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We consider, in a generic streaming regression setting, the problem of building a confidence
interval (and distribution) on the next observation based on past observed data. The observations
given to the learner are of the form (x, y) with y = f(x) + ξ, where x can have arbitrary
dependency on the past observations, f is unknown and the noise ξ is sub-Gaussian conditionally
on the past observations. Further, the observations are assumed to come from some external
filtering process making the number of observations itself a random stopping time. In this
challenging scenario that captures a large class of processes with non-anticipative dependencies,
we study the ordinary, ridge, and kernel least-squares estimates and provide confidence intervals
based on self-normalized vector-valued martingale techniques, applied to the estimation of the
mean and of the variance. We then discuss how these adaptive confidence intervals can be used
in order to detect a possible model mismatch as well as to estimate the future (self-information,
quadratic, or transportation) loss of the learner at a next step.

Keywords: Concentration inequalities; dependent variables; regression; self-normalized; sequen-
tial prediction
AMS 2000 Mathematics Subject Classification: XXXXX.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Preliminary remarks regarding the losses . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Transportation loss induced by `Y . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Self-information loss induced by `Y . . . . . . . . . . . . . . . . . . . . . . 8

3 Least-squares strategies on the real line . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Mean estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Variance estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Streaming updates and complexity . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Some numerical illustration . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Confidence, Model adequacy and Predictive loss . . . . . . . . . . . . . . . . . 23
4.1 Model adequacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Loss estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Self-normalized techniques for Sub-Gaussian Regression . . . . . . . . . . . . . 29

1
imsart-bj ver. 2012/04/10 file: submitted3.tex date: June 28, 2016

http://isi.cbs.nl/bernoulli/
mailto:odalricambrym.maillard@inria.fr


2 O.-A. Maillard

5.1 Mean estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Variance estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A Regularized least-squares from a Bayesian standpoint . . . . . . . . . . . . . . 54
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

1. Introduction

Motivation Over the past few years, the growing requirement for decision strategies
that are active and sequential in a number of areas of machine learning and statistics,
has made the construction of confidence intervals a building block of utmost impor-
tance in order to design solutions that enjoy provably near-optimal performance guaran-
tees, whether in term of generalization, robustness or regret minimization. This includes
for instance designing modern confidence-based Monte-Carlo samplers, the problem of
stochastic optimization as well as solving the exploration-exploitation trade-off in several
variants of multi-armed bandits or in reinforcement learning.

Challenges A typical difficulty that appears when designing confidence intervals with
streaming data is to handle, on the one hand, the possibly strong dependency between
the current and past observations, and on the other hand, the possible drift (aka non-
stationarity) of the observation process.

Non-stationarity has been studied from various standpoints in the literature, and we
focus on modeled non-stationarity, when a class of processes is given that models the
non-stationarity (think of a parametric regression model). This classical approach enables
to reduce the problem of non-stationary prediction to that of estimating a (stationary)
parameter. Using the standard terminology, we are in the realizable case when the process
generating the signal belongs to the given class, and we are in the unrealizable case
otherwise.

The dependency between the current and past observations can be handled, on the
other hand, thanks to a powerful martingale method. When applicable, this generally
avoids resorting to mixing coefficients and block techniques, which are less convenient
due to the difficulty to estimate mixing coefficients in a fully empirical way. A specific
difficulty of sequential decision making that is rarely considered is to handle the situation
when the history of observations given to the learner may itself result from an active
selection process, thus generating a history whose length is a random stopping time
adapted to the filtration of the past observations. This situation typically appears in
multi-armed bandits, when there is one learner per arm and the bandit algorithm must
decide which arm to play and thus which learner to feed with new data. We take care of
this additional dependency explicitly.

Last but not least, since the high-probability confidence intervals are typically used by
an active decision algorithm, we target the construction of empirical confidence intervals
with as few parameters as possible and where most process-dependent quantities are
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Self-normalization techniques for streaming confident regression 3

estimated. In a streaming setting, we also care that all quantities can be updated at each
time step at small cost.

Thus, the challenges we consider are the following: To build confidence intervals for
a non-stationary signal in the realizable modeled-stationary case, to detect when we are
instead in the non-realizable case, to handle the dependency of current observations with
the past history as well as the random length of the history; finally, to design empirical
confidence bounds (in the spirit of empirical-Bernstein bounds, as opposed to Bernstein
bounds) with estimates that can be maintained at a low numerical cost. Along the way,
we will also discuss how the designed confidence intervals can be used in order to estimate
various notion of losses.

Setting In this paper, the problem of sequential prediction of a time series based on
past observations is considered. More specifically, for a sequence of observations y1, . . . , yn
taking values in an abstract space Y and generated by some unknown stochastic pro-
cess ρ? which in turn is a probability measure on the set of all infinite-sequences in
Y ∞, the learner aims to estimate the conditional distribution of the next stochastic
outcome1 Yn+1. We consider a streaming protocol where at every time-step n, once the
ρ?-conditional probability ρ?(Yn+1|Y1, . . . , Yn) of the next outcome Yn+1 is estimated,
the realized value yn+1 of the outcome is revealed and the predictor goes on to estimate
the distribution of the next outcome. The error of predicting a distribution πn for the
output yn+1 is measured by some loss `n+1(πn). We do not assume that Y is bounded
(or, for a discrete set Y , that it is finite). We are looking for a learning agent that pro-
duces a sequence of distributions {πn}n and achieves a low cumulative loss after any N
steps

N∑
n=1

`n+1

(
πn
)
.

In order to be able to predict the distribution of Yn+1, the learner has access at step
n+ 1 to some information xn+1 taking values in some abstract space X . In the idealized
scenario where a learner has access to an infinite memory, the side information xn+1

may simply be the sequence of all past observations yn = (yn, . . . , y1), in which case
X corresponds to the set Y ? of all finite sequences on Y . Thus having access to side
information comes without loss of generality. In a more realistic scenario, however, xn+1

may only be a finite sequence (yn, . . . , yn−k+1) of the k most recent observations, or even
simply the very crude information given by the number of past observations xn+1 = n.
We consider that xn+1 is a possibly stochastic function of yn, and we sometimes write
xn+1 = x(yn) to insist on this point. We denote by hn =

(
(xn, yn), . . . , (x1, y1)

)
the

sequence of all observations and information received up to step n. Our goal is then
at step n + 1, having been exposed to the past history hn (perhaps by some external
algorithm) and the received information xn+1, to predict the conditional distribution
ρ?(Yn+1|Y n). Note that we do not assume that hn is available to the learner –think for

1We use uppercase to denote the random variable Y , and lower case y to denote one specific realization
of it
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instance of the case of a limited memory, but that this ”feeding” history hn is the sequence
of information and observation that the learner has been exposed to, sequentially, up to
this step and that she may have used in order to improve her prediction.

Classes Let us continue this section with some necessary modeling assumptions. In-
deed, to be completely arbitrary, the observations may be highly dependent and no
assumptions on the nature of their dependence can be made. As such the task may be
completely intractable as one cannot hope to get a bounded error without any assump-
tion. It is then standard to introduce a restricted class of predictors and compete with
the best predictor in that class.

Let us consider for clarity the case Y = R of real-valued observations. In this case, a
typical way to model the signal is to consider that the observations hn = {(xi, yi)}i∈[n]

are of the form

yi = f?(xi) + ξi where f? ∈ F (1)

and∀λ ∈ R lnE
[

exp(λξi)

∣∣∣∣hi−1

]
6 ψ?(λ) ,

where ψ? is the dual of a potential function ψ (convex, non-negative, null at 0) con-
trolling the level of noise, and F is some given the function space modeling the non-
stationarity. A typical function space F can be a parametric space Fϕ,B = {f : f(x) =
〈θ, ϕ(x)〉, θ ∈ Rd, ||θ|| 6 B} where ϕ : X → Rd is a given feature function. It can
be a reproducing kernel Hilbert space with given kernel k in the non-parametric case.
In both cases, the function f? does not change with time, and the problem reduces to
estimating the (stationary) parameters describing the function. For this reason, such sig-
nals can be termed parametric-stationary, non-stationary signals. We study in section 3
different least-squares estimates and the construction of confidence intervals based on
these estimates. Note that xn is allowed to be arbitrary dependent on the past history
hn−1, making such models able to capture a large class of non-stationary signals with
complex dependencies. Also, each given class (F , ψ) corresponds to a different modeling
assumption on the non-stationarity and the noise, thus leading to different predictors
π(hn).

Likewise, in the case when Y = {1, . . . , S} and the side observation is the full history
of past observations xi = yi−1(= (yi−1, . . . , y−∞)) a standard class is that of Markov
models of a given order on some finite alphabet2. This results in different estimates built
with the frequencies of words of various length, and confidence intervals using for instance
the method of types (Csiszar, 1998), extended to the dependent scenario with a random
history length. In the sequel, however, we won’t discuss such constructions for the sake
of brevity and focus on real-valued observations with a given (F , ψ).

Remark 1.1 We focus on the construction of confidence distribution for one class, as-
suming we are in the realizable case, that is the signal is indeed modeled by the considered

2The case when S is unknown or infinite can be handled by considering that a specific symbol is used
to denote a symbol not previously seen, and thus estimating transitions to this symbol.
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class. When several classes are considered, the problems of model selection and model ag-
gregation naturally appear, as well as the problem of change point from one class to an
other. Since all these questions crucially depend on our ability to first handle the realiz-
able case, we thus leave the very appealing but orthogonal question of addressing model
aggregation, selection and change-point based on these confidence distributions for future
work. We discuss nonetheless how confidence intervals can be trivially used in order to
estimate the validity of the realizable case assumption, and to help the learner predict her
future loss.

Previous work We employ a powerful martingale technique from (Peña, Lai and Shao,
2008) that was also used for instance in (Abbasi-Yadkori, Pal and Szepesvari, 2011) or
(Rusmevichientong and Tsitsiklis, 2010) in the setting of regression applied to the linear
multi-armed bandit problem. Indeed, the requirement of adaptive confidence intervals
naturally appears in the multi-armed bandit community where the number of observa-
tions of each arm is a random stopping time (due to the action selection algorithm),
and where confidence bounds often need to be fully computable from data as they are
used by the algorithms. See (Chu et al., 2011, Abbasi-Yadkori, Pal and Szepesvari, 2011)
or (Krause and Ong, 2011, Valko et al., 2013, Grünewälder et al., 2010) for references
making explicit use of such bounds in a multi-armed bandit context. The martingale
technique from (Peña, Lai and Shao, 2008) was correctly applied for the first time in
(Abbasi-Yadkori, Pal and Szepesvari, 2011) for regularized least-squares estimate, where
its application is direct. We show how a careful application of the same technique enables
to strengthen preliminary results from (Rusmevichientong and Tsitsiklis, 2010) for the
more challenging ordinary least-squares estimate.

All these linear multi-armed bandits work require that the level of noise is given to the
learner, which is often not the case in practice. We make use of techniques inspired from
the empirical-Bernstein bounds from (Maurer and Pontil, 2009), but adapted to self-
normalized vector-valued martingales with a random stopping time in order to derive
bounds agnostic to the knowledge of the noise. We show that such bounds can actually
be derived easily (although the derivation is bit long) when using the right concentra-
tion tools. We also discuss an alternative ”corrective” noise estimate (see Section 3.2.2)
directly derived from our bounds.

When working with dependent data, it is natural to consider a mixing assumption.
This has been done for instance in the context of bounded sequences in (Kuznetsov and
Mohri, 2015), where Hoeffding-type results for ϕ-mixing processes were used; see also
(Audiffren and Ralaivola, 2014) in a bandit setting. The old block-techniques indeed
allows the extension of many concentration results to the mixing scenario. It is however
often difficult to use in practice since mixing coefficients are typically unknown to the
learner. In our regression setting, we benefit from the special structure of the noise that
enables us to apply the martingale method that turns out to be a powerful tool to handle
dependent data.

Outline and contribution In Section 2, we first discuss the assumptions regarding
the noise model, as well as the loss function. We make an explicit link between the choice
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of the noise model and that of the underlying loss function that we believe is inter-
esting. We discuss specifically the quadratic loss on the observations, its corresponding
transportation loss on the distributions (defined by optimal transport), and the popular
self-information loss.

In Section 3, we study three least-squares estimators of the unknown mean – an
ordinary least-squares, a ridge estimate, and a kernel estimate, and provide our main
results regarding the construction of confidence bounds on their estimation and prediction
error, see Theorem 3.4, Theorem 3.3, Theorem 3.5. These bounds depend on the level of
noise and we thus analyze the concentration of a simple variance estimate in Theorem 3.9
and Theorem 3.8 in the spirit of the work on empirical Bernstein inequalities (see e.g.
(Maurer and Pontil, 2009)). We also illustrate these bounds and compare them against
alternatives from Abbasi-Yadkori, Pal and Szepesvari (2011) and Rusmevichientong and
Tsitsiklis (2010).

Motivated by the availability of a self-normalized confidence bound for the mean es-
timate, we propose in section 3.2.2, as a side result illustrating the use of confidence
intervals, an alternative procedure designed to take care of the unknown level of noise,
that is numerically efficient and shows excellent practical performance. It is by construc-
tion a lower estimate on the actual level of noise and is thus called ”optimistic”. It is
however challenging to analyze its properties in the full-blown dependent scenario. We
provide some hints in the independent setting and leave the general analysis of this
estimate aside as this is not the main focus of this article.

Section 5 provides the key component of our contributions. The core of our work is a
careful use of self-normalized techniques, combined with a peeling argument and elemen-
tary statistics. We show in this section that these simple techniques can actually lead to
powerful results. We provide in Section 5.1 and 5.2 a detailed step by step derivation of
our results that we tried to present in a simple and clear way. Among the interesting in-
novations of the proof, we isolate Lemma 5.3 about concentration for real-valued random
variables that we believe is interesting beyond the scope of this paper, and, in the proof
technique for ordinary-least squares regression, the localization of eigenvalues of the nor-
malization matrix used in the self-normalized technique. To avoid clutter, we choose to
provide all our result for the regression setting on the real line Y = R, although simi-
lar concentration results could be derived for Markov signals over a finite alphabet, by
combining the method of types together with the Laplace method and peeling techniques.

2. Preliminary remarks regarding the losses

In this section, we spend a few lines to motivate two different ways to define the loss
`n+1(π). This enables us to introduce some important notions and relate the link between
the choice of the loss and the modeling assumption. The first one is to consider the loss
between the unknown conditional distribution of the observation and the distribution
predicted by the learner; this leads to a loss measured in terms of optimal transport. The
second one is to measure the loss between the observation yn+1 and the distribution pre-
dicted by the learner; this leads to the popular notion of self-information loss. Formally,
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this is captured by the two following alternative formulations, that are further justified
in the next sub-sections. Let us consider that X and Y are metric spaces with known
respective metrics given by `X and `Y .

Formulation 1 (Transportation loss) The loss of a distribution π on the metric space
(Y , `Y ) for the prediction of observation Yn+1 ∼ ρ?(·|Y n) is given by

`n+1(π) = T`Y

(
ρ?(·|Y n), π

)
,

where T`Y is the optimal transport loss given by definition 2.1 below.

Formulation 2 (Self-information loss) The loss of a distribution π on Y for the
prediction of observation yn+1 is given by

`n+1(π) = `I(yn+1, π) = − ln
(
p(yn+1)

)
,

where p(y) denotes the density of distribution π with respect to the reference measure on
Y (e.g. Lebesgue, or counting in case Y is discrete).

Note We can highlight two red-line examples regarding Y :
• Y = R, and `Y is the quadratic loss `2(y1, y2) = 1

2R2 (y1 − y2)2 for some positive R.
• Y = {1, . . . , S} is a discrete set of symbols S ∈ N ∪ {∞}, with the grossiere metric

`0(y1, y2) =

{
0 if y1 = y2,

1 else.

2.1. Transportation loss induced by `Y

The loss on Y naturally induces a loss on measures, via optimal transport.

Definition 2.1 (Transportation loss) The transportation loss between distributions
π1 and π2 for the loss `Y is given by

T`Y (π1, π2)
def
= inf

γ∈Γ(π1,π2)

∫
Y ×Y

`Y (y1, y2)dγ(y1, y2) ,

where Γ(π1, π2) denotes all couplings of distributions γ with first marginal π1 (that is,
π1 =

∫
Y dγ(·, y2)) and second marginal π2(=

∫
Y dγ(y1, ·)).

Remark 2.2 A well-known example is when the loss is associated to a p-norm `p(y1, y2) =
||y1 − y2||pp. In this case, we recover a Wasserstein (aka the Fréchet or Mallows or Kan-
torovitch) distance

T`p(π1, π2)1/p = Wp

(
π1, π2

)
=

(
inf

γ∈Γ(π1,π2)

∫
Y ×Y

||y1 − y2||ppdγ(y1, y2)

)1/p

.
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8 O.-A. Maillard

In general, solving the optimal transport problem is not an easy task. For our two illus-
trative cases, the optimal transport problem reduces to a nicer formulation. In dimension
1, the value of the optimal transport has an explicit form for convex potentials:

Proposition 2.3 Assume that Y = R, and `Y (y1, y2) = ψ(y1 − y2), where ψ : R→ R+

is a convex potential. Then, the transportation loss induced by `Y satisfies

T`Y (π1, π2) =

∫ 1

0

ψ

(
Π−1

1 (t)−Π−1
2 (t)

)
dt ,

where Π1 = PX∼π1(X 6 ·) is the cdf of π1 and Π2 = PX∼π2(X 6 ·) is the cdf of π2.

