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The oriented (resp. signed) chromatic number χ o (G) (resp. χ s (G)) of an undirected graph G, is defined as the maximum oriented (resp. signed) chromatic number of an orientation (resp. signature) of G. Although the difference between χ o (G) and χ s (G) can be arbitrarily large, there are, however, contexts in which these two parameters are quite comparable.

We here compare the behaviour of these two parameters in the context of (square) grids. While a series of works have been dedicated to the oriented chromatic number of grids, nothing was known about their signed chromatic number. We study this parameter throughout this paper. We show that the maximum signed chromatic number of a grid, lies in between 7 and 12. We also focus on 2-row and 3-row grids, and exhibit bounds on their signed chromatic number, some of which are tight. Although our results indicate that the oriented and signed chromatic numbers of grids are, in general, close, they also show that these parameters may differ, even for easy instances.

Introduction

Colouring problems are among the most important problems of graph theory, as, notably, they can model many real-life problems under a graph-theoretical formalism. In its most common sense, a colouring of an undirected graph G refers to a proper vertex-colouring, which is a colouring of V (G) such that every two adjacent vertices of G get assigned distinct colours. Many variants of this definition have been introduced and studied in the literature, including variants dedicated to augmented kinds of graphs, which are of interest in this paper.

Namely, our investigations are related to two kinds of augmented graphs, called oriented graphs and signed graphs. An oriented graph -→ G is basically obtained from an undirected simple graph G, by orienting every edge uv either from u to v (resulting in an arc -→ uv), or conversely (yielding an arc -→ vu). We sometimes also call -→ G an orientation of G. Now, from G, we can also get a signed graph (G, σ), by assigning a sign σ(uv), being either -(negative) or + (positive), to every edge uv of G. We also call (G, σ) a signature of G. Signed graphs generally come along with a resigning operation, which we will not consider herein. So, though our signed graphs are thus nothing but 2-edge-coloured graphs, we here stick to the signed graphs terminology, which we find more convenient in our context.

As undirected graphs, oriented and signed graphs can as well be coloured in many different ways. We herein consider those colouring variants arising from the homomorphism definition of colourings. Indeed, a k-colouring φ of an undirected graph G can as well be regarded as a homomorphism from G to K k , the complete graph on k vertices, that is, a mapping φ : V (G) → V (K k ) preserving the edges (i.e. for every edge uv of G, we have that φ(u)φ(v) is an edge of K k ). Graph homomorphisms can quite naturally be derived for oriented and signed graphs as well (i.e. we want the edge orientations and signs, respectively, to be preserved as well), yielding, in turn, colouring variants for oriented and signed graphs, which are precisely the variants we consider here. These variants, out of the homomorphism terminology, can be defined as follows. A colouring φ of an oriented graph is a proper colouring, such that, for any two arcs --→ u 1 v 1 and --→ u 2 v 2 , if φ(u 1 ) = φ(v 2 ), then φ(v 1 ) = φ(u 2 ). Analogously, a colouring φ of a signed graph respects that, for any two edges u 1 v 1 and u 2 v 2 with the same sign, if φ(u 1 ) = φ(v 2 ), then φ(v 1 ) = φ(u 2 ).

Usually, the main objective, given a colouring notion, is to find a colouring of a graph using the least possible number of colours. For an undirected graph G, the least number of colours in a colouring is called the chromatic number of G, commonly denoted by χ(G). Concerning the aforementioned colouring notions for oriented and signed graphs, we call the associated chromatic parameters the oriented chromatic number and signed chromatic number, respectively, and denote them by χ o ( -→ G ) and χ s ((G, σ)), respectively, for a given oriented graph -→ G and a given signed graph (G, σ), respectively. The χ o and χ s parameters can also be derived for undirected graphs: for an undirected graph G, we set χ o (G) as being the maximum value of χ o for an orientation of G, while we set χ s (G) as the maximum value of χ s for a signature of G. In other words, χ o (G) and χ s (G) indicate whether G is the underlying graph of oriented or signed graphs needing many colours to be coloured. For more details on these two chromatic parameters, we refer the interested reader to the recent survey [START_REF] Sopena | Homomorphisms and colourings of oriented graphs: An updated survey[END_REF] by Sopena dedicated to the oriented chromatic number, and to the Ph.D. thesis [START_REF] Sen | A contribution to the theory of graph homomorphisms and colorings[END_REF] of Sen, which is dedicated, in particular, to both the oriented and signed chromatic numbers.

Our investigations, in this paper, are motivated by the general relation between χ o (G) and χ s (G) for a given undirected graph G. Intuitively, one could expect these two parameters to be close somehow, as oriented graphs and signed graphs are rather alike notions: in both an orientation and a signature of G, every edge basically has one of two possible "states" (being oriented in one way or the other, or being positive or negative). From a more local point of view, though, an oriented edge and a signed edge are perceived differently by their two ends. In light of these two points, it thus appears legitimate to wonder whether oriented and signed graphs, in some particular contexts, have comparable behaviours. This aspect was notably investigated by Sen in his Ph.D. thesis [START_REF] Sen | A contribution to the theory of graph homomorphisms and colorings[END_REF].

