
HAL Id: hal-01349752
https://hal.science/hal-01349752

Submitted on 28 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Audio Rendering/Processing and Control Ubiquity ? a
Solution Built Using the Faust Dynamic Compiler and

JACK/NetJack
Stephane Letz, Sarah Denoux, Yann Orlarey

To cite this version:
Stephane Letz, Sarah Denoux, Yann Orlarey. Audio Rendering/Processing and Control Ubiquity ? a
Solution Built Using the Faust Dynamic Compiler and JACK/NetJack. 40th International Computer
Music Conference joint with the 11th Sound & Music Computing conference (ICMC/SMC 2014), Jul
2014, Athènes, Greece. �hal-01349752�

https://hal.science/hal-01349752
https://hal.archives-ouvertes.fr

Audio Rendering/Processing and Control Ubiquity ? a Solution Built Using the
Faust Dynamic Compiler and JACK/NetJack

Stephane Letz
GRAME

letz@grame.fr

Sarah Denoux
GRAME

sdenoux@grame.fr

Yann Orlarey
GRAME

orlarey@grame.fr

ABSTRACT

We usually think of an audio application as a self-contained
executable that will compute audio, allow user interface
control, and render sound in a single process, on a unique
machine.

With the appearance of fast network and sophisticated,
light and wireless control devices (such as tablets, smart-
phones...) the three different parts (that are audio computa-
tion, interface control and sound rendering) can naturally
be decoupled to run on different processes on a given ma-
chine, or even on different machines (on a LAN or WAN
network).

We describe a solution to run and control audio DSP on
different machines based on:

• the FAUST audio DSP language which permits lo-
cal and remote dynamic compilation, code migra-
tion and deployment (using libfaust, libfaustremote
and LLVM)

• local and remote control capabilities (via OSC and
HTTP based control interfaces)

• JACK/NetJack network audio real-time layer to han-
dle remote audio processing and rendering.

1. INTRODUCTION

Audio applications are usually self-contained executables
running on a single machine. Most of them can be ex-
tended with additional audio processing capabilities using
plug-ins following different standards (VST, Audio Unit,
LV2, etc.). Control is usually either done directly by in-
teracting with the application user interface, using the key-
board, mouse, or multi-touch devices that liberate and ex-
tend control access.

Several control protocols have been designed over the
years, going from the old MIDI protocol to the more gen-
eral and flexible Open Sound Control [1] one, and several
more specialized ones (Mackie...).

Audio architectures themselves have evolved to offer to
the developer and the user a more flexible infrastructure to

Copyright: c©2014 Stephane Letz et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

build custom working environments. The Jack Audio Con-
nection Kit [2] (JACK) for instance not only allows appli-
cations to share audio and MIDI devices, but also do inter-
application audio and MIDI routing. With its NetJack ex-
tension, networks of connected machines exchanging au-
dio and MIDI streams in real-time on the LAN can be
built. Alternative audio over network solutions, like Jack-
Trip, an infrastructure over TCP/IP Wide Area Networks,
have been developed and continuously extended [3], [4].
Concerning remote DSP processing, proprietary and com-
mercial solutions like Apple Logic Pro distributed network
audio system 1 have existed for years.

1.1 Control, Compute, Communicate

Until now, very few solutions have existed which easily
compile, migrate and deploy arbitrary audio DSP code on
different machines, only using open-source components.
This can be done if the different parts of the audio appli-
cation are clearly defined and separated, thus more clearly
expressing the ubiquitous nature of the computation the ap-
plication is going to achieve.

We can roughly describe any audio application as having
three principal parts (see Figure 1), which are named with
the Control-Compute-Communicate terminology:

• control: the control part changes the parameters in
real-time

• compute: the audio DSP computation processes au-
dio inputs and produces audio outputs

• communicate (with the audio card): the audio ren-
dering part triggers the audio computation.