For the potential ψ(y) = y2, it is not difficult to derive that

W2

(
π1, π2

)
=

[
(µ1 − µ2)2 + (σ1 − σ2)2 + 2

(
σ1σ2 + µ1µ2 −

∫ 1

0

Π−1
1 (t)Π−1

2 (t)dt

)]1/2

,

where µ1, σ1 (resp. µ2, σ2) are the mean and standard deviation of π1 (resp. π2). From
this formula, we easily deduce the special form for Gaussian real-valued distributions3:

W2

(
N (µ1, σ

2
1),N (µ2, σ

2
2)
)

=
√

(µ1 − µ2)2 + (σ1 − σ2)2 .

When Y is discrete, we recover another classical notion:

Proposition 2.4 Assume that Y = {1, . . . , S}, and `0(y1, y2) = I{y1 6= y2}. Then, the
transportation loss induced by `0 coincides with the total variation distance

T`0

(
π1, π2

)
= dTV (π1, π2) =

1

2

∑
y∈Y

|π1(y)− π2(y)| .

2.2. Self-information loss induced by `Y

In this section, we show that a given loss `Y on Y induces a natural class of distributions
whose tails are controlled, and vice versa, that a given class of distributions naturally
induces a loss on Y . This second point of view is especially useful when the given space
is for instance discrete with no useful metric, while the first one is more natural when we
have access to some informative loss. Now, the two points of view are fairly exchangeable.

From loss to class For the first claim, let us consider that Y ⊂ Rd and that the loss
comes from a convex potential `Y (y, y′) = ψ(y − y′), where ψ is convex, non-negative
and null in 0. Now, one can always decompose Yn = µn + ξn, where we introduced the
conditional mean µn = E[Yn|Y n−1] and the conditional centered noise ξn. Controlling
the tails of ξn is crucially important in order to control the loss of any algorithm. We
introduce the following definition

3 The formula for general multi-variate Gaussians, also known as the Bures metric, is given by

W2

(
N (µ1,Σ1),N (µ2,Σ2)

)
=

√
||µ1 − µ2||22 + Tr

(
Σ1 + Σ2 − 2

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2)
.
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Self-normalization techniques for streaming confident regression 9

Definition 2.5 (Loss-adapted noise) The noise is adapted to the loss `Y if it satisfies

∀n ∈ N, lnE[exp(〈λ, ξn〉)|Y n−1] 6 ψ?(λ) where ψ?(λ) = sup
y∈Y −Y

〈λ, y〉 − ψ(y) .

for all λ such that the right-hand side term is finite. That is, the cumulative generative
function of the noise is dominated by the Legendre-Fenchel dual of the potential loss
function.

For instance on Y = R , the dual of the quadratic potential ψ2(z) = z2

2R2 is ψ?2(λ) =
λ2R2

2 , and the definition reduces to that of a R-sub-Gaussian noise. Thus, a given loss
function `Y induces a natural class of distributions.

There are many ways to justify such a notion. First it is quite intuitive, since when
the loss grows fast away from 0, this means we cannot tolerate a too large noise, while a
very flat potential loss function will produce low error even for a large noise. Now, a more
formal way is simply to control the loss `Y (yn, µn) between the random observation and
its expectation. For clarity, let us consider that Y = R and ψ is strongly convex, non-
negative with ψ(0) = 0, so that we can write ψ+ the (invertible) restriction of ψ to Dψ∩R+

and ψ− to Dψ∩R−. Let g be some upper envelope function on λ→ lnE[exp(λξn)|Y n−1].
Then the error obtained by the oracle predictor µn satisfies

P
(
`Y (Yn, µn) > t|Y n−1

)
= P

(
ψ(ξn) > t|Y n−1

)
6 P

(
ξn > ψ

−1
+ (t)︸ ︷︷ ︸
t+

|Y n−1
)

+ P
(
− ξn > ψ−1

− (t)︸ ︷︷ ︸
t−

|Y n−1
)

6 exp(−g?(t+)) + exp(−g?(t−)) ,

where g? is the Legendre-Fenchel conjugate of g. In particular, when g is ψ?, then ψ?? = ψ
by convexity of ψ, and g?(t+) = g?(t−) = t. Thus, we obtain in this case that

P
(
`Y (Yn, µn) > t|Y n−1

)
6 2 exp(−t) .

Thus, the probability that the loss of the optimal predictor is larger than t decays ex-
ponentially fast with t. This desirable property does not necessary hold when the noise
is not adapted to the loss. Further, if g+ is another function such that ∀λg+(λ) > g(λ),
then g?+(x) 6 g?(x) and thus the bound on the loss of the optimal predictor for a noise
ξ′ with upper envelope function g+ is larger than for g, which explains why we want a
tight envelope.

From class to loss We now proceed backward, starting from a class of distributions in
order to build a loss function. For an abstract space Y , there is no necessarily natural no-
tion of linearity giving a meaning to y−y′ or 〈λ, y〉. Think for instance of a discrete space
Y = {1, . . . , S}. However, one can still consider a class of distributions, and functions
on Y . Thus, given a candidate distribution π for Yn, we consider g(λ) = lnEπ expλ(Y ),
for any function λ that is bounded, continuous. Interpreting g as the dual ψ? of a convex
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10 O.-A. Maillard

loss, it is then natural to look at its dual g? in order to recover the definition of the loss.
Note that g? acts on measures ν. It comes

g?(ν) = sup
λ∈CB(Y )

(ν, λ)− g(λ)

= sup
λ∈CB(Y )

Eν [λ(Y )]− lnEπ expλ(Y )

= KL(ν, π) ,

where (·, ·) is the duality product, and CB(Y ) are continuous bounded functions on Y .
Thus, the loss induced by π on probability measures coincides with the Kullback-Leibler
divergence. In particular interpreting an observation Yn as a Dirac distribution at point
Yn, it comes − ln(p(Yn)) where p denotes the density of π with respect to the reference
measure. This justifies the introduction of the following

Definition 2.6 (Self-information loss) The loss of a distribution π on Y with density
p is given by

`I(y, π) = − ln p(y) .

Remark 2.7 The self-information loss is a popular and standard loss in the literature on
sequential prediction. Its expectation with respect to y coincides with the Kullback-Leibler
of the distribution of y with π. The notion of loss-adapted noise, although less frequent,
also appears in certain works. We refer to (Merhav and Feder, 1998) for an extended
study of universal sequential prediction and further details.

The self-information loss may look very appealing due to its interpretation in terms
of models and its applicability to any abstract space Y . However, one may be aware of
a specific issue, which we illustrate here with a simple Gaussian model. For a Gaussian
model, say with constant variance σ2, the self-information loss at point y writes

`I(y,N (f, σ2)) =
(y − f)2

2σ2
+

1

2
ln(2πσ2) .

When the variance is unknown and (estimated) by a procedure, a model that estimates
a high variance (and thus a large bandwidth and confidence intervals) will mistakingly
consider it should incur a lower loss than a model that estimates a low variance. This
raises a specific issue. In the context of model selection, this makes any practical use of
this loss by an algorithm tricky in case the observation noise is unknown. This issue does
not appear when the noise of the process is perfectly known as it is only due to the term
σ2 that must be estimated. Now, such a phenomenon does not occur when considering,
in the same Gaussian scenario, the transportation loss (see Section 2.1). Such questions
should be taken into considerations when choosing the loss.

3. Least-squares strategies on the real line

In this section, we continue introducing the objects of interest, that are standard esti-
mates, mostly in order to fix the notations. We focus on the case Y = R when observa-
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Self-normalization techniques for streaming confident regression 11

tions are real-valued. Given a parametric modeling class (F , ψ) with F = {f : f(x) =

〈θ, ϕ(x)〉, θ ∈ Rd, ||θ|| 6 B} it is natural to find at step N + 1 a parameter θψN that
minimizes the past empirical loss, that is which solves the following problem

min
θ∈Θ

N∑
n=1

ψ

(
yn − θ>ϕ(xn)

)
. (2)

In the sequel, we focus on the quadratic potential ψ(x) = x2

2R2 , as it corresponds to an
R-sub-Gaussian noise assumption and leads to a fully explicit solution to (2). Indeed, in
this case every solution θ to (2) must satisfy

GNθ =

N∑
n=1

ϕ(xn)yn , where GN =

N∑
n=1

ϕ(xn)ϕ(xn)> .

We refer to the problem formulation (1) using the quadratic potential as the sub-
Gaussian streaming regression model.

Pseudo-inverse solution For convenience, we introduce YN = (y1, . . . , yN )> ∈ RN
and the N ×D matrix ΦN = (ϕ>(x1), . . . , ϕ>(xN ))>. Using these notations a solution
to (2) must satisfy GNθ = Φ>NYN , where GN = Φ>NΦN . A specific solution is then

θ†N = G†NΦ>NYN where G†N denotes the pseudo-inverse of GN , and the space of solution
can be described as

ΘN = {θ ∈ Θ : GN (θ†N − θ) = 0} = {θ†N + ker(GN )} ∩Θ .

Note that when Θ = Rd and GN is invertible, G†N = G−1
N and the solution reduces to

the ordinary least squares solution θ†N = θ̂N = G−1
N Φ>NYN . Further, it holds for all x,

|f?(x)− fθ̂N (x)| 6 ||θ? − θ̂N ||GN ||ϕ(x)||G−1
N
. (3)

Equation 3 thus enables to control the prediction error at any point x. On the other
hand, in the general case, for all θ ∈ ΘN it holds

N∑
n=1

(f?(xn)− fθ(xn))2 =
N∑
n=1

(θ? − θ)>ϕ(xn)ϕ(xn)>(θ? − θ) = ||θ? − θ||2GN .

Thus in case of over-fitting, we must have ∀θ ∈ ΘN , ||θ? − θ||GN = 0, which indicates
that GN is unable to provide information about the localization of θ?. Also in that case,
GN is not invertible and we can no longer apply (3).

Regularized solution When GN is not invertible, another approach is to regularize
the problem by constraining the quadratic norm of the parameter. This leads to the
ridge solution (aka Tikhonov–Phillips regularization, or `2-regularization) given for a
regularization parameter λ ∈ R+

? by

θN,λ = G−1
N,λΦ

>
[N ]Y[N ] . where GN,λ = Φ>[N ]Φ[N ] + λId .
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12 O.-A. Maillard

Remark 3.1 The regularization parameter λ is better understood from a Bayesian point
of view in the Gaussian i.i.d. model. Indeed, if we pick a random function using θ ∼
N (0,Σ) (a prior which models how hard it is to generate one function), and assume that
the noise is exactly i.i.d. Gaussian (ξn ∼ N (0, σ2) for each n) and xn is independent
on the past, then the posterior mean function is a random function following the law
f̂N (x)|x, x1, . . . , xN , y1, . . . , yn ∼ π̂N (x) = N (µN (x), σ2

N (x)) where

µN (x) = ϕ(x)>(Φ>[N ]Φ[N ] + σ2Σ−1)−1Φ>[N ]Y[N ]

σ2
N (x) = σ2ϕ(x)>(Φ>[N ]Φ[N ] + σ2Σ−1)−1ϕ(x) .

This enables to directly interpret λ as being an a priori value of the variance term, and

to recover the `2-regularized least-squares using Σ = σ2

λ Id. See appendix A for details.

Remark 3.2 It is actually natural to combine the pseudo-inverse and ridge solution in
the case of a finite-dimensional function space. Indeed, one may use the ridge estimate
θN,λ in the first rounds as long as GN is not invertible, and then switch to choosing the

ordinary least-squares estimate θ̂N for larger values of N .

Kernel solution Finally, in the case when the function space is of large or infinite
dimension, it is desirable to directly compute the estimate of the mean without computing
the possibly infinite dimensional parameter θ. Actually, we can derive the equivalent form

µN (x) = ϕ(x)>ΣΦ>[N ](Φ[N ]ΣΦ>[N ] + σ2IN )−1Y[N ]

σ2
N (x) = ϕ(x)>Σϕ(x)− ϕ(x)>ΣΦ>[N ](Φ[N ]ΣΦ>[N ] + σ2IN )−1Φ[N ]Σϕ(x) .

This ”functional” form is convenient as it generalizes to infinite dimensions. Indeed let
us introduce k(x, x) to generalize ϕ(x)>Σϕ(x), as well as kN (x) = (k(xn, x))n∈[N ] and
KN = (k(xi, xj))i,j∈[N ]. We then get

µN (x) = kN (x)(KN + σ2IN )−1Y[N ]

σ2
N (x) = k(x, x)− kN (x)>(KN + σ2IN )−1kN (x) .

In the next sections, we provide tight confidence bounds on the estimation error of
the next observation for each of these three procedures, namely the ordinary, ridge and
kernel least squares.

3.1. Mean estimates

In this section, we assume that level of noise R is known (or upper bounded by a known
constant), and derive confidence intervals on the mean function. We discuss the estima-
tion of the noise level later in section 3.2,

Let us remind that the history of observations hN = {(x1, y1), . . . , (xN , yN )} is gener-
ated by a random process and that the observations points xn are allowed to be arbitrary
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Self-normalization techniques for streaming confident regression 13

function of the past observations before step n. Further, N is allowed to be a random
stopping time for the filtration of the past.

In this context, we obtain the following results on the estimation of the mean function
at any point x ∈ X . At a high level, Theorem 3.3 applies to function spaces of small
dimension, or when the number of observations is large enough that GN is invertible.
Theorem 3.4 applies to function space of large but finite dimensions, when N is too small
to ensure that GN is invertible. This is the reason for using a regularization. Theorem 3.5
finally applies to generic, possibly infinite dimensional function space.

Theorem 3.3 (Ordinary Least-squares) Assume that N is a stopping time adapted
to the filtration of the past. Then in the sub-Gaussian streaming regression model it holds

P
(
∃x ∈X |f?(x)− fθ†N (x)| > 2R||ϕ(x)||G†N

√
ln
(κd(e2Λ2

N )

δ

)
∩ λmin(GN ) > 0

)
6 δ.

where κd(x) = 2
3π

2 ln2(x/e)
⌈

ln(x)
2

⌉
[(12(d+ 1)

√
d)dxd + d] and ΛN = λmax(GN ).

Theorem 3.4 (Regularized Least-squares) Assume that N is a stopping time adapted
to the filtration of the past. Then in the sub-Gaussian streaming regression model it holds

P
(
∃x ∈X |f?(x)− fθN,λ(x)| > ||ϕ(x)||G−1

N,λ

[
λ√

λmin(GN,λ)
||θ?||2

+R

√
2 ln

(
det(GN + λI)1/2

δdet(λI)1/2

)])
6 δ.

Theorem 3.5 (Kernel Least-squares) Assume that N is a stopping time adapted to
the filtration of the past. Then in the sub-Gaussian streaming regression model, for each
x ∈X it holds

P
(
|f?(x)− µN (x)| > |f?(x)− kN (x)>(KN + σ2IN )−1fN |

+R

√√√√
2
(
||kN (x)||2(KN+σ2IN )−2 + 1

)
ln
(√1 + ||kN (x)||2(KN+σ2IN )−2

δ

))
6 δ.

Remark 3.6 The proofs of the three results rely on an application of the Laplace method
from (Peña, Lai and Shao, 2008), together with a non trivial peeling argument that en-
ables to localize the eigenvalues of the matrices GN , GN,λ,KN . We detail the full tech-
nique in the dedicated Section 5.

The result of Theorem 3.5 is not simultaneous over all x ∈X , contrary to the previous
two results. The reason is that in this case, we apply the Laplace method directly to the 1×1
term E>N (KN + σ2IN )−1kN (x) (where EN is the noise vector) that has a deterministic
dimension. It would be more natural to apply the method to E>N (KN + σ2IN )−1, but
the dimension, N , of this vector is a random stopping time and the method may no
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14 O.-A. Maillard

longer apply in this case. Now, when N is deterministic, the result of Theorem 3.5 holds
simultaneously over all x ∈X .

The quantity |f?(x)− kN (x)>(KN + σ2IN )−1fN | of Theorem 3.5 is a direct analogue
of the quantity λ√

λmin(GN,λ)
||θ?||2 of Theorem 3.4, and depends on the smoothness of the

function f? in the RKHS.

Discussion The result of Theorem 3.4 is essentially the same as that of (Abbasi-
Yadkori, Pal and Szepesvari, 2011), only with a minor refinement that can be also done
in their case. Using a regularization is important in case the considered function space
is large with respect to the number of observations (in the sense that GN is not invert-
ible). For smaller function spaces or large enough N , one may want however to stop
regularizing and put λ to 0. Despite being a great result, Theorem 3.4 is in this sense
unsatisfactory with respect to the dependency with the regularization λ, since the bound
becomes trivial as λ→ 0.

