
HAL Id: hal-01349774
https://hal.science/hal-01349774v1

Submitted on 27 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives 4.0 International License

Eliom: A core ML language for Tierless Web
programming

Gabriel Radanne, Jérôme Vouillon, Vincent Balat

To cite this version:
Gabriel Radanne, Jérôme Vouillon, Vincent Balat. Eliom: A core ML language for Tierless Web
programming. APLAS 2016, Nov 2016, Hanoi, Vietnam. �hal-01349774�

https://hal.science/hal-01349774v1
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://hal.archives-ouvertes.fr

Eliom: A core ML language for Tierless Web
programming?

Gabriel Radanne1, Jérôme Vouillon2, and Vincent Balat3

1 Univ Paris Diderot, Sorbonne Paris Cité, IRIF UMR 8243 CNRS
gabriel.radanne@pps.univ-paris-diderot.fr

2 CNRS, IRIF UMR 8243, Univ Paris Diderot, Sorbonne Paris Cité, BeSport
jerome.vouillon@pps.univ-paris-diderot.fr

3 Univ Paris Diderot, Sorbonne Paris Cité, IRIF UMR 8243 CNRS, BeSport
vincent.balat@univ-paris-diderot.fr

Abstract. Eliom is a dialect of OCaml for Web programming in which
server and client pieces of code can be mixed in the same file using syn-
tactic annotations. This allows to build a whole application as a single
distributed program, in which it is possible to define in a composable
way reusable widgets with both server and client behaviors. Our lan-
guage also enables simple and type-safe communication. Eliom matches
the specificities of the Web by allowing the programmer to interleave
client and server code while maintaining efficient one-way server-to-client
communication. The Eliom language is both sufficiently small to be im-
plemented on top of an existing language and sufficiently powerful to
allow expressing many idioms of Web programming.
In this paper, we present a formalization of the core language of Eliom.
We provide a type system, the execution model and a compilation scheme.

Keywords: Web, client-server, OCaml, ML, Eliom, functional

1 Introduction

Web programming usually relies on the orchestration of numerous languages
and tools. Web pages are written in HTML and styled in CSS. Their dynamic
behavior is controlled through client-side languages such as JavaScript or Ac-
tionScript. These pages are produced by a server which can be written in
about any language: PHP, Ruby, C++ . . . They are produced based on informa-
tion stored in databases and retrieved using a query language such as SQL.

Programmers must not only master these tools, but also keep synchronized
the numerous software artifacts involved in a Web site and make them com-
municate properly. The server must be able to interact with the database, then
send the relevant information to the client. In turn, the client must be able to
understand the received data, and interact back properly with the server.

? This work was partially performed at IRILL, center for Free Software Research and
Innovation in Paris, France, http://www.irill.org

http://www.irill.org

These constraints makes Web programming tedious and prone to numerous
errors, such as communication errors. This issue, present in the Web since its
inception, has become even more relevant in modern Web applications.

Separation of client and server code also hinders composability, as related
pieces of code, that build fragments of a Web page and that define the specific
behavior of these fragments, typically have to be placed in different files.

1.1 The need for tierless languages

One goal of a modern client-server Web application framework should be to make
it possible to build dynamic Web pages in a composable way. One should be able
to define on the server a function that creates a fragment of a page together with
its associated client-side behavior; this behavior might depend on the function
parameters. From this point of view, a DSL for writing HTML documents and
serialization libraries are two key ingredients to assemble page fragments and
communicate between client and server, but are not enough to associate client
behaviors to these page fragments in a composable way.

This is where so-called tierless languages come into play. Such languages
unify the client and server part of the application in one language with seamless
communication. For most of these languages, two parts are extracted from a
single program: a part runs on the server while the other part is compiled to
JavaScript and runs on the client.

1.2 Eliom

We present Eliom, an extension of OCaml for tierless programming that sup-
ports composable and typesafe client-server interactions. Eliom is part of the
larger Ocsigen [12,4] project, which also includes the compiler js_of_ocaml
[24], a Web server, and various related libraries to build client-server applica-
tions. Besides the language presented here, Eliom comes with a complete set
of modules, for server and/or client side Web programming, such as RPCs; a
functional reactive library for Web programming; a GUI toolkit [16]; a power-
ful session mechanism, to manage the server side state of a Web applications
on a per-tab, per-browser, or per-user basis; an advanced service identification
mechanism [2], providing a way to implement traditional Web interaction (well-
specified URLs, back button, bookmarks, forms, . . .) in few lines of code. The
Ocsigen project started in 2004, as a research project, with the goal of build-
ing a complete framework, usable in the industry. Ocsigen already has several
industrial users, most using the Eliom language we present in this paper: Be-
Sport [5], NYU gencore [13], Pumgrana [19], . . .

1.3 A core language for tierless web programming

All of the modules and libraries implemented in Ocsigen, and in particular in
the Eliom framework, are implemented on top of a core language that allows to
express all the features needed for tierless web programming.

Composition. Eliom encourages the building of independent and reusable com-
ponents that can be assembled easily. It allows to define and manipulate on the
server, as first class values, fragments of code which will be executed on the
client. This gives us the ability to build reusable widgets that capture both the
server and the client behaviors transparently. It also makes it possible to define
libraries and building blocks without explicit support from the language.

Leveraging the type system. Eliom introduces a novel type system that allows
composition and modularity of client-server programs while preserving type-
safety and abstraction. This ensures, via the type-system, that client code is not
used inside server code (and conversely) and ensures the correctness of client-
server communications.

Explicit communication. Communication between the server and the client in
Eliom is always explicit. This allows the programmer to reason about where
the program is executed and the resulting trade-offs. The programmers can en-
sure that some data stay on the client or on the server, or choose how much
communication takes place and where computation is performed.

A simple and efficient execution model. Eliom relies on a novel and efficient
execution model for client-server communication that avoids constant back-and-
forth communication. This model is simple and predictable. Having a predictable
execution model is essential in the context of an impure language, such as ML.

These four properties leads us to define a core language, Eliomε, that features
all these characteristics, while being small enough to be reasoned about in a
formal way. Having a small core language into which more complex constructs
can be reduced has several advantages. First, it is sufficient to trust the core
language. All the desirable properties about the core language will also be valid
for the higher-level abstractions introduced later.

A minimal core language also makes the implementation on top of an existing
language easier. In the case of Eliom, it allows us to implement our extension
on top of the existing OCaml compiler with a reasonably small amount of
changes. By extending an existing language, we gain the ability to use numerous
preexisting libraries: cooperative multitasking [23], HTML manipulation [22]
and database interaction [20] are all provided by libraries implemented in pure
OCaml that we can leverage for Web programming, both server and client side.

