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On Witten Laplacians and Brascamp - Lieb’s

inequality on manifolds with boundary

Dorian Le Peutrec∗

July 28, 2016

Abstract

In this paper, we derive from the supersymmetry of the semiclas-
sical Witten Laplacian Brascamp -Lieb’s type inequalities for general
differential forms on compact Riemannian manifolds with boundary.
In addition to the supersymmetry, our results essentially follow from
suitable decompositions of the quadratic forms associated with the
Neumann and Dirichlet self-adjoint realizations of the Witten Lapla-
cian. They moreover imply the usual Brascamp - Lieb’s inequality and
its generalization to compact Riemannian manifolds without bound-
ary.

MSC 2010: 35A23, 81Q10, 53C21, 58J32, 58J10.
Keywords: Brascamp - Lieb’s inequality, Witten Laplacian, Riemannian man-
ifolds with boundary, Supersymmetry.

1 Introduction

1.1 Context and aim of the paper

Let V ∈ C2(Rn,R) be a strictly convex function such that e−V ∈ L1(Rn)

and let ν be the probability measure defined by dν := e−V
∫

Rn e−V dx
dx. The clas-

sical Brascamp - Lieb’s inequality proven in [BrLi] states that every smooth
compactly supported function ω satisfies the estimate

∫

Rn

∣

∣

∣ω −
Ä

∫

Rn
ω dν

ä

∣

∣

∣

2
dν ≤

∫

Rn

Ä

Hess V
ä−1

(∇ω,∇ω) dν . (1.1)
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This inequality and suitable variants have since been e.g. used in works such
as [HeSj,Sjö,NaSp,Hel,BJS,BaMø,BaMø2] studying correlation asymptotics
in statistical mechanics. The latter works exploit in particular crucially rela-
tions of the following type and which at least go back to the work of Helffer
and Sjöstrand [HeSj]:

∥

∥

∥ η − 〈η,
e−

V
2

‖e−
V
2 ‖

〉
e−

V
2

‖e−
V
2 ‖

∥

∥

∥

2
= 〈 (∆(1)

V
2

)−1
Ä

∇V η
ä

, ∇V η 〉, (1.2)

where η ∈ C∞
c (Rn), 〈·, ·〉 and ‖ · ‖ stand for the usual L2(dx) inner product

and norm, ∇V := ∇ + ∇V
2
and ∆

(1)
V
2

is the Witten Laplacian acting on

vector fields (or equivalently on 1-forms) which is given by

∆
(1)
V
2

:= ∆
(0)
V
2

⊗ Id + Hess V =
Ä

−∆+ |∇
V

2
|2−∆

V

2

ä

⊗ Id + Hess V . (1.3)

In the last relation,

∆
(0)
V
2

:= −∆+ |∇
V

2
|2−∆

V

2
=
Ä

−div +∇
V

2

äÄ

∇+∇
V

2

ä

= ∇∗
V ∇V (1.4)

denotes the Witten Laplacian acting on functions (or equivalently on 0-
forms). The Witten Laplacian, initially introduced in [Wit], is more generally
defined on the full algebra of differential forms and is nonnegative and es-
sentially self-adjoint (when acting on smooth compactly supported forms) on
the space of L2(dx) differential forms. It is moreover supersymmetric, which
essentially amounts, when restricting our attention to the interplay between
∆

(0)
V
2

and ∆
(1)
V
2

, to the intertwining relation

∀ η ∈ C∞
c (Rn) , ∇V ∆

(0)
V
2

η = ∆
(1)
V
2

∇V η ,

which enables to prove relations of the type (1.2) (when ∆
(1)
V
2

is invertible).

The nonnegativity of ∆
(0)
V
2

together with the relations (1.2) and (1.3) then

easily leads to (1.1) when V is strictly convex (at least formally) taking fi-

nally ω := e
V
2 η. To connect to some spectral properties of ∆

(0)
V
2

, the relation

(1.2) together with the lower bound ∆
(1)
V
2

≥ c for some c > 0 – which is in

particular satisfied if Hess V ≥ c – implies, according to the writing (1.4), a

spectral gap greater or equal to c for ∆
(0)
V
2

(its kernel being Span{e−
V
2 } as it

can be seen from (1.4)). In addition to the already mentionned [Sjö,Hel] mak-
ing extra assumptions on V , we refer especially to the very complete [Joh]

2



for precise statements and proofs in relation with the above discussion.

More generally, in the case of a Riemannian manifold without boundary Ω,
it is also well known that an inequality of the type (1.1) holds if one replaces
Hess V (and the condition Hess V > 0 everywhere) by the following quadratic
form, sometimes called the Bakry - Émery (- Ricci) tensor,

Ric + Hess V (and if we assume its strict positivity everywhere) ,

Ric denoting the Ricci tensor. We refer for example to [BGL, Theorem 4.9.3]
for a precise statement whose proof relies on the supersymmetry of the coun-
terpart of the Witten Laplacian in the weighted space L2(Ω, e−V dVolΩ),
sometimes called the weighted Laplacian and more precisely defined when
acting on functions by

L
(0)
V := e

V
2

Ä

−∆+ |∇
V

2
|2 −∆

V

2

ä

e−
V
2 = −∆+∇V · ∇ .

This operator, unitarily equivalent to ∆
(0)
V
2

, is an important model of the

Bakry - Émery theory of diffusion processes and we refer especially in this
direction to the pioneering work of Bakry and Émery [BaÉm] or to the
book [BGL] for an overview of the concerned literature. On its side, the
Bakry - Émery tensor Ric+Hess V – named after [BaÉm] but first introduced
by Lichnerowicz in [Lic] – is the natural counterpart of the Ricci tensor Ric
in the weighted Riemannian manifold (Ω, e−V dVolΩ) and we refer for exam-
ple to [Lic, Lot] for some of its geometric properties. Let us also mention
e.g. [LoVi] extending this notion to metric measure spaces.

In this paper, we derive from the supersymmetry of the Witten Laplacian
Brascamp - Lieb’s type inequalities for general differential forms on a Rieman-
nian manifold with a boundary. Being interested in possible applications to
semiclassical spectral theory, we will work with the slightly more general
semiclassical Witten Laplacian also depending on a positive parameter h. In
addition to the supersymmetry, our results essentially follow from suitable
decompositions of the quadratic forms associated with the self-adjoint Neu-
mann and Dirichlet realizations of the semiclassical Witten Laplacian stated
in Theorem 1.2. When restricting to h = 1 and to the interplay between 0-
and 1-forms, they imply in particular the already mentioned results in the
case of Rn or of a compact manifold with empty boundary as well as some
results recently obtained by Kolesnikov and Milman in [KoMi] in the case of
a compact manifold with a boundary (see indeed Corollaries 1.4 and 1.5 and
the corresponding remarks).
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1.2 Notions of Riemannian geometry

We now introduce the concepts of Riemannian geometry which will be needed
to state properly our further hypotheses and results. This part is rather long
since we made the choice to define these classical notions quite precisely in
order to keep this article comprehensible for readers not familiar with ge-
ometry. The following objects are essentially defined according to the PDE
framework developed in [Sch] and we refer especially to Sections 1.1 and 1.2
there for further details and references, the notation adopted being neverthe-
less slightly different.

We work with a smooth n-dimensional oriented connected and compact Rie-
mannian manifold (Ω, g = 〈·, ·〉) with boundary ∂Ω. The cotangent (resp.
tangent) bundle of Ω is denoted by T ∗Ω (resp. TΩ) and the exterior fiber bun-
dle by ΛT ∗Ω = ⊕n

p=0Λ
pT ∗Ω. The fiber bundles T ∗∂Ω, T∂Ω, and ΛT ∗∂Ω =

⊕n−1
p=0Λ

pT ∗∂Ω are defined similarly.

The (bundle) scalar product on ΛpT ∗Ω inherited from g is denoted by 〈·, ·〉Λp.
Let us recall that 〈·, ·〉Λ1 is defined by

〈ω, η〉Λ1 := 〈ω♯, η♯〉 ,

where, for any ξ ∈ T ∗Ω, ξ♯ is the element of TΩ satisfying, for any X ∈ TΩ,

〈ξ♯, X〉 := ξ(X) . (1.5)

The map ξ 7→ ξ♯ is an isomorphism from T ∗Ω into TΩ and we denote by TΩ ∋
X 7→ X♭ ∈ T ∗Ω its inverse isomorphism. The inner product 〈·, ·〉Λp is then
defined as the bilinear form satisfying the following relation on decomposable
p-forms:

〈ω1 ∧ · · · ∧ ωp, η1 ∧ · · · ∧ ηp〉Λp := det
Ä

〈ωi, ηj〉Λ1

ä

1≤i,j≤n
.

The space of C∞, L2 , etc. sections of any of the above fiber bundles E,
over O = Ω or O = ∂Ω, are respectively denoted by C∞(O,E), L2(O,E),
etc.. The more compact notation ΛpC∞, ΛpL2, etc. will also be used instead
of C∞(Ω,ΛpT ∗Ω), L2(Ω,ΛpT ∗Ω), etc. and we will denote by L(ΛpT ∗Ω) the
space of smooth bundle endomorphisms of ΛpT ∗Ω. The L2 spaces are those
associated with the respective unit volume forms µ and µ∂Ω for the Rieman-
nian structures on Ω and on ∂Ω.
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The notion of local orthonormal frame (on Ω or ∂Ω) will be frequently used
in the sequel. By local orthonormal frame on (say) Ω, we mean a family
(E1, . . . , En) of smooth sections of TΩ defined on an open set U ⊂ Ω such
that

∀ i, j ∈ {1, . . . , n} , ∀x ∈ U , 〈Ei, Ej 〉x = δi,j .