The result of Theorem 3.3 is novel and interesting in this respect. Indeed, compared
to the regularized approach, we managed to get rid of the regularization parameter λ,
that is intuitively not required when GN is invertible. The result also improves on the
approach used in (Rusmevichientong and Tsitsiklis, 2010), that was the best result so
far in this case. From their work, it is possible, after some careful rewriting of their proof
(simply gluing the different terms they control separately), to obtain the following result:

Theorem 3.7 (Least-squares reconstruction for finite-dimension spaces) Let us
consider the sub-Gaussian streaming regression model. Assume that GN is d × d in-
vertible with smallest eigenvalue λmin(GN ) > λ0 > 0 bounded away from 0 and that
∀n, ||ϕ(xn)|| 6 RX for a deterministic RX . Then, if N > λ0

12R2
X

it holds for all δ ∈ [0, 1]

and x ∈X , with probability higher than 1− δ,

|f?(x)− fθ?(x)| 6 R||ϕ(x)||G−1
N

√
D̃N (δ) ,

where we introduced the quantity

D̃N (δ) = 16

[
1 + ln

(
1 +

36R2
X

λ0

)][
d ln

(
36R2

X

λ0
N

)
+ ln(1/δ)

]
ln(N) .

The quantity D̃N (δ) obtained in their result should be compared with ln
(
κd(e2Λ2

N )
δ

)
from

Theorem 3.3, where we managed to move the O(ln(N)) factor inside the ln term and
provide a result that is valid for any random stopping time N , without restricting N
to be large enough. Also, we do not require a deterministic bound RX but can work
directly with the largest eigenvalue ΛN computed from the data. The gap between the
two bounds can actually be significant as we illustrate in Figure 1 on a toy problem.

The result of Theorem 3.5 regarding the kernel regression setting is also novel and
directly follows from our proof technique and intermediate results for the two other
theorems.
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Self-normalization techniques for streaming confident regression 15

3.2. Variance estimates

We now turn to the more involved problem of estimating the unknown noise level R, that
is generally not known in practice. We consider for this purpose two approaches. The first
approach simply consists in further specifying the noise model and studying a standard
empirical variance estimate. The second approach consists in making explicit use of the
results derived in Theorems 3.3, 3.4, 3.5 and taking advantage of our streaming setting
in order to provide a ”corrective” estimate of the variance that adjusts its value at each
time step when a mismatch is detected. We first proceed with the variance estimation
procedure.

3.2.1. Estimation

The next theorems provide a control on the accuracy of the following (slightly biased)
estimates

σ̂2
N =

1

N

N∑
n=1

(yn − 〈θ†N , ϕ(xn)〉)2 and σ̂2
N,λ =

1

N

N∑
n=1

(yn − 〈θN,λ, ϕ(xn)〉)2 .

Assumption 1 (Strongly sub-Gaussian noise) The noise sequence is not-only con-
ditionally sub-Gaussian but further strongly sub-Gaussian, in the sense that

∀i,∀λ < 1

2R2
lnE

[
exp(λξ2

i )

∣∣∣∣hi−1

]
6 −1

2
ln
(

1− 2λR2
)
.

This assumption naturally holds for Gaussian variables, which explains the name.

Theorem 3.8 (Ordinary variance estimate) Under Assumption 1, in the sub-Gaussian
streaming regression model, then for any random stopping time N adapted to the filtration
of the past, with probability higher than 1− 3δ, that either λmin(GN ) < λ0 or

R

(
1−

√
CN (δ)

N
−
√
CN (δ)

N
+
DN (δ)

N

)
6
√
σ̂2
N 6 R

(
1 +

√
2CN (δ)

N

)
.

where DN (δ) = 4 ln(κd(eΛN/λ0)/δ) and CN (δ) = ln(e/δ)
[
1 + ln(π2 ln(N)/6)/ ln(1/δ)

]
.

Theorem 3.9 (Regularized variance estimate) Under Assumption 1, in the sub-
Gaussian streaming regression model, for any random stopping time N for the filtration
of the past, with probability higher than 1− 3δ, it holds√

σ̂2
N,λ 6 R

[
1 +

√
2CN (δ)

N

]
+ ||θ?||2

√
λ

N

√
1− λ

λmax(GN,λ)

√
σ̂2
N,λ > R

[
1−

√
CN (δ)

N
−
√
CN (δ) + 2DN,λ(δ)

N

]
−

√
2λ1/2R||θ?||2

√
DN,λ(δ)

N
.

where DN,λ(δ) = 2 ln

(
det(GN+λI)1/2

δλd/2

)
.
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16 O.-A. Maillard

Remark 3.10 We observe from these two theorems that the lower bound on the noise
is a little different from the upper bound. Also, the estimate is potentially better when
one does not need to regularize, since in this case we do not need to bound the unknown
parameter ||θ?||2.

Remark 3.11 Since λ can be thought as a proxy for R2, it may be tempting to use
the variance estimate in order to tune the parameter λ. However, this procedure does not
straightforwardly leads to theoretical guarantees because all our proof techniques are based
on version of the Laplace method that requires λ to be independent from the observations.

Corollary 3.12 (Bounds on the variance) Under Assumption 1, in the sub-Gaussian
streaming regression model, for any random stopping time N for the filtration of the past,
with probability higher than 1− 3δ, it holds that either λmin(GN ) < λ0 or√

σ̂2
N

(
1 +

√
2CN (δ)

N

)−1

6 R 6
√
σ̂2
N

(
1−

√
CN (δ)

N
−
√
CN (δ)

N
+
DN (δ)

N

)−1

+

,

where (x)+ = max(x, 0), and using the convention that (x)−1
+ = 0 if x 6 0. Now, if an

upper bound R+ > R is known to the learner, one can derive the following inequalities
that hold with probability higher than 1− 3δ√

σ̂2
N −R

+

√
2CN (δ)

N
6 R 6

√
σ̂2
N +R+

(√
CN (δ)

N
+

√
CN (δ) +DN (δ)

N

)
.

Likewise, for the regularized estimate, for any λ > 0, with probability higher than
1− 3δ, it holds that

R 6
1

α2

([√
σ̂2
N,λα+

λ2||θ?||2
√
DN,λ(δ)

2Nλmin3/2(GN,λ)

]1/2

+

[
λ2||θ?||2

√
DN,λ(δ)

2Nλmin3/2(GN,λ)

]1/2)2

R >

[√
σ̂2
N,λ − ||θ

?||2

√
λ

N

(
1− λ

λmax(GN,λ)

)](
1 +

√
2CN (δ)

N

)−1

,

where we introduced

α =

(
1−

√
CN (δ)

N
−

√√√√CN (δ) +DN,λ(δ)
(

1+ λ
λmin(GN,λ)

)
N

)
+

.

Further, if an upper bound R+ > R is known to the learner, one can derive the following
inequalities that hold with probability higher than 1− 3δ,

R 6
√
σ̂2
N,λ +R+

(√
CN (δ)

N
+

√
CN (δ) + 2DN,λ(δ)

N

)
+

√
2λ1/2R+||θ?||2

√
DN,λ(δ)

N

R >
√
σ̂2
N,λ −R

+

√
2CN (δ)

N
− ||θ?||2

√
λ

N

√
1− λ

λmax(GN,λ)
.
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Self-normalization techniques for streaming confident regression 17

3.2.2. Correction

The standard estimates of the variance presented in the previous section have some draw-
backs. The main one is the behavior in case of over-fitting, since for instance the variance
of the ordinary least-squares estimate becomes 0 in this case, and is thus completely
non informative about the true variance. For this reason, it is desirable to consider a
different approach that remains valid in the case of over-fitting (and that requires only
o(n) updating complexity at step n). We design such an estimate, in a very natural way,
taking advantage of the confidence bounds on the mean and of the sequential setting.

At high level, the corrective procedure that we introduce compares the high prob-
ability confidence intervals and the actual observations, and searches for the smallest
variance parameter that makes all past and current confidence intervals valid (that is,
the confidence interval contains the observed value). This procedure guarantees that the
resulting corrected variance estimate is indeed a high probability lower bound on the
actual variance as we show below.

Lemma 3.13 (Corrective variance estimates) Let us consider the sub-Gaussian stream-
ing regression model and define the following instantaneous and cumulative variance es-
timates

r̂N+1(δ) =
max(|yN+1 − fθ̂N (xN+1)| − cN , 0)

bN (δ/3) +
√

2 ln(3/δ)
, R̂N+1(δ) = max

n∈[N ]
r̂n+1(6δ/(πn)2) .

where the function b and constant c are such that

P
(
∃x ∈X : |f?(x)− fθ̂N (x)| > cN +RbN (δ)

)
6 δ .

Then, under assumption 1, r̂N+1(δ) satisfies with probability higher than 1 − δ the in-

equality r̂N+1(δ) 6 R. Likewise, R̂N+1(δ) 6 R with probability higher than 1− δ.

One advantage of these quantities is to remain meaningful even when there is over-
fitting, contrary to the classical variance estimate that become 0. The splitting of the
data into training and testing is done in a very simple (perhaps naive) way by testing
only on the next observation, which avoids the combinatorial complexity of combining
all possible 2-set partitions of the data.

Note that Assumption 1 is not required in order to lower bound the value R. This
assumption (or a related one) is required in order to show the estimate is tight. This is
intuitive, since otherwise nothing requires the R value of the sub-Gaussian assumption
to be minimal.

Proof of Lemma 3.13:

Indeed, it suffices to remark that by construction of the confidence interval, it holds
with probability higher than 1− δ, for all x,

|f?(x)− fθ̂N (x)| 6 cN +RbN (δ) .
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18 O.-A. Maillard

Thus, under a R-sub-Gaussian assumption, the observation yN = y(x) at point x = xN
is such that y(x)−f?(x) is R-sub-Gaussian and thus with probability higher than 1−3δ,
by a triangular inequality followed by a union bound it must hold

|y(x)− fθN,λ(x)| 6 cN +RbN (δ) +R
√

2 ln(1/δ) .

We simply conclude by noting that r̂N+1(δ) is actually the smallest value R such that
the high probability bound is satisfied with probability 1− δ

r̂N+1(δ) = min{R : |yN+1 − fθ̂N (xN+1)| 6 cN +RbN (δ/3) +R
√

2 ln(3/δ)}

=
max(|yN+1 − fθ̂N (xN+1)| − cN , 0)

bN (δ/3) +
√

2 ln(3/δ)
.

A natural way to define the corrective estimate is then to take the maximum r̂n(δ) at
each time step. Let δn = 6δ/(πn)2. Using a simple union bound, we define

R̂N+1(δ) = min{R : ∀n ∈ [N ], |yn+1 − fθ̂n(xn+1)| 6 cn +Rbn(δn/3) +R
√

2 ln(3/δn)}

= max
n∈[N ]

max(|yn+1 − fθ̂n(xn+1)| − cn, 0)

bn(δn/3) +
√

2 ln(3/δn)
= max
n∈[N ]

r̂n+1(δn) .

It satisfies with probability higher than 1− δ the inequality R̂N+1(δ) 6 R. �

The previous lemma shows that it is possible to build a high probability lower bound
on the noise level R. It is interesting to investigate to which extent the corrective esti-
mate is loose. Due to the dependency between the random variables, this is in general
a challenging question. We provide below a hint on a quantity related to R̂N+1(δ) in
the simplified situation when both xn+1 and ξn+1 are independent on the past history
hn, N is deterministic and when ξn+1 is moreover exactly Gaussian. We also restrict our

illustration to the ordinary least-squares estimate θ̂N .
In this case, we first remark that by construction of the ordinary least-squares estimate

it comes

max
n∈[N ]

|y(xn+1)− fθ̂n(xn+1)| = max
n∈[N ]

|(θ? − θ̂n)>ϕ(xn+1) + ξn+1|

= max
n∈[N ]

∣∣∣∣E>n ΦnG
−1
n ϕ(xn+1) + ξn+1

∣∣∣∣
= max

n∈[N ]

∣∣∣∣ n∑
m=1

ϕ(xm)>G−1
n ϕ(xn+1)︸ ︷︷ ︸

λn,m

ξm + ξn+1

∣∣∣∣ .
In this form, we see that one needs to control the maximum of the absolute value of
a sum of Gaussian random variables. Indeed, using the assumption that each xn is in-
dependent on the past observations before n, then so is the matrix Gn and thus λn,m.
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Self-normalization techniques for streaming confident regression 19

Now, using the assumption that ξn is independent on the past, and thus of ξm, m < n,
we remark that

∑n
m=1 λn,mξm + ξn+1 is a centered Gaussian with standard deviation

R̃ = R(ϕ(xn+1)>G−1
n ϕ(xn+1) + 1). Thus, we deduce that the following quantity

ZN = max
n∈[N ]

|y(xn+1)− fθn(xn+1)|√
||ϕ(xn+1)||2

G−1
n

+ 1
= max
n∈[N ]

|gn| ,

is the maximum of the absolute value of N many R-Gaussian random variables {gn}n∈[N ].

At this point, let us remind that in the case when Z̃K = maxn∈[K] g̃n is the maximum
of K i.i.d. centered Gaussian variables {g̃n}n∈[K] with variance R2, then the following
holds

R

√
2 ln(K)

2π ln(2)
6 E[Z̃K ] 6 R

√
2 ln(K) .

We further know that Z̃K is asymptotically of order R
√

2 ln(K) up to fluctuations of

order O(R ln ln(K)/
√

ln(K)). Indeed, it holds for these independent variables (see e.g.
(Leadbetter, Lindgren and Rootzén, 2012, Theorem 1.5.3)) that

P
(

maxn∈[K] g̃n√
2 ln(K)

−R 6 − R

4 ln(K)

[
ln lnK + ln(4π) + 2 ln ln(1/δ)

])
K→∞→ δ . (4)

The proof of this result actually follows from a simple study of the cdf of the Gaussian
distribution. This control, even though it is asymptotic, gives a hint about the behavior
of Z̃K , and shows that with high probability, Z̃K/

√
2 ln(K) cannot be a too loose lower-

bound on the level of noise R.
However, even in our simplified case, we need to control ZN that is the maximum

of 2N many correlated R-Gaussian random variables (since |gn| = max{gn,−gn}, and
because gn depends on gn−1). By the Slepian inequality, we can relate ZN to Z̃2N :
Indeed, for all (deterministic) z, the inequality P(ZN > z) 6 P(Z̃2N > z) holds true. On
the other hand, by a simple union bound over the K random variables, it holds

P
(
Z̃K > R

√
2 ln(1/δ)

)
6 Kδ .

Thus, for K = 2N , we deduce that with probability higher than 1− δ, then

ZN 6 R
√

2 ln(2N/δ)) .

However, this only provides an upper bound on the quantity ZK . Slepian’s inequality does
not able to control the reverse inequality that would be required in order to understand
how loose is the lower bound estimate.

We leave as an (partially) open question the generalization of (4) to the case when the
{g̃n}n∈[N ] are the partial sums of i.i.d Gaussian variables {ζ̃n}n∈[N ] (that is g̃n =

∑n
i=1 ζi)
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20 O.-A. Maillard

as well as that of getting a fully non-asymptotic result valid for all N (possibly a random
stopping time). Such a result would complement that of Lemma 3.13 in order to derive

a confidence interval for corrective estimate of the form R − cN+1 6 R̂N+1(δ) 6 R. for

some cN+1
N→∞→ 0 yet to be defined.

3.3. Streaming updates and complexity

In the case of streaming data, recomputing the ordinary least-squares solution from
scratch at each step may not be computationally efficient, due to the linear scaling with
the length of the history. Instead, it is desirable to use the solution computed at time
n in order to help computing that at time n + 1. Such incremental updates have been
studied in the literature. We provide for the sake of completeness the following folklore
result that is a direct application of the Shermann-Morrison formula:

Lemma 3.14 (Online updates to the least-squares solution) The solution θn+1,λ

can be computed at each time step, by maintaining only a d × d matrix G−1
n,λ, and the

vector Φ>n Yn with updates formulas given by

G−1
n+1,λ = G−1

n,λ −
G−1
n,λϕ(xn+1)ϕ(xn+1)>G−1

n,λ

1 + ϕ(xn+1)>G−1
n,λϕ(xn+1)

with G−1
0 = λ−1Id×d

Φ>n+1Yn+1 = Φ>n Yn + ϕ(Xn+1)yn+1 with Φ>0 Y0 = 0d .

provided that 1 + ϕ(xn+1)>G−1
n,λϕ(xn+1) 6= 0 .

A similar but more complicated update formula exists for the pseudo-inverse matrix G†n.
It can be found for instance in (Campbell and Meyer, 2009, Th.3.1.3, p.47), and we refer

the reader to this reference for further details. Thus, both θ†N and θn,λ can be computed
efficiently, with an update complexity that is at most O(d2) at each step n.

The variance estimates can also be updated sequentially in an efficient way. Indeed,
it suffices to rewrite the variance estimate as

σ̂2
N,λ =

1

N

N∑
n=1

(yn − 〈θN,λ, ϕ(xn)〉)2

=
1

N

N∑
n=1

y2
n︸ ︷︷ ︸

qN

+
1

N
θN,λ

>
( N∑
n=1

ϕ(xn)ϕ(xn)>︸ ︷︷ ︸
GN

)
θ̂N,λ −

2

N
θN,λ

>
N∑
n=1

ϕ(xn)︸ ︷︷ ︸
sN

yn .