We present the Eliom language from a programming point of view in Sec-
tion 2. We then specify Eliomε, an extension of core ML featuring the key points
of Eliom, which allows us to describe the type system and the execution model
of Eliom in Section 3 and the compilation model in Section 4 and Section 5.

2 How to: client-server Web programming

An Eliom application is composed of a single program which is decomposed by
the compiler into two parts. The first part runs on a Web server, and is able to
manage several connections and sessions at the same time, with the possibility of

sharing data between sessions, and to keep state for each browser or tab currently
running the application. The client program, compiled statically to JavaScript,
is sent to each client by the server program together with the HTML page, in
response to the initial HTTP request. It persists until the browser tab is closed
or until the user follows an external link.

Eliom is using manual annotations to determine whether a piece of code is
to be executed server or client side [3,1]. This choice of explicit annotations is
motivated by the fact that we believe that the programmer must be well aware
of where the code is executed, to avoid unnecessary remote interactions. This
also avoids ambiguities in the semantics and allows for more flexibility.

In this section, we present the language extension that deals with client-
server code and the corresponding communication model. Even though Eliom
is based on OCaml, little knowledge of OCaml is required. We explicitly write
some type annotations for illustration purposes but they are not mandatory.

2.1 Sections

The location of code execution is specified by section annotations. We can specify
that a declaration is performed on the server, or on the client:

1 let%server s = ...
2 let%client c = ...

A third kind of section, written as shared, is used for code executed on both
sides. We use the following color convention: client is in yellow, server is in blue
and shared is in green.

2.2 Client fragments

A client-side expression can be included inside a server section: an expression
placed inside [%client ...] will be computed on the client when it receives
the page; but the eventual client-side value of the expression can be passed
around immediately as a black box on the server.

1 let%server x : int fragment = [%client 1 + 3]

For example, here, the expression 1 + 3 will be evaluated on the client, but it’s
possible to refer server-side to the future value of this expression (for example,
put it in a list). The value of a client fragment cannot be accessed on the server.

2.3 Injections

Values that have been computed on the server can be used on the client by
prefixing them with the symbol ~%. We call this an injection.

1 let%server s : int = 1 + 2
2 let%client c : int = ~%s + 1

Here, the expression 1 + 2 is evaluated and bound to variable s on the server.
The resulting value 3 is transferred to the client together with the Web page.
The expression ~%s + 1 is computed client-side.

An injection makes it possible to access client-side a client fragment which
has been defined on the server:

1 let%server x : int fragment = [%client 1 + 3]
2 let%client c : int = 3 + ~%x

The value inside the client fragment is extracted by ~%x, whose value is 4 here.

2.4 Examples

We show how these language features can be used in a natural way to build
HTML pages with dynamic behavior in a composable fashion. More detailed
examples are available on the Ocsigen website [12].

Increment button. We can define a button that increments a client-side
counter and invokes a callback each time it is clicked. We use a DSL to specify
HTML documents. The callback action is a client function. The state is stored
in a client-side reference. The onclick button callback is a client function that
modifies the references and then calls action. This illustrates that one can de-
fine a function that builds on the server a Web page fragment with a client-side
state and a parametrized client-side behavior. It would be straightforward to
extend this example with a second button that decrements the counter (sharing
the associated state).

1 let%server counter (action:(int -> unit) fragment) =
2 let state = [%client ref 0] in
3 button ~button_type:‘Button
4 ~a:[a_onclick [%client fun _ -> incr ~%state; ~%action !(~%state)]]
5 [pcdata "Increment"]

List of server side buttons with client side actions. We can readily em-
bed client fragments inside server datastructures. Having explicit location anno-
tations really helps here. It would not be possible to achieve this for arbitrary
datastructures if the client-server delimitations were implicit.

For instance, one can build an HTML unordered list of buttons from a list
composed of pairs of button names and their corresponding client-side actions.

1 let%server button_list (l : (string * handler fragment) list) =
2 let aux (name, action) =
3 li [button ~button_type:‘Button ~a:[a_onclick action] [pcdata name]]
4 in ul (List.map aux l)

2.5 Libraries

These examples show how to build reusable widgets that encapsulate both client
and server behavior. They also showcase some of the libraries that are provided
with Eliom. In contrast to many Web programming languages and frameworks,
which provides built-in constructions, all these libraries have been implemented
only with the primitives presented in this paper. Using fragments and injections
along with converters, which are presented later, we can implement numerous
libraries such as remote procedure calls, client-server HTML or reactive pro-
gramming directly inside the language, without any compiler support.

2.6 Client-server communication

In the examples above, we showcased complex patterns of interleaved client and
server code, including passing client fragments to server functions, and subse-
quently to client code. This would be costly if the communication between client
and server were done naively. Instead, a single communication takes place: from
the server to the client, when the Web page is sent. This is made possible by the
fact that client fragments are not executed immediately when encountered inside
server code. The intuitive semantics is the following: client code is not executed
right away; instead, it is registered for later execution, once the Web page has
been sent to the client. Then all the client code is executed in the order it was
encountered on the server. This intuitive semantics allows the programmer to
reason about Eliom programs, especially in the presence of side effects, while
still being unaware of the details of the compilation scheme.

3 A client-server language

We present Eliomε, an extension of core ML containing the key features of
Eliom. It differs from Eliom as follows. Shared sections are not formalized, as
they can be straightforwardly expanded out into a client and a server section by
duplicating the code. Additionally, we do not model the interactive behavior of
Web servers. Thus, Eliomε programs compute a single Web page.

3.1 Syntax

In order to clearly distinguish server code from client code, we use subscripts
to indicate the location where a piece of syntax belongs: a ’s’ subscript denotes
server code, while a ’c’ subscript denotes client code. For instance, es is a server
expression and τc is a client type. We also use ’ς’ subscripts for expressions which
are location-agnostic: they can stand for either s or c. When the location is clear
from the context, we omit the subscripts.

The syntax is presented in Figure 1. It follows the ML syntax, with two
additional constructs for client fragments and injections respectively. [26] was
used as a base for the elaboration of Eliomε. The language is parametrized by
its constants. There are different sets of constants for the server and for the client:
Consts and Constc. A program is a series of bindings, either client or server ones,
ending by a client expression. The value of this expression will typically be the
Web page rendered on the client’s browser.

p ::= lets x = es in p | letc x = ec in p | ec (Programs)
es ::= cs | x | Y | (es es) | λx.es | {{ ec }} (Expressions)
ec ::= cc | x | Y | (ec ec) | λx.ec | f%es

f ::= x | cs (Converter)
cs ∈ Consts cc ∈ Constc (Constants)

Fig. 1. Eliomε’s grammar

A client fragment {{ ec }} stands for an expression computed by the client
but that can be referred from the server. An injection f%es is used inside client
code to access values defined on the server. This involves a serialization on the
server followed by a deserialization on the client, which is explicitly specified
by a converter f . To simplify the semantics, we syntactically restrict converters
to be either a variable x or a server constant cc. We describe converters more
precisely in Section 3.2.