According for example to [Sch, Definition 1.1.6] and to the related remarks,
it is always possible to cover Ω with a finite family (since Ω is compact) of
opens sets U ’s such that there exists a local orthonormal frame (E1, . . . , En)
on each U . Such a covering is called a nice cover of Ω.

The outgoing normal vector field will be denoted by ~n and the orientation is
chosen such that

µ∂Ω = i~n µ ,

where i denotes the interior product. Owing to the Collar Theorem stated
in [Sch, Theorem 1.1.7], the vector field ~n ∈ C∞(∂Ω, TΩ

∣

∣

∣

∂Ω
) can be extended

to a smooth vector field on a neighborhood of the boundary ∂Ω. Moreover,
taking maybe a finite refinement of a nice cover of Ω as defined previously,
one can always assume that the local orthonormal frame (E1, . . . , En) corre-

sponding to any of its elements U meeting ∂Ω is such that En

∣

∣

∣

∂Ω
= ~n. In

particular, the vector fields E1, . . . , En−1 are such that

∀ j ∈ {1, . . . , n− 1} , Ej

∣

∣

∣

∂Ω
∈
Ä

TΩ
∣

∣

∣

∂Ω

äT
= T∂Ω .

Here, with a slight abuse of notation, we have made the identification between
the space of tangential vector fields

Ä

TΩ
∣

∣

∣

∂Ω

äT
:= {X ∈ TΩ

∣

∣

∣

∂Ω
such that 〈X,~n〉 = 0}

and the tangent bundle of ∂Ω (see [Sch, pp. 15–16] for more details).

For any ω ∈ ΛpC∞, the tangential part of ω on ∂Ω is the form tω ∈
C∞(∂Ω,ΛpT ∗Ω

∣

∣

∣

∂Ω
) defined by:

∀σ ∈ ∂Ω , (tω)σ(X1, . . . , Xp) := ωσ(X
T
1 , . . . , X

T
p ) ,

with the decomposition Xi = XT
i ⊕ x⊥

i ~nσ into the tangential and normal
components to ∂Ω at σ. More briefly, it holds

tω = i~n(~n
♭ ∧ ω) .

The normal part of ω on ∂Ω is then defined by:

nω := ω|∂Ω − tω = ~n♭ ∧ (i~nω) ∈ C∞(∂Ω,ΛpT ∗Ω
∣

∣

∣

∂Ω
).
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We denote by d the exterior differential on C∞(Ω,ΛT ∗Ω) and by d∗ its formal
adjoint with respect to the L2 scalar product inherited from the Riemannian
structure. We recall that they satisfy the relation d2 = (d∗)2 = 0. The Hodge
Laplacian is then defined on C∞(Ω,ΛT ∗Ω) by

∆ := ∆H := d∗d+ dd∗ = (d+ d∗)2 . (1.6)

For a (real) smooth function f and a smooth vector field X , we will use the
notation

∇Xf := X · f = df(X) ,

the normal derivative of f along the boundary being in particular defined by

∂nf := 〈∇f, ~n 〉 = ∇~nf .

We will also denote by ∇ : C∞(Ω, TΩ)×C∞(Ω, TΩ) → C∞(Ω, TΩ) the Levi -
Civita connection on Ω and by∇X(·) the covariant derivative (in the direction
of X) of vector fields as well as the induced covariant derivative on ΛpT ∗Ω
(see Subsection 2.1 for more details).

The second covariant derivative (acting for example on TΩ and on ΛpT ∗Ω)
is then the bilinear mapping on TΩ defined, for X, Y ∈ C∞(Ω, TΩ) by

∇2
X,Y := ∇X∇Y −∇∇XY .

When f is a smooth function, ∇2
X,Y f is simply the Hessian of f . It is in this

case a symmetric bilinear form and has the simpler writing

Hess f(X, Y ) := ∇2
X,Y f = (∇X df)(Y ) = 〈∇X∇f, Y 〉 . (1.7)

The Bochner Laplacian ∆B on C∞(Ω,ΛT ∗Ω) is defined as minus the trace
of the bilinear mapping (X, Y ) 7→ ∇2

X,Y . More precisely, we have for any
ω ∈ C∞(Ω,ΛT ∗Ω):

∆B ω := −Tr
Ä

(X, Y ) 7−→ ∇2
X,Y ω

ä

, (1.8)

which implies that for any local orthonormal frame (E1, . . . , En) on U ⊂ Ω,
∆B is given on U by

∆B = −
n
∑

i=1

Ä

∇Ei
∇Ei

−∇∇Ei
Ei

ä

. (1.9)

The Hodge and Bochner Laplacians ∆(p) and ∆
(p)
B (the superscript (p) means

that we are considering their action on differential p-forms) are related by
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the Weitzenböck formula: there exists a smooth bundle symmetric endor-
morphism Ric(p) ∈ L(ΛpT ∗Ω) such that (see [Sch, p. 26] where the opposite
convention of sign is adopted)

∆
(p)
B = ∆(p) − Ric(p) . (1.10)

This operator vanishes on 0-forms (i.e. on functions) and Ric(1) is the element
of L(Λ1T ∗Ω) canonically identified with the Ricci tensor Ric (see below for the
precise definition of this identification). We recall that Ric is the symmetric
(0, 2)-tensor defined, for X, Y ∈ TΩ, by

Ric(X, Y ) := Tr
Ä

Z 7−→ R(Z,X)Y
ä

, (1.11)

where R denotes the Riemannian curvature tensor which is defined, for every
X, Y, Z ∈ TΩ, by

R(X, Y )Z :=
Ä

∇2
X,Y −∇2

Y,X

ä

Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z . (1.12)

The tensor Ric hence satisfies on any open set U ⊂ Ω where is given a local
orthonormal frame (E1, . . . , En):

Ric(X, Y ) =
n
∑

i=1

〈R(Ei, X)Y,Ei 〉 = −
n
∑

i=1

〈R(Ei, X)Ei, Y 〉 , (1.13)

the last line following from the relation 〈R(X, Y )Z, T 〉 = −〈R(X, Y )T, Z〉
for any X, Y, Z, T ∈ TΩ. It is then canonically identified with a symmetric
bilinear form acting on T ∗Ω (i.e. a symmetric (2, 0)-tensor), still denoted by
Ric and defined by (see (1.5) for the meaning of T ∗Ω ∋ ω 7→ ω♯ ∈ TΩ)

Ric(ω, η) := Ric(ω♯, η♯) .

The latter symmetric bilinear form is then itself identified via 〈·, ·〉Λ1 with
the element of L(Λ1T ∗Ω) denoted by Ric(1). More precisely, we have for any
ω and η in T ∗Ω:

〈Ric(1)ω, η〉Λ1 := Ric(ω, η).

Remark 1.1. Denoting also by Ric the bundle symmetric endomorphism of
TΩ defined by 〈RicX, Y 〉 := Ric(X, Y ) (i.e. by RicX := −

∑n
i=1R(Ei, X)Ei

according to (1.13)), we have for any ω, η in T ∗Ω and X in TΩ,

Ric(1)ω(X) = 〈Ric(1)ω,X♭〉Λ1 = Ric(ω,X♭)

= Ric(ω♯, X)

= 〈ω♯,RicX〉 = ω(RicX) . (1.14)
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More generally, for any local orthonormal frame (E1, . . . , En) on U ⊂ Ω,
Ric(p) is defined on U for any p ∈ {1, . . . , n} by

Ä

Ric(p)ω
ä

(X1, . . . , Xp)

:= −
n
∑

i=1

k
∑

j=1

Å

Ä

R(Ei, Xj)
ä(p)

ω

ã

(X1, . . . , Xj−1, Ei, Xj+1, . . . , Xk) , (1.15)

where
Ä

R(Ei, Xj)
ä(1)

∈ L(Λ1T ∗Ω) is canonically identified with R(Ei, Xj) via
Å

Ä

R(Ei, Xj)
ä(1)

ω

ã

(X) = ω
Ä

R(Ei, Xj)X
ä

and

Ä

R(Ei, Xj)
ä(p)

=
Å

Ä

R(Ei, Xj)
ä(1)
ã(p)

,

where for any A ∈ L(Λ1T ∗Ω), (A)(p) is the element of L(ΛpT ∗Ω) satisfying
the following relation on decomposable p-forms:

(A)(p)
Ä

ω1 ∧ · · · ∧ ωp

ä

=
p

∑

i=1

ω1 ∧ · · · ∧ Aωi ∧ · · · ∧ ωp . (1.16)

We end up this part by recalling the definition of the second fundamental
form of ∂Ω ⊂ Ω and of related concepts. The second fundamental form K2

of ∂Ω ⊂ Ω is the bilinear mapping defined by

K2 :
T∂Ω × T∂Ω −→ TΩ

∣

∣

∣

∂Ω

(U, V ) 7−→ (∇UV )⊥ := 〈∇UV, ~n〉~n
. (1.17)

It is symmetric and the value of K2(U, V )
∣

∣

∣

σ
at σ ∈ ∂Ω only depends on the

values of the tangential fields Uσ and Vσ at that point. The shape operator
of ∂Ω ⊂ Ω is the bundle endomorphism K1 ∈ L(T∂Ω) defined by

∀U ∈ T∂Ω , K1(U) := −∇U ~n . (1.18)

It is then completely determined by K2 since it satisfies

∀ (U, V ) ∈ T∂Ω× T∂Ω , 〈K1(U), V 〉~n = K2(U, V ) .