Since qN is a scalar, θ†N is a vector of dimension d and GN is a d×d matrix, they update
in a constant time with respect to n. A similar decomposition holds for σ̂2

N .
The computation of the kernel estimates is trickier, since one must update the kernel

matrix, that is N × N (this should be compared with the d × d feature matrix GN ).
Thus, even a rank 1 update requires O(N) steps in general for these infinite dimension
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models, and can thus be costly for large N . One may want to resort to approximations
such as sketching in order to avoid a numerical complexity growing linearly with N , but
one needs to control the approximation error introduced in that case.

3.4. Some numerical illustration

In this section, we provide a few numerical experiments that enable to visualize the
empirical confidence intervals that we build, and compare them to other constructions.

Figure 1. Confidence intervals in the realizable case, with given bound on the noise level R = 3., for var-
ious methods. Red: Ordinary least-squares estimate from (Rusmevichientong and Tsitsiklis, 2010) (The-
orem 3.7) Orange: Ordinary least-squares estimate using the improved Theorem 3.3. Yellow: Regularized
least-squares estimate with λ = 1, using Theorem 3.4. Cyan: High-confidence interval corresponding to
a Gaussian N (f

θ̂n
(·), R).

In Figure 1, we have plotted the confidence intervals over the observations yn built
from various methods, for some simple signal in a linear function space of low dimension
d, with noise level less than R = 3. In this first series of plots, R is given to the learners.

For the ordinary least-squares, we have plotted the confidence interval4 resulting from
(Rusmevichientong and Tsitsiklis, 2010) (in Red), and the one resulting from our im-
provement (in Orange), see Theorem 3.3. For the regularized estimate, we plotted the
bound from Theorem 3.4 (in Yellow, see also (Abbasi-Yadkori, Pal and Szepesvari, 2011)),
with parameter λ = 1 and ||θ?|| 6

√
d. Note that large values of λ (compared to the ac-

tual level of noise) may lead to loose confidence bound. Finally, we plotted in cyan the

4They are only valid after the number of observations is large enough so that the Gn matrix has
large enough lowest eigenvalue.
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high probability confidence interval of a Gaussian centered at the estimated value fθ̂n ,

with variance R2, that is [fθ̂n(x) ± R
√

2 log(1/δ)]. This naive interval (we refer to it
as the in-model confidence interval) is however not in general a valid high-probability

confidence interval as it does not take into account the estimation error of θ̂n.

Figure 2. Confidence intervals from Theorem 3.4, in the realizable case, for the regularized least-squares
estimate with λ = 1 and various methods to handle the noise. Red: Upper-bound from Corollary 3.12
without any knowledge of the noise. Orange: Bound R given to the learner. Yellow: Lower-bound from
Corollary 3.12 without any knowledge of the noise. Green: Corrective noise estimate.

In Figure 2, we consider the confidence intervals computed from Theorem 3.4, and
study the influence of the estimation of the noise parameter R on the resulting bounds.
We plot in Orange the confidence interval when a bound on R is given (Here R = 3, and
the actual noise level has been chosen uniformly in [0, 3]). We plot in Red (respectively
Yellow) the intervals using for R the upper bound (respectively lower bound) from Corol-
lary 3.12, when no bound on R is known. Despite the fat the noise level is completely
unknown, the confidence interval shrinks reasonably fast. Finally, the Green intervals
correspond to using the corrective noise estimate from Lemma 3.13 for the parameter
R. Similar figures can be obtained when studying the estimation of R in the context of
ordinary rather than regularized least-squares estimates.

Remark 3.15 To avoid clutter, we haven’t plot the interval using a given bound R+,
but it should be in between the orange and yellow intervals. Note also that the yellow
intervals in Figure 2 are not valid high probability confidence intervals in general. Both
the yellow and green intervals can be qualified as being ”optimistic”.
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4. Confidence, Model adequacy and Predictive loss

In this section, we provide some key applications of the confidence intervals built in
the previous section. On the one hand, we focus on the notion of model adequacy that
enables to measure empirically the adequacy of the modeling assumptions to capture
the observed signal, and thus to raise an alert when the adequacy is too low. On the
other hand, we provide an estimate of the loss of the learner at a next observation step,
for various notions of losses. This is especially relevant to the task of model selection or
aggregation in the context of sequential prediction.

In the following, we abstract the previous models, for the sake of generality. Let P
be a set of stochastic processes indexed by X , with value in Y (that is for P ∈P, and
x ∈ X , y ∼ P (x) belongs to Y ). We call a prediction strategy P over P a learning
algorithm that outputs, for a training history h, one specific process denoted P (h) ∈P.

Definition 4.1 (Confidence set) A confidence set at point x ∈ X for the prediction
strategy P over P trained on history h, is a subset of Y indexed by the confidence level
δ ∈ [0, 1], such that for any P ∈ P such that h has been generated by P (in the sense
that y ∼ P (x) for each (x, y) ∈ h), then

∀δ ∈ [0, 1], PY∼P (x)

(
Y ∈ C (x, δ,P(h))

)
> 1− δ .

Likewise, for a given history h, the confidence distribution set at point x ∈X is

D(x, h,P) =

{
P ∈P : ∀δ ∈ [0, 1], PY∼P (x)

(
Y ∈ C (x, δ,P(h))

)
> 1− δ

}
.

Remark 4.2 It is relevant to illustrate the difference between the confidence set that is
considered here and a perhaps more naive one. Consider a Gaussian model where y ∼
N (f?(x), σ2) with known σ2. Once a regression parameter θn is computed, it is tempt-
ing to consider the distribution N (fθn(x), σ2), and corresponding interval C̃ (x, δ) =
[fθn(x) ± σ

√
2 log(1/δ)]. This ”in-model” confidence interval (and distribution) is quite

different from that of Definition 4.1, since the latter takes into account the uncertainty
about the random variable θn, contrary to C̃ (x, δ).

Example: From Theorem 3.3, we deduce that for the ordinary least-squares solution
with f̂h = fθ̂n , it holds (when R is known)

C (x, δ,P(h)) = {y : |y − f̂h(x)| 6 bh + ch
√

2 ln(1/δ)} ,

with bh = 2R||ϕ(x)||G†N

√
ln
(

3κd(e2Λ2
N )
)

+
√

2 ln(3) and ch =
√

2R||ϕ(x)||G†N +1. We get

a similar form for the regularized least-squares solution from Theorem 3.4, respectively

with bh = ||ϕ(x)||G−1
N,λ

[
λ√

λmin(GN,λ)
||θ?||2 + R

√
2 ln

(
3det(GN+λI)1/2

det(λI)1/2

)]
+
√

2 ln(3) and

ch = R||ϕ(x)||G−1
N,λ

+ 1.
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Definition 4.3 (Model Adequacy) We define the model adequacy for an observation
y at point x of the prediction strategy P trained on history h by

α(y, x,P(h)) = sup{δ : δ ∈ Argmin{inf{`Y (y, y′) : y′ ∈ C (x, δ,P(h))}, δ ∈ [0, 1]} .

A value of 1 indicates no mismatch, while a value of 0 indicates a strong mismatch.

Examples: In the Markov setting on a finite alphabet, the model adequacy simply
coincides with the probability assigned to each observation y the prediction strategy. We
show see this Section 4.1 below. In the sub-Gaussian streaming regression model, it takes
another form as we show in Section 4.1; For a typical confidence set given by

C (x, δ,P(h)) = {y : |y − f̂h(x)| 6 bh + ch
√

2 ln(1/δ)} ,

and for the quadratic loss `Y (y, y′) = (y − y′)2, we show in Section 4.1 that the model
adequacy has the following form

α(y, x,P(h)) = exp

(
−

(f̂h(x)− bh − y)2
+

2c2h
−

(y − f̂h(x)− bh)2
+

2c2h

)
,

where (z)+ = max{z, 0} denotes the positive part of z. Note that α(y, x,P(h)) =

1 for all y such that |y − f̂h(x)| 6 bh. Further, the model adequacy integrates to∫
Y α(y, x,P(h))dy =

√
2πc2h + 2bh, so that the normalized model adequacy coincides

with the density of a quasi-Gaussian distribution that is sometimes called a possibilist
distribution due to the fact it not only corresponds to a model estimate (such that

N (fθ̂N (x), σ2)), but also accounts for the uncertainty about θ̂N , thus effectively com-

bining the distributions N (fθ(x), σ2) for all plausible parameters θ.

The next three definitions introduce the predictive loss, that is an estimate of the high-
probable loss that one may incur at a (next) observation point x. Thus, the predictive
loss is typically used, at step n with history hn, to predict the possible loss at point
x = xn+1, assuming the observed signal obeys our modeling assumptions.

Definition 4.4 (Predictive Quadratic Loss) The predictive quadratic loss at point
x ∈X for the prediction strategy P trained on history h, with level δ0 ∈ [0, 1] is defined
by

`Y (x, δ0,P(h)) = sup{`Y (y, y′), y, y′ such that α(y, x,P(h)) > δ0} .

Definition 4.5 (Predictive Self-information Loss) The predictive self-information
loss at point x ∈X for the prediction strategy P trained on history h, with level δ0 ∈ [0, 1]
is defined by

`I(x, δ0,P(h)) = sup{`I(y, ρ(·|x,P(h)), y such that α(y, x,P(h)) > δ0} .
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Definition 4.6 (Predictive Transportation Loss) The predictive transportation loss
at point x ∈ X for the prediction strategy P trained on history h, with level δ0 ∈ [0, 1]
is defined by

T (x, δ0,P(h)) = sup{T`Y (P (x), ρ(·|x,P(h)), P ∈ P
such that PY∼P (x)[α(Y, x,P(h)) < δ0] 6 δ0} .

4.1. Model adequacy

In this section, we provide explicit computations for the model adequacy introduced in
Definition 4.3.

Example 1 When Y is discrete and `(y, y′) = I{y 6= y′}, let p(·|x, h,M ) be the
prediction distribution on the value of the observation at point x for model M with
history h, it is natural to define the corresponding confidence set

C (x, δ, h,M ) =
⋃
{yk1 , . . . , ykK ∈ Y :

K∑
i=1

p(yki |x, h,M ) > 1− δ and K is minimal} .

Now, for ` being the grossiere metric, it can be checked that the model adequacy satisfies
α(Y ;x, h,M ) = p(Y |x, h,M ), and thus

p̃(y|x, h,M ) =
p(y|x, h,M )∑
y∈Y p(y|x, h,M )

= p(y|x, h,M ) .

Indeed, in that case, we get by construction

inf{`(Y, y) : y ∈ C (x, δ, h,M )} = I{Y /∈ C (x, δ, h,M )}
6 I{p(Y |x, h,M ) 6 1−

∑
y∈C (x,δ,h,M )

p(y|x, h,M )} .

6 I{p(Y |x, h,M ) 6 1−max{
K∑
i=1

p(yki |x, h,M ) :

K∑
i=1

p(yki |x, h,M ) > 1− δ}} .

6 I{p(Y |x, h,M ) 6 δ} .

Since this last quantity is 0 for all δ < p(Y |x, h,M ), we thus get the desired conclusion.

Example 2 When Y = R and `(y, y′) = (y − y′)2, we get some interesting result.
Indeed, for a regression model with σ2-sub-Gaussian noise, the confidence set is of the
form

C (x, δ, h,M ) =

[
fh,M (x)− λB −

√
2σ2

x,h,M ln(Ch,M/δ)−
√

2σ2 ln(1/δ),

fh,M (x) + λB +
√

2σ2
x,h,M ln(Ch,M/δ) +

√
2σ2 ln(1/δ)

]
⊂

[
a− c

√
2 ln(1/δ), b+ c

√
2 ln(1/δ)

]
,
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where we introduced a = fh,M (x) − λB −
√

2σ2
x,h,M ln(Ch,M ), b = fh,M (x) + λB +√

2σ2
x,h,M ln(Ch,M ), and finally c =

√
σ2
x,h,M +

√
σ2 for convenience. Now, at the price

of enlarging the confidence set,

inf{`(Y, y) : y ∈ C (x, δ, h,M )} > inf{(Y − y)2 : y ∈
[
a− c

√
2 ln(1/δ), b+ c

√
2 ln(1/δ)

]
}

= I{Y < a− c
√

2 ln(1/δ)}(Y − a+ c
√

2 ln(1/δ))2

+I{Y > b+ c
√

2 ln(1/δ)}(Y − b− c
√

2 ln(1/δ))2 .

The critical values for δ are e−
(Y−a)2

2c2 if Y < a and e−
(Y−b)2

2c2 if Y > b, that is we find that

α(Y ;x, h,M ) = e−
(a−Y )2+

2c2
−

(Y−b)2+
2c2 . Further, we remark that∫

Y

α(y;x, h,M )dy =

∫ a

−∞
e−

(a−y)2

2c2 dy + |b− a|+
∫ ∞
b

e−
(y−b)2

2c2 dy

=
√

2πc2 + |b− a| ,

which leads to the (possibilistic) distribution induced by the enlargement of C (x, δ, h,M )
defined by

p̃(dy|x, h,M ) =
1√

2πc2 + |b− a|
e−

(a−Y )2+

2c2
−

(Y−b)2+
2c2 λ(dy) .

4.2. Loss estimates

The benefit of confidence intervals is to be able to easily derive an upper bound on the
loss of a prediction algorithm at the next input point (or any other). We illustrate this
point below in the Gaussian setting by providing a list of estimates for the quadratic,
self-information and transportation losses defined in the previous section, that directly
derives from our previous results.

We provide our illustrative examples in the case of Gaussian regression only, for the
purpose of clarity.

Theorem 4.7 (Predictive quadratic loss) The predictive quadratic loss of the model

that predicts N (f̂h(x), σh) from history h, in the sub-Gaussian streaming regression
model is given by

`Y (x, δ0,P(h)) = 4
(
bh + ch

√
2 ln(1/δ0)

)2

,

where bh and ch are such that

C (x, δ,P(h)) = {y : |y − f̂h(x)| 6 bh + ch
√

2 ln(1/δ)} .
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Proof of Theorem 4.7:

Specifying P(h) and α(y, x,P(h)) in the Gaussian example, we derive from Defini-
tion 4.4 the equalities

`Y (x, δ0,P(h)) = sup

{
(y − y′)2 :

y, y′ such that exp

(
−

(f̂h(x)− bh − y)2
+

2c2h
−

(y − f̂h(x)− bh)2
+

2c2h

)
> δ0

}
= max

{
(y − y′)2 : y = f̂h(x)− bh −

√
2c2h ln(1/δ0)

or y = f̂h(x) + bh + ch
√

2 ln(1/δ0)

}
= 4

(
bh +

√
2c2h ln(1/δ0)

)2

.

�

Theorem 4.8 (Predictive self-information loss) The predictive self-information loss

of the model that predicts N (f̂h(x), σh) from history h in the sub-Gaussian streaming
regression model is given by

`I(x, δ0,P(h)) =
1

2
ln(2πσ2

h) +
1

2σ2
h

(bh + ch
√

2 ln(1/δ0))2 ,

where bh and ch are such that

C (x, δ,P(h)) = {y : |y − f̂h(x)| 6 bh + ch
√

2 ln(1/δ)} .

Proof of Theorem 4.8:

We consider a confidence set of the form

C (x, δ,P(h)) = {y : |y − f̂h(x)| 6 bh + ch
√

2 ln(1/δ)} ,

Specifying P(h) and α(y, x,P(h)) in the Gaussian example, we derive from Defini-
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tion 4.5

`I(x, δ0,P(h)) = sup

{
(y − f̂h(x))2

2σ2
h

+
1

2
ln(2πσ2

h) :

y such that exp

(
−

(f̂h(x)− bh − y)2
+

2c2h
−

(y − f̂h(x)− bh)2
+

2c2h

)
> δ0

}
= max

{
(y − f̂h(x))2

2σ2
h

+
1

2
ln(2πσ2

h) :

y = f̂h(x)− bh −
√

2c2h ln(1/δ0) or y = f̂h(x) + bh +
√

2c2h ln(1/δ0)

}
=

1

2
ln(2πσ2

h) +
1

2σ2
h

(bh + ch
√

2 ln(1/δ0))2 .

�

Theorem 4.9 (Transportation and predictive Transportation loss) In the stream-
ing regression model when the noise is (exactly) Gaussian conditionally on the past, then,
with probability higher than 1− 4δ it holds

T
(
N (f?(x), R2),N (fθ†N

(x), σ̂2
N )
)
6

R2

[
4||ϕ(x)||2

G†N
ln
(κd(e2Λ2

N )

δ

)
+ max

{√
CN (δ)

N
+

√
CN (δ) +DN (δ)

N
,

√
2CN (δ)

N

}2]
.

Further, one can replace R with any upper bound R̂n for instance from Corollary 3.12 in
order to get a fully empirical bound on the transportation loss:

R̂n =
√
σ̂2
N +R+

(√
CN (δ)

N
+

√
CN (δ) +DN (δ)

N

)
.

If PN denotes the model assuming that the noise is exactly conditionally Gaussian, then
the predictive transportation loss for that model model is given by

T (x, δ0,PN (h)) = R2

[
8||ϕ(x)||2

G†N
ln
(κd(e2Λ2

N )

δ0

)
+2 max

{√
CN (δ0)

N
+

√
CN (δ) +DN (δ0)

N
,

√
2CN (δ0)

N

}2]
.