Furthermore, we add a validity constraints to our programs: We only consider
programs such that variables used under an injection are declared outside of the
local client scope, which can be either a client declaration or a client fragment.

3.2 Type system

The type system of Eliomε is an extension of the regular ML type system. We
follow closely [26]. Again, the language is split into a client and a server part.

σς ::= ∀α∗.τς (TypeSchemes)
τs ::= α | τs → τs | {τc} | τs τc | κ for κ ∈ ConstTypes
τc ::= α | τc → τc | κ for κ ∈ ConstTypec (Types)

ConstTypeς is the set of ground types. Two server-side types are added to
core ML types: {τc} is the type of a client fragment whose content is of type
τc; τs τc is the type of converters from server type τs to client type τc. This
last type is described in more details below. No client-side are added to core ML
types: in particular, the type of a client expression can never contain the type
of a client fragment {τc}.

The typing rules are presented in Figure 2. There are three distinct judg-
ments: . is the typing judgment for programs, .c for client expressions and .s
for server expressions. .ς is used for rules that are valid both on client and server
expressions. An environment Γ contains two kinds of bindings: client and server
bindings, marked with the subscripts s and c respectively. The instantiation re-
lation is noted by σ � τ . It means that the type τ is an instance of the type
scheme σ. Close(τ, Γ) is the function that closes a type τ over the environment Γ ,
hence producing a scheme. TypeOfς is a map from constants to their types. Most
rules are straightforwardly adapted from regular ML rules. The main rules of
interest are Fragment and Injection: Rule Fragment is for the construction
of client fragments. If ec is of type τc in context Γ , then {{ ec }} is of type {τc} in
the same context. Rule Injection is for the communication of server to client.
If the server expression es is of type τs and the converter f is of type τs τc, we
can use, in a client declaration, the expression f%es with type τc. Since no other
typing rules involves client fragments, it is impossible to deconstruct them.

Converters To transmit values from the server to the client, we need a serial-
ization format. We assume the existence of a type serial in both ConstTypes
and ConstTypec, which represents the serialization format. The actual format is
irrelevant. For instance, one could use JSON or XML.

Converters are special values that describe how to move a value from the
server to the client. A converter can be understood as a pair of functions. A
converter f of type τs τc is composed of a server-side encoding function of
type τs → serial, and a client-side decoding function of type serial→ τc. We
assume the existence of two built-in converters:
– The serial converter of type serial serial. Both sides are the identity.
– The fragment converter of type ∀α.({α} α). Note that this type scheme

can only be instantiated with client types.

Type universes It is important to note that there is no identity converter
(of type ∀α.(α α)). Indeed the client and server type universes are distinct
and we cannot translate arbitrary types from one to the other. Some types are
only available on one side: database handles, system types, JavaScript API
types. Some types, while available on both sides, are simply not transferable.
For example, functions cannot be serialized. Finally, some types may share a
semantic meaning, but not their actual representation. This is the case where
converters are used. For example, integers are often 64-bit on the server and
are 32-bit in JavaScript. So, there is an ints and an intc type, along with a
converter of type ints intc. Another example is an HTTP endpoint. On the
server, it is a URL together with a function called when the endpoint is reached.
On the client, it is only the URL of the specified endpoint. These two types are
distinct but share the same semantic meaning, and a converter relates them.

Implementation of converters Specifying which converter to use for which
injection is quite tedious in practice. The current implementation of Eliom uses
runtime information to discover which converter to apply. A better implemen-
tation would use ad-hoc polymorphism, such as modular implicits [25] or type
classes, to define converters.

Common rules

Var
(x : σ)ς ∈ Γ σ � τ

Γ .ς x : τ

Lam
Γ, (x : τ1)ς .ς e : τ2

Γ .ς λx.e : τ1 → τ2

Const
TypeOfς(c) � τ

Γ .ς c : τ

App
Γ .ς e1 : τ1 → τ2 Γ .ς e2 : τ1

Γ .ς (e1 e2) : τ2

Let
Γ .ς e1 : τ1 Γ, (x : Close(τ1,Γ))ς .ς e2 : τ2

Γ .ς let x = e1 in e2 : τ2

Y

Γ .ς Y : ((τ1 → τ2)→ τ1 → τ2)→ τ1 → τ2

Server rules

Fragment
Γ .c ec : τc

Γ .s {{ ec }} : {τc}

Client rules

Injection
Γ .s f : τs τc Γ .s es : τs

Γ .c f%es : τc

Eliomε’s rules

Prog
Γ .ς e : τ1 Γ, (x : Close(τ1,Γ))ς . p : τ2

Γ . letς x = e in p : τ2

Return
Γ .c ec : τc

Γ . ec : τc

Close(τ, Γ) = ∀α0 . . . αn.τ where {α0, . . . , αn} = FreeTypeV ar(τ)\FreeTypeV ar(Γ)

Fig. 2. Typing rules for Eliomε

3.3 The semantics

We now define an operational semantics for Eliomε. The goal of this semantics is
to provide a good model of how programs behave. It does not model finer details
of the execution like network communication. However, the order of execution is
the one a programmer using Eliom should expect. Before defining the semantics,
let us provide preliminary definitions. Values are defined in Figure 3. For the
evaluation of constants, we assume the existence of two partial functions, δc and
δs that interpret the application of a constant to a closed value in order to yield
another closed value: δς(cς , vς) = v′ς

A queue ξ accumulates the expressions that will have to be evaluated client-
side. It contains bindings [r 7→ ec], where r is a variable. We adopt the convention
that bold letters, like r, denote a variable bound to a client expression. The queue
is a first-in, first-out data structure. We note ++ the concatenation on queues.
Substitute of a variable by a value in an expression or a program is noted e[v/x].

Eliomε is eager and call by value. Evaluation contexts are shown in Figure 3.
Injections are rewritten inside client expressions. The location where this can
take place is specified by context C[ec] below. We write e?c for a client expression
containing no injection. Thus, we are forcing a left to right evaluation inside client
fragments. The evaluation context for expressions Eς [eς] is standard, except
that, we also evaluate server expressions in injections f%es inside client code.
Program contexts F [eς] specifies that the evaluation can take place either in a
server declaration or in server code deep inside injections.

The semantics is shown in Figure 4. We define three single-step reduction
relations: two relations −→ on expressions indexed by the expression location ς,
and the relation ↪−→ on programs (or, more precisely on pairs of a program and
an environment of execution ξ). We write −→∗ and ↪−→∗ for the transitive closures
of these relations.