The mean curvature of ∂Ω ⊂ Ω is defined as the trace of the bilinear mapping
(U, V ) 7→ 〈K2(U, V ), ~n〉 or equivalently as the trace of the shape operator K1.
We recall lastly that with our choice of orientation for ~n, Ω is locally convex
iff 〈K2(·, ·), ~n〉 is nonpositive.
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1.3 Witten and weighted Laplacians

For a (real) smooth function f and a (real) positive number h, the distorted
differential operators df,h and d∗f,h are defined on C∞(Ω,ΛT ∗Ω) by

df,h := e−f(x)/h (hd) ef(x)/h and d∗f,h := ef(x)/h (hd∗) e−f(x)/h , (1.19)

and the Witten Laplacian ∆f,h is defined on C∞(Ω,ΛT ∗Ω) similarly as the
Hodge Laplacian by

∆f,h = d∗f,hdf,h + df,hd
∗
f,h = (df,h + d∗f,h)

2 . (1.20)

The last equality simply follows from the property d2 = (d∗)2 = 0. Note that
d0,1, d

∗
0,1, and ∆0,1 are simply d, d∗, and ∆. Note also the supersymmetry

structure of the Witten Laplacian acting on the complex of differential forms:
for every u in C∞(Ω,ΛpT ∗Ω), it holds

∆
(p+1)
f,h d

(p)
f,hu = d

(p)
f,h∆

(p)
f,hu and ∆

(p−1)
f,h d

(p−1),∗
f,h u = d

(p−1),∗
f,h ∆

(p)
f,hu . (1.21)

The Witten Laplacian ∆
(p)
f,h extends in the distributional sense to an oper-

ator acting on the Sobolev space ΛpH2 and is nonnegative and self-adjoint
on the flat space ΛpL2 = ΛpL2(dµ) once endowed with appropriate Dirich-
let or Neumann type boundary conditions (see indeed [HeNi, Lep]). These

self-adjoint extensions are respectively denoted by ∆
t,(p)
f,h and ∆

n,(p)
f,h , their

respective domains being given by

D(∆
t,(p)
f,h ) =

¶

ω ∈ ΛpH2 , tω = 0 and td∗f,hω = 0 on ∂Ω
©

(1.22)

and

D(∆
n,(p)
f,h ) =

¶

ω ∈ ΛpH2 , nω = 0 and ndf,hω = 0 on ∂Ω
©

. (1.23)

For b ∈ {t,n}, the quadratic form associated with ∆
b,(p)
f,h is denoted by D

b,(p)
f,h .

Its domain is given by

ΛpH1
b
:=
¶

ω ∈ ΛpH1 , bω = 0 on ∂Ω
©

, (1.24)

and we have, for every ω ∈ ΛpH1
b
,

D
b,(p)
f,h (ω) := D

b,(p)
f,h (ω, ω) = 〈df,hω, df,hω〉Λp+1L2 +〈d∗f,hω, d

∗
f,hω〉Λp−1L2. (1.25)

More details about these self-adjoint realizations are given in Subsection 2.3.
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When acting on 0-forms, ∆f,h is the Schrödinger operator having the form
(we refer to Subsection 2.1 for more explanations)

∆
(0)
f,h = h2∆+ |∇f |2 + h∆f

and is, up to multiplication by h, unitarily equivalent to the Ornstein -

Uhlenbeck type operator acting on the weighted space L2(e−
2f
h dµ), some-

times referred to as the weighted Laplacian (or Bakry - Émery Laplacian) in
the literature (see e.g. [KoMi]),

L
(0)
V,h := h∆+∇V · ∇ where V = 2f . (1.26)

More precisely, it holds

∆
(0)
f,h = e−

V
2h hL

(0)
V,h e

V
2h where V = 2f .

The operator L
(0)
V,h has consequently a natural supersymmetric extension on

the algebra of differential forms, acting in the weighted space ΛL2(e−
2f
h dµ),

which is simply defined for any p ∈ {0, . . . , n} by

L
(p)
V,h :=

1

h
e

f

h ∆
(p)
f,h e

− f

h where V = 2f . (1.27)

To connect more precisely to the literature dealing with the Bakry - Émery
theory of diffusion processes (see [BGL] for an overview), the operators L

(0)
V,h

and L
(1)
V,h are related to the carré du champ operator of Bakry - Émery Γ and

to its iteration Γ2 via the relations
∫

Ω
Γ(ω) e−

2f
h dµ =

∫

Ω

Ä

L
(0)
V,h ω

ä

ω e−
2f
h dµ = h

∫

Ω
〈dω, dω〉Λ1 e−

2f
h dµ (1.28)

and
∫

Ω
Γ2(ω) e

− 2f
h dµ =

∫

Ω

Ä

L
(0)
V,h ω

ä2
e−

2f
h dµ = h

∫

Ω
〈L

(1)
V,h dω, dω〉Λ1e−

2f
h dµ, (1.29)

where ω is a smooth function supported in Ω\∂Ω (see in particular [BGL] for

many details and references about this notion). We denote moreover by L
t,(p)
V,h

and L
n,(p)
V,h the nonnegative self-adjoint unbounded operators on ΛpL2(e−

V
h dµ)

associated with ∆
t,(p)
f,h and ∆

n,(p)
f,h via (1.27).

Coming back to the Witten Laplacian, we have the following formula:

∆
(p)
f,h = h2(d+ d∗)2 + |∇f |2 + 2 hHess(p)f + h∆f . (1.30)

10



This relation is not very common in the semiclassical analysis literature when
Ω is not flat, where one finds generally the formula (2.10) given in Subsec-
tion 2.1 (see e.g. [HeNi,Lep] and references therein). It will thus be proven
there (see also [Jam] for another proof). Let us incidentally specify the sense
of (1.30). There, Hess(0)f = 0 and Hess(1)f is the element of L(Λ1T ∗Ω) canon-
ically identified with Hess f (see the lines below (1.13) for more details). More
precisely, we have for any ω and η in T ∗Ω,

〈Hess(1)f ω, η〉Λ1 = Hessf (ω, η) = Hessf (ω♯, η♯) ,

and Hess(p)f is the bundle symmetric endomorphism of ΛpT ∗Ω defined by

Hess(p)f :=
Ä

Hess(1)f
ä(p)

(see (1.16) for the meaning of (A)(p)) . (1.31)

Denoting also by Hessf the bundle symmetric endomorphism of TΩ defined
by 〈Hessf X, Y 〉 := Hessf(X, Y ) (i.e. by Hessf X = ∇X∇f), remark that
we have for any ω, η in T ∗Ω and X in TΩ, according to Remark 1.1,

Hess(1)f ω (X) = ω (Hessf X) .

In particular, Hess(p)f satisfies for any p ∈ {1, . . . , n} and ω ∈ ΛpT ∗Ω:

Hess(p)f ω(X1, . . . , Xp) =
p

∑

i=1

ω(X1, . . . ,Hessf Xi, . . . , Xp) . (1.32)

1.4 Statement of our results

We consider here f a smooth (real) function, V := 2f , and the probability
measure νh associated with V and h > 0 defined by

dνh :=
e−

V
h

∫

Ω e−
V
h dµ

dµ =
e−

2f
h

‖e−
f

h‖2L2

dµ .

We denote, for p ∈ {0, . . . , n}, by ΛpL2(dνh), Λ
pH1(dνh), 〈·, ·〉ΛpL2(dνh) and

‖ · ‖ΛpL2(dνh) the associated Lebesgue and Sobolev spaces, L2 scalar product

and L2 norm. For b ∈ {n, t}, the self-adjoint unbounded operators ∆
b,(p)
f,h

and L
b,(p)
V,h act respectively on ΛpL2 and on ΛpL2(dνh), the domain of ∆

b,(p)
f,h

being given in (1.22)–(1.23) and the one of L
b,(p)
V,h being easily deduced from

the latter thanks to the relation (1.27). We also denote by ΛpH1
b
(dνh) the set

of the ω ∈ ΛpH1(dνh) such that bω = 0 on ∂Ω, which is the domain of the

quadratic form associated with L
b,(p)
V,h according to (1.24) and (1.27). Since

we are working on a compact manifold, note that ΛpH1
b
(dνh) is nothing but

11



ΛpH1
b
(algebraically and topologically).

In addition to the material of Riemannian geometry already recalled pre-
viously, the following statements involve a smooth bundle endormophism
K

(p)
b

∈ L(ΛpT ∗Ω
∣

∣

∣

∂Ω
), where b ∈ {n, t}, determined by the second fundamen-

tal form K2 of ∂Ω ⊂ Ω defined in (1.17):

1. For any p ∈ {0, . . . , n}, K(p)
n

∈ L(ΛpT ∗Ω
∣

∣

∣

∂Ω
) vanishes on 0-forms and:

i) for any ω ∈ Λ1T ∗Ω, K(1)
n
ω is tangential and

(K(1)
n
ω)(XT + x⊥~n) = −ω

Ä

K1(X
T )
ä

= ω
Ä

∇XT ~n
ä

, (1.33)

where K1 is the shape operator defined in (1.18),

ii) for any p ∈ {1, . . . , n} and ω ∈ ΛpT ∗Ω, K(p)
n
ω is tangential and for

any XT
1 , . . . , X

T
p ∈ T∂Ω,

Ä

K(p)
n
ω
ä

(XT
1 , . . . , X

T
p ) =

Ä

(K(1)
n
)(p)ω

ä

(XT
1 , . . . , X

T
p ) , (1.34)

where the notation (A)(p) has been defined in (1.16).

2. For any p ∈ {0, . . . , n}, K
(p)
t ∈ L(ΛpT ∗Ω

∣

∣

∣

∂Ω
) vanishes on 0-forms and:

i) for any ω ∈ Λ1T ∗Ω, K
(1)
t ω is normal and

(K
(1)
t ω)(XT + x⊥~n) = −x⊥ Tr (K1)ω

Ä

~n
ä

, (1.35)

ii) for any p ∈ {1, . . . , n} and ω ∈ ΛpT ∗Ω, K
(p)
t ω is normal and for

any local orthonormal frame (E1, . . . , En) on U ⊂ Ω such that

En

∣

∣

∣

∂Ω
= ~n (with U ∩ ∂Ω 6= ∅) and XT

1 , . . . , X
T
p ∈ T∂Ω, we have

on U ∩ ∂Ω:

Ä

K
(p)
t ω

ä

(~n,XT
1 , . . . , X

T
p−1)

:= −
n−1
∑

i=1

Å

Ä

K2(Ei, ·)
ä(p)

ω

ã

(Ei, X
T
1 , . . . , X

T
p−1) , (1.36)

where
Ä

K2(Ei, ·)
ä(p)

=
Å

Ä

K2(Ei, ·)
ä(1)
ã(p)

and

Å

Ä

K2(Ei, ·)
ä(1)

ω

ã

(X) = ω
Ä

K2(Ei, X)
ä

.
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Note that the point 2.ii) is nothing but the statement of 2.i) when p = 1.