This paper presents a practical solution using the FAUST
audio DSP language and the JACK/NetJack audio system
where:

• control can be done locally or externally using the
flexible architecture concept used to wrap FAUST
compiled code

• DSP code can be compiled and deployed locally or
externally by “migrating” the DSP source itself, us-
ing libfaust and libfaustremote libraries

• distributed audio rendering and processing can be
implemented using the JACK/NetJack audio/MIDI
infrastructure.

1 see https://documentation.apple.com/en/logicpro/usermanual/

mailto:letz@grame.fr
mailto:sdenoux@grame.fr
mailto:orlarey@grame.fr
http://creativecommons.org/licenses/by/3.0/

!

!

"#$%!
&'($%)*+$!

*",&-!
+-./"(*(&-'!

*",&-!
,%&0$%!

!

!

Figure 1. Audio application structure

2. FAUST AUDIO DSP LANGUAGE

FAUST [Functional Audio Stream] [5] [6] [7] is a func-
tional, synchronous, domain-specific programming language
specifically designed for real-time signal processing and
synthesis. A unique feature of FAUST, compared to other
existing music languages like Max 2 , PureData, Supercol-
lider, etc., is that programs are not interpreted, but fully
compiled. FAUST provides a high-level alternative to C/C++
to implement efficient sample-level DSP algorithms.

2.1 The compilation chain

The FAUST compiler translates a FAUST program into an
equivalent imperative program (typically C, C++, Java, etc.),
taking care of generating efficient code. The FAUST pack-
age also includes various architecture files, providing the
glue between the generated code and the external world
(audio drivers and user interfaces).!

"#$%&!
'()*+,-.!

/00!
'()*+,-.!

123!"456!

78'94:6':;86!"456!

6<6';:7=56!
73354'7:4>?!>8!35;/4?!

'@@!"456!

Figure 2. Steps of FAUST compilation chain

The current version of the FAUST compiler produces the
resulting DSP code as a C++ class, to be inserted in the
architecture file. The C++ file is finally compiled with a
regular C++ compiler to produce the final executable pro-
gram or plug-in (Figure 2).

The resulting application is structured as shown in Figure
1. The DSP becomes an audio computation module, linked
to the user interface and the audio driver.

If compilers have the advantage of efficiency, they have
their own drawbacks compared to interpreters. Compil-

2 the gen object added in Max6 now creates compiled code from a
patch-like representation, using the same LLVM based technology

ers traditionally require a whole chain of tools to be in-
stalled (compiler, linker, development libraries, etc.). For
non-programmers this task can be complex. The develop-
ment cycle, from the edition of the source code to a run-
ning application, is much longer with a compiler than with
an interpreter. This can be a problem in creative situations
where quick experimentation is essential. Moreover, bi-
nary code is usually not compatible across platforms and
operating systems.

2.2 FIR: Faust Imperative Representation

In order to generate alternative output (like pure C, Java,
JavaScript, LLVM IR etc.), an intermediate language called
FIR (Faust Imperative Representation) has been defined in
the faust2 development branch. This language allows the
description of the calculations performed on the samples
in a generic manner. It contains primitives to read and
write variables and arrays, perform arithmetic operations,
and define the necessary control structures (for and while
loops, if structure etc.). The language of signals internal
to the compiler is now compiled in this FIR intermediate
language.

2.3 LLVM

LLVM (formerly Low Level Virtual Machine) is a com-
piler infrastructure, designed for compile-time, link-time,
run-time optimization of programs written in arbitrary pro-
gramming languages. Executable code is produced dy-
namically using a “Just In Time” compiler from a spe-
cific code representation, called LLVM IR 3 . Clang, the
“LLVM native” C/C++/Objective-C compiler is a front-
end for LLVM Compiler. It can, for instance, convert a
C or C++ source file into LLVM IR code (Figure 3).

Figure 3. LLVM compiler structure

Domain-specific languages like FAUST can easily target
the LLVM IR. This has been done by developing a special
LLVM IR back-end in the FAUST compiler [8].