Server declarations are executed immediately (rules Lets and Context).
However client declarations are not. Instead the corresponding expressions are
stored in the queue ξ in the order of the program (rule Letc). When encoun-
tering a client fragment {{ ec }}, the expression ec is not executed at once.
Instead, {{ ec }} is replaced by a fresh variable r and ec is stored in ξ (rule
ClientFragments). When a converter is called inside client code, the encod-
ing part of the converter is executed immediately, while the decoded part is
transmitted to the client (rules Converters and Converterc). The primitive
encode returns the server side encoding function of a converter; the primitive
decode returns a reference to a client fragment implementing the client side
decoding function of a converter. The serial and fragment converters are ba-
sically the identity, so they are erased once the value to be transferred has been
computed (rules Serials and Serialc).

Once all the server declarations have been executed, the expressions in ξ
are executed in the same order they were encountered prior in the evaluation
(rules Exec, Context and Bind). This means that the execution of an Eliomε

program can be split into two phases: server-side execution, then client-side ex-

vς ::= cς | x | Y | λx.eς (Values)

F ::= lets x = Es in p | letc x = C[f%Es] in p (Program contexts)
Eς ::= [] | (Eς eς) | (vς Eς) | let x = Eς in eς | {{ C[f%Eς] }} (Expression contexts)
C ::= [] | (C ec) | (e?c C) | λx.C | let x = C in ec | let x = e?c in C (Client contexts)

Fig. 3. Eliomε’s values and evaluation contexts
Common semantics

App

(λx.eς) vς | ξ −→ eς [vς/x] | ξ

Y

Y vς | ξ −→ vς (λx.(Y vς) x) | ξ

Let

let x = vς in eς | ξ −→ eς [vς/x] | ξ

Delta
δς(cς , vς) is defined

(cς vς) | ξ −→ δς(cς , vς) | ξ

Server semantics

Converters

f /∈ {serial, fragment}
{{ C[f%es] }} | ξ −→

s
{{ C[fragment%(decode f) serial%((encode f) es)] }} | ξ

Serials

f ∈ {serial, fragment}
{{ C[f%v] }} | ξ −→

s
{{ C[v] }} | ξ

ClientFragments

r fresh
{{ e?c }} | ξ −→

s
r | ξ ++ [r 7→ e?c]

Eliomε’s semantics

Contextς

eς | ξ −→
ς
e′ς | ξ′

F [eς] | ξ ↪−→ F [e′ς] | ξ′
Lets

lets x = v in p | ξ ↪−→ p[v/x] | ξ

Finalc

e | ∅ −→
c
e′ | ∅

Ec[e] | ∅ ↪−→ Ec[e
′] | ∅

Converterc

f /∈ {serial, fragment}
letc x = C[f%es] in p | ξ ↪−→ letc x = C[fragment%(decode f) serial%((encode f) es)] in p | ξ

Serialc

f ∈ {serial, fragment}
letc x = C[f%v] in p | ξ ↪−→ letc x = C[v] in p | ξ

Letc

letc x = e?c in p | ξ ↪−→ p | ξ ++ [x 7→ e?c]

Exec
ec | ∅ −→

c
e′c | ∅

e | [r 7→ ec] ++ ξ ↪−→ e | [r 7→ e′c] ++ ξ

ExecVal

e | [r 7→ vc] ++ ξ ↪−→ e[vc/r] | ξ[vc/r]

Fig. 4. Eliomε’s operational semantics

ecution. Even though server and client declarations are interleaved in the pro-
gram, their executions are not. During the first half of the execution, ξ grows as
fragments and client code are stored. During the second half of the execution, ξ
shrink until it is empty.

This semantics is not equivalent to immediately executing every piece of
client code when encountered: the order of execution would be different. The
separation of code execution in two stages, the server stage first and the client
stage later, allows to properly model common web pattern and to minimize
client-server communications. Since execution of stages are clearly separated,
only one communication is needed, between the two stage execution. We will see
this in more details in the next two sections.

4 Compilation to client and server languages

In a more realistic computation model, different programs are executed on the
server and on the client. We thus present a compilation process that separates
the server and client parts of Eliom programs, resulting in purely server-side
and client-side programs. We express the output of the compiler in an ML-like
language with some specific primitives for both sides. The further compilation
of these ML-like languages to machine code for the server, and to JavaScript
for the client [24] is out of the scope of this paper.

4.1 The languages

We define MLs and MLc, two ML languages extended with specific primitives
for client-server communication.

p ::= let x = e in p | bind x = e in p | e (Programs)
e ::= v | (e e) | let x = e in e (Expressions)
v ::= c | x | Y | λx.e (Values)
c ∈ Const (Constants)

Again, the language is parametrized by a set of constants. We assume a
constant () of type unit. As previously, we write r for a variable referring to a
client expression, when we want to emphasize this fact for clarity. The language
also contains a bind construction. Like a let binding, it binds the value of a
an expression e to a variable x in a program p. However, the variable x is not
lexically scoped: you should see it as a global name, that can be shared between
the client and the server code.

Primitives A number of primitives are used to pass information from the server
to the client. We use globally scoped variables for communication. In an actual
implementation, unique identifiers would be used. We use various meta-variables
to make the purpose of these global variables clearer. x is a variable that ref-
erences an injection, f references a closure. The server language MLs provides
these primitives:

– “injection x e” registers that x corresponds to the injection e.
– “fragment f e” registers a client fragment to be executed on the client; the

code is expected to be bound to f on the clients and the injections values
are given by the vector of expressions e.

– “end ()” signals the end of a server declaration, and hence that there will be
no more client fragments from this declaration to execute.

The primitive “exec ()” of the client language MLc executes the client fragments
encountered during the evaluation of the last server declaration.

The primitive end () and exec () are used to correctly interleave the evalua-
tion of client fragments (coming from server declarations) and client declarations,
since server declarations are not present on the client.

4.2 The semantics

The semantics of MLε uses similar tools as the semantics of Eliomε. The rules
for MLs and MLc are presented in Figure 6. The rules that are common with
Eliomε are omitted. A FIFO queue ξc records the client fragments to be exe-
cuted: it contains bindings [r 7→ e] as well as a specific token end that signals
the end of a server-side declaration.

Injections are recorded server-side in an environment γinj which contains a
mapping from the injection reference x to either a reference r to the correspond-
ing client fragment or a value of type serial. Evaluation contexts are shown
in Figure 5

The semantics for MLs is given in Figure 6. For the sake of clarity, the
environment γinj and the queue ξc are passed implicitly at each reduction step;
changes to this environment are expressed as side-conditions. It possesses two
specific rules, Injections and ClientFragments which queue injections and
client fragments inside respectively γinj and ξc. The rule ClientFragments

generates a fresh reference r for each client fragment that will eventually be
bound client-side to a value by the ClientFragmentc rule.