The different Brascamp - Lieb’s type inequalities stated in this work arise
from the following integration by parts formulas relating the quadratic forms
D

t,(p)
f,h and D

n,(p)
f,h (see (1.25)) with the geometry of Ω.

Theorem 1.2. Let ω ∈ ΛpH1
b
with b ∈ {n, t} and p ∈ {0, . . . , n}. It holds

D
b,(p)
f,h (ω) = h2 ‖e

f

hω‖2
Λp(H1−L2)(e

−
2f
h dµ)

+ h 〈
Ä

hRic(p) + 2Hess(p)f
ä

ω, ω〉ΛpL2

+ h2
∫

∂Ω
〈K

(p)
b
ω, ω〉Λp dµ∂Ω − 2 h 1t(b)

∫

∂Ω
〈ω, ω〉Λp ∂nf dµ∂Ω , (1.37)

where Ric(p), Hess(p)f , and K
(p)
b

have been respectively defined in (1.15),
(1.31), and (1.33)–(1.36), 1t(b) = 1 if b = t and 0 if not, and

‖ · ‖2
Λp(H1−L2)(e

−
2f
h dµ)

:= ‖ · ‖2
ΛpH1(e

−
2f
h dµ)

− ‖ · ‖2
ΛpL2(e

−
2f
h dµ)

.

When f = 0 and h = 1, we recover Theorems 2.1.5 and 2.1.7 of [Sch] which
were generalizing results in the boundaryless case due to Bochner for p = 1
and to Gallot and Meyer for general p’s (see [Boc, GaMe]). These results
allow in particular to draw topological conclusions on the cohomology of Ω
from its geometry. When the boundary ∂Ω is not empty, the relative and
absolute cohomologies of Ω (corresponding respectively to the Dirichlet and
Neumann boundary conditions) have to be considered (see [Sch, Section 2.6]).
To be more precise, note from Theorem 1.2 that for any p ∈ {0, . . . , n}, the
(everywhere) positivity of the quadratic form hRic(p) + 2Hess(p)f together

with the nonnegativity of K(p)
n

(resp. of K
(p)
t − 2 h ∂nf) implies the lower

bounds (in the sense of quadratic forms)

∆
b,(p)
f,h ≥ h2 Ric(p) + 2 hHess(p)f > 0 (b ∈ {t,n} )

for the Witten Laplacian and hence the triviality of its kernel which is iso-
morphic to the p-th absolute (resp. relative) cohomology group of Ω when
f = 0 (and h = 1).

Playing moreover with the supersymmetry, we get easily the following Bras-
camp - Lieb’s type inequalities for differential forms, where for any b ∈ {n, t}

and p ∈ {0, . . . , n}, πb = π
(p)
b
(h) denotes the orthogonal projection on

Ker (L
b,(p)
V,h ).

13



Theorem 1.3 (Brascamp - Lieb’s inequalities for differential forms).

1. Let p ∈ {0, . . . , n} and let us assume that K(p)
n

≥ 0 everywhere on ∂Ω
in the sense of quadratic forms. It then holds for every h > 0 such
that Ric

(p)
V,h := hRic(p)+Hess(p)V > 0 everywhere on Ω (in the sense of

quadratic forms):

i) if p > 0, we have for every ω ∈ Λp−1H1
n
(dνh) such that d∗V,hω = 0:

‖ω − πnω‖
2
Λp−1L2(dνh)

≤ h

∫

Ω

¨Ä

Ric
(p)
V,h

ä−1
dω , dω

∂

Λp
dνh ,

ii) if p < n, we have for every ω ∈ Λp+1H1
n
(dνh) such that dω = 0:

‖ω − πnω‖
2
Λp+1L2(dνh)

≤ h

∫

Ω

¨Ä

Ric
(p)
V,h

ä−1
d∗V

h
,1
ω , d∗V

h
,1
ω
∂

Λp
dνh .

2. It holds similarly for every h > 0 such that hK
(p)
t −∂nV ≥ 0 everywhere

on ∂Ω and Ric
(p)
V,h = hRic(p) +Hess(p)V > 0 everywhere on Ω:

i) if p > 0, we have for every ω ∈ Λp−1H1
t
(dνh) such that d∗V,hω = 0:

‖ω − πtω‖
2
Λp−1L2(dνh)

≤ h

∫

Ω

¨Ä

Ric
(p)
V,h

ä−1
dω , dω

∂

Λp
dνh ,

ii) if p < n, we have for every ω ∈ Λp+1H1
t
(dνh) such that dω = 0:

‖ω − πtω‖
2
Λp+1L2(dνh)

≤ h

∫

Ω

¨Ä

Ric
(p)
V,h

ä−1
d∗V

h
,1ω , d∗V

h
,1ω
∂

Λp
dνh .

We recall that the operators d∗V,h and d∗V
h
,1
appearing in the above theorem

are simply related by the equality d∗V,h = h d∗V
h
,1
(see indeed (1.19)).

In the case p = 1, the points 1.i) and 2.ii) of Theorem 1.3 take a simpler
form. Every ω ∈ Λ0H1(dνh) satisfies indeed d∗V,hω = 0. Moreover, we have
simply

Λ0H1
n
(dνh) = H1(dνh) and Ker (L

n,(p)
V,h ) = Span{1}

as well as

Λ0H1
t
(dνh) = H1

0 (dνh) and Ker (L
t,(p)
V,h ) = {0} .

Defining the mean of u ∈ L2(dνh) by 〈u〉νh := 〈u, 1〉L2(dνh), we then immedi-
ately get from Theorem 1.3 (together with (1.33) and (1.35)) the following

14



Corollary 1.4. i) Assume that the shape operator K1 is nonpositive ev-
erywhere on ∂Ω. It then holds for every h > 0 such that hRic +
Hess V > 0 everywhere on Ω: for every ω ∈ H1(dνh),

‖ω − 〈ω〉νh‖
2
L2(dνh)

≤ h

∫

Ω

Ä

hRic + Hess V
ä−1

(∇ω,∇ω) dνh . (1.38)

ii) Similarly it holds for any h > 0 such that −hTr (K1) − ∂nV ≥ 0 ev-
erywhere on ∂Ω and hRic + Hess V > 0 everywhere on Ω: for every
ω ∈ H1

0 (dνh),

‖ω‖2L2(dνh)
≤ h

∫

Ω

Ä

hRic + Hess V
ä−1

(∇ω,∇ω) dνh . (1.39)

When Ω \ ∂Ω appears to be a smooth open subset of Rn, Ric and Ric(p)

vanish and the latter corollary as well as Theorem 1.3 then write in a sim-
pler way just relying on a control from below of Hess V or Hess(p)V instead
of Ric

(p)
V,h = hRic(p) + Hess(p)V . One recovers in particular the usual Bras-

camp - Lieb’s inequality when Ω = Rn (even if Ω has been assumed compact
here, we recover the estimate (1.1) for a finite measure dν on Rn using the

first point of Corollary 1.4 for the family of measures
Å

dν
∣

∣

∣

B(0,N)

ã

N∈N
since

B(0, N) is convex; see also [Joh]). Note also that the curvature effects due
to Ric(p) become negligible at the semiclassical limit h → 0+: to apply Theo-
rem 1.3 for any small h > 0, it is necessary that Hess(p)V > 0. It is moreover
sufficient in the Neumann case if K(p)

n
≥ 0 everywhere on ∂Ω, and in the

Dirichlet case if ∂nV ≤ 0 everywhere on ∂Ω with moreover ∂nV < 0 where
K

(p)
t < 0. The point ii) of Corollary 1.4 is thus irrelevant if one is interested

in the semiclassical limit h → 0+.

The above results can be useful for semiclassical problems involving the low
spectrum of semiclassical Witten Laplacians (or equivalently of semiclassi-
cal weighted Laplacians) in large dimension, such as problems dealing with
correlation asymptotics, under some suitable (and uniform in the dimension)
estimates on the eigenvalues of Hess V (and then of Hess(p)V ) on some parts
of Ω. We refer for example to [HeSj,BJS,BaMø,BaMø2] or to the more re-
cent [DiLe] for some works exploiting this kind of estimates.