Proof of Theorem 4.9:
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We simply remark that in the specific case of Gaussian distributions, the transporta-
tion loss can be written in a fully explicit way as

T
(
N (f?(x), R2),N (fθ†N

(x), σ̂2
N )
)

= |f?(x)− fθ†N (x)|2 + |R− σ̂N |2.

Then, combining Theorem 3.3 and Theorem 3.8 together with a union bound, it
comes with probability higher than 1− 4δ

|f?(x)− fθ†N (x)|2 + |R− σ̂N |2 6 R2

[
4||ϕ(x)||2

G†N
ln
(κd(e2Λ2

N )

δ

)
+ max

{√
CN (δ)

N
+

√
CN (δ) +DN (δ)

N
,

√
2CN (δ)

N

}2]
.

�

It is interesting to remark from these results that the self-information and trans-
portation loss may behave very differently. In particular, using the self-information loss
criterion appears to be dangerous in the context of model selection when one must choose
between different models, when the noise level is unknown and must be estimate. Indeed
in this case, models estimating a large variance will be favored due to the σ2

h appearing in
the denominator. This situation does not seem to appear when using the transportation
loss criterion. Dealing with the transportation is however not easy beyond the Gaussian
case, for which everything is explicit (see Section 2.1).

Remark 4.10 (Mismatch detection) An application of the previous tools is the pos-
sibility to detect a mismatch between the considered model of observations and the actual
observed data. A simple way to detect such a mismatch is to use the model adequacy, and
test whether α(yn+1, xn+1,P(hn)) is less than some alert threshold τ . A complementary
way is to track large changes in the predictive loss, such as a large increase. We do not
detail this more in order to avoid deviating the reader’s focus from the main topic of this
paper.

5. Self-normalized techniques for Sub-Gaussian
Regression

In this section, we provide the proofs of the main theorems regarding the mean and vari-
ance estimates of the considered least-squares solution. The proofs are a little long but
are actually not difficult as they make use of standard tools in statistics. One method is
the Laplace method, another one is peeling, yet another one is the martingale method.
Although we make use of a sort of localization technique, thanks to the concentration of
confidence sets, we do not need to resort to symmetrization (and Rademacher complex-
ities) for the construction of confidence sets.
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We first recall a simple yet powerful result argument for randomly stopped vector
valued processes. An example of proof of this result is given in (Abbasi-Yadkori, Pal and
Szepesvari, 2011) and we briefly reexplained it below.

Lemma 5.1 (Vector-valued Martingale Control) Assume that the noise sequence
{ξn}∞n=0 is conditionally R-sub-Gaussian

∀n ∈ N,∀λ ∈ R, lnE[exp(λξn)|hn−1] 6
λ2R2

2
.

Let N be a stopping time with respect to the filtration {Fn}∞n=0 generated by the variables
{xn, ξn}∞n=0. Let us denote

Mq
m = exp

(
q>

m∑
n=1

ϕ(xn)ξn −
R2

2
q>Φ>mΦmq

)
where Φm = (ϕ(x1), . . . , ϕ(xm))> is N × d. Then, for all q ∈ Rd the quantity Mq

N is well
defined and satisfies

lnE[Mq
N ] 6 0 .

The only difficulty in the proof is to handle the stopping time. Indeed, for all m ∈
N, thanks to the conditional R-sub-Gaussian property, it is immediate to show that
{Mq

m}∞q=0 is a non-negative super-martingale and actually satisfies lnE[Mq
m] 6 0.

By the convergence theorem for nonnegative super-martingales, Mq
∞ = limm→∞Mq

m is
almost surely well-defined, and thus Mq

N is well-defined (whether N <∞ or not) as well.
In order to show that lnE[Mq

N ] 6 0, we introduce a stopped version Qqm = Mq
min{N,m} of

{Mq
m}m. Now E[Mq

N ] = E[lim infm→∞Qqm] 6 lim infm→∞ E[Qqm] 6 1 by Fatou’s lemma,
which concludes the proof. We refer to (Abbasi-Yadkori, Pal and Szepesvari, 2011) for
further details.

We continue this section with a known and powerful self-normalized result for vector-
valued martingales (see e.g. (Peña, Lai and Shao, 2008)) of which we make extensive use
in the sequel:

Lemma 5.2 (Laplace method) Let A be a d-dimensional random vector and B a d×d
random matrix. Assume that for all λ ∈ Rd, E[exp(λ>A − 1

2λ
>Bλ)] 6 1. Then for any

deterministic d× d matrix V , it holds

P
(
||A||(B+V )−1 > R

√
2 ln

(
det(B + V )1/2

δ det(V )1/2

))
6 δ .

Finally, we provide the following result that is useful when dealing with generic real-
valued distributions, and is possibly interesting beyond the scope of this paper. The proof
technique combines a simple peeling argument together with the martingale method, and
is inspired from techniques from (Cappé, Garivier and Maillard, 2013).
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Lemma 5.3 (Self-normalized Concentration inequality) Let {Zi}∞i=1 be a sequence
of random variables. Let ϕ : R→ R+ be a convex upper-enveloppe of the cumulant gener-
ative function of the conditional distributions with ϕ(0) = 0, and ϕ? its Legendre-Fenchel
transform, that is:

∀λ ∈ D ,∀i, lnE
[

exp
(
λZi

)∣∣∣Hi−1

]
6 ϕ(λ) ,

∀x ∈ R ϕ?(x) = sup
λ∈R

(
λx− ϕ(λ)

)
,

where D = {λ ∈ R : ∀i, lnE
[

exp
(
λZi

)∣∣∣Hi−1

]
< ∞}. Assume that D contains an

open neighborhood of 0. Then, ∀c ∈ R+, there exists a unique xc such that for all i,

xc > E
[
Zi

∣∣∣Hi−1

]
, and ϕ?(xc) = c, and a unique x′c such that for all i, x′c < E

[
Zi

∣∣∣Hi−1

]
and ϕ?(x

′
c) = c. We define ϕ−1

?,+ : c 7→ xc, ϕ
−1
?,− : c 7→ x′c. Then ϕ−1

?,+ is not decreasing

and ϕ−1
?,− is not increasing.

Let Nn be a random stopping time (for the filtration generated by {Zi}∞i=1) a.s. bounded
by n. Then

∀δ∈ (0, 1)P
[

1

Nn

Nn∑
i=1

Zi > ϕ
−1
?,+

(
1 + ln(1/δ)

Nn

)]
6

(
dln(n) ln(e/δ)e

)
δ

∀δ∈ (0, 1)P
[

1

Nn

Nn∑
i=1

Zi 6 ϕ
−1
?,−

(
1 + ln(1/δ)

Nn

)]
6

(
dln(n) ln(e/δ)e

)
δ

Now, if N is a (possibly unbounded) random stopping time for the filtration generated
by {Zi}∞i=1, it holds

P
(

1

N

N∑
i=1

Zi > ϕ
−1
?,+

(
1 + ln(1/δ)

N

[
1 +

2

ln(1/δ)
ln

(
π ln(N) ln(1/δ)√

6(1 + ln(1/δ))

)]))
6 δ

P
(

1

N

N∑
i=1

Zi 6 ϕ
−1
?,−

(
1 + ln(1/δ)

N

[
1 +

2

ln(1/δ)
ln

(
π ln(N) ln(1/δ)√

6(1 + ln(1/δ))

)]))
6 δ .

Example: For R-Sub-Gaussian distributions (e.g. for Z = X − E[X] with X ∈ [0, 1],
then R = 1/2):

ϕ(λ) =
λ2R2

2
, ϕ?(x) =

x2

2R2
, ϕ−1

?,+(c) =
√

2R2c, ϕ−1
?,−(c) = −

√
2R2c .

Proof of Lemma 5.3:

First, one easily derives (or recalls) the following properties, from those of the
Legendre-Fenchel transform.
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• ϕ?(0) = 0, ϕ?(x)
x→+∞→ ∞, ϕ? is convex, increasing on R+.

• ∀x such that ϕ?(x) < ∞, there exists a unique λx ∈ Dν such that ϕ?(x) =
λxx− ϕ(λx).

• ∀c ∈ R+, there exists a unique xc > E[Z] such that ϕ?(xc) = c. We write it ϕ−1
?,+(c).

ϕ−1
?,+ is not decreasing.

1. A peeling argument We start with a peeling argument. Let us choose some

η > 0 and define tk = (1 + η)k, for k = 0, . . . ,K, with K = d ln(n)
ln(1+η)e (thus n 6 tK).

Let εt ∈ R+ be a sequence that is non-increasing in t.

P
(

1

Nn

Nn∑
i=1

Zi > εNn

)

6 P
( K⋃
k=1

{tk−1 < Nn 6 tk} ∩ {
Nn∑
i=1

Zi > NnεNn}
)

6
K∑
k=1

P
(
∃t ∈ (tk−1, tk] :

t∑
i=1

Zi > tεt

)
Let λk > 0, for k = 1, . . . ,K.

P
(

1

Nn

Nn∑
i=1

Zi > εNn

)

6
K∑
k=1

P
(
∃t ∈ (tk−1, tk] :

t∑
i=1

Zi > tεt

)

6
K∑
k=1

P
(
∃t ∈ (tk−1, tk] : exp

(
λk

( t∑
i=1

Zi

))
> exp(λktεt)

)

6
K∑
k=1

P
(
∃t ∈ (tk−1, tk] : exp

(
λk

( t∑
i=1

Zi

)
− tϕ(λk)

)
︸ ︷︷ ︸

Wk,t

> exp
(
t
(
λkεt − ϕ(λk)

))
6

K∑
k=1

P
(
∃t ∈ (tk−1, tk] : Wk,t > exp

(
t
(
λkεtk − ϕ(λk)

))
.

Since εtk > 0, we can choose a λk > 0 such that ϕ?(εtk) = λkεtk − ϕ(λk).
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2. Doob’s maximal inequality At this, point, we show that the sequence {Wk,t}t
is a non-negative super-martingale, where Wk,t = exp

(
λk
(∑t

i=1 Zi
)
−tϕ(λk)

)
. Indeed,

note that:

E[Wk,t+1|Ft] = Wk,tE[exp
(
λkZt+1

)
|Ft] exp(−ϕ(λk))

6 Wk,t .

Thus, using that tk−1 > tk/(1 + η), we find

P
(

1

Nn

Nn∑
i=1

Zi > εNn

)

6
K∑
k=1

P
(
∃t ∈ (tk−1, tk]Wk,t > exp

(
tϕ?(εtk)

))

6
K∑
k=1

P
(

max
t∈(tk−1,tk]

Wk,t > exp
( tkϕ?(εtk)

1 + η

))
(a)

6
K∑
k=1

exp
(
− tkϕ

?(εtk)

1 + η

)
,

where (a) holds by application of Doob’s maximal inequality for non-negative super-
martingales, using that maxt∈(tk−1,tk]Wk,t 6 maxt∈(0,tk]Wk,t and Wk,0 6 1.

3. Parameter tuning for bounded Nn Now, let us choose εt such that tϕ?(εt) =
c > 1 is a constant, that is εt = ϕ−1

?,+(c/t) (non increasing with t). Thus, we get for all
η ∈ (0, n− 1):

P
(

1

Nn

Nn∑
i=1

Zi > εNn

)
6

d ln(n)
ln(1+η)

e∑
k=1

exp
(
− tkϕ

?(εtk)

1 + η

)
6 d ln(n)

ln(1 + η)
e exp

(
− c

1 + η

)
For η = 1/(c − 1) (which is not optimal in general) and c = ln(e/δ) > 1 we get for

δ < 1 that

P
(

1

Nn

Nn∑
i=1

Zi > ϕ
−1
?,+(ln(e/δ)/Nn)

)
6 dln(n)cee exp

(
− c
)

= dln(n) ln(e/δ)eδ .
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Another way to tune the parameters is to make use of the Lambert W function.

4. Parameter tuning for unbounded Nn
We restart from

P
(

1

Nn

Nn∑
i=1

Zi > εNn

)
6

K∑
k=1

exp
(
− tkϕ

?(εtk)

1 + η

)
,

where tk = (1 + η)k and K = d ln(n)
ln(1+η)e, and choose a different tuning for εt in order to

handle an infinite sum (with K =∞). Let us choose εt that satisfies tϕ?(εt) = c+ f(t),
where f(t) is chosen such that

∞∑
k=1

exp

(
− f(tk)

1 + η

)
<∞ .

Choosing f(tk) = (1 + η) ln(k2π2/6) = 2(1 + η) ln

(
π ln(tk)

61/2(1+η)

)
and η = 1/(c − 1), it

comes

P
(

1

Nn

Nn∑
i=1

Zi > εNn

)
6 exp

(
− c

1 + η

) ∞∑
k=1

1

k2

6

π2

= exp

(
− c

1 + η

)
= exp(−c)e .

Thus, f(tk) = 2c
c−1 ln

(
π ln(tk)(c−1)

61/2c

)
, and for c = ln(e/δ) > 1, it comes

P
(

1

Nn

Nn∑
i=1

Zi > ϕ
−1
?,+

(
c

Nn

[
1 +

2

c− 1
ln

(
π ln(Nn)(c− 1)

61/2c

)]))
6 δ

Thus, we obtain

P
(

1

Nn

Nn∑
i=1

Zi > ϕ
−1
?,+

(
1 + ln(1/δ)

Nn

[
1 +

2

ln(1/δ)
ln

(
π ln(Nn) ln(1/δ)

61/2(1 + ln(1/δ))

)]))
6 δ

5. Reverse bounds. We now provide a similar result for the reverse bound. Let

imsart-bj ver. 2012/04/10 file: submitted3.tex date: June 28, 2016



Self-normalization techniques for streaming confident regression 35

εt ∈ R be a sequence that is non-decreasing with t, and λk > 0, for k = 1, . . . ,K. Then

P
(

1

Nn

Nn∑
i=1

Zi 6 εNn

)
6

K∑
k=1

P
(
∃t ∈ (tk−1, tk] exp

(
− λk

( t∑
i=1

Zi

)
− tϕ(−λk)

)
> exp

(
t(−λkεt − ϕ(−λk))

))
6

K∑
k=1

P
(
∃t ∈ (tk−1, tk],Wk,t > exp

(
t(−λkεtk − ϕ(−λk))

))
If εtk < E[Ztk ], we can choose λk = λεtk > 0 such that ϕ?(εtk) = −λkεtk −ϕ(−λk) > 0.
Thus, using that tk−1 > tk/(1 + η), it comes

P
(

1

Nn

Nn∑
i=1

Zi 6 εNn

)
6

K∑
k=1

P
(
∃t ∈ (tk−1, tk],Wk,t > exp

(
tϕ?(εtk))

))

6
K∑
k=1

P
(

max
t∈(tk−1,tk]

Wk,t > exp
( tkϕ?(εtk)

1 + η

))

6
K∑
k=1

exp
(−tkϕ?(εtk)

1 + η

)
Now, let us choose εt < E[Zt] such that tϕ?(εt) = c > 1, that is εt = ϕ−1

?,−(c/t) (non
decreasing with t). For η = 1/(c− 1) and c = ln(e/δ), we obtain

P
(

1

Nn

Nn∑
i=1

Zi 6 ϕ
−1
?,−(ln(e/δ)/Nn)

)
6 dln(n) ln(e/δ)eδ .

�

5.1. Mean estimates

Lemma 5.1 enables to prove powerful concentration results. We apply it first to the setting
of ordinary least-squares regression and then to ridge-regression (aka Tikhonov–Phillips
regularization, or `2-regularization).

Theorem 5.4 (Self-normalized vector concentration for random stopping time)
Let assume that the observations {(xn, yn)}n∈[N ] come from a regression model yn =
fθ?(xn) + ξn with θ? ∈ Θ, and that N is a random stopping time for the filtration of the
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past. Let λ > 0 be a deterministic constant. The following result holds in the case when
a deterministic bound Λ is known on ΛN = λmax(GN ):

P
(

ΛN 6 Λ ∩ sup
p:||p||2GN>λ

|E>NΦNp|2

||p||2GN
>4R2 ln

[
4dln(Λ/λ)e

⌈ ln(eΛN/λ)

2

⌉Kd(
eΛN
λ )d + d

δ

])
6δ,

where Kd = (12(d+1)
√
d)d and ΛN = λmax(GN ) is the maximal eigenvalue of GN . Note

that the dependency with Λ only appears in the first ln term. In general, it holds:

P
(

sup
p:||p||2GN>λ

|E>NΦNp|2

||p||2GN
>4R2 ln

[
2π2 ln2(ΛN/λ)

⌈ ln(eΛN/λ)

2

⌉Kd(
eΛN
λ )d + d

3δ

])
6 δ , (5)

Likewise, an alternative bound is given by

P
(

sup
p:||p||2GN>Λ−1

N

|E>NΦNp|2

||p||2GN
>4R2 ln

[
8π2 ln2(ΛN )

⌈
ln(eΛN )

⌉Kd(eΛN )2d + d

3δ

])
6 δ . (6)

Further, for any deterministic semi-definite positive matrix V it holds

P
(
||Φ>NEN ||(GN+V )−1 > R

√
2 ln

(
det(GN + V )1/2

δdet(V )1/2

))
6 δ .

