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I INTRODUCTION
Hydrodynamic models in two dimensions require a precise knowledge of the domain topog-
raphy. However, as far as the modelling of great rivers or lakes is concerned, few accurate
topographic records are generally available to accurately model the floodplain topography. The
usual way to acquire accurate topographic information for hydraulics over floodplain remains
the ground surveys, that provide punctual values at a very high cost. Based on these points,
usual interpolation schemes often yield a too coarse and inaccurate topographic map for a re-
alistic hydrodynamic modelling. Remote sensing data such as Lidar or stereo-photogrammetry
data on non vegetated areas, constitute a good alternative to obtain large scale information, but
yield other issues of acquisition and data processing. In addition, topographic Lidar operat-
ing with near-infrared lasers are still not suitable for an exhaustive survey of floodplains where
submerged areas remain.

Progress in remote sensing data repeatability and spatial resolution now allows the automatic
monitoring of water surfaces delineation from areal or satellite images either in optical or radar
domains (see e.g. an application to the Inner Niger Delta in Ogilvie et al. (2015)). As for the
recently launched Sentinel sensors, these data are becoming widely available with increasing
spatial and temporal resolutions, allowing in turn the spatio-temporal monitoring of flooded
areas. Flood dynamics from remote sensing data are known to be informative on floodplain
topography for long (see e.g. Schumann et al. (2007) or Hostache et al. (2010)). Indeed, the
extracted flooded areas may be considered as iso-elevation contour lines, as the hypothesis can
be made that all the points located on the water/soil limit have the same elevation. If contour line
elevation remains unknown, rank between the detected contour lines as well as between every
contour line and surrounding topographic data points are known. Assuming this information,
the next challenge is thus to develop a spatial data fusion method of ordered contour lines data
and usual elevation data points to better model the floodplain topography.

Mixing punctual ranked and continuous data in spatial estimation was already proposed in liter-
ature, mainly to deal with highly skewed field distribution (Yamamoto, 2000) or for very large
spatial datasets (Cressie and Johannesson, 2008). These methods used the uniform score trans-
form and back-transform based on the standardized rank estimation (Saito and Goovaerts, 2000)
to prevent the right estimate distribution and limit the smoothing effect of kriging. Uncertainty
assessment of resulting punctual kriging estimates was proposed thanks to the transformation
process (Yamamoto, 2007). Other methods also exist to quantify the uncertainty of contour
lines in random fields (Lindgren and Rychlik, 1995; Wameling and Saborowski, 2001). But
in these studies, the objective was to quantify the uncertainty in contour lines location and not
to quantify the uncertainty of contour lines level for a known location. Consequently, these
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different studies only partly touched the problem we face.

The objective of this paper is to propose a method to estimate the elevation of the ranked contour
lines from data points. This method starts from block conditional simulations estimates filtered
on rank statistics. After contour line elevation estimate, a usual kriging is performed to recon-
struct a topographic map over the floodplain. Starting from a synoptic and theoretical example,
the principles, advantages, properties and limitations of the proposed method are exposed. The
spatial accuracies obtained in contour lines estimates and topographic map are thus compared
to the usual block kriging estimates.

II MATERIAL AND METHODS

2.1 Case study generation
A reference exhaustive elevation field Z(s) on a floodplain D was generated from a Gaussian
spatial covariance model with range 20, sill 1 and no nugget effect. The resulting field is
centered on µ = 10 and respects distribution N(µ, σ) (see Figure 1-left): the blue colours
represent lower floodplain elevations meanwhile the yellow and green stem for higher elevation
areas. D is a 100 m×100 m area and the dataset was generated on gridded D with resolution
r = 1 m, r denoting both the remote sensing image spatial resolution and the desired end-user
topographic map resolution.
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Figure 1: Generated case study. Left: Simulated elevation field over D; Middle: flooded area at time 1
(blue) and resulting rasterized contour (black crosses); Right: flooded area at time 2 (blue) and resulting
rasterized contour (black crosses).

To reproduce the remote sensing data support (Ogilvie et al., 2015), flooded areas were gen-
erated and delineated at resolution 0.5 m for two different times t1 and t2 during rising water:
when areas lower than 9.5 m (Fig. 1-middle) and 8.5 m (Fig. 1-right) respectively are flooded.
Contour polylines were generated from these rasterized flooded areas with 0.5 m spatial reso-
lution. The sets of two generated contour polylines C1 and C2 were thus reduced to a set of
polylines vertices sji (j ∈ (1, 2) denoting the polyline) regularly located along the lines (black
cross on figures 1). C1 and C2 contained n1 = 201 and n2 = 520 points respectively. Four
contour lines correspond to C1 and five to C2 (Fig. 1). When contour lines were connected to
the D boundaries, only vertices within D were considered.