2.4 Dynamic compilation chain

The complete chain goes from the DSP source code, com-
piled in LLVM IR using the LLVM back-end, to finally
produce the executable code using the LLVM JIT. All steps
are done in memory. Pointers on executable functions can
be retrieved in the resulting LLVM module, and their code
directly called with the appropriate parameters (Figure 4).

3 The Intermediate Representation is an intermediate SSA representa-
tion

In the faust2 development branch, the FAUST compiler
has been packaged as an embeddable library called lib-
faust, published with an associated API [8]. This API imi-
tates the concept of oriented-object languages, like C++.

The compilation step, usually executed by GCC, is ac-
cessed through the function createDSPFactory. Given a
FAUST source code (as a file or a string), the compilation
chain (FAUST + LLVM JIT) generates the “prototype” of
the class, as a llvm-dsp-factory pointer.

Next, the createDSPInstance function, corresponding to
the new className of C++, instantiates a llvm-dsp pointer,
to be used as any regular FAUST compiled DSP object, run
and controlled through its interface.

Figure 4. LLVM compiler structure

3. NETJACK NETWORK AUDIO LAYER

NetJack is a real-time Audio Transport over a generic IP
Network, fully integrated into JACK [2]. Based on a mas-
ter/slave model, NetJack synchronizes all clients to the mas-
ter machine sound card, running all slaves with the same
sampling rate and buffer size. When run directly in the
JACK server, NetJack appears as two different parts (Fig-
ure 5):

• the master component (netmanager in JACK2 4 im-
plementation) is loaded in a server running and syn-
chronized on an audio back-end

• the slave component is used as the back-end (net-
jack back-end in JACK2 implementation) of a slave
JACK server running on the remote machine. This
way the slave machine is synchronized with the mas-
ter machine so that no re-sampling on the slave side
is needed.

This way, two (or more...) separated machines running
each an entire JACK infrastructure (that is a JACK server
and several JACK applications) are connected and synchro-
nized through the network.

But the NetJack protocol is also available in a library
called libjacknet that embeds and offers the master and
slave components as a C API, to be used in applications
developed outside of the JACK server context, as explained
in the following sections.

3.1 Remote processing

Since the entire FAUST DSP to executable code chain is
now completely embeddable, it becomes quite easy and

4 JACK2 is the C++ implementation of the JACK server and API run-
ning on major OS: Linux, OSX and Windows

Figure 5. Typical NetJack use case

natural to extend this model on the network to enable re-
mote processing. This way, compilation and DSP compu-
tation can easily be redirected on a remote machine.

3.1.1 Remote server

On the remote machine, the compilation/processing ser-
vice appears as a specialized HTTP server waiting for re-
quests. Remote processing service is detected on the local
machine side using the libfaustremote library.

The first step (compilation) is carried out by the function
createRemoteDSPFactory. The Faust DSP code is sent to
the server, which compiles it and creates the “real” llvm-
dsp-factory. The remote-dsp-factory returned to the user is
a proxy for the “real” factory. Before sending the FAUST
code, a FAUST to FAUST compilation step is locally exe-
cuted, to solve all code dependencies, and thus send a com-
pletely self-contained expanded code version to the server
(Figure 6).

All available machines on the network can be scanned
with getRemoteMachinesAvailable, and for a given one,
already compiled DSP factories can be retrieved with ge-
tRemoteFactoriesAvailable.

3.1.2 Local “proxy”

On the client side, a “proxy” API makes it transparent to
create a remote-dsp pointer rather than a local llvm-dsp.

Using the createRemoteDSPInstance function, the remote-
dsp-factory can then be instantiated to create remote-dsp
instances, which can then run in the chosen audio/control
architecture.

To be able to locally create the interface, the server re-
turns a JSON encoded interface. This way, the function
buildUserInterface can be recreated, giving the feeling that
a remote-dsp works as a local llvm-dsp.