The first result is better understood for ordinary least-squares regression (without
regularization). Indeed, let θ ∈ ΘN be one minimizer of the least-squares error. We first

note that if A is self-adjoint, then ||θ? − θ||A = supp∈SD
|p>A(θ?−θ)|
||p||A , where SD is the

unit sphere of RD. Further, when A = GN , we have the property that

GN (θ? − θ) = GNθ
? − Φ>N (ΦNθ

? + EN ) = Φ>NEN .

Thus, supp∈SD
p>Φ>NEN
||p||GN

= ||θ? − θ||GN . A similar result appeared in (Rusmevichientong

and Tsitsiklis, 2010). We derive a slightly different version here, by combining Lemma 5.1
with the Laplace method from (Peña, Lai and Shao, 2008) (actually a variant of it is
used in (Rusmevichientong and Tsitsiklis, 2010)) and a covering argument in a slightly
different way.

The last result is for `2-regularized least-squares regression, and was shown in (Abbasi-
Yadkori, Pal and Szepesvari, 2011) from a combination of Lemma 5.1 with the Laplace
method from (Peña, Lai and Shao, 2008). We do not reproduce this proof here and refer
to (Abbasi-Yadkori, Pal and Szepesvari, 2011) for details.

Before continuing, note that if we introduce the following quantity,

κd(x) =
2

3
π2 ln2(x/e)

⌈ ln(x)

2

⌉
[(12(d+ 1)

√
d)dxd + d]

we immediately deduce from (5) and (6) that
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P
(

sup
p:||p||2GN>λ

|E>NΦNp|2

||p||2GN
>4R2 ln

[
κd(eΛN/λ)

δ

])
6 δ

P
(

sup
p:||p||2GN>Λ−1

N

|E>NΦNp|2

||p||2GN
>4R2 ln

[
κd(e

2Λ2
N )

δ

])
6 δ .

Proof of Theorem 5.4:

Let us first notice that

Φ>NEN =

N∑
n=1

ϕ(xn)ξn ,

is a sum of noise terms, and that due to normalization, one could consider RD instead
of SD, or a unit sphere in A-metric in case the corresponding covering number is easy
to handle. or any unit sphere for any norm. We consider in the sequel a covering of SD

in Euclidean norm as it applies to all cases and is simple to handle. We also denote
Hn−1 the filtration generated by the past history of observations up to step n− 1.

1. A peeling argument In order to handle the concentration of the term we want
to control, let us first introduce a sequence of values λk = (1+η)kλ, for some η > 0 and
λ > 0 to be defined later. We use this in order to localize the quantity ||p||GN . Thus,
we use the decomposition

P
(

sup
p:||p||GN>λ

|E>NΦNp|2

||p||2GN
>εN

)
6
∞∑
k=0

P
(
∀p s.t.||p||2GN ∈ [λk, λk+1)

|E>NΦNp|2

||p||2GN
> εN

)

2. Pointwise concentration We now provide a point-wise concentration result that
holds for a single p ∈ S d. We use the fact that for all λ ∈ R+ such that λp>ϕ(xn) ∈ Dξn ,
which we denote for convenience λ ∈ R+ ∩ 1

p>ϕ(xn)
Dξn ,

lnE[exp(λξnp
>ϕ(xn))|hn−1] 6 ψ(λp>ϕ(xn)) .

Applying this inequality to the random variable Z =
∑m
n=1 ϕ(xn)ξn, for a deterministic

m ∈ N it holds

lnE
[

exp(λp>Z −
m∑
n=1

ψ(λp>ϕ(xn))

]
6 0 .
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In the special case when ξn is R-sub-Gaussian conditionally on Hn−1, then ψ(λ) =
λ2R2

2 and Dξn = R. In that case, the previous inequality reduces to

lnE
[

exp(λp>Z − λ2R2

2
||p||2Gm)

]
6 0 .

Now, the same inequality holds for m being replaced by the stopping time N , using
a standard stopping time argument. However, we cannot deduce that for all δ ∈ (0, 1),
x ∈ S d,

P
(
p>Φ>NEN > inf

λ∈R+

{
λR2

2
p>

N∑
n=1

ϕnϕ
>
n p+

ln(1/δ)

λ

})
� δ ,

which would lead to the desirable

P
(
p>Φ>NEN >

√
2R2 ln(1/δ)||p||GN

)
� δ .

The reason is that the λ achieving the optimum in the above expression explicitly
depends on HN via GN and the control of the log-Laplace transform only holds for λ
adapted to the filtration (and thus in particular should be H0-measurable).

To overcome this difficulty, we resort to the Laplace method, for the 1-dimensional
variable A = p>Φ>NEN ∈ R and the 1× 1 random matrix B = R2||p||2GN . It thus holds
for any c ∈ R+

? , δ ∈ [0, 1],

P
(
|p>Φ>NEN |2

||p||2GN + c
> 2R2 ln


√

1 + ||p||2GN /c

δ

) 6 δ .
At this point, we use the localization and focus on the event ||p||2GN ∈ [λk, λk+1). For

each such p, choosing c = κλk 6 κ||p||2GN for some κ > 0 leads to the bound

P
(
|p>Φ>NEN |2 > 2R2 ln


√

1 + λk+1

λkκ

δ

 (1 + κ)||p||2GN

)
6 δ .

Making the expression λk = (1 + η)kλ explicit, and using κ = 1/2, it comes

P
(
||p||2GN ∈ [λk, λk+1) ∩ |p

>Φ>NEN |2

||p||2GN
> 3R2 ln

(√
3 + 2η

δ

))
6 δ .

3. Parameter tuning for bounded ||p||GN . We thus deduce a first result: Let

Λ > λ and K = d ln(Λ/λ)
ln(1+η)e. Then using a union bound, we deduce that

P
(
||p||2GN ∈ [λ,Λ) ∩ |p

>Φ>NEN |2

||p||2GN
> 3R2 ln

(
K
√

3 + 2η

δ

))
6 δ .
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We can now optimize the quantity K
√

3 + 2η in η. We choose η = e2 − 1 for which√
3 + 2η 6 4 and obtain that for all δ ∈ [0, 1], it holds

P
(
||p||2GN ∈ [λ,Λ) ∩ |p

>Φ>NEN |2

||p||2GN
> 3R2 ln

(
4dln(Λ/λ)/2e

δ

))
6 δ . (7)

3b. Parameter tuning for unbounded ||p||GN . We now consider the situation
when no a priori upper bound is known on ||p||GN . In that case, we can choose δk = δ 6

π2k2

for the confidence associated to the kth localization slice ||p||2GN ∈ [λk, λk+1) We find

that k 6 kp =
ln(||p||2GN /λ)

ln(1+η) 6 kp + 1, and thus we obtain,

P
(
||p||2GN > λ ∩

|p>Φ>NEN |2

||p||2GN
> 3R2 ln

(
π2k2

p

√
3 + 2η

6δ

))
6
∞∑
k=0

δk = δ ,

where we used the fact that
∑∞
k=0 δk = δ. Replacing kp with its expression, it comes

P
(
||p||2GN > λ ∩

|p>Φ>NEN |2

||p||2GN
> 3R2 ln

(
π2 ln(||p||2GN /λ)2

√
3 + 2η

6δ ln(1 + η)2

))
6 δ .

Choosing η = 55.5 that approximately minimizes
√

3+2η
6 ln(1+η)2 6 0.11, it comes ∀δ ∈ [0, 1]

P
(
||p||2GN > λ ∩

|p>Φ>NEN |2

||p||2GN
> 3R2 ln

(
0.11π2 ln(||p||2GN /λ)2

δ

))
6 δ . (8)

4. A covering argument The next step is to move from concentration results for
each separate p to result holding simultaneously for all p. To this end, we resort to a
covering argument. Let us consider a covering C of S d for the Euclidean norm, such
that ∀p ∈ S d,∃qp ∈ C ⊂ S d : ||p − qp|| 6 h. Let Mh denotes the size of the cover. It

can be shown that Mh 6

(
2
√
d

h

)d
.

We study the quadratic form g(p) = p>GNp, that satisfies for points p, q ∈ S such
that ||p− q|| 6 h the following inequality

g(p)− g(q) = (p− q)>GN (p+ q) 6 2hλmax(GN ) .

Now the quadratic form f(p) = p>Φ>NENE
>
NΦNp satisfies

f(p)− f(qp) = (p− qp)>Φ>NENE
>
NΦN (p+ qp)

6 ||p− qp||||p+ qp||||Φ>NEN ||2

6 2h||Φ>NEN ||2

= 2h

d∑
i=1

f(ei) ,
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where ei denotes the ith unit canonical vector of Rd. Using these notations, for each
q ∈ C ∪ {e1, . . . , ed} it has been proved in part 1 that for deterministic λ,Λ,

P
(
g(q) ∈ [λ,Λ] ∩ f(q) > ελ,Λ,δg(q)

)
6 δ ,

for any δ where ελ,Λ,δ = 3R2 ln

(
2 ln(Λ/λ)+5

δ

)
. Then we deduce that with probability at

least 1− (Mh + d)δ, it holds ∀p ∈ S d

f(p) 6 f(qp) + 2h||Φ>NEN ||2

6 ελ,Λ,δg(qp) + 2h

d∑
i=1

ελ,Λ,δg(ei)

6 ελ,Λ,δ

(
g(qp) + 2hdλmax(GN )

)
6 ελ,Λ,δ

(
g(p) + 2hλmax(GN )(d+ 1)

)
.

Now, using that g(p) 6 λ and considering that λmax(GN ) 6 Λ, we thus choose h =
αλ

2Λ(d+1) . In this case we deduce that simultaneously for all p ∈ S d, then f(p) 6
ελ,Λ,δ(1 + α)g(p) with probability 1− (Mh + d)δ, and thus

P
(
λmax(GN ) 6 Λ ∩ sup

p:||p||2GN∈[λ,Λ]

|E>NΦNp|2

||p||2A
> 3(1 + α)R2 ln

(
4dln(Λ/λ)/2e

δ

))

6 (Mh + d)δ 6
(

(
4(d+ 1)

√
d

α

Λ

λ
)d + d

)
δ .

Choosing α = 1/3 and introducing Kd = (12(d + 1)
√
d)d, we obtain the following

bound

P
(
λmax(GN )6Λ ∩ sup

p:||p||2GN∈[λ,Λ]

|E>NΦNp|2

||p||2GN
>4R2 ln

(
(Kd(

Λ
λ )d+d)4dln(Λ/λ)/2e

δ

))
6 δ .

5. A peeling argument for the eigenvalues
We now localize λmax(GN ) ∈ [Λj ,Λj+1), with Λj = λ(1 + κ)j . We first consider the

case when λmax(GN ) 6 Λ almost surely, and thus set J = d ln(Λ/λ)
ln(1+κ)e.

Using a union bound over j = 0..J − 1 and the fact that on the event λmax(GN ) ∈
[Λj ,Λj+1), then it holds Λj+1 = (1 + κ)Λj 6 (1 + κ)λmax(GN ), and thus obtain

P
(

sup
p:||p||2GN>λ

|E>NΦNp|2

||p||2GN
>

4R2 ln

(
(Kd(

(1+κ)λmax(GN )
λ )d + d)4dln((1 + κ)λmax(GN )/λ)/2e

δ

))
6 d ln(ΛJ/λ)

ln(1 + κ)
eδ .
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We choose κ = e− 1 for simplicity and obtain

P
(

sup
p:||p||2GN>λ

|E>NΦNp|2

||p||2GN
>

4R2 ln

(dln(ΛJ/λ)e(Kd(
eλmax(GN )

λ )d + d)4dln(eλmax(GN )/λ)/2e
δ

))
6 δ .

Now if no bound is known on λmax(GN ), we set δj = δ 6
π2j2 for the confidence level

associated to λmax(GN ) ∈ [Λj ,Λj+1). Thus, by using a union bound over the peeling

events, and the fact that j 6 jN
def
= ln(λmax(GN )/λ)

ln(1+κ) on each of these events, we obtain

P
(

sup
p:||p||2GN>λ

|E>NΦNp|2

||p||2GN
>

4R2 ln

(
π2j2

N (Kd(
(1+κ)λmax(GN )

λ )d + d)4dln((1 + κ)λmax(GN )/λ)/2e)
6δ

))
6 δ .

Thus, choosing κ = e− 1, it comes

P
(

sup
p:||p||2GN>λ

|E>NΦNp|2

||p||2GN
>

4R2 ln

(
2π2 ln(λmax(GN )/λ)2dln(eλmax(GN )/λ)/2e(Kd(

eλmax(GN )
λ )d + d)

3δ

))
6 δ .

�

Corollary 5.5 (Ordinary Least-squares) Let us assume that N is a stopping time
adapted to the filtration of the past. Then it holds

P
(
∃x ∈X |f?(x)− fθ†N (x)| > 2R||ϕ(x)||G†N

√
ln
(κd(e2Λ2

N )

δ

)
∩ λmin(GN ) > 0

)
6 δ.

Proof of Corollary 5.5:

Indeed, let θ†N denote the specific-pseudo-inverse solution. Then it holds

|f?(x)− fθ†N (x)| = |(θ? − θ†N )>ϕ(x)|

6 |(θ? −G†NΦ>NYN )>ϕ(x)|
6 |((I −G†NGN )θ? −G†NΦ>NEN )>ϕ(x)|
6 |θ?>(I −G†NGN )>ϕ(x)|+ |E>NΦNG

†
Nϕ(x)| .
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Then, we control the first term in the bound by Cauchy-Schwarz’s inequality

|θ?>(I −G†NGN )>ϕ(x)| 6 ||θ?||||(I −G†NGN )>ϕ(x)||2 ,

Now on the event λmin(GN ) > 0, it holds I = G†NGN .

For the second term, using that G†NGNG
†
N = G†N , we obtain

|E>NΦNG
†
Nϕ(x)| 6 sup

p∈RD

p>Φ>NEN
||p||GN

||G†Nϕ(x)||GN

= sup
p∈SD

p>Φ>NEN
||p||GN

||ϕ(x)||G†N .

Now, note that if λmin(GN ) > 0, then it holds ||ϕ(x)||2
G†N
> ||ϕ(x)||2λmin(G†N ) >

||ϕ(x)||2
ΛN

. We can thus apply Theorem 5.4, and more precisely

P
(

sup
p:||p||2GN>Λ−1

N

|E>NΦNp|2

||p||2GN
>4R2 ln

[
κd(e

2Λ2
N )

δ

])
6 δ ,

in order to deduce that

P
(
∃x ∈X |f?(x)− fθ†N (x)| > 2R||ϕ(x)||G†N

√
ln
(κd(e2Λ2

N )

δ

)
∩ λmin(GN ) > 0

)
6 δ.

�

Corollary 5.6 (Regularized Least-squares) Let us assume that ||θ?||2 6 B, and that
N is a stopping time adapted to the filtration of the past. Then it holds for all determin-
istic λ > 0

P
(
∃x∈X |f?(x)−fθN,λ(x)|> ||ϕ(x)||G−1

N,λ

[
R

√
2 ln

(
det(GN+λI)1/2

δdet(λI)1/2

)
+

λB√
λmin(GN,λ)

])
6δ.

Proof of Corollary 5.6:

Indeed, we first use the decomposition

|f?(x)− fθN,λ(x)| = |(θ? − θN,λ)>ϕ(x)|
= |(θ? −G−1

N,λΦ>NYN )>ϕ(x)|

= |((I −G−1
N,λGN )θ? −G−1

N,λΦ>NEN )>ϕ(x)|

6 |((I −G−1
N,λGN )θ?)>ϕ(x)|+ |E>NΦNG

−1
N,λϕ(x)| .
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Now, we handle the first term in the right-hand side of the previous inequality by

|((I −G−1
N,λGN )θ?)>ϕ(x)| = |λθ?>G−1

N,λϕ(x)|

6
λ√

λmin(GN,λ)
||θ?||2||ϕ(x)||G−1

N,λ

We then turn to the second term, which we control by using the inequality

|E>NΦNG
−1
N,λϕ(x)| 6 ||Φ>NEN ||G−1

N,λ
||ϕ(x)||G−1

N,λ
,

and then by applying the last part of Theorem 5.4. �

Corollary 5.7 (Kernel Least-squares) Let us assume that N is a stopping time adapted
to the filtration of the past. Then for all x ∈X it holds

P
(
|f?(x)− µN (x)| > |f?(x)− kN (x)>(KN + σ2IN )−1fN |

+R

√√√√
2
(
||kN (x)||2(KN+σ2IN )−2 + 1

)
ln
(√1 + ||kN (x)||2(KN+σ2IN )−2

δ

))
6 δ.

Proof of Corollary 5.7:

Indeed, we first use the decomposition

|f?(x)− µN (x)| 6 |f?(x)− kN (x)>(KN + σ2IN )−1fN |+ |kN (x)>(KN + σ2IN )−1EN | .

where fN = (f?(x1), . . . f?(xN )). Now, if we denote pN = (KN + σ2IN )−1kN (x), and

introduce for λ ∈ R and a deterministic m ∈ N the quantity Mm,λ = exp
(
λp>mEm −

λ2R2

2 p>mpm), then it turns out that {Mm,λ}∞m=0 is a non-negative supermartingale. In-

deed p>mEm =
∑m−1
i=1 pm,iξi + pm,mξm, with pm,m being a measurable function of the

observations before step m. Thus,

E
[
exp
(
λp>mEm−

λ2R2

2
p>mpm

)∣∣∣hm−1

]
6 Mm−1,λE

[
λpm,mξm − λ2R2p2

m,m/2
∣∣∣hm−1

]
6 Mm−1,λ .