At the end of the execution of the server program, ξc only contains bindings
of the shape [r 7→ (f v)]. We then transmit the client program and the content
of γinj and ξc to the client. Before client execution, we substitute once and for
all the injections by their values provided by γinj: p′c = pc[γinj]. We can then
execute the client program p′c.

The execution of client fragments is segmented by server-side declaration,
materialized client-side by a call to exec. Each client fragment coming from
the evaluation of the related server declaration is executed in turn through the
rules ClientFragmentc, Contextc and Bind. Once no more client fragments
coming from this declaration is found in ξc, rule ClientFragment′c is applied.

4.3 From Eliomε to MLε

Before introducing the exact semantics of these primitives, we specify how Eliomε

is translated using these primitives, which will make their behavior clearer. A

E ::= [] | (E e) | (v E) | let x = E in e (Evaluation contexts)

Fig. 5. MLε’s evaluation contexts
Server semantics

ClientFragments

r fresh ξ′c = ξc ++ [r 7→ (f v)]

fragment f v | ξc, γinj −→
s

r | ξ′c, γinj

Injections

γ′
inj = γinj ∪ [x 7→ v]

injection x v; p | ξc, γinj ↪−→
s
p | ξc, γ′

inj

End
ξ′c = ξc ++ end

end (); p | ξc, γinj ↪−→
s
p | ξ′c, γinj

Client semantics

Execc

e −→ e′

exec (); p | [r 7→ e] ++ ξ ↪−→
c
exec (); p | [r 7→ e′] ++ ξ

ExecValc

exec (); p | [r 7→ vc] ++ ξ ↪−→
c
p[vc/r] | ξ[vc/r]

ExecEndc

exec (); p | end ++ ξc ↪−→
c
p | ξc

Bind

bind f = v in p | ξc ↪−→
c
p[v/f] | ξc[v/f]

Fig. 6. Semantics for MLs and MLc

key point is that we adopt a distinct compilation strategy for client declarations
and for client fragments. Indeed, client declarations are much simpler than client
fragments, as they are executed only once and immediately. Their code can be
used directly in the client, instead of relying on a sophisticated mechanism.

The rewriting function ρ from Eliomε to MLε can be split into two func-
tions ρs and ρc, respectively for server and client code. For each case, we first
decompose injections f%es into an equivalent expression:

fragment%(decode f) serial%(encode f es)

Translating client declarations is done by taking the following steps:
– For each injection fragment%es or serial%es, we generate a fresh name x.
– In MLs, the primitive “injection x es” is called for each injection; it

signals that the value of x should be transmitted to the client.
– In MLc, we replace each injection fragment%es or serial%es by x.

An example is presented Figure 7. On the server, the return value of the program
is always () since the server program never returns anything. The client program
returns the same value as the Eliomε one. The reference to the client fragment
implementing the decoder is associated to variable conv_int, to be transmitted
and used by the client to decode the value.

Eliomε MLs MLc

lets x = 1 in

letc y = int%x+ 1 in

y

let x = 1 in

injection conv_int (decode int);

injection x ((encode int) x)

let y =

(conv_int x) + 1

in y

Fig. 7. Example: Compilation of injections

Translating server declarations containing client fragments is a bit more in-
volved. We need to take care of executing client fragments on the client.
– For each client fragment {{ e }} containing the injections fi%ei, we create

a fresh reference f .
• In MLc, we bind f to “λx0, x1,(e′)” where e′ is the expression where

each injection fragment%ei or serial%ei has been replaced by xi.
• In MLs, we replace the original client fragment by

“fragment f [e0, . . .]” which encode the injected values and registers
that the closure f should be executed on the client.

– In MLs, we call “end ()” which signals the end of a declaration by sending
the end token on the queue.

– In MLc, we call “exec ()” which executes all the client fragments, until the
end token is reached.

An example is presented in Figure 8. You can see that the computation is pre-
pared on the client (by binding a closure), scheduled by the server (by the
fragment primitive) and then executed on the client (thanks to primitive
exec). Also note that client fragments without any injection are bound to a
closure with a unit argument, in order to preserve side effect order.

A more detailed presentation of the translation rules are given in Appendix A.

Eliomε MLs MLc

lets x = {{ 1 }} in

lets y = {{ fragment%x+ 1 }} in

. . .

let x = fragment f0 [] in end ();

let y = fragment f1 [x] in end ();

. . .

bind f0 = λ().1 in exec ();

bind f1 = λx.(x+ 1) in exec ();

. . .

Fig. 8. Example: Compilation of client fragments

5 Relating Eliomε and MLε

We need to guarantee that the translation from Eliomε to the two languages
two languages, MLs and MLc is faithful. Some additional properties that gives a
better insight into the execution of Eliomε programs are given in Appendix B.1.

Since Eliomε is parametrized by its constants, the functions δ, Const and
TypeOf must satisfy a typability condition for the language to be sound.

Hypothesis 1 (δ-typability).
For ς in {c, s}, if TypeOfς(c) � τ ′ → τ and .ς v : τ ′

then δς(c, v) is defined and .ς δς(c, v) : τ

We extend the typing relation to account for the execution queue ξ. The
judgment . ξ, p : τ states that, given the execution queue ξ, the program p has
type τ . We also introduce an judgment Γ .ξ : Γ′ to type execution queues, where
the environment Γ ′ extends Γ with the types of the bindings in ξ. We introduce
the following typing rules.

Queue
∅ . ξ : Γ Γ . p : τ

. ξ, p : τ

Append
Γ .c e : τ Γ, (r : {τ})s, (r : τ)c . ξ : Γ′

Γ . [r 7→ e] ++ ξ : Γ′

Empty

Γ . ∅ : Γ

The rule Queue tells us that if we can type a queue, producing an environ-
ment Γ , and we can type a program p in this environment, then we can type the
pair of the queue and the program. This allows us to type a program during its
evaluation, and in particular when the queue is no longer empty since the rule
ClientValue has been applied.

Assuming the δ-typability hypothesis, we can now gives the following two
theorem. This guarantees that the semantics of Eliomε can be used to reason
about side effects and evaluation behaviors in compiled Eliomε programs. A
more precise statement can be seen in Appendix B.2

Theorem 1 (Subject Reduction).
If . ξ1, p1 : τ and p1 | ξ1 ↪−→ p2 | ξ2 then . ξ2, p2 : τ .