3.1.3 NetJack audio/control connection

Using a NetJack low-latency audio connection the audio
data is sent (using the master component of the libjacknet
library) to the remote machine to be processed and sent
back (as a slave component of the libjacknet library).

In addition to the standard audio flow, one MIDI port
is used to transfer the controller values (Figure 6). The

benefit of this solution is to transmit synchronized audio
and controller values in the same connection. Audio sam-
ples can be encoded using the different possible audio data
types: float, integer, and compressed audio (using the OPUS
5 codec).

!
!
!
!
!
!
!
!
!

!
!
!
!
!

!
!
!
!
!
!

!
!

!"#
!"#$%""!"#$

!"#$%"!
!"#$%&'(

!"#$%#&#'(%#)*+,$!%("-

!"#$%#&#'(%#)*+,-.%$-!#

!"#$%#&'()$!%*"+

!"#$%#&'()*+%$*!#

!"#$%&'()

!!"#$!!
!!"#!"#$%&'
!

!!"#$!!
!"#

!!"#$%&!"#$!
!!!"#$!!"#$!
!

#$%&'()!!!!!(*##$(%+*#!
!!"#!
!"#

!!"#!
!"#!!"#$%&'

Figure 6. Remote compilation

The libfaustremote library uses libcurl to send HTTP re-
quests to the remote server, handled with libmicrohttpd.
The ZeroConf protocol is used to scan the remote machines
presenting the service and export them as a list of available
machines.

3.2 Remote rendering

NetJack layer can also be used to separate the audio pro-
cessing and audio rendering parts. Instead of using it’s own
sound card, the machine will start a NetJack slave audio
driver, receiving its audio inputs from a remote NetJack
master and sending back its audio outputs.

4. USER INTERFACE CONTROL

A FAUST UI architecture is a glue between a host control
layer and a FAUST module. It is responsible for associat-
ing a FAUST module parameter to a user interface element
and to update the parameter value according to the user’s
actions.

This association is triggered by the buildUserInterface
call, where the DSP object asks a UI object to build the
module controllers. Moving UI elements later on changes
parameter values which are “sampled” at each audio cycle
and used by the DSP computation loop.

4.1 Local control

Local controllers are typically built using UI frameworks
(like GTK or QT) that allow to create buttons, sliders, text
entry zones or bargraphs. Those elements are then arranged
on a complete window following an abstract layout de-
scription that is part of the Faust DSP source.

4.2 Remote control

Moving controls on a remote machine assumes that a con-
trol communication protocol has been defined between the
local and remote machines.

5 http://www.opus-codec.org

4.2.1 OSC control

The OSC [1] support opens the FAUST applications control
to any OSC capable application or programming language.
But it also transforms a full range of devices embedding
sensors (wiimote, smartphones, tablets...) into physical in-
terfaces for FAUST applications control, allowing their di-
rect use as music instruments (Figure 8).

The UI with its layout and UI items hierarchy is encoded
as a OSC address space, to be retrieved and used by OSC
client applications. Several ports are defined:

• 5510 is the listening port number: control messages
should be addressed to this port.

• 5511 is the output port number: answers to query
messages are send to this port.

• 5512 is the error port number: used for asynchronous
errors notifications.

4.2.2 HTTP control

The FAUST HTTP architecture provides an UI architecture
to be controlled by standard browsers. The compiled appli-
cation embeds a specialized HTTP server (developed using
the libmicrohttpd library), that waits for connections on a
identified port (like 5510), delivers the UI to clients as a
JSON encoded string with some JavaScript code to decode
and display it, and build a fully controllable client side user
interface.

To ease the opening of the interface, a Qr Code is built
from the HTTP address, thanks to libqrencode. Most smart-
phones and portable equipments have a QrCode decoder.
By scanning the Qr Code, a browser gets connected to the
interface page.

Control parameters are transferred in both directions, so
that the browser can effectively display values produced by
the DSP computation (like vumeters level for instance).

