇f |2 + ∆f)ω, ω〉ΛpL2

+
∫
∂Ω
〈ω, ω〉Λp ∂nf dµ∂Ω . (4.6)

Let now (Uj)j∈{1,...,K} be any nice cover of Ω with associated local orthonormal
frames (E1, . . . , En) (we drop the dependence on j to lighten the notation)
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and a subordinated partition of unity (ρj)j∈{1,...,K}. We have then the relation
(see [23, p. 31] for more details about the H1 norm):

‖efω‖2
ΛpḢ1(e−2fdµ)

=
K∑
j=1

n∑
i=1

∫
Uj

ρj
∥∥∥e−f∇Ei

(efω)
∥∥∥2

Λp
dµ .

Moreover, the relation e−f∇Ei
( ef · ) = (∇Ei

f) · +∇Ei
( · ) implies∥∥∥e−f∇Ei

(efω)
∥∥∥2

Λp
=
∥∥∥∇Ei

ω
∥∥∥2

Λp
+
∥∥∥(∇Ei

f)ω
∥∥∥2

Λp
+ 2〈∇Ei

ω, (∇Ei
f)ω〉Λp

so according to (4.6), we are simply led to prove that

2
K∑
j=1

n∑
i=1

ρj

∫
Uj

〈∇Ei
ω, (∇Ei

f)ω〉Λpdµ = 〈(∆f)ω, ω〉L2 +
∫
∂Ω
‖ω‖2

Λp ∂nf dµ∂Ω .

To conclude, we use the Green’s formula (3.8) and the formula (2.30) for the
codifferential which give∫

∂Ω
‖ω‖2

Λp ∂nf dµ∂Ω = −
∫

Ω
d∗
Ä
‖ω‖2

Λp df
ä
dµ

=
K∑
j=1

n∑
i=1

∫
Uj

ρj iEi
∇Ei

Ä
‖ω‖2

Λp df
ä
dµ

=
K∑
j=1

n∑
i=1

∫
Uj

ρj

Å
2〈∇Ei

ω, ω〉Λpdf(Ei)

+ ‖ω‖2
Λp(∇Ei

df)(Ei)
ã
dµ

= 2
K∑
j=1

n∑
i=1

∫
Uj

ρj〈∇Ei
ω, (∇Ei

f)ω〉dµ− 〈(∆f)ω, ω〉L2 .

This implies (4.6) and then concludes the proof of Theorem 1.1.

4.2 Proof of Theorem 1.2

We first prove 1.i) and then consider p > 0 and ω ∈ Λp−1H1
n(dν) such that

d∗V ω = 0. Let us also consider the corresponding form on the flat space:

η := e−f ω where f :=
V

2
.

We have then in particular η ∈ Λp−1H1
n and d∗fη = 0. Note also that K(p)

n ≥ 0

and Ric(p) + 2 Hess(p)f > 0 together with Theorem 1.1 imply that

∆
n,(p)
f ≥ Ric(p) + 2 Hess(p)f > 0 (4.7)
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and therefore that 0 ∈ %(∆
n,(p)
f ). As already explained in the introduction

(see (1.2) there), the trick is to use now the following relation which results
easily from d∗fη = 0, (3.7), (3.5), and (3.6):

‖ η − πf,nη ‖2
L2 = 〈 (∆n,(p)

f )−1 df (η − πf,nη) , df (η − πf,nη) 〉L2

= 〈 (∆n,(p)
f )−1 dfη , dfη 〉L2 , (4.8)

where πf,n = π
(p)
f,n denotes the orthogonal projection on Ker (∆

n,(p)
f ). The

estimate to prove involving ω = ef η is then a simple consequence of (4.7)
and (4.8) according to the unitary equivalence

L
n,(p)
V = ef ∆

n,(p)
f e−f where f =

V

2
.

The proof of 1.ii) is completely similar as well as the proofs of 2.i) and 2.ii).

4.3 Proof of Corollary 1.4

This proof is similar to the previous one and we only prove it in the nor-
mal case, the tangential case being completely analogous. In order to im-
prove the latter result, we want to derive an estimate of the type (4.7) with

∆
n,(1)
f replaced by the self-adjoint unbounded operator ∆

n,(1)
f

∣∣∣
Ran df

defined

in Proposition 3.3. To do so, we will in particular make use of the nonnega-
tive term ‖ef · ‖2

Ḣ1(e−2fdµ)
of the integration by part formula (1.13) stated in

Theorem 1.1.

Let us then consider ω ∈ D(L
n,(0)
V ) = {u ∈ H2 ∩H1

n(dν) s.t. ndu = 0 on ∂Ω}
and its corresponding form on the flat space

η := e−fω where f :=
V

2

which consequently belongs to D(∆
n,(0)
f ). Denoting by (E1, . . . , En) a local

orthonormal frame on U ⊂ Ω, we deduce from the Cauchy-Schwarz inequality
the following relations satisfied by the integrand of ‖efdfη‖2

Ḣ1(e−2fdµ)
a.e. on

U and for every N such that 1
N
∈ [−∞, 1

n
) or N = n if f is constant:

n∑
i=1

∥∥∥e−f∇Ei
(ef dfη)

∥∥∥2

Λ1
≥ 1

n

Ä
e−f ∆(0) efη

ä2
=

1

n

Ä
∆

(0)
f η − 2 〈df, dfη〉Λ1

ä2
≥ 1

N

Ä
∆

(0)
f η
ä2 − 4

N − n
df ⊗ df(dfη, dfη) .
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This implies, after integration on Ω:

‖efdfη‖2
Ḣ1(e−2fdµ)

+
4

N − n

∫
Ω
df ⊗ df(dfη, dfη) dµ

≥ 1

N
‖∆(0)

f η‖2
L2 =

1

N
D(1)
f (dfη) . (4.9)

Moreover, K(1)
n ≥ 0 and

Ric2f,N := Ric + 2 Hess f − 4

N − n
df ⊗ df > 0

together with Theorem 1.1 and (4.9) imply that

(1− 1

N
)∆

n,(1)
f

∣∣∣
Ran df

≥ Ric2f,N > 0 . (4.10)

The estimate to prove is then a simple consequence of (4.10) and of the
relation

‖ η − πf,nη ‖2
L2 = 〈 (∆n,(1)

f

∣∣∣
Ran df

)−1 df (η − πf,nη) , df (η − πf,nη) 〉L2 (4.11)

valid for any η ∈ Λ0H1
n = H1(Ω) and resulting from (3.7), (3.5), and (3.6).
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