Theorem 2 (Simulation). Let p be an Eliomε program with an execution
p | ∅ ↪−→∗ v | ∅ For an execution of p that terminates, we can exhibit a chained
execution of ρs(p) and ρc(p) such that evaluation is synchronized with p.

6 Related work

Unified client-server languages Various directions have been explored to
simplify Web development and to adapt it to current needs. Eliom places itself
in one of these directions, which is to use the same language on the server and
the client. Several unified client-server languages have been proposed. They can
be split in two categories. JavaScript can be used on the server, with Node.js;
it can be used as a compilation target: for instance, Google Web Toolkit
for Java or Emscripten for C.

The approach of compiling to JavaScript was also used to develop new client
languages aiming to address the shortcomings of JavaScript. Some of them are
new languages, such as Haxe, Elm or Dart. Others are simple JavaScript
extensions, such as TypeScript or CoffeeScript. These various proposals
do not help in solving client-server communication issues: the programmer still
writes the client and server code separately and must ensure that messages are
written and read in a coherent way.

Tierless languages and libraries Several other languages share with Eliom
the characteristic of mixing client and server code in an almost transparent way.
We will first give a high-level comparison of the various trade-offs involved.

In Eliom, code location is indicated by manual annotations. Several other
approaches infer code location using known elements (database access is on the
server, dynamic DOM interaction is done on the client, etc) and control flow
analysis [18,17,9] . This approach presents various difficulties and drawbacks:
It is extremely difficult to integrate to an existing language; it is difficult to
achieve with an effectful language; the slicing cannot be as precise as explicit
annotations. For example it will not work if the program builds datastructures
that mix client fragments and other data, as shown in Section 2.4. We believe

that the efficiency of a complex Web application relies a lot on the programmer’s
ability to know exactly where the computation is going to happen at each point
in time. In many cases, both choices are possible, but the result is very different
from a user or a security point of view.

Eliom has two type universes for client and server types (see Section 3.2).
This allows the type system to check which functions and types are usable on
which side. Most other systems do not track such properties at the type level.

Eliom uses asymmetric communication between client and server (see Sec-
tion 3.3). Most other languages provide only two-way communications. The ac-
tual implementation of Eliom also provides two-way communications as a li-
brary, allowing the user to use them when appropriate.

We now provide an in-depth comparison with the most relevant approaches.
Ur/Web [8,7] is a new statically typed language special purposed for Web

programming. While similar in scope to Eliom, it presents a very different ap-
proach: Ur/Web uses whole-program compilation and a global automatic slicing
to separate client and server code. This makes some examples hard to express,
such as the one in Section 2.4. Client and server locations are not tracked by the
type system and are not immediately visible in the source code, which can make
compiler errors hard to understand, and is incompatible with separate compila-
tion. Furthermore and contrary to Eliom, several primitives such as RPC are
hardcoded in the language.

Hop [21,6] is a dialect of Scheme for programming Web applications. Like
Eliom it uses explicit location annotations and provide facilities to write com-
plex client-server applications. However, as a Scheme-based language, it doesn’t
provide static typing. In particular, contrary to Eliom, Hop doesn’t enforce
statically the separation of client and server universes (such as using database
code inside the client).

Links [10] is an experimental functional language for client-server Web pro-
gramming with a syntax close to JavaScript and an ML-like type system. Its
type system is extended with a notion of effects, allowing a clean integration of
database queries in the language. It doesn’t provide any mechanisms to separate
client and server code, so they are shared by default, but uses effects to avoid
erroneous uses of client code in server contexts (and conversely). Compared to
Eliom, compilation is not completely available and Links doesn’t provide an
efficient communication mechanism.

Haste [11] is an extension of Haskell similar to Eliom. Instead of using
syntactic annotations, it embeds client and server code into monads. This ap-
proach works well in the Haskell ecosystem. However Haste makes the strong
assumption that there exists a universe containing both client and server types,
shared by the client and the server. Eliom, on the contrary, doesn’t make this
assumption, so the monadic bind operator for client fragments, of type (’a ->
{ ’b })-> { ’a } -> { ’b }, makes no sense: ’a would be a type both

in the server and the client, which is not generally true.
Meteor.js [15] is a framework to write both the client and the serve side

of an application in JavaScript. It has no built-in mechanism for sections

and fragments but relies on if statements on the Meteor.isClient and
Meteor.isServer constants. This means that there are no static guaran-
tees over the respective execution of server and client code. Besides, it provides
no facilities for client-server communication such as fragments and injections.
Compared to Eliom, this solution only provides coarse grain composition.

MetaOCaml [14] is an extension of OCaml for meta programming, it in-
troduces a quotation annotation for staged expressions for which execution will
be delayed. While having a different goal, stage quotations are very similar to
Eliom’s client fragments. The main difference is the choice of universes: Eliom
possesses two universes, client and server, that are distinct. MetaOCaml pos-
sesses a series of universes for each stage, included in one another.

7 Conclusion

We have presented a formalization of the core language Eliomε, a client-server
Web application programming language. First, we have given a formal semantics
and a type system for a language that contains the key features of Eliom. This
semantics is intuitive and easy to understand. It corresponds to what a program-
mer needs to know. Then, we have defined a lower level semantics, corresponding
to how Eliom is compiled. We then showed how this compilation is done and
that it preserves the semantics.

Eliomε is used as a core language for the larger Eliom framework and
the Ocsigen ecosystem. Eliomε is sufficiently small to be reasoned about and
implemented on top of an existing language, such as OCaml. It is also expressive
enough to allow the implementation, without any additional language built-in
constructs, to all kinds of widgets and libraries used for Web programming.

The implementation of Eliom as an extension of an existing language makes
it possible to reuse a large set of existing libraries and benefit from an already
large community of users. Web programming is never about the Web per se, but
almost always related to other fields for which dedicated libraries are necessary.

Explicit annotations indicate at which location the program execution takes
place. Adding them is really easy for programmers and is a good way to help
them see exactly where computation is going to happen, which is crucial when
developing real-size applications. Eliom makes it impossible to introduce by
mistake unwanted communication.

Eliom makes strong use of static typing to guarantee many properties of the
program at compile time. Developing both the client and server parts as a single
program allows to guarantee the consistency between the two parts, to check all
communications: injections, server push, remote procedure calls,. . .

These design choices have always been guided by concrete uses. From the
beginning, Ocsigen has been used for developing real-scale applications. The
experience of users has shown that the use of a tierless language is more than
a viable alternative to the traditional Web development techniques, and is well
suited to the current evolution of the Web into an application platform. The
fluidity gained by using a tierless programming style with static typing matches

the need of a new style of applications, combining both the advantages of sophis-
ticated user interfaces and the specificities of Web sites (connectivity, traditional
Web interaction, with URLs, back button, . . .). This is made even more con-
venient through the use of features such as an advanced service identification
model and the integration of reactive functional programming that are provided
by Eliom but have not been covered here.