Let us lastly underline that to prove Theorem 1.3 (and then Corollary 1.4),
we only use the supersymmetry structure and the relation

∆
b,(p)
f,h ≥ h2Ric(p) + 2 hHess(p)f > 0

15



implied by Theorem 1.2 together with the hypotheses of Theorem 1.3. How-
ever, a control from below of the restriction ∆

b,(p)
f,h

∣

∣

∣

Ran df,h
for the points 1.i)

and 2.i) (resp. of ∆
b,(p)
f,h

∣

∣

∣

Ran d∗
f,h

for the points 1.ii) and 2.ii)) would actually

be sufficient as it can be seen by looking for example at the further relation
(3.6) generalizing (1.2) (see also Proposition 2.3 for more details about the
latter restrictions). The specific form of the nonnegativite first term in the
r.h.s. of the integration by parts formula (1.37) stated in Theorem 1.2 is
moreover not used, i.e. only its nonnegativity comes into play. When p = 1,
we can easily slightly improve Corollary 1.4 taking advantage of this nonneg-
ative term which allows to compare ∆

b,(1)
f,h

∣

∣

∣

Ran df,h
(or equivalently L

b,(1)
V,h

∣

∣

∣

Ran d
)

with the so-called N -dimensional Bakry - Émery tensor (depending also on
the semiclassical parameter h > 0 here)

RicV,h,N := hRic + Hess V −
1

(N − n) h
dV ⊗ dV , V = 2f , (1.40)

where N ∈ (−∞,+∞] and RicV,h,n is defined iff V is constant. The hy-
potheses of Corollary 1.4 require in particular the (everywhere) positivity of
RicV,h,+∞ and we have more generally the

Corollary 1.5. In the following, we assume that N ∈ (−∞, 0]∪ [n,+∞], or
equivalently that 1

N
∈ [−∞, 1

n
] with the convention 1

0
= −∞ and 1

+∞
= 0.

i) Assume that K1 ≤ 0 everywhere on ∂Ω. It then holds for every h > 0
such that RicV,h,N > 0 everywhere on Ω: for every ω ∈ H1(dνh),

‖ω − 〈ω〉νh‖
2
L2(dνh)

≤
N − 1

N
h

∫

Ω

Ä

RicV,h,N
ä−1

(∇ω,∇ω) dνh .

ii) Similarly it holds for any h > 0 such that that −hTr (K1) − ∂nV ≥ 0
everywhere on ∂Ω and RicV,h,N > 0 on Ω: for every ω ∈ H1

0 (dνh),

‖ω‖2L2(dνh)
≤

N − 1

N
h

∫

Ω

Ä

RicV,h,N
ä−1

(∇ω,∇ω) dνh .

When h = 1, we recover in particular the cases (1) and (2) of Theorem 1.2
in the recent article [KoMi] to which we also refer for more details and ref-
erences concerning the N -dimensional Bakry - Émery tensor and its connec-
tions with the Bakry - Émery operators Γ and Γ2 (see (1.28), (1.29), and
also [BGL]). The authors derive these formulas from the so-called general-
ized Reilly formula stated in Theorem 1.1 there, which somehow generalizes,
in the weighted space setting, the statement given by Theorem 1.2 when
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h = 1, p = 1, and ω has the form df,hη = df,1η, to arbitrary ω = df,1η which
are not assumed tangential nor normal.

Note lastly that Corollary 1.5 does not provide any improvement in compar-
ison with Corollary 1.4 at the semiclassical limit h → 0+ because of the term

1
(N−n) h

dV ⊗ dV involved in RicV,h,N (see indeed (1.40)).

1.5 Plan of the paper

In the following section, we recall general properties of the Witten Laplacian
(in Subsections 2.1 and 2.3) as well as different Green’s formulas (in Subsec-
tion 2.2). We prove in particular the writing (1.30) in Subsections 2.1 and

give the basic properties of the self-adjoint realizations ∆
t,(p)
f,h and ∆

n,(p)
f,h of

the Witten Laplacian in Subsection 2.3. In Section 3, we prove Theorem 1.2,
Theorem 1.3, and Corollary 1.5. After this long introduction where we re-
called quite precisely the different notions of Riemannian geometry in play,
these proofs are rather straightforward.

2 General properties

2.1 Witten Laplacians and Riemannian geometry

We recall that the Levi - Civita∇ connection it is the only bilinear application
satisfying the following properties (where f is a smooth function on Ω):

∇X(fY ) = f∇XY + df(X)Y = f∇XY + (∇Xf)Y ,

∇fXY = f∇XY ,

∇X 〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉 ,

and ∇XY −∇YX = [X, Y ] .

The induced covariant derivative ∇X on ΛpT ∗Ω is defined by

(∇Xω)(Y1, . . . , Yp) := ∇X

Ä

ω(Y1, . . . , Yp)
ä

−
p

∑

k=1

ω(Y1, . . . ,∇XYk, . . . , Yp) (2.1)

and satisfies in particular the relations

∇X

Ä

〈ω, η〉Λp

ä

= 〈∇Xω, η〉Λp + 〈ω,∇Xη〉Λp (2.2)

and
∇X

Ä

ω1 ∧ ω2

ä

= (∇Xω1) ∧ ω2 + ω1 ∧ (∇Xω2) . (2.3)
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The differential d and ∇ are moreover related by the relation

dω(X0, . . . , Xp) =
p

∑

k=0

(−1)k(∇Xk
ω)(X0, . . . , Ẋk, . . . , Xp) (2.4)

where ω ∈ ΛpT ∗Ω and the notation Ẋk means that Xk has been removed
from the parenthesis. Furthermore, if (E1, . . . , En) is a local orthonormal
frame on U ⊂ Ω, the codifferential d∗ is given there by

d∗ = −
n
∑

i=1

iEi
∇Ei

(2.5)

and we have in particular at the level of functions:

∆(0) = d∗d = −
n
∑

i=1

Ä

∇Ei
∇Ei

−∇∇Ei
Ei

ä

.

Note that with our convention, ∆(0) equals minus the usual Laplacian on the
flat space and that ∆

(0)
B = ∆(0) according to (1.9).

Using the following relations dealing with exterior and interior products (re-
spectively denoted by ∧ and i), gradients (denoted by ∇) and Lie derivatives
(denoted by L),

(df∧)∗ = i∇f as bounded operators in L2(Ω,ΛpT ∗Ω ) , (2.6)

df,h = hd+ df∧ , (2.7)

d∗f,h = hd∗ + i∇f , (2.8)

LX = d ◦ iX + iX ◦ d and L∗
X = d∗ ◦ (X♭ ∧ ·) +X♭ ∧ d∗, (2.9)

the Witten Laplacian has the simple form

∆f,h = h2(d+ d∗)2 + |∇f |2 + h
Ä

L∇f + L∗
∇f

ä

. (2.10)

We end up this part by proving the other writing of ∆f,h given in (1.30):

∆
(p)
f,h = h2(d+ d∗)2 + |∇f |2 + 2hHess(p)f + h∆f .

First, we deduce from (1.32) and from the relation relating LX and ∇X ,

(L
(p)
X ω)(X1, . . . , Xp) = (∇Xω)(X1, . . . , Xp) +

p
∑

i=1

ω(X1, . . . ,∇Xi
X, . . . , Xp)

which arises from (2.1), (2.4), and (2.9), the following equality:

L
(p)
∇f = ∇∇f + Hess(p)f . (2.11)
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Taking now a local orthonormal frame (E1, . . . , En) on an open set U ⊂ Ω,
we deduce from (2.3), (2.5), and (2.9) the following relations (on U):

L
∗,(p)
∇f ω =

n
∑

i=1

Å

(∇Ei
df) ∧ iEi

ω − df(Ei)∇Ei
ω −

Ä

∇Ei
df(Ei)

ä

ã

ω

= −∇∇f ω + (∆f)ω +
n
∑

i=1

(∇Ei
df) ∧ iEi

ω . (2.12)

Lasty, we have

n
∑

i=1

Ä

(∇Ei
df) ∧ iEi

ω
ä

(X1, . . . , Xp)

=
n
∑

i=1

p
∑

k=1

(−1)k+1(∇Ei
df)(Xk)(iEi

ω)(X1, . . . , Ẋk, . . . , Xp)

=
p

∑

k=1

(−1)k+1ω(Hess f Xk, X1, . . . , Ẋk, . . . , Xp)

=
p

∑

k=1

ω(X1, . . . ,Hess f Xk, . . . , Xp)

= (Hess(p)f ω)(X1, . . . , Xp) (2.13)

and the writing (1.30) for the Witten Laplacian then follows from (2.10) and
(2.11)–(2.13).

2.2 Stokes’ and Green’s formulas

We first recall here the Stokes’ formula which writes

∀ω ∈ ΛpC∞ ,

∫

Ω
dω =

∫

∂Ω
j∗ω =

∫

∂Ω
tω , (2.14)

where in the last term we made the identification between the canonical pull
back j∗ω = j∗(tω) ∈ T∂Ω associated with the embedding j : ∂Ω → Ω and

tω ∈ TΩ
∣

∣

∣

∂Ω
.

Following the presentation of [Sch], the Sobolev space ΛpHs = Hs(Ω,ΛpT ∗Ω)
(resp. Hs(∂Ω,ΛpT ∗∂Ω)) with integer order s is defined as the completion of
ΛpC∞ (resp. C∞(∂Ω,ΛpT ∗∂Ω)) by means of g (resp. j∗g), of local orthonor-
mal frames, and of the Levi - Civita connection on Ω (resp. ∂Ω). More details
are given in [Sch, Section 1.3] and we just recall from this reference the follow-
ing: the definition of the Hs norms, which is then subordinated to the (nice)
cover of Ω (or ∂Ω) chosen, depends therefore on this cover, even though the
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inherited Hs topology is independent of this cover. The H1 norm is in par-
ticular defined on (say) Ω, for a nice cover (Uj)j∈{1,...,K} with associated local
orthonormal frames (E1, . . . , En) (we drop the dependence on j to lighten
the notation) and a subordinated partition of unity (ρj)j∈{1,...,K}, by

‖ · ‖2ΛpH1 := ‖ · ‖2ΛpL2 +
K
∑

j=1

n
∑

i=1

∫

Uj

ρj〈∇Ei
·,∇Ei

·〉Λp dµ , (2.15)

the last expression being actually independent of the cover considered in the
H1 case as explained in [Sch, p. 31]. We will thus simply write in the sequel

‖ · ‖2Λp(H1−L2) := ‖ · ‖2ΛpH1 − ‖ · ‖2ΛpL2 =
n
∑

i=1

〈∇Ei
·,∇Ei

·〉ΛpL2 (2.16)

without mentioning the cover (Uj)j∈{1,...,K}, the subordinated partition of
unity (ρj)j∈{1,...,K} and the dependence of the associated local orthonormal
frames (E1, . . . , En) on j. Note that these definitions extend the usual ones
when Ω \ ∂Ω is a smooth bounded open set of Rn.