Using a standard stopping time argument, we thus have lnE[MN,λ] 6 0. We can then
apply the Laplace method for the control of the concentrations. We deduce that for all
c ∈ R+

? , and δ ∈ [0, 1], then

P
(
|p>NEN | > R

√
2
(
||pN ||2 + c2

)
ln
(√c2 + ||pN ||2

δc

))
6 δ .

�
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5.2. Variance estimates

We now turn to the estimate of the variance. It is tempting to apply the self-normalized
concentration result for stopping time of vector-valued martingales in order to con-
trol ||EN ||2. Indeed, if we introduce a N × N matrix ΦN = IN , and V = λI, then
||Φ>EN ||Φ>NΦN+V ] =

√
1 + λ||EN ||2. However, Lemma 5.1 does not apply for two rea-

sons. First, it is written for a dimension D that is deterministic, not a random stopping
time, thus it cannot be applied directly. More importantly, the supermartingale property
that holds does not satisfy the sub-Gaussian shape used for the result to apply. We thus
proceed differently, and apply a more general result for real-valued distributions, given
by Lemma 5.3.

Let us first recall a classical concentration result, slightly extended beyond the iid
case.

Lemma 5.8 Let us assume that the noise sequence {ξi}ni=1 (where n is deterministic) is
conditionally strongly R-subGaussian, in the sense that

∀λ < 1/2R2 lnE[exp(λξ2
i )|hi−1] 6 −1

2
ln(1− 2R2λ) . (9)

Then for all δ ∈ (0, 1], it holds

P
(

1

n

n∑
i=1

ξ2
i > R

2 + 2R2

√
2 ln(1/δ)

n
+ 2R2 ln(1/δ)

n

)
6 δ .

P
(

1

n

n∑
i=1

ξ2
i 6 R

2 − 2R2

√
ln(1/δ)

n

)
6 δ .

Further, for all δ ∈ (e−n, 1], it holds

P
(

1

n

n∑
i=1

ξ2
i 6 R

2 − 2R2

√
ln(1/δ)

n
+R2 ln(1/δ)

n

)
6 δ .

Note that inequality (9) becomes an equality in the case of Gaussian random variables.
The first part of this result, in the i.i.d. case is known as a Birgé-Massart lemma.

Proof of Lemma 5.8:

Indeed, first, an immediate result is the following
Lemma 5.9 Let us consider n random variables ξi, i ∈ [n] satisfying (9). Then for all
δ ∈ (0, 1), it holds

P
( n∑
i=1

ξ2
i > inf

λ∈(0, 1
2R2 )
− n

2λ
ln(1− 2R2λ) +

ln(1/δ)

λ

)
6 δ .

P
( n∑
i=1

ξ2
i 6 sup

λ>0

n

2λ
ln(1 + 2R2λ)− ln(1/δ)

λ

)
6 δ .
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Note that this result holds for a deterministic n, and does not extend trivially to the
case of a random stopping time.

In order to get a more explicit result, let us look at the two optimization problems.
We aim at having an upper bound on the infimum term and a lower bound on the
supremum term. To this end, we use the following properties of the logarithm

∀x ∈ (0, 1),
x

1− x
(1)

> x+
x2

2(1− x)

(2)

> − ln(1− x)

(
>

x

1− x/2

)
∀x > 0, ln(1 + x)

(3)

>
x

1 + x/2

(4)

> x− x2/2 .

More precisely, by making use of inequality (1) and (3), we respectively get to solve the
problems

inf
λ∈(0, 1

2R2 )

nR2

1− 2R2λ
+

ln(1/δ)

λ
and sup

λ>0

nR2

1 +R2λ
− ln(1/δ)

λ
.

Instead of using (1), one could use the slightly tighter inequality (2). This how-
ever leads to more complex approximations. Now, solving the infimum in λ gives
λ = 1

2R2(1+
√

n
2 ln(1/δ)

)
∈ (0, 1

2R2 ) and then

nR2

1− 2R2λ
+

ln(1/δ)

λ
= nR2 + 2R2

√
2n ln(1/δ) + 2R2 ln(1/δ) .

Solving the supremum in λ gives λ = 1
R2(
√

n
ln(1/δ)

−1)
, which is however positive only

if δ > e−n. The corresponding value is

nR2

1 +R2λ
− ln(1/δ)

λ
= R2n− 2R2

√
n ln(1/δ) +R2 ln(1/δ) .

If we instead consider the (slightly sub-optimal) value λ = 1
R2

√
ln(1/δ)
n , and use the

inequality 1
1+x > 1− x for x ∈ R+ we get

R2n

1 +
√

ln(1/δ)
n

−R2
√
n ln(1/δ) > R2n− 2R2

√
n ln(1/δ) .

�

In order to be able to handle a random stopping time, we apply a slightly different
construction, and obtain the following result, at the price of loosing a ln ln factor com-
pared to the result without stopping time. A similar construction was given in Cappé,
Garivier and Maillard (2013) for a related but different problem.
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Lemma 5.10 Assume that Nn is a random stopping time that satisfies Nn 6 n almost
surely, then it holds

P
[

1

Nn

Nn∑
i=1

ξ2
i > R

2 + 2R2

√
2 ln(e/δ)

Nn
+ 2R2 ln(e/δ)

Nn

]
6
(
dln(n) ln(e/δ)e

)
δ

P
[

1

Nn

Nn∑
i=1

ξ2
i 6 R

2 − 2R2

√
ln(e/δ)

Nn

]
6
(
dln(n) ln(e/δ)e

)
δ

Further, for a random stopping time N , and if we introduce cN = ln(π2 ln2(N)/6), then
it holds

P
[

1

N

N∑
i=1

ξ2
i > R

2+2R2

√
2 ln(e/δ)(1 + cN/ ln(1/δ))

N
+ 2R2 ln(e/δ)(1 + cN/ ln(1/δ))

N

]
6 δ

P
[

1

N

N∑
i=1

ξ2
i 6 R

2 − 2R2

√
ln(e/δ)(1 + cN/ ln(1/δ))

N

]
6 δ

Proof of Lemma 5.10:

According to Lemma 5.3 applied to Zi = ξ2
i , all we have to do is to compute an

upper bound on the quantity ϕ−1
?,+(c), first for the value c = ln(e/δ)

Nn
, then for c =

ln(e/δ)
N (1 + 2

ln(1/δ) ln
(
π ln(N) ln(1/δ)
61/2(1+ln(1/δ))

)
) 6 ln(e/δ)

N (1 + cN/ ln(1/δ)). We proceed in the

following way. First, the envelope function is given by

ϕ(λ) = −1

2
ln(1− 2λR2) 6

λR2

1− 2λR2
.

Thus, ϕ?(x) > supλ[λx − λR2

1−2λR2 ]. Solving this optimization by differentiating over λ,

the supremum is reached for λ = (1 − R√
x

) 1
2R2 <

1
2R2 , with corresponding value given

by

ϕ̃?(x) = (1− R√
x

)
x

2R2
− (1− R√

x
)

√
x

2R

=
x

2R2
−
√
x

R
+

1

2
.

Now, for c > 0, it is easily checked that ϕ̃?(x) = c holds for xc = R2(1 +
√

2c)2. As a
result, we deduce that ϕ−1

?,+(c) 6 R2(1 +
√

2c)2 = R2 + 2R2c+ 2R2
√

2c.
Now, for the reverse inequality, we have to compute a lower bound on the quantity

ϕ−1
?,−(c), first for c = ln(e/δ)

Nn
, then for c = ln(e/δ)

N (1 + 2
ln(1/δ) ln

(
π ln(N) ln(1/δ)
61/2(1+ln(1/δ))

)
) 6
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ln(e/δ)
N (1 + cN/ ln(1/δ)). We proceed in the following way. First, the envelope function

is given for λ > 0 by

ϕ(−λ) = −1

2
ln(1 + 2λR2) > − λR2

1 + λR2
.

Thus, for 0 < x < R2 it holds ϕ?(x) > supλ>0[−λx+ λR2

1+λR2 ] = 1+supλ>0[−λx− 1
1+λR2 ].

Solving this optimization by differentiating over λ, the supremum is reached for λ =
1
R2 ( R√

x
− 1) > 0 with corresponding value given by

ϕ̃?(x) = 1− x

R2

( R√
x
− 1
)
−
√
x

R

=
x

R2
− 2R

√
x

R
+ 1 .

Now, for c > 0, it is easily checked that ϕ̃?(x) = c holds for xc = R2(1−
√
c)2, and xc <

R2 if c < 1. As a result, we deduce that if c ∈ (0, 1), then ϕ−1
?,−(c) > R2−2R2

√
c+R2c. On

the other hand, for all c > 0, choosing λ = 1
R2

√
c, and using the inequality 1

1+v > 1− v
for v > 0, then

ϕ?(x) > − x

R2

√
c+ 1− 1

1 +
√
c

=
√
c
(
− x

R2
+

1

1 +
√
c

)
> ϕ̃?(x)

def
=
√
c
(
− x

R2
+ 1−

√
c
)

Thus, ϕ̃?(x) = c for xc = R2 − 2R2
√
c < R2. As a result, we deduce that if c > 0, then

ϕ−1
?,−(c) > R2 − 2R2

√
c. �

We now proceed with the concentration results for the variance estimates in the re-
gression setting with ordinary least-squares and regularized least squares.

Theorem 3.8 (Ordinary variance estimate) Under the conditionally strongly-
sub-Gaussian assumption, for any random stopping time N with respect to the filtration
of the past, then, with probability higher than 1− 3δ, either λmin(GN ) < λ0 or

R

(
1−

√
CN (δ)

N
−
√
CN (δ)

N
+
DN (δ)

N

)
6
√
σ̂2
N 6 R

(
1 +

√
2CN (δ)

N

)
.

where DN (δ) = 4 ln(κd(eΛN/λ0)/δ) and CN (δ) = ln(e/δ)
[
1 + ln(π2 ln(N)/6)/ ln(1/δ)

]
.

Proof of Theorem 3.8:
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Let EN ∈ RN be the vector with components (ε1, . . . , εN ). It holds that

N∑
n=1

(yn − 〈θN , ϕ(xn)〉)2 =

N∑
n=1

(〈θ? − θN , ϕ(xn)〉+ εn)2

= (θ? − θN )>
N∑
n=1

ϕ(xn)ϕ(xn)>(θ? − θN )

+

N∑
n=1

ε2
n + 2(θ? − θN )>

N∑
n=1

ϕ(xn)εn

= (θ? − θN )>GN (θ? − θN ) + ||EN ||2 + 2(θ? − θN )>Φ>NEN .

Now, we notice that this can be rewritten, as

N∑
n=1

(yn − 〈θ†N , ϕ(xn)〉)2 = ||EN ||2 − ||E>NΦN ||2G†N + 2θ?>(I −G†NGN )>Φ>NEN .

Indeed, on the one hand, it holds that

(θ? − θ†N )>GN (θ? − θ†N )

= [(I −G†NGN )θ? −G†NΦ>NEN ]>GN [(I −G†NGN )θ? −G†NΦ>NEN ]

= θ?>(I −G†NGN )>GN (I −G†NGN )θ?

+E>NΦNG
†
NGNG

†
NΦ>NEN

−2E>NΦNG
†
NGN (I −G†NGN )θ?

= ||E>NΦN ||2G†N ,

where we used the fact that GNG
†
NGN = GN twice. On the other hand, we have

2(θ? − θ†N )>Φ>NEN = 2[(I −G†NGN )θ? −G†NΦ>NEN ]>Φ>NEN

= 2θ?>(I −G†NGN )>Φ>NEN − 2||E>NΦN ||2G†N .

Note that p = 2(I−GNG†N )θ? satisfies ||p||GN = 0 and thus we cannot directly apply

the result of Theorem 5.4 to control p>Φ>NEN However, if I 6= GNG
†
N it holds

θ?>(I −G†NGN )>Φ>NEN 6 ||E>NΦN ||G†N ||θ
?||GN − θ?

>GNG
†
NΦ>NEN

6 ||E>NΦN ||G†N ||θ
?||GN + ||GNθ?||G†N ||E

>
NΦN ||G†N

6 2||E>NΦN ||G†N ||θ
?||GN .

On the other hand, we can control the term ||E>NΦN ||G†N via Theorem 5.4. Indeed,
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it holds on an event Ω1 of probability higher than 1− δ

0 6 ||E>NΦN ||2G†N = E>NΦNG
†
NΦ>NEN

6 sup
p:||p||GN 6=0

p>Φ>NEN
||p||GN

||G†NE
>
NΦN ||GN

= sup
p∈S d

p>Φ>NEN
||p||GN

||E>NΦN ||G†N

6 R2 4 ln(κd(eΛN/λ0)/δ)︸ ︷︷ ︸
DN (δ)

.

On this event, we thus get

N∑
n=1

(yn − 〈θN , ϕ(xn)〉)2 6 ||EN ||2 + 4R||θ?||GN
√
DN (δ)I{I 6= GNG

†
N}

> ||EN ||2 − 4R||θ?||GN
√
DN (δ)I{I 6= GNG

†
N} −R

2DN (δ) ,

where I{I 6= GNG
†
N} = 0 because of λmin(GN ) > λ0. Finally, we use the result of

Lemma 5.10 to get that with probability higher than 1− 2δ,

||EN ||2 6 NR2 + 2R2
√

2N ln(e/δ)(1 + cN/ ln(1/δ)) + 2R2 ln(e/δ)(1 + cN/ ln(1/δ))

||EN ||2 > NR2 − 2R2
√
N ln(e/δ)(1 + cN/ ln(1/δ)) .

Thus, combining these two results with a union bound, we deduce that with proba-
bility higher than 1− 3δ it holds

σ̂2
N 6 R2 + 2R2

√
2 ln(e/δ)(1 + cN/ ln(1/δ))

N
+

2R2 ln(e/δ)(1 + cN/ ln(1/δ))

N

σ̂2
N > R2 − 2R2

√
ln(e/δ)(1 + cN/ ln(1/δ))

N
− R2DN (δ)

N
,

We can now get a bound on
√
σ̂2
N . Indeed

σ̂2
N 6 (R+

√
2R2 ln(e/δ)(1 + cN/ ln(1/δ))

N
)2

σ̂2
N > (R−

√
R2

ln(e/δ)(1 + cN/ ln(1/δ))

N
)2 −R2 ln(e/δ)(1 + cN/ ln(1/δ))

N

−R
2DN (δ)

N
.
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Thus, using the inequality
√
a+ b 6

√
a+
√
b, on both inequalities, we obtain√

σ̂2
N 6 R+R

√
2 ln(e/δ)(1 + cN/ ln(1/δ))

N√
σ̂2
N > R−R

√
ln(e/δ)(1 + cN/ ln(1/δ))

N

−R
√

ln(e/δ)(1 + cN/ ln(1/δ))

N
+
DN (δ)

N
.

�

Theorem 3.9 (Regularized variance estimate) Under the conditionally strongly-
sub-Gaussian assumption, for any random stopping time N for the filtration of the past,
with probability higher than 1− 3δ, it holds that√

σ̂2
N,λ 6 R

[
1 +

√
2CN (δ)

N

]
+

λ||θ?||2√
Nλmin(GN,λ)

√
1− λ

λmax(GN,λ)

√
σ̂2
N,λ>R

[
1−
√
CN (δ)

N
−

√√√√CN (δ)+DN,λ(δ)
(

1+ λ
λmin(GN,λ)

)
N

]
−λ

√
2R||θ?||2

√
DN,λ(δ)

Nλmin3/2(GN,λ)

.

where DN,λ(δ) = 2 ln

(
det(GN+λI)1/2

δλd/2)

)
and CN (δ) = ln(e/δ)

[
1+ln(π2 ln(N)/6)/ ln(1/δ)

]
.

Proof of Theorem 3.9:

We start with the following decomposition

N∑
n=1

(yn − 〈θN,λ, ϕ(xn)〉)2

= (θ? − θN,λ)>GN (θ? − θN,λ) + ||EN ||2 + 2(θ? − θN,λ)>Φ>NEN . (10)

On the one hand, we can control the first term in (10) via

(θ? − θN,λ)>GN (θ? − θN,λ)

= [(I −G−1
N,λGN )θ? −G−1

N,λΦ>NEN ]>GN [(I −G−1
N,λGN )θ? −G−1

N,λΦ>NEN ]

= [λθ? − Φ>NEN ]>G−1
N,λGNG

−1
N,λ[λθ? − Φ>NEN ]

= [λθ? − Φ>NEN ]>[G−1
N,λ − λG

−2
N,λ][λθ? − Φ>NEN ]

= ||Φ>NEN ||2G−1
N,λ

− λ||Φ>NEN ||2G−2
N,λ

+ λ2||θ?||2
G−1
N,λ

− λ3||θ?||2
G−2
N,λ

−2λθ?>[G−1
N,λ − λG

−2
N,λ]Φ>NEN
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where we used the fact that I − G−1
N,λGN = λG−1

N,λ and then that G−1
N,λGNG

−1
N,λ =

G−1
N,λ − λG

−2
N,λ. Likewise, we control the third term in (10) via

2(θ? − θN,λ)>Φ>NEN = 2[(I −G−1
N,λGN )θ? −G−1

N,λΦ>NEN ]>Φ>NEN

= 2[λθ? − Φ>NEN ]>G−1
N,λΦ>NEN

= 2λθ?>G−1
N,λΦ>NEN − 2||Φ>NEN ||2G−1

N,λ

.