References

1. Balat, V.: Client-server Web applications widgets. In: WWW’13 dev track (2013)
2. Balat, V.: Rethinking traditional web interaction: Theory and implementation.

International Journal on Advances in Internet Technology (2014)
3. Balat, V., Chambart, P., Henry, G.: Client-server Web applications with Ocsigen.

In: WWW’12 dev track. p. 59. Lyon, France (Apr 2012)
4. Balat, V., Vouillon, J., Yakobowski, B.: Experience report: Ocsigen, a Web pro-

gramming framework. In: ICFP. pp. 311–316. ACM (2009)
5. BeSport. http://www.besport.com/
6. Boudol, G., Luo, Z., Rezk, T., Serrano, M.: Reasoning about Web applications: An

operational semantics for HOP. Trans. Program. Lang. Syst. 34(2), 10 (2012)
7. Chlipala, A.: An optimizing compiler for a purely functional Web-application lan-

guage. In: ICFP (2015)
8. Chlipala, A.: Ur/Web: A simple model for programming the Web. In: POPL (2015)
9. Chong, S., Liu, J., Myers, A.C., Qi, X., Vikram, K., Zheng, L., Zheng, X.: Secure

web applications via automatic partitioning. In: SOSP’07 (2007)
10. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: Links: Web programming without

tiers. In: FMCO. pp. 266–296 (2006)
11. Ekblad, A., Claessen, K.: A seamless, client-centric programming model for type

safe web applications. In: SIGPLAN Symposium on Haskell. Haskell ’14 (2014)
12. Eliom web site. http://ocsigen.org/
13. New York University Gencore. http://gencore.bio.nyu.edu/
14. Kiselyov, O.: The design and implementation of BER MetaOCaml - System de-

scription. In: FLOPS (2014)
15. Meteor.js. http://meteor.com
16. Ocsigen Widgets. http://ocsigen.org/ocsigen-widgets/
17. Opa web site. http://opalang.org/
18. Philips, L., De Roover, C., Van Cutsem, T., De Meuter, W.: Towards tierless Web

development without tierless languages. In: Onward! 2014 (2014)
19. Pumgrana. http://www.pumgrana.com/
20. Scherer, G., Vouillon, J.: Macaque : Interrogation sûre et flexible de base de données

depuis OCaml. In: 21ème journées francophones des langages applicatifs (2010)
21. Serrano, M., Queinnec, C.: A multi-tier semantics for Hop. Higher-Order and Sym-

bolic Computation 23(4), 409–431 (2010)
22. Tyxml. http://ocsigen.org/tyxml/
23. Vouillon, J.: Lwt: a cooperative thread library. In: ACM Workshop on ML (2008)
24. Vouillon, J., Balat, V.: From bytecode to JavaScript: the Js_of_ocaml compiler.

Software: Practice and Experience 44(8), 951–972 (2014)
25. White, L., Bour, F., Yallop, J.: Modular implicits. ML workshop (2014)
26. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information

and computation 115(1), 38–94 (1994)

http://www.besport.com/
http://ocsigen.org/
http://gencore.bio.nyu.edu/
http://meteor.com
http://ocsigen.org/ocsigen-widgets/
http://opalang.org/
http://www.pumgrana.com/
http://ocsigen.org/tyxml/

A Translation from Eliomε to MLε

We define two rewriting relations, ρs and ρc which takes as input an Eliomε

programs and output an MLs (resp. MLc) program.
We define some preliminaries notations. Brackets [and] are used as meta-

syntactic markers for repeated expressions: [. . .]i is repeated for all i. The bounds
are usually omitted. Lists are denoted with an overline: xi is the list [x0, . . . , xn−1].
We allow the use of lists inside substitutions to denote simultaneous independent
substitutions. For instance e[vi/xi] is equivalent to e[v0/x0] . . . [vn−1/xn−1]. We
will only consider substitutions where the order is irrelevant.

We also consider two new operations:
– injections(ec) returns the list of injections in ec.
– fragments(es) returns the list of fragments in es.

The order corresponds to the order of execution for our common subset of ML.

As in Section 4.3, we assume that fragments are first rewritten in the following
manner:

f%es −→ fragment%(decode f) serial%(encode f es)

We also assume that expressions inside injections are hoisted out of the local
client scope. For example {{ f%(3+x) }} is transformed to λy.{{ f%y }} (3+x).
More formally, we apply the following transformations:

{{ C[f%es] }} −→ (λx.C[f%x]) es

letc y = C[f%es] in p −→ lets x = es in letc y = C[f%x] in p

Where x is fresh.

This transformation preserves the semantics, thanks to the validity constraint
on programs presented in Section 3.1.

We can now define ρs and ρc by induction over Eliomε programs. We refer
to Section 4.3 for a textual explanation.

Since we already translated custom converters, all the converters considered
are either fragment or serial. Here is the definition for client sections:

ρs(letc x = ec in p) ≡
[
injection xi ei;

]
i
ρs(p)

ρc(letc x = ec in p) ≡ let x = ec[xi/fi%ei] in ρc(p)

Where

fi%ei = injections(ec)

∀i, ei doesn’t contain fragments.
xi is a list of fresh variables.

Here is the definition for server sections. Note the presence of lists of lists, to
handle injections inside each fragment.

ρs(lets x = es in p) ≡ let x = es[fragment fi ai/{{ ei }}]i in end(); ρs(p)

ρc(lets x = es in p) ≡
[
bind fi = λ(x)i.(ei[(x)i/(f%a)i]) in

]
i
exec(); ρc(p)

Where

{{ ei }} = fragments(es)

fi is a list of fresh variables.

∀i, (f%a)i = injections(ei)

∀i, (x)i is a list of fresh variables;

Finally, the returned expression of an Eliomε program. The translation is
similar to client sections:

ρs(ec) ≡
[
injection xi ei;

]
i

()

ρc(ec) ≡ ec[xi/fi%ei]

Where

fi%ei = injections(ec)

∀i, ei doesn’t contain fragments.
xi is a list of fresh variables.

B Relations between Eliomε and ML

B.1 Properties on Eliomε executions

The execution of a program can be separated into two phases: execution of
server-side code, then execution of client-side code.

Lemma 1. Let p be a program with an execution p | ξ ↪−→∗ v | ξ′, Then there
is a step of the program, which we call tc/s, such that all steps before are rules
Lets,Contextς , Converterc, Serialc or Letc and all steps after are rules
Exec, Contextς , ExecVal or Finalc.

Proof. We consider the first step tc/s where the program is a return expression ec,
and proceed then by contradiction.