Several control machines can possibly be used, each one
having its own opened browser. While the OSC control
interface is designed to be used on a LAN network, the
HTTP control model is easily usable on WAN, thus open-
ing interesting possibilities (see Figure 7).

5. USE CASES

With the FAUST local and remote dynamic compiler and
JACK/NetJack network audio layer in place, a wide variety
of interesting use cases can now be put in practice.

5.1 Remote control

Any Faust DSP program can be remotely controlled using
either the OSC or the HTTP architecture. The DSP object
is dynamically wrapped by the appropriate user interface
C++ class. This way it becomes accessible on the network
for any available control application.

We have tested OSC control from Max/MSP patches, and
HTTP control using standard browsers on laptop, tablets
or even smartphones. Sound installations are a typical use
case where publishing the Qr Code built from the HTTP
address allows visitors to interact with the system.

Figure 7. HTTP interface: karplus DSP running in a
browser with a SVG based UI built from the JSON ex-
ported interface

Figure 8. OSC interface

5.2 Remote audio rendering

By using JACK/NetJack on a LAN, several slave machines
can access a master one, which would typically be con-
nected on a high quality studio audio system.

Another typical use case is a class room, where a unique
sound system is available: all pupils can possibly connect
their machines and use it (Figure 9).

5.3 Remote audio processing

Migrating DSP code on a remote machine (Figure 10) makes
sense when CPU heavy DSP cannot be computed on the
user’s machine. A typical case would be a composer com-
ing with his/her laptop in the studio, and possibly using the
more powerful available machines.

Another interesting use case we have experimented to fa-
cilitate the rapid development and experimentation of au-

Figure 9. NetJack based audio rendering

dio DSP programs on tablets and smartphones with the fol-
lowing steps:

• a generic application running on the tablet/smartphone
scans all machines on the network with getRemoteMa-
chinesAvailable

• for a given one, already compiled DSP factories can
be retrieved with getRemoteFactoriesAvailable

• a remote DSP instance then can be created, con-
nected to the tablet/smartphone audio system, and
locally controlled

We have successfully tested this example on a MacBook
Pro laptop, with audio rendering and control running in
wireless mode on an iPad 6 . An audio effect can be de-
veloped and rapidly tested on the tablet, then later on fully
compiled to native and self-contained version for final de-
ployment.

Figure 10. Remote processing

5.4 FaustLive as a demonstration platform

Most of the scenarios described above can be tested out
with FaustLive, a QT based application available on Linux,
OSX and Windows. FaustLive is a standalone just-in-time
FAUST compiler, that allows to easily write, test, experi-
ment and deploy DSP programs [9].

6 this is also an elegant way to deal with the current limitation of iOS,
which does not allow to embed a native dynamic compiler infrastructure
on the tablet itself...

Distributed control, processing and rendering can also
be tested on multiple machines using the application and
JACK/NetJack infrastructure.

6. PERFORMANCES AND BENCHMARKS

The following section gives some numbers concerning the
performance and capabilities of the “control, compute, com-
municate” approach.

6.1 Compilation and startup

The first advantage of the fully dynamic and embedded
compilation chain is to simplify the deployment of the Faust
compiler technology itself. But it also gives major speedup
in the compilation step when deploying FAUST DSP code.
Here are three examples of simple to quite heavy DSP pro-
grams (Table 1).

Effect C++ time LLVM time
karplus32 5.3s 0.3s
cubic interpolation 6.5s 1.6s
ethersonik 5.9s 0.7s

Table 1. Compilation and startup time for C++ and LLVM
based chains, tested on a MacBook Pro 2,3 GHz

6.2 Remote processing and rendering

Running DSP code on the network using NetJack adds
some latency. On a Gigabit LAN, roundtrip network la-
tencies of 1 or 2 buffers can easily be obtained when using
dozens of audio channels.

Wireless audio and control connections can be done, but
more buffering packets have to be added in the NetJack
connection. On a dedicated network we have tested an iPad
to laptop connection, with 5 to 10 buffers of 1024 frames
(compressed using the OPUS open-source codec) in the
connection, thus adding an acceptable latency of 100 to
200 ms.