In addition, a sample of n = 250 topographic points s1 . . . sn was randomly selected on D,
excluding points selection at location closer than b = 2 m from polylines (Fig. 2-left). This en-
sures that no data points are located on a polyline, which would make too obvious the estimation
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of its elevation. We further assume that contour polylines elevation is unknown but that ranks
between the polylines (i.e. the polyline vertices sji ) and between polylines and surrounding
topographic data points are known and may be computed (Fig. 2-right).
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Figure 2: Generated dataset. Left: Simulated elevation field over D, contour polylines C1 and C2

(black lines) and data points (red points). Right: ranked data (points and polyline vertices) and according
legend.

2.2 Method
The method we developed may be seen as a block conditional simulation process filtered by
rank statistics, where a polyline Cj is seen as a block, i.e. a region corresponding to an uncon-
nected set of vertices. Such simulation is known to be superior to kriging whenever interest
lies in global statements for a region rather than inference on individual points. In the process
described in the algorithm 1 hereafter, assuming a stationary random function, a spatial model
(variogram) γ(h) is first estimated and modelled from the 250 data points s1 . . . sn.

Algorithm 1 Contour polyline estimation process and field reconstruction
1: for j = 1 to j= 2 do
2: Estimate and model the variogram γ(h) from n data points
3: Estimate ordinary kriging ẑko(s

j
i ) on polyline vertices

4: for i = 1 to N = 100 do
5: Draw unconditional multigaussian simulation zus(sk) and zus(s

j
i ) on data location

and polyline vertices
6: Estimate ordinary kriging at vertices from simulated values at data locations z∗ko(s

j
i )

7: Compute conditional simulation on vertices (Eq. 1)
8: Compute N polyline estimate by averaging vertices conditional simulations
9: Filter keeping only polyline estimate conform to the initial ranks

10: Compute polyline estimate ẑj averaging the kept polyline estimates
11: Compute standard deviation estimate from the set of kept polyline estimates
12: Affect polyline estimate ẑj to each polyline vertice sji
13: Perform ordinary kriging on all gridded D points from data z(s1) · · · z(sn) and polyline

vertices estimates ẑj(s
j
i )
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Once the variogram γ(h) is modelled, an ordinary kriging is performed on each polyline ver-
tex. From the kriging, a first estimate of polyline elevation results from vertices averaging.
For polyline Cj , we denote further ẑjko this estimate (corresponding to the usual block kriging
estimate).

Next, a set of N = 100 conditional Multi-Gaussian simulations using the fitted variogram
model and pathing through the 250 s1 . . . sn is performed on each on the sji contour vertices
(Eq. 1):

zcs(s
j
i ) = ẑko(s

j
i ) + (zus(s

j
i )− ẑ∗ko(s

j
i )) (1)

At the end of the conditional simulation, an estimate at polyline scale is computed by averaging
simulated values on vertices. This remains consistent with the usual block kriging estimate
since vertices are regularly located along the polyline.

ẑjk =
1

nj

nj∑
i=1

zcs(s
j
i ) (2)

We thus obtainN elevation estimates ẑjk, k ∈ (1 . . . N) for a given contour polylineCj . Only the
estimates respecting the rank are kept in the following, yielding a set of M estimates (M ≤ N )
for a given polyline. From this set, the final estimate of polyline Cj becomes:

ẑj =
1

M

M∑
k=1

ẑjk (3)

with uncertainty characterized by the standard deviation σCj
of the ẑjk estimates.

In a final step, polyline estimate ẑj is affected to each polyline vertex sji in order to perform, in
addition to the 250 data points a gridded map using ordinary kriging.

III RESULTS
Results obtained for this theoretical test case are given in Figures 3 and 4. Figure 3-left shows
the estimated empirical variogram (dots) and fitted variogram model (lines). Figure 3-right
shows for C1 and C2 the resulting distribution of the estimates using conditional simulation, the
final estimation equal to the average of conditional simulation (black vertical line) compared to
the true value (blue vertical line) or the ordinary kriging (interpolation) estimate (red vertical
line). In this first application, rank was always respected in the conditional simulation and
for the ordinary kriging but, as shown in the following, this will not always be the case. The
estimated elevation obtained for C1 is 8.53 m (8.45 using ordinary kriging) for a true value
equals to 8.5 m, with a standard deviation of the estimate being only 5.37e-03 m. For C2,
the difference between the true elevation (9.5 m) and the estimated value is lower than one
centimetre (3 cm using kriging) with standard deviation of the estimate equals to 3.99e-03 m.