Corollary 1. ξ is increasing before tc/s is reached and decreasing afterwards.

This corollary provides us some indications about how a typical Eliomε

execution looks like. First, ξ is filled until the final variable is reached, then
all the code contained in ξ is executed until it’s empty, then the final value is
computed. We can illustrate this on a drawing:

p | ∅ e | ξ v | ∅
↗ξ

Lets, Contexts,
Converters or Letc

↘ξ

Exec, Contextc,
BindContextc or Bind

Of course, since Y is in the language, computation may also diverge.

B.2 Simulation

We now define a simulation between Eliomε and MLε. That is, given a program
Eliomε and its translation into MLε, we can replay in MLε any reduction done
in Eliomε. The difficulty here is that Eliomε is a single language while MLε

is composed of two languages. Also, some information gets spread in different
places during the translation and we need it all to be able to do a simulation.

Definition 1 (Server relation). The relation is defined inductively on the
complete client program and establish a relation between the Eliomε program
during execution (associated with ξ) and the MLs program during execution
(associated with γinj and ξc). This provides a way, given the knowledge of the
client program to be executed, to ensure that ξ and ξc remain consistent with
each other.

(ξ, p)Rs(γinj, ξc, γf , pc, ps) if and only if one of the following case hold

1. If a declaration is in the client program and in ξ, then the definition must
be the same up to renaming from the injection environment.

pc = let x = ec in p′c

ξ = [x 7→ e] ++ ξ′

e = ec[γinj]

(ξ′, p)Rs(γinj, ξc, γf , p
′
c, ps)

2. If a declaration is in the client program and ξ is empty, it must be in the
Eliomε program.

pc = let x = ec in p′c

ξ = ∅
p = letc x = e in p′

ec = ρc(e)

γ′inj = γinj ∪ [x0 7→ v0, . . . , xn 7→ vn]

ps = injection x0 v0 ; . . . ; injection xn vn ; p′s

(∅, p′)Rs(γ
′
inj, ξc, γf , p

′
c, p
′
s)

3. If the client program is a bind, the environment must be updated appropri-
ately.

pc = bind f = λa.ea in p′c

ξ′c = ξc[λa.ea/f]

γ′f = γf ∪ [f 7→ λa.ea]

(ξ, p)Rs(γinj, ξ
′
c, γ
′
f , p
′
c, ps)

4. Finally, client fragments contained in ξ and ξc must be appropriately syn-
chronized.

pc = exec(); p′c

ξc = [r0 7→ e0] ++ . . .++ end ++ ξ′c

ξ = [r0 7→ e′0] ++ . . .++ ξ′

∀i∃ki such that ei −→
c

ki e′i

p =

p′

lets x = e in p′
∀r ∈ e ∃i such that r = ri

∀{{ ea }} ∈ e ∃[f 7→ λa.ea] ∈ γf
ps = let x = e[fragment f a/{{ ea }}] in . . .

with [f 7→ λa.ea] ∈ γf
(ξ′, p)Rs(γinj, ξ

′
c, γf , p

′
c, ps)

This relation, while complicated, gives us all the necessary information to
prove that the behavior of Eliomε and MLs is the same.

Lemma 2 (Relation over translation).
The translation from Eliomε to MLε respects the server relation.

(∅, p)Rs(∅, ∅, ∅, ρc(p), ρs(p))

Proof. By induction over the Eliomε program p.

Lemma 3 (Relation over reduction).
The execution respects the server relation.
If (ξ, p)Rs(γinj, ξc, ∅, pc0 , ps) and if p | ξ ↪−→ p′ | ξ′ with rules Lets,Contextς ,
Converterc, Serialc or Letc, then we can execute k steps of reduction

γinj, ξc, ps ↪−→
s

k γ′inj, ξ
′
c, p
′
s

such that (ξ′, p′)Rs(γ
′
inj, ξ

′
c, ∅, pc0 , p′s)

Note how pc0 is unchanged by the reduction.

Proof. By induction over the Eliomε reduction relation ↪−→.

Definition 2 (Client relation).We can define a client relation (ξ, p)Rc(γinj, ξc, pc)
in a similar fashion.

(ξ, p)Rc(γinj, ξc, pc) if and only if one of the following case hold

1. Base case: when a server execution is done, a client execution can start.

(ξ, p)Rs(γinj, ξc, ∅, pc, ()) with () the empty program.

2. If a declaration is in the client program, there must be an equivalent injection
in the Eliomε program.

pc = let x = ec in p′c

ξ = [x 7→ e] ++ ξ′

ec = e[γinj]

(ξ, p′)Rc(γinj, ξc, p
′
c)

3. If a client closure is declared in the client program, it must be substituted in
the queue.

pc = bind f = λa.e in p′c

(ξ, p′)Rc(γinj, ξc[λa.e/f], p
′
c)

Lemma 4 (Relation over reduction).
The execution respects the client relation.
If (ξ, p)Rc(γinj, ξc, ∅, pc) and if p | ξ ↪−→ p′ | ξ′ with rules Exec, Contextς ,
ExecVal or Finalc, then we can execute k steps of reduction

pc | ξc ↪−→
c

k p′c | ξ′c

such that (ξ′, p′)Rc(γinj, ξ
′
c, ∅, p′c)

Proof. By induction over the Eliomε reduction relation ↪−→.

Theorem 3 (Simulation). Let p be an Eliomε program with an execution
p | ∅ ↪−→∗ v | ∅ For an execution of p that terminates, we can exhibit a chained
execution of ρs(p) and ρc(p) such that evaluation is synchronized with p.

Proof. We note ps = ρs(p) and pc = ρc(p).
According to Lemma 1 there exists a step tc/s, a program p′ and a queue ξ

such that
p | ∅ ↪−→∗ v′ | ξ ↪−→∗ v | ∅

Additionally, according to Lemma 1, we can apply Lemma 3 on each step
until tc/s and Lemma 4 on each step after tc/s.

According to Lemma 2, (∅, p)Rs(∅, ∅, ∅, ps, pc)
By applying Lemma 3 over each step of the execution until tc/s, there exists ξc

and γinj such that (ξ, v′)Rs(γinj, ξc, ∅, pc, ()) which implies (ξ, v′)Rc(γinj, ξc, pc).
By applying Lemma 4 over each step of the execution after tc/s, there exists

v′′ such that (∅, v′′)Rc(γinj, ∅, v′).
We thus exhibit a chained execution of a server and a client program that is

synchronized with the original Eliomε program.

ps | ∅, γinj ↪−→
s

∗ () | ξc, γinj pc[γinj] | ξc ↪−→
c

∗ v′′ | ∅

ut

	Eliom: A core ML language for Tierless Web programming