7. GETTING THE CODE

The various software components previously described are
open-source projects available in the following sites.

• JACK server and NetJack can be found at:
http://jackaudio.org. Latest describe NetJack ver-
sion is part of the soon to be published 1.9.10 version
of the JACK infrastructure.

• FAUST server can be found at: http://faust.grame.fr

• libfaust and libfaustremote libraries are part of the
faust2 branch and can be found at:
http://sourceforge.net/projects/faudiostream/

8. CONCLUSION AND PERSPECTIVES

As a result of FAUST dynamic code compilation and mi-
gration capabilities based on libfaust, libfaustremote, and
JACK/NetJack, audio DSP code can now be easily deployed
and controlled on local and remote machines.

More precise benchmarks and analysis still need to be
done on more complex audio DSP networks.

Moreover it could be interesting to have any FAUST audio
DSP node embed its own DSP source (as a self-contained
expanded string), so that a graph of connected audio DSP
nodes could be analyzed and possibly be “rewritten” as
an equivalent single FAUST DSP code, then possibly re-
deployed on another target.

Acknowledgments

One part of this work is made possible by a grant from the
French National Research Agency (ANR) INEDIT Project
(ANR-12-CORD-0009), and for the other part by a grant
from the French National Research Agency (ANR) FEEVER
project (ANR-13-BS02-0008).

9. REFERENCES

[1] M. Wright and A. Freed, “Open Sound Control: A New
Protocol for Communicating with Sound Synthesiz-
ers”, International Computer Music Conference, 1997,
pp. 101–104.

[2] S. Letz, N. Arnaudov and R. Moret, “What’s new in
JACK2 ?”, Linux Audio Conference 2009.

[3] J.P. Caceres, C. Chafe, “JackTrip: Under The Hood of
an Engine For Network Audio”, Journal of New Music
Research, 39(3), 2010.

[4] J.P. Caceres, C. Chafe, “JackTrip/SoundWIRE meets
server farm”, Computer Music Journal, 34(3), 2010.

[5] Y. Orlarey, D. Fober, and S. Letz, “Syntactical and se-
mantical aspects of Faust”, Soft Computing, 8(9), 2004,
pp. 623–632.

[6] Y. Orlarey, D. Fober, and S. Letz, “ Adding Auto-
matic Parallelization to Faust”, Linux Audio Confer-
ence, 2009.

[7] S. Letz., Y. Orlarey and D. Fober, “ Work Steal-
ing Scheduler for Automatic Parallelization in Faust”,
Linux Audio Conference, 2010.

[8] S. Letz, Y. Orlarey and D. Fober, “ Comment embar-
quer le compilateur Faust dans vos applications ?”,
Journees d’Informatique Musicale, 2013.

[9] S. Denoux, S. Letz, Y. Orlarey and D. Fober, “
FAUSTLIVE Just-In-Time Faust Compiler... and much
more”, Linux Audio Conference, 2014.

	 1. Introduction
	1.1 Control, Compute, Communicate

	 2. Faust audio DSP language
	2.1 The compilation chain
	2.2 FIR: Faust Imperative Representation
	2.3 LLVM
	2.4 Dynamic compilation chain

	 3. NetJack network audio layer
	3.1 Remote processing
	3.1.1 Remote server
	3.1.2 Local ``proxy"
	3.1.3 NetJack audio/control connection

	3.2 Remote rendering

	 4. User Interface control
	4.1 Local control
	4.2 Remote control
	4.2.1 OSC control
	4.2.2 HTTP control

	 5. Use cases
	5.1 Remote control
	5.2 Remote audio rendering
	5.3 Remote audio processing
	5.4 FaustLive as a demonstration platform

	 6. Performances and benchmarks
	6.1 Compilation and startup
	6.2 Remote processing and rendering

	 7. Getting the code
	 8. Conclusion and perspectives
	 9. References