Combining these two bounds, it holds

N∑
n=1

(yn − 〈θN,λ, ϕ(xn)〉)2

= ||EN ||2 − ||Φ>NEN ||2G−1
N,λ

− λ||Φ>NEN ||2G−2
N,λ

+λ2||θ?||2
G−1
N,λ

− λ3||θ?||2
G−2
N,λ

+ 2λ2θ?>G−2
N,λΦ>NEN

6 ||EN ||2 +
λ2

λmin(GN,λ)
||θ?||22

(
1− λ

λmax(GN,λ)

)
+ 2

λ2

λmin3/2(GN,λ)

||θ?||2||Φ>NEN ||G−1
N,λ

> ||EN ||2 +
λ2

λmax(GN,λ)
||θ?||22

(
1− λ

λmin(GN,λ)

)
− 2

λ2

λmin3/2(GN,λ)

||θ?||2||Φ>NEN ||G−1
N,λ

−||Φ>NEN ||2G−1
N,λ

(
1 +

λ

λmin(GN,λ)

)
.

Now, from Theorem 5.4, it holds on an event Ω1 of probability higher than 1− δ,

0 6 ||Φ>NEN ||2G−1
N,λ

6 R2 2 ln

(
det(GN + λI)1/2

δλd/2)

)
︸ ︷︷ ︸

DN,λ(δ)

.

On the other hand, we control the second term ||EN ||2 by Lemma 5.10, and obtain
that with probability higher than 1− 2δ,

||EN ||2 6 NR2 + 2R2
√

2NCN (δ) + 2R2CN (δ)

||EN ||2 > NR2 − 2R2
√
NCN (δ) ,

where CN (δ) = ln(e/δ)(1 + cN/ ln(1/δ)).
Thus, combining these two results with a union bound, we deduce that with proba-
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bility higher than 1− 3δ it holds

σ̂2
N,λ 6 R2 + 2R2

√
2CN (δ)

N
+

2R2CN (δ)

N

+
λ2

Nλmin(GN,λ)
||θ?||22

(
1− λ

λmin(GN,λ)

)
− 2

Rλ2

Nλmin3/2(GN,λ)

||θ?||2
√
DN,λ(δ)

σ̂2
N,λ > R2 − 2R2

√
CN (δ)

N
+

λ2

Nλmin(GN,λ)
||θ?||22

(
1− λ

λmin(GN,λ)

)
−2

λ2R

Nλmin3/2(GN,λ)

||θ?||2
√
DN,λ(δ)− R2DN,λ(δ)

N

(
1 +

λ

λmin(GN,λ)

)
.

We can now derive a bound on
√
σ̂2
N,λ. Indeed,

σ̂2
N,λ 6

(
R+

√
2R2CN (δ)

N

)2

+
λ2

Nλmin(GN,λ)
||θ?||22

(
1− λ

λmin(GN,λ)

)
σ̂2
N,λ >

(
R−

√
R2CN (δ)

N

)2

− R2

N

(
CN (δ) +DN,λ(δ)

(
1 +

λ

λmin(GN,λ)

))
− 2λ2R

Nλmin3/2(GN,λ)

||θ?||2
√
DN,λ(δ) .

Thus, using the inequality
√
a+ b 6

√
a+
√
b, on both inequalities, we get

√
σ̂2
N,λ 6 R+R

√
2CN (δ)

N
+

λ||θ?||2√
Nλmin(GN,λ)

√
1− λ

λmin(GN,λ)

√
σ̂2
N,λ > R−R

√
CN (δ)

N
−R

√√√√CN (δ) +DN,λ(δ)
(

1+ λ
λmin(GN,λ)

)
N

−λ

√
2R||θ?||2

√
DN,λ(δ)

Nλmin3/2(GN,λ)

.

�

Corollary 5.11 Under the conditionally strongly-sub-Gaussian assumption, for any ran-
dom stopping time N for the filtration of the past, with probability higher than 1− 3δ, it
holds that either λmin(GN ) < λ0 or

R 6
√
σ̂2
N

(
1−

√
CN (δ)

N
−
√
CN (δ)

N
+
DN (δ)

N

)−1

+

.
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where (x)+ = max(x, 0), and using the convention that (x)−1
+ = 0 if x 6 0. Likewise, for

any λ > 0, with probability higher than 1− 3δ, it holds that

R1/2 6

[√
σ̂2
N,λα+

λ2||θ?||2
√
DN,λ(δ)

2Nλ
min3/2(GN,λ)

]1/2

+

[
λ2||θ?||2

√
DN,λ(δ)

2Nλ
min3/2(GN,λ)

]1/2

α
,

where we introduced the notation

α =

(
1−

√
CN (δ)

N
−

√√√√CN (δ) +DN,λ(δ)
(

1+ λ
λmin(GN,λ)

)
N

)
+

.

Proof of Corollary 5.11:

For the ordinary least-squares estimate, the result is immediate. We thus focus on
the regularized estimate. Using the notations of Theorem 3.9,it holds

√
σ̂2
N,λ︸ ︷︷ ︸
A

> R

[
1−

√
CN (δ)

N
−

√√√√CN (δ) +DN,λ(δ)
(

1+ λ
λmin(GN,λ)

)
N︸ ︷︷ ︸

C

]

−
√
R

√
2λ2||θ?||2

√
DN,λ(δ)

Nλmin3/2(GN,λ)︸ ︷︷ ︸
B

.

Provided that C > 0, the inequality rewrites in the form A > RC −
√
RB. Introducing

the quantity y2 = R, this inequality holds provided that y > 0 and A+ yB −Cy2 > 0,

that is when 0 6 y 6 B+
√
B2+4AC
2C .

�

6. Discussion

In this paper, we studied the construction of streaming confidence intervals in a modeled
non-stationary setting with dependent data, when the number of observation may be
a random stopping time. We analyzed, in a sub-Gaussian regression setting, both the
ordinary and ridge estimates, and refined existing results. We focused also on deriving
empirical Bernstein bounds in this challenging scenario, thus enriching previous work
with novel results.
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We paid special attention to providing further intuition regarding the loss function
and the estimation of the future loss, which are important from a machine learning
perspective. We also hope that the proof techniques are simple and detailed enough in
order to be useful for pedagogical purpose.

Finally, although we refrained from applying our results to popular problems in ma-
chine learning and statistics such as linear multi-armed bandits, piece-wise linear regres-
sion, change point detection, or online aggregation of experts, we believe these domains
can greatly benefit from this simple study.

Acknowledgments.
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Appendix A: Regularized least-squares from a
Bayesian standpoint

When the function space is of large dimension, d the matrix GN is singular for N < d,
and thus it becomes difficult to provide a confidence distributions on the parameter and
next values. A natural way to fix this is to introduce a regularization, which forces to
obtain a unique representative solution of the minimization problem. We can then control
the error introduced by the regularization in a second step. Alternatively, one can also
see regularization as an effective way to pick one solution in the space of all possible
solutions, which becomes crucial when d→∞.

Using the previously introduced notations, the regularized estimate is given by

θN,λ = (Φ>[N ]Φ[N ] + λI)−1Φ>[N ]Y[N ] .

One way to better understand the regularization λ is to use the Bayesian point of
view. To this end, the noise is not only assumed to be sub-Gaussian conditionally on
the past, but is assumed to be exactly Gaussian, and independent on the past ob-
servations (ξ(xn) ∼ N (0, σ2) for each n). We further assume that the observation
points xn are independent from the observations xn, thus moving back to a classi-
cal Gaussian regression setting. If we pick a random function using θ ∼ N (0,Σ) (a
prior which models how hard to get one function), and assume that the noise satisfies
ξ ∼ N (0, σ2), (ξ(xn) ∼ N (0, σ2) for each n) then the posterior mean function is in this

case f̂N (x)|x, x1, . . . , xN , y1, . . . , yn ∼ π̂N (x) = N (µN (x), σ2
N (x)) where

µN (x) = ϕ(x)>(Φ>[N ]Φ[N ] + σ2Σ−1)−1Φ>[N ]Y[N ]

σ2
N (x) = σ2ϕ(x)>(Φ>[N ]Φ[N ] + σ2Σ−1)−1ϕ(x) .

This classical result (see (Rasmussen and Williams, 2006)) enables to directly interpret
λ as being a variance term.
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For convenience, we now introduce the notation GN,σ = (Φ>[N ]Φ[N ] +σ2Σ−1). Thus it

holds µN (x) = ϕ(x)>G−1
N,σΦ>[N ]Y[N ] and σ2

N (x) = σ2ϕ(x)>G−1
N,σϕ(x). Alternatively, we

can derive the ”functional” form

µN (x) = ϕ(x)>ΣΦ>[N ](Φ[N ]ΣΦ>[N ] + σ2IN )−1Y[N ]

σ2
N (x) = ϕ(x)>Σϕ(x)− ϕ(x)>ΣΦ>[N ](Φ[N ]ΣΦ>[N ] + σ2IN )−1Φ[N ]Σϕ(x) .

For convenience, we now introduce the notation KN,σ = (Φ[N ]ΣΦ>[N ] + σ2IN ) and

κN,Σ(x) = Φ[N ]Σϕ(x). Thus it holds µN (x) = κN,σ(x)>K−1
N,σY[N ], and on the other

hand σ2
N (x) = ϕ(x)>Σϕ(x) − κN,Σ(x)>K−1

N,σκN,Σ(x). This functional form is conve-
nient as it generalizes to infinite dimensions Indeed let us introduce k(x, x) to generalize
ϕ(x)>Σϕ(x), as well as kN (x) = (k(xn, x))n∈[N ] and KN = (k(xi, xj))i,j∈[N ]. This leads
to

µN (x) = kN (x)(KN + σ2IN )−1Y[N ]

σ2
N (x) = k(x, x)− kN (x)>(KN + σ2IN )−1kN (x) .

The following lemma holds in the setting when each xn is independent on the past ob-
servations {ym}m<n, and comes from standard derivations (see (Rasmussen and Williams,
2006)).

Lemma A.1 (Mean-variance in the Bayesian model) Under the Bayesian model,
then y(x)−µN (x) is Gaussian, with mean and variance given in the parametric form by

E[y(x)− µN (x)|x, {xn}n∈[N ], θ
?] = σ2ϕ(x)>G−1

N,σΣ−1θ?

V[y(x)− µN (x)|x, {xn}n∈[N ], θ
?] = σ2

(
ϕ(x)>G−1

N,σ

(
I − σ2Σ−1G−1

N,σ

)
ϕ(x) + 1

)
,

and in the functional form by

E[y(x)− µN (x)|x, {xn}n∈[N ], θ
?] = f?(x)− kN (x)>(KN + σ2IN )−1f?N

V[y(x)− µN (x)|x, {xn}n∈[N ], θ
?] = σ2

(
kN (x)>(KN + σ2IN )−2kN (x) + 1

)
.

Further, we can replace y(x) with f?(x) in the left-hand side with no effect on the expec-
tations, and by subtracting σ2 to the variance. Similarly we can replace in the left-hand
side µN (x) with fθ(x) where θ ∼ N (0,Σ), with no effect on the expectations, and by
adding σ2

N (x) to the variance term.

As for conditional means and variances, it holds

E[y(x)− µN (x)|x, {xn, yn}n∈[N ], θ
?] = f?(x)− µN (x)

V[y(x)− µN (x)|x, {xn, yn}n∈[N ], θ
?] = σ2

E[y(x)− fθ(x)|x, {xn, yn}n∈[N ], θ
?] = f?(x)− µN (x)

V[y(x)− fθ(x)|x, {xn, yn}n∈[N ], θ
?] = σ2

N (x) + σ2 .
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The bias in the parametric form depends on θ? that is unknown. However, if a bound
C on ||Σ−1θ?||2 is known, we can derive the bound

0 6 |σ2ϕ(x)>G−1
N,σΣ−1θ?| 6 σ2

λ
1/2
min(GN,σ)

||ϕ(x)||G−1
N,σ
||Σ−1θ?||2 6

σ2

λ
1/2
min(GN,σ)

||ϕ(x)||G−1
N,σ

C .

In particular, using the fact that y(x)− µN (x) is Gaussian, we deduce that

Corollary A.2 For all δ ∈ (0, 1),

P
(
y(x)− µN (x) >

σ2

λ
1/2
min(GN,σ)

||ϕ(x)||G−1
N,σ

C +
√

2VN (x) log(1/δ)

∣∣∣∣x, {xn}n∈[N ], θ
?

)
6 δ .

P
(
µN (x)− y(x) >

√
2VN (x) log(1/δ)

∣∣∣∣x, {xn}n∈[N ], θ
?

)
6 δ .

where we introduced for convenience VN (x) = V[y(x)− µN (x)|x, {xn}n∈[N ], θ
?].

Proof of Lemma A.1:

Let us start with the parametric form. In this case, we control the bias by

µN (x)− f?(x)

= ϕ(x)>
(

(Φ>[N ]Φ[N ] + σ2Σ−1)−1Φ>[N ](Φ[N ]θ
? + E[N ])− θ?

)
= ϕ(x)>

(
(Φ>[N ]Φ[N ]+σ

2Σ−1)−1
[
(Φ>[N ]Φ[N ]+σ

2Σ−1)θ?−σ2Σ−1θ?+Φ>[N ]E[N ]

]
−θ?

)
= ϕ(x)>(Φ>[N ]Φ[N ] + σ2Σ−1)−1

(
Φ>[N ]E[N ] − σ2Σ−1θ?

)
.

Thus, we deduce that

E[f?(x)− µN (x)|x, {xn}n∈[N ], θ
?] = σ2ϕ(x)>G−1

N,σΣ−1θ?

V[f?(x)− µN (x)|x, {xn}n∈[N ], θ
?] = σ2ϕ(x)>G−1

N,σΦ>[N ]Φ[N ]G
−1
N,σϕ(x)

= σ2ϕ(x)>G−1
N,σ

(
I − σ2Σ−1G−1

N,σ

)
ϕ(x) .

Note that here f? is assumed to be fixed, not randomly sampled from a Gaussian
process, which explains why the variance is smaller than σ2

N (x). More precisely the
missing variance is σ4ϕ(x)>G−1

N,σΣ−1G−1
N,σϕ(x). It further holds that

E[f?(x)− fθ(x)|x, {xn}n∈[N ], θ
?] = E[f?(x)− µN (x)|x, {xn}n∈[N ], θ

?]

V[f?(x)− fθ(x)|x, {xn}n∈[N ], θ
?] = V[f?(x)− µN (x)|x, {xn}n∈[N ], θ

?] + σ2
N (x) .
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Now, let us turn to the function form. We obtain by the Shermann-Morrison formula

E[f?(x)− µN (x)|x, {xn}n∈[N ], θ
?]

= σ2ϕ(x)>
(
σ−2Σ− σ−2ΣΦ>[N ]

(
IN+σ−2Φ[N ]ΣΦ>[N ]

)−1
Φ[N ]σ

−2Σ

)
Σ−1θ?

= ϕ(x)>θ? − ϕ(x)>ΣΦ>[N ]

(
σ2IN + Φ[N ]ΣΦ>[N ]

)−1

Φ[N ]θ
?

= f?(x)− κN,Σ(x)>K−1
N,σf?N

V[f?(x)− µN (x)|x, {xn}n∈[N ], θ
?]

= ϕ(x)>Σ
(
I −Φ>[N ]K

−1
N,σΦ[N ]Σ

)
Φ>[N ]K

−1
N,σΦ[N ]Σϕ(x)

= −ϕ(x)>ΣΦ>[N ]

(
σ2IN + Φ[N ]ΣΦ>[N ]

)−1
Φ[N ]ΣΦ>[N ]K

−1
N,σΦ[N ]Σϕ(x)

+ϕ(x)>ΣΦ>[N ]K
−1
N,σΦ[N ]Σϕ(x)

= −κN,σ(x)>
(
I − σ2K−1

N,σ

)
K−1
N,σκN,σ(x)

+κN,σ(x)>K−1
N,σκN,σ(x)

= σ2κN,Σ(x)>K−2
N,σκN,Σ(x) .

In function form, it then holds

E[f?(x)− µN (x)|x, {xn}n∈[N ], θ
?] = f?(x)− kN (x)>(KN + σ2IN )−1f?N

V[f?(x)− µN (x)|x, {xn}n∈[N ], θ
?] = σ2kN (x)>(KN + σ2IN )−2kN (x)

E[y(x)− fθ(x)|x, {xn}n∈[N ], θ
?] = f?(x)− kN (x)>(KN + σ2IN )−1f?N

V[y(x)− fθ(x)|x, {xn}n∈[N ], θ
?] = σ2kN (x)>(KN + σ2IN )−2kN (x) + σ2

N (x) + σ2 .

�
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