We end up this section by stating various Green’s formulas arising from the
Stokes’ formula (2.14) and from the definition of the Sobolev spaces. First, it
leads to the usual Green’s formula (see [Sch, Propositions 1.2.6 and 2.1.2]),

∀(ω, η) ∈ Λp−1H1 × ΛpH1 ,

〈dω, η〉ΛpL2 = 〈ω, d∗η〉Λp−1L2 +
∫

∂Ω
〈ω, i~nη〉Λp dµ∂Ω , (2.17)

from which we get immediately (using (2.6)–(2.8)),

〈df,hω, η〉ΛpL2 = 〈ω, d∗f,hη〉Λp−1L2 + h

∫

∂Ω
〈ω, i~nη〉Λp dµ∂Ω . (2.18)

We now respectively deduce from (2.17) and from (2.18) the following Green’s
formulas for the Hodge and Witten Laplacians: for every ω ∈ ΛpH2 and
η ∈ ΛpH1, it holds

〈dω, dη〉Λp+1L2 + 〈d∗ω, d∗η〉Λp−1L2

= 〈∆ω, η〉ΛpL2 +
∫

∂Ω

Ä

〈i~ndω, η〉Λp − 〈d∗ω, i~nη〉Λp−1

ä

dµ∂Ω (2.19)

and

〈df,hω, df,hη〉Λp+1L2 + 〈d∗f,hω, d
∗
f,hη〉Λp−1L2

= 〈∆f,hω, η〉ΛpL2 + h

∫

∂Ω

Ä

〈i~ndf,hω, η〉Λp − 〈d∗f,hω, i~nη〉Λp−1

ä

dµ∂Ω . (2.20)
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The Stokes’ formula (2.14) also leads to the “divergence” Green’s formula
(see [Sch, Corollary 2.1.3]):

∀ω ∈ Λ1H1 ,

∫

Ω
(d∗χ) dµ = −

∫

∂Ω
χ(~n) dµ∂Ω . (2.21)

We deduce moreover from (2.21), (1.9), and (2.2) the following Green’s for-
mula for the Bochner Laplacian: for every ω and η in ΛpH2, it holds

〈∆Bω, η〉ΛpL2 + 〈ω,∆Bη〉ΛpL2 +
∫

∂Ω
∇~n〈ω, η〉Λpdµ∂Ω = 2

n
∑

i=1

〈∇Ei
ω,∇Ei

η〉ΛpL2 .

Using the notation defined in (2.16), we obtain in particular the following
relation for every ω ∈ ΛpH2,

‖ω‖2Λp(H1−L2) = 〈∆Bω, ω〉ΛpL2 +
∫

∂Ω
〈∇~nω, ω〉Λpdµ∂Ω . (2.22)

2.3 Self-adjoint realizations of the Witten Laplacian

In the sequel, we will use for any (ω, η) ∈
Ä

ΛpH1
ä2

the more compact notation

D
(p)
f,h(ω, η) := 〈df,hω, df,hη〉Λp+1L2 + 〈d∗f,hω, d

∗
f,hη〉Λp−1L2

as well as
D

(p)
f,h(ω) := D

(p)
f,h(ω, ω)

and
D(p)(ω, η) := D(p)

0,1(ω, η) and D(p)(ω) := D(p)(ω, ω) .

Let us also recall, for b ∈ {n, t}, the definition of ΛpH1
b
given in (1.24):

ΛpH1
b

=
¶

ω ∈ ΛpH1 , bω = 0 on ∂Ω
©

.

In particular, Λ0H1
n
= H1

n
is simply H1(Ω) while H1

t
= H1

0 (Ω). Moreover,
since the boundary ∂Ω is smooth, the space

ΛpC∞
b

:= {ω ∈ ΛpC∞ , bω = 0 on ∂Ω}

is dense in
Ä

ΛpH1
b
, ‖ · ‖ΛpH1

ä

.

The following lemma compares D(p)(·) and D
(p)
f,h(·) on the space of normal or

tangential p-forms.

Lemma 2.1. We have the two following identities:
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i) for any ω ∈ ΛpH1
n
,

D
(p)
f,h(ω) = h2D(p)(ω) + ‖ |∇f |ω‖2ΛpL2 + h〈(L∇f + L∗

∇f)ω, ω〉ΛpL2

+ h

∫

∂Ω
〈ω, ω〉Λp ∂nf dµ∂Ω , (2.23)

ii) and for any ω ∈ ΛpH1
t
,

D
(p)
f,h(ω) = h2D(p)(ω) + ‖ |∇f |ω‖2ΛpL2 + h〈(L∇f + L∗

∇f)ω, ω〉ΛpL2

− h

∫

∂Ω
〈ω, ω〉Λp ∂nf dµ∂Ω . (2.24)

Proof. These formulas were already proven in [HeNi, Lep]. By density of
ΛpC∞

b
in ΛpH1

b
for b ∈ {t,n}, it is sufficient to prove them for ω ∈ ΛpC∞

b
.

But for any ω ∈ ΛpC∞, we get from the Green’s formulas for the Hodge
and Witten Laplacians (2.19) and (2.20), and from the form (2.10) of ∆f,h

together with (2.7) and (2.8):

D
(p)
f,h(ω) = h2D(p)(ω) + ‖ |∇f |ω‖2ΛpL2 + h〈(L∇f + L∗

∇f)ω, ω〉ΛpL2

+ h

∫

∂Ω

Ä

〈i~n(df ∧ ω), ω〉Λp − 〈i∇fω, i~nω〉Λp−1

ä

dµ∂Ω . (2.25)

Moreover, if nω = 0, it holds

〈i∇fω, i~nω〉Λp−1 = 0 and 〈i~n(df ∧ ω), ω〉Λp = 〈ω, ω〉Λp ∂nf , (2.26)

and if tω = 0, it holds similarly

〈i~n(df ∧ ω), ω〉Λp = 0 and 〈i∇fω, i~nω〉Λp−1 = 〈ω, ω〉Λp ∂nf . (2.27)

The statement of Lemma 2.1 is then an immediate consequence of (2.25)
together with (2.26) and (2.27).

We now compile in the following proposition basic facts about Witten Lapla-
cians on manifolds with boundary. They are proven in [HeNi, Section 2.4]
and in [Lep, Section 2.3].

Proposition 2.2. i) For b ∈ {n, t} and p ∈ {0, . . . , n}, the nonnega-

tive quadratic form ω → D
(p)
f,h(ω) is closed on ΛpH1

b
. We denote by

Ä

∆
b,(p)
f,h , D(∆

b,(p)
f,h )

ä

its associated self-adjoint Friedrichs extension.
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ii) For b ∈ {n, t} and p ∈ {0, . . . , n}, the domain of ∆
b,(p)
f,h is given by

D(∆
b,(p)
f,h ) =

¶

u ∈ ΛpH2, bω = 0 , bd∗f,hω = 0 and bdf,hω = 0 on ∂Ω
©

.

We have moreover:

∀ω ∈ D(∆
b,(p)
f,h ) , ∆

b,(p)
f,h ω = ∆

(p)
f,hω in Ω

and the equalities nd∗f,hω = 0 and tdf,hω = 0 are actually satisfied for
any ω ∈ ΛpH2.

iii) For b ∈ {n, t} and p ∈ {0, . . . , n}, ∆
b,(p)
f,h has a compact resolvent.

iv) For b ∈ {n, t} and p ∈ {0, . . . , n}, the following commutation relations
hold for any v ∈ ΛpH1

b
:

– for every z ∈ ̺(∆
b,(p)
f,h ) ∩ ̺(∆

b,(p+1)
f,h ),

(z −∆
b,(p+1)
f,h )−1 d

(p)
f,h v = d

(p)
f,h (z −∆

b,(p)
f,h )−1 v

– and for every z ∈ ̺(∆
b,(p)
f,h ) ∩ ̺(∆

b,(p−1)
f,h ),

(z −∆
b,(p−1)
f,h )−1 d

(p−1),∗
f,h v = d

(p−1),∗
f,h (z −∆

b,(p)
f,h )−1 v .

In the spirit of the above point iv), we have also the following Witten -Hodge -
decomposition which will be useful when proving Corollary 1.5:

Proposition 2.3. For b ∈ {n, t} and p ∈ {0, . . . , n}, it holds

ΛpL2 = Ker∆
b,(p)
f,h ⊕⊥ Ran

Ä

df,h
∣

∣

∣

Λp−1H1
b

ä

⊕⊥ Ran
Ä

d∗f,h

∣

∣

∣

Λp+1H1
b

ä

(2.28)

=: Kb,(p) ⊕⊥ Rb,(p) ⊕⊥ R∗,b,(p) ,

the spaces Rb,(p) and R∗,b,(p) being consequently closed in ΛpL2. Denoting
moreover by πRb,(b) and πR∗,b,(b) the orthogonal projectors on these respective
spaces, the following relations hold in the sense of unbounded operators:

πRb,(p) ∆
b,(p)
f,h ⊂ ∆

b,(p)
f,h πRb,(p) and πR∗,b,(p) ∆

b,(p)
f,h ⊂ ∆

b,(p)
f,h πR∗,b,(p) . (2.29)

In particular, for A ∈ {(Kb,(p))⊥, Rb,(p), R∗,b,(p)}, the unbounded operator

∆
b,(p)
f,h

∣

∣

∣

A
with domain D(∆

b,(p)
f,h )∩A is well defined, self-adjoint, invertible on

A, and it holds for every v ∈ ΛpH1
b
∩ (Kb,(p))⊥:

Ä

∆
b,(p+1)
f,h

∣

∣

∣

(Kb,(p+1))⊥

ä−1
df,h v =

Ä

∆
b,(p+1)
f,h

∣

∣

∣

Rb,(p+1)

ä−1
df,h v

= df,h
Ä

∆
b,(p)
f,h

∣

∣

∣

(Kb,(p))⊥

ä−1
v (2.30)
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and
Ä

∆
b,(p−1)
f,h

∣

∣

∣

(Kb,(p−1))⊥

ä−1
d∗f,h v =

Ä

∆
b,(p−1)
f,h

∣

∣

∣

R∗,b,(p−1)

ä−1
d∗f,h v

= d∗f,h
Ä

∆
b,(p)
f,h

∣

∣

∣

(Kb,(p))⊥

ä−1
v . (2.31)

Proof. The orthogonality of the sum appearing in the r.h.s. of (2.28) follows

easily from (2.18). Moreover, since ∆
b,(p)
f,h has a compact resolvent, the self-

adjoint operator ∆̃
b,(p)
f,h on (Kb,(p))⊥ := Ker (∆

b,(p)
f,h )⊥,

∆̃
b,(p)
f,h := ∆

b,(p)
f,h

∣

∣

∣

(Kb,(p))⊥
: D(∆

b,(p)
f,h ) ∩ Ker (∆

b,(p)
f,h )⊥ −→ Ker (∆

b,(p)
f,h )⊥ ,

is invertible and hence any u ∈ ΛpL2 has the form

u = πf,bu + ∆
b,(p)
f,h v = πf,bu + df,h

Ä

d∗f,hv
ä

+ d∗f,h
Ä

df,hv
ä

, (2.32)

for some uniquely determined v ∈ D(∆
b,(p)
f,h ) ∩ (Kb,(p))⊥, denoting by πf,b =

π
(p)
f,h,b the orthogonal projection on (Kb,(p))⊥. This implies (2.28).

Let us now prove (2.29) and take then u ∈ D(∆
b,(p)
f,h ). It holds

πRb,(p) ∆
b,(p)
f,h u = df,h

Ä

d∗f,hu
ä

and πR∗,b,(p) ∆
b,(p)
f,h u = d∗f,h

Ä

df,hu
ä

(2.33)

and, according to (2.32), we have moreover

πRb,(p)u = df,h
Ä

d∗f,hv
ä

and πR∗,b,(p)u = d∗f,h
Ä

df,hv
ä

(2.34)

where v =
Ä

∆̃
b,(p)
f,h

ä−1
(u − πf,bu) ∈ D(∆

b,(p)
f,h ) ∩ (Kb,(p))⊥. Using now iv) of

Proposition 2.2, we have for every z ∈ R, z < 0,

df,h d
∗
f,h

Ä

∆
b,(p)
f,h − z

ä−1
(u− πf,bu) =

Ä

∆
b,(p)
f,h − z

ä−1
df,h d

∗
f,h (u− πf,bu)

−→
z→0−

Ä

∆̃
b,(p)
f,h

ä−1
df,h d

∗
f,h(u− πf,bu).(2.35)

Since moreover
Ä

∆
b,(p)
f,h − z

ä−1
(u−πf,bu) = v+ z

Ä

∆
b,(p)
f,h − z

ä−1
v, it also holds

df,h d
∗
f,h

Ä

∆
b,(p)
f,h − z

ä−1
(u− πf,bu) = df,h d

∗
f,h v + z

Ä

∆
b,(p)
f,h − z

ä−1
df,h d

∗
f,h v

−→
z→0−

df,h
Ä

d∗f,h v
ä

(2.36)

and we deduce from (2.35) and (2.36) that

df,h d
∗
f,h v ∈ D(∆

b,(p)
f,h ) and ∆

b,(p)
f,h df,h d

∗
f,h v = df,h d

∗
f,h(u− πf,bu)

= df,h
Ä

d∗f,h u
ä

,
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which proves the first equality of (2.29) according to (2.33) and (2.34). The
second equality of (2.29) is proven similarly after establishing the analogous
versions of (2.35) and (2.36) with df,h d

∗
f,h replaced by d∗f,h df,h. The last part

of Proposition 2.3 then follows easily, using again iv) of Proposition 2.2 as in
(2.35) and (2.36) to obtain (2.30) and (2.31).

3 Proofs of the main results

3.1 Proof of Theorem 1.2

We first prove Theorem 1.2 in the case f = 0 and h = 1. As shown in [Sch],
it implies in particular Gaffney’s inequalities which state the equivalence
between the norms ‖ · ‖ΛpH1 and

»

D(p)(·) + ‖ · ‖2ΛpL2 for tangential or normal
p-forms.

Theorem 3.1. Let ω ∈ ΛpH1
b
with b ∈ {n, t}. We have then the identity

‖ω‖2Λp(H1−L2) = D(p)(ω)− 〈Ric(p)ω, ω〉ΛpL2 −
∫

∂Ω
〈K

(p)
b
ω, ω〉Λp dµ∂Ω ,

where Ric(p) ∈ L(ΛpT ∗Ω) and K
(p)
b

∈ L(ΛpT ∗Ω
∣

∣

∣

∂Ω
) have been respectively

defined in (1.15) and in (1.33)–(1.36).

The statement of Theorem 3.1 is essentially the statement of [Sch, Theo-
rem 2.1.5] and the content of its proof in the case tω = 0, and is closely
related to the statement of [Sch, Theorem 2.1.7] in the case nω = 0. We
have nevertheless to compute the exact form of K(p)

n
and especially of K(1)

n
in

the latter case. We also give a complete proof in the case tω = 0 for the sake
of clarity.

Proof. By density of ΛpC∞
b

in ΛpH1
b
for b ∈ {t,n}, it is sufficient to prove

Theorem 3.1 for ω ∈ ΛpC∞
b
. Moreover, it follows from the Weitzenböck

formula (1.10) and from the Green’s formulas for the Hodge and Bochner
Laplacians (2.19) and (2.22) that for any ω ∈ ΛpC∞, the expression

‖ω‖2Λp(H1−L2) −D(ω) + 〈Ric(p)ω, ω〉ΛpL2

reduces to the boundary integral

∫

∂Ω

Ä

〈∇~nω, ω〉Λp − 〈i~ndω, ω〉Λp + 〈d∗ω, i~nω〉Λp−1

ä

dµ∂Ω

25



and we have then just to check that for any ω in ΛpC∞
b
, it holds

〈K
(p)
b
ω, ω〉Λp = 〈i~ndω, ω〉Λp − 〈d∗ω, i~nω〉Λp−1 − 〈∇~nω, ω〉Λp , (3.1)

where K
(p)
b

∈ L(ΛpT ∗Ω
∣

∣

∣

∂Ω
) has been defined in (1.33)–(1.36).

Case nω = 0 :

We have then 〈d∗ω, i~nω〉Λp = 0 and

〈i~ndω, ω〉Λp − 〈∇~nω, ω〉Λp = 〈i~ndω −∇~nω, ω〉Λp = 〈t
Ä

i~ndω −∇~nω
ä

, ω〉Λp ,

the last equality following again from nω = 0. It is then sufficient to show
that for any ω in ΛpC∞

n
, it holds

K(p)
n
ω = t

Ä

i~ndω −∇~nω
ä

. (3.2)

Taking now p tangential vector fields X1, . . . , Xp and denoting for simplicity
~n by X0, we deduce from (2.4) that:

(iX0dω −∇X0ω)(X1, . . . , Xp) = dω(X0, X1, . . . , Xp)− (∇X0ω)(X1, . . . , Xp)

=
p

∑

k=1

(−1)k(∇Xk
ω)(X0, . . . , Ẋk, . . . , Xp) .

Moreover, using (2.1), the tangentiality of X1, . . . , Xp, and nω = 0, we have
for any k ∈ {1, . . . , p}:

(∇Xk
ω)(X0, . . . , Ẋk, . . . , Xp) = ∇Xk

Ä

ω(X0, . . . , Ẋk, . . . , Xp)
ä

−
∑

k 6=ℓ=0,...,p

ω(X0, . . . ,∇Xk
Xℓ, . . . , Ẋk, . . . , Xp)

= − ω(∇Xk
X0, . . . , Ẋk, . . . , Xp)

= (−1)kω(X1, . . . ,∇Xk
X0, . . . , Xp) .

Hence, it holds for any ω ∈ ΛpC∞
n

and p tangential vector fields X1, . . . , Xp,

(i~ndω −∇~nω)(X1, . . . , Xp) =
p

∑

k=1

ω(X1, . . . ,∇Xk
~n, . . . , Xp) ,

the r.h.s. being nothing but
Ä

K(p)
n
ω
ä

(X1, . . . , Xp) according to (1.33) and
(1.34). This proves (3.2) and then concludes the proof in the case nω = 0.

Case tω = 0 :
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We have here 〈i~ndω, ω〉Λp = 0 and from (3.1), we are then led to compute
more precisely

〈d∗ω, i~nω〉Λp−1 + 〈∇~nω, ω〉Λp = 〈~n♭ ∧ d∗ω +∇~nω, ω〉Λp

= 〈n
Ä

~n♭ ∧ d∗ω +∇~nω
ä

, ω〉Λp

= 〈~n♭ ∧ (d∗ω + i~n∇~nω), ω〉Λp ,

the second to last equality following from tω = 0 and the last one from
nω = ~n♭ ∧ (i~nω). To conclude, it then remains to show that for any ω in
ΛpC∞

t
, it holds

K
(p)
t ω = −n

Ä

~n♭ ∧ d∗ω +∇~nω
ä

= −~n♭ ∧ (d∗ω + i~n∇~nω) . (3.3)

Denoting by (E1, . . . , En) a local orthonormal frame such that En = ~n on ∂Ω
and using (2.5), we get

−n
Ä

~n♭ ∧ d∗ω +∇~nω
ä

= ~n♭ ∧
Ä

n−1
∑

i=1

iEi
∇Ei

ω
ä

.