Figure 4 shows the reconstructed fields from the method we proposed compared to i) the true
field and ii) the field reconstructed only from the 250 data points without considering the contour
polylines data. A visual comparison suggests better results for the proposed approach. However,
artefacts can bee seen around the pool located at the bottom-right corner of the domain. In this
area, the elevation increases with the distance to the pool minimum but decreases again at
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Figure 3: Left: Re-estimated empirical variogram from the n = 250 data points; Right: estimated
elevation for C1 and C2.

three places. This behaviour can be explained by the fact that very few topographic points are
available around this pool.

On the contrary, the field reconstructed with the ordinary kriging method shows greater differ-
ence to the true field especially on the top part of the domain, despite a high concentration of
ground-truth surveys.

To better assess the precision given by the two approaches, the root mean square difference e
between results and true field is computed. The error value obtained without considering the
contour polylines is equal to 0.232 m, and to 0.199 m for the proposed method.
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Figure 4: Reconstructed elevation fields: Left: true field D; Middle: ordinary kriging reconstructed
field; Right: method (polyline conditional simulation) reconstructed field

This first test suggests that the sampling procedure may influence the results, at least through the
location of acquisition points. To check the robustness of the proposed approach, the process
described above was repeated 100 times, changing the 250 points data sampling.

Figure 5-left shows the contour polyline C1 and C2 error distribution obtained. Figure 5-right
shows the mean distance to the true field distribution. Clearly, the proposed method using
conditional simulation is more robust with few error variance. The standard deviation of the
results obtained with this approach is 0.056 m (resp. 0.037 m) for the contour line 8.5 (resp.
9.5) compared to 0.183 m (resp. 0.1 m) using the ordinary kriging method.
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Rank filtering occurred 10% of the times for the C1 estimation and never for the C2 estimation.
This suggests that rank filtering is useful when contours are in extreme values.
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Figure 5: Errors distribution on 100 random sample sets of 250 data points. Left: Cj estimation
error; Right : mean distance to the true field after reconstruction. The vertical lines represent the mean
of the distribution.

Field survey being very costly, the aim is to reduce to the minimum the required elevation data
points. The test is thus performed again with different numbers of points. An example of result
obtained with a random sample of N = 50 points is given in Figure 6. It can be seen that the
use of contour line enables to retrieve the pools shapes with better accuracy than an ordinary
kriging based only on data points.

The comparison between true field and computed elevation fields with the two approaches is
done using the root mean square error. These results are summarized in Table 1 for random
samples obtained with N = 10 to N = 250. As expected, the error decreases if the number
of available data points is high and the proposed approach always gives better results than the
ordinary kriging.

N = 10 N = 50 N = 100 N = 150 N = 200 N = 250
eko 1.064 0.635 0.361 0.403 0.435 0.232
ecs 0.639 0.469 0.329 0.227 0.189 0.199

Table 1: Root mean square errors between true field and reconstructed elevation fields for different N .
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Figure 6: Reconstructed elevation fields using only 50 data points: Left: true field D; Middle: ordi-
nary kriging reconstructed field; Right: method (polyline conditional simulation) reconstructed field.

IV DISCUSSION AND CONCLUSION
The objective of this work was to put forward a methodology to enhance the accuracy of the
topographic description required by numerical hydrodynamic modelling, by using information
of level lines available from remote-sensing data.

The first results obtained on a totally theoretical example, show that the topographic estimation
benefits from such additional data; and the repetition of the process indicates that this result is
robust to sampling. If the gain in accuracy may seem limited at this stage (about 3 cm in mean
for 250 points), the influence of the sampling rate should be assessed more precisely on the
two approaches, since the benefit taken from additional sources of information is expected to
increase as less ground-truth data are available.

Moreover, a classical random sampling is obviously not the best approach to conduct a field
survey. In the first presented test case, random sampling excluding the direct neighbourhood
of the contour lines yielded a lack of data near the pool located at bottom-right part of the
domain. This produced irrelevant estimation of the topography in some areas. Further tests
are thus planed to infer guidelines in the sampling definition in order to decrease the number
of data points required while maintaining a high accuracy in the results, thus enhancing the
cost/benefice ratio. In the framework of hydrodynamic modelling, this work will integrate
results of uncertainty and sensitivity analyses such as given in Guinot and Cappelaere (2009) or
Delenne et al. (2012).

The methodology developed on theoretical test cases, will be assessed in a real-case study of
the hydrodynamic modelling of the Vaccares lagoon for which amount of data are available for
validation.
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