Taking now p− 1 tangential vector fields X1, . . . , Xp−1, we then have:

−n
Ä

~n♭ ∧ d∗ω +∇~nω
ä

(~n,X1, . . . , Xp−1) =
n−1
∑

i=1

(∇Ei
ω)(Ei, X1, . . . , Xp−1) ,

where, for any i ∈ {1, . . . , n−1}, using (2.1), the tangentiality ofX1, . . . , Xp−1,
tω = 0, and denoting for simplicity Ei by X0,

(∇X0ω)(X0, X1, . . . , Xp−1) = ∇X0

Ä

ω(X0, X1, . . . , Xp−1)
ä

−
p−1
∑

ℓ=0

ω(X0, . . . ,∇X0Xℓ, . . . , Xp−1)

= −
p−1
∑

ℓ=0

ω(X0, . . . , (∇X0Xℓ)
⊥, . . . , Xp−1)

= −
p−1
∑

ℓ=0

ω(X0, . . . ,K2(X0, Xℓ), . . . , Xp−1)

= −
Å

Ä

K2(X0, ·)
ä(p)

ω

ã

(X0, . . . , Xp−1) ,

where the notation
Ä

K2(X0, ·)
ä(p)

ω has been defined at the line following
(1.36). Consequently, it holds for any ω ∈ ΛpC∞

t
and p− 1 tangential vector
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fields X1, . . . , Xp−1,

−n
Ä

~n♭ ∧ d∗ω +∇~nω
ä

(~n,X1, . . . , Xp−1)

= −
n−1
∑

i=1

Å

Ä

K2(Ei, ·)
ä(p)

ω

ã

(Ei, X1, . . . , Xp−1)

=
Ä

K
(p)
t ω
ä

(~n,X1, . . . , Xp−1) ,

which proves (3.3) and concludes the proof of Theorem 3.1.

We end up this subsection with the proof of Theorem 1.2.

Proof of Theorem 1.2. According to (1.30), (2.10), Lemma 2.1, and to The-
orem 3.1, we have just to show the identity

h2
n
∑

i=1

∥

∥

∥e−
f

h∇Ei
(e

f

hω)
∥

∥

∥

2

ΛpL2
= h2‖ω‖2Λp(H1−L2) + 〈(|∇f |2 + h∆f)ω, ω〉ΛpL2

+ h

∫

∂Ω
〈ω, ω〉Λp ∂nf dµ∂Ω , (3.4)

where (E1, . . . , En) is a local orthonormal frame on Ω. But from the relation

e−
f

hh∇Ei
( e

f

h · ) = (∇Ei
f) · + h∇Ei

( · ), we have

h2
∥

∥

∥e−
f

h∇Ei
(e

f

hω)
∥

∥

∥

2

Λp
= h2

∥

∥

∥∇Ei
ω
∥

∥

∥

2

Λp
+

∥

∥

∥(∇Ei
f)ω

∥

∥

∥

2

Λp
+ 2h〈∇Ei

ω, (∇Ei
f)ω〉Λp ,

so summing over i = 1, . . . , n and integrating on Ω, it means to prove that

2
n
∑

i=1

〈∇Ei
ω, (∇Ei

f)ω〉ΛpL2 = 〈(∆f)ω, ω〉ΛpL2 +
∫

∂Ω
〈ω, ω〉Λp ∂nf dµ∂Ω .

We recall here that the writing
∑n

i=1〈∇Ei
ω, (∇Ei

f)ω〉ΛpL2 actually corre-
sponds, with an abuse of notation, to

∑K
j=1

∑n
i=1 ρj〈∇Ei

ω, (∇Ei
f)ω〉ΛpL2(Uj),

where (Uj)j∈{1,...,K} is a nice cover of Ω with associated local orthonormal
frames (E1, . . . , En) and (ρj)j∈{1,...,K} is a partition of unity subordinated to
(Uj)j∈{1,...,K} (see indeed (2.15), (2.16), and the related remarks). To con-
clude, we use the divergence Green’s formula (2.21) and the formula (2.5) for
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the codifferential which allow to write
∫

∂Ω
〈ω, ω〉Λp ∂nf dµ∂Ω =

∫

∂Ω
〈ω, ω〉Λp df(~n) dµ∂Ω

= −
∫

Ω
d∗
Ä

〈ω, ω〉Λp df
ä

dµ

=
n
∑

i=1

∫

Ω
iEi

∇Ei

Ä

〈ω, ω〉Λp df
ä

dµ

=
n
∑

i=1

∫

Ω

Ä

2〈∇Ei
ω, ω〉Λpdf(Ei) + 〈ω, ω〉Λp(∇Ei

df)(Ei)
ä

dµ

= 2
n
∑

i=1

〈∇Ei
ω, (∇Ei

f)ω〉ΛpL2 − 〈(∆f)ω, ω〉ΛpL2 .

This implies (3.4) and then concludes the proof of Theorem (1.2).

3.2 Proof of Theorem 1.3

We first prove 1.i) and then consider p > 0 and ω ∈ Λp−1H1
n
(dνh) such that

d∗V,hω = 0. Let us also consider the corresponding form on the flat space:

η := e−
f

h ω where f :=
V

2
.

We have then in particular η ∈ Λp−1H1
n
and d∗f,hη = 0. Note also that K(p)

n
≥

0 and, for some h > 0, hRic(p) + 2Hess(p)f > 0 together with Theorem 1.2
imply, for this h, that

∆
n,(p)
f,h ≥ h2Ric(p) + 2 hHess(p)f > 0 (3.5)

and therefore that 0 ∈ ̺(∆
n,(p)
f,h ). As already explained in the introduction

(see (1.2) there), the trick is to use now the following relation which results
easily from d∗f,hη = 0, (2.18), (2.30), and (2.31):

‖ η − πf,nη ‖
2 = 〈 (∆

n,(p)
f,h )−1 df,h(η − πf,nη) , df,h(η − πf,nη) 〉

= 〈 (∆
n,(p)
f,h )−1 df,hη , df,hη 〉 , (3.6)

where πf,n = π
(p)
f,h,n denotes the orthogonal projection on Ker (∆

n,(p)
f,h ). The

estimate to prove involving ω = e
f

h η is then a simple consequence of (3.5)
and (3.6) according to the (up to multiplication by h) unitary equivalence

hL
n,(p)
V,h = e

f

h ∆
n,(p)
f,h e−

f

h where f =
V

2
.

The proof of 1.ii) is completely similar as well as the proofs of 2.i) and 2.ii).
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3.3 Proof of Corollary 1.5

This proof is similar to the previous one and we only prove it in the nor-
mal case, the tangential case being completely analogous. In order to im-
prove the latter result, we want to derive an estimate of the type (3.5) with

∆
n,(1)
f,h replaced by the self-adjoint unbounded operator ∆

n,(1)
f,h

∣

∣

∣

Ran df,h
defined

in Proposition 2.3. To do so, we will in particular make use of the nonneg-
ative term h2‖ · ‖2

Λp(H1−L2)(e
−

2f
h dµ)

of the integration by part formula (1.37)

stated in Theorem 1.2.

Let us then consider ω ∈ D(L
n,(0)
V,h ) = {u ∈ H2∩H1

n
(dνh) s.t. ndu = 0 on ∂Ω}

and its corresponding form on the flat space

η := e−
f

hω where f :=
V

2

which consequently belongs to D(∆
n,(0)
f,h ). Denoting by (E1, . . . , En) a local

orthonormal frame on U ⊂ Ω, we deduce from the Cauchy-Schwarz inequality
the following relations satisfied by the integrand of h2‖df,hη‖

2

Λp(H1−L2)(e
−

2f
h dµ)

a.e. on U and for every N such that 1
N

∈ [−∞, n) or N = n if f is constant:

h2
n
∑

i=1

∥

∥

∥e−
f

h∇Ei
(e

f

h df,hη)
∥

∥

∥

2

Λ1
≥

h2

n

Ä

e−
f

h h∆(0) e
f

h η
ä2

=
1

n

Ä

∆
(0)
f,hη − 2 〈df, df,hη〉Λ1

ä2

≥
1

N

Ä

∆
(0)
f,hη
ä2

−
4

N − n
df ⊗ df(df,hη, df,hη) ,

This implies, after integration on Ω:

h2‖df,hη‖
2

Λp(H1−L2)(e
−

2f
h dµ)

+
4

N − n

∫

Ω
df ⊗ df(df,hη, df,hη) dµ

≥
1

N
‖∆(0)

f,hη‖
2
Λ0L2 =

1

N
D(1)

f,h(df,hη) . (3.7)

Moreover, K(1)
n

≥ 0 and, for some h > 0,

Ric2f,h,N := hRic + 2Hess f −
4

(N − n) h
df ⊗ df > 0 ,

together with Theorem 1.2 and (3.7) imply, for this h, that

(1−
1

N
)∆

n,(1)
f,h

∣

∣

∣

Ran df,h
≥ hRic2f,h,N > 0 . (3.8)
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The estimate to prove is then a simple consequence of (3.8) and of the relation

‖ η − πf,nη ‖
2 = 〈 (∆

n,(1)
f,h

∣

∣

∣

Ran df,h
)−1 df,h(η − πf,nη) , df,h(η − πf,nη) 〉 (3.9)

valid for any η ∈ Λ0H1
n
= H1(Ω) and resulting (2.18), (2.30), and (2.31).
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[DiLe] G. Di Gesù and D. Le Peutrec. Small noise spectral gap asymptotics
for a large system of nonlinear diffusions. To appear in J. Spectr. The-
ory, preprint on Arxiv, http://arxiv.org/abs/1506.04434, 47 pages
(2015).
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