In general, it has to be known that, for a given undirected graph G, the difference between χ o (G) and χ s (G) can be arbitrarily large, as noted by Bensmail, Duffy and Sen in [START_REF] Bensmail | Analogous to cliques for (m, n)-colored mixed graphs[END_REF]. A natural arising question, is thus whether this behaviour is rather systematic, or can be observed for a restricted number of graph classes only. Towards this question, we here focus on the class of (square) grids, where the grid G(n, m), with n rows and m columns, is defined as the graph being the Cartesian product of the path with order n and the path with order m. While, to the best of our knowledge, nothing is known about the signed chromatic number of grids, a series of works, namely [START_REF] Dybizbański | Oriented chromatic number of grids is greater than 7[END_REF][START_REF] Fertin | On the oriented chromatic number of grids[END_REF][START_REF] Szepietowski | A note on the oriented chromatic number of grids[END_REF], can be found in the literature on the oriented chromatic number of these graphs. In brief words, these works have (1) pointed out that the maximum oriented chromatic number of a grid lies in between 8 and 11, and have (2) exhibited the exact oriented chromatic number of grids with at most four rows. More details on these results will be given throughout this paper, as they connect to our investigations.

We thus initiate the study of the signed chromatic number of grids, our main objective being to compare how close the oriented and signed chromatic numbers of these graphs are. Prior to present our results, we first introduce, in Section 2, some definitions and terminology that are used throughout this paper. We then start, in Section 3, by providing a general constant upper bound on the signed chromatic number of grids. Namely, we prove that χ s (G(n, m)) ≤ 12 holds for every n, m ≥ 1. We then exhibit, in Sections 4 and 5, lower bounds on the signed chromatic number of grids, by focusing on signed grids with at most three rows. In particular, we point out that some signed 3-row grids cannot be coloured with less than 7 colours. We also provide refined bounds on the signed chromatic number of 2-row and 3-row grids, our bounds for 2-row grids being sharp. We finally conclude this paper by gathering, in Section 6, our results, and discussing how the oriented and signed chromatic numbers seem to behave for grids.

Definitions and terminology

Throughout this paper, we use σ to refer to the implicit signature function of any signed graph. Let G be a signed graph, and A be a signature of some graph. By an A-colouring of G, we refer to a homomorphism from G to A. We also say that G is coloured by A. To stick to the colouring point of view, the vertices of any colouring graph A are generally represented, in our proofs, by integers 0, ..., |V (A)| -1, while, to avoid any misleading terminology, the edges of A are written under the form {α, β}. In that spirit, we denote k-paths (i.e. paths of length k) of A under the form (α 1 , ..., α k+1 ), where α 1 , ..., α k+1 are the consecutive vertices of the path. Similarly we denote by (α 1 , ..., α k , α 1 ) any k-cycle, i.e. cycle of length k. Any signed path or cycle is said alternating, if no two of its consecutive edges have the same sign.

Signed graphs that can colour all signed graphs among a family, should, intuitively, have a rather "regular" and "symmetric" structure, with convenient properties. In the context of colouring of oriented graphs, examples of such nice oriented graphs include circulant oriented graphs, which are defined as follows. The circulant oriented graph C(n, S), where n ≥ 1 and S ⊆ {1, ..., n -1}, is the oriented graph on n vertices 0, ..., n -1, in which, for every j ∈ S and i ∈ {0, ..., n -1}, the arc (i, (i + j) (mod n)) is present 1 . In some sense, set S "generates" the arcs of C(n, S).

Our upper bounds in this paper, are established from colourings by signed graphs which are inspired from circulant oriented graphs, which we call circulant signed graphs. The definition is as follows. The circulant signed graph C(n, S) is the signature of K n obtained by denoting by 0, ..., n -1 the vertices, then, for every j ∈ S and i ∈ {0, ..., n -1}, letting (i, (i + j) (mod n)) be a positive edge, and, eventually, letting all other edges being negative. This time, set S is used to generate the positive edges of C(n, S).

A general upper bound

The only known upper bound on the oriented chromatic number of grids was exhibited by Fertin, Raspaud and Roychowdhury, who proved in [START_REF] Fertin | On the oriented chromatic number of grids[END_REF] that χ o (G(n, m)) ≤ 11 holds for every n, m ≥ 1. In this section, we prove that, for every grid G = G(n, m), we have χ s (G) ≤ 12. We first prove the upper bound of 13 using a somewhat simpler method, so that the reader gets a first idea of our proof scheme. The upper bound of 12 will then be obtained by using more refined arguments.

Our upper bound of 13 follows from the following signed version of the method described in [START_REF] Fertin | On the oriented chromatic number of grids[END_REF]. Proposition 3.1. Suppose we have a signed graph A such that, for every two distinct vertices u, v of A, and for any every {s 1 , s 2 } of {-, +} 2 , there exist two distinct 2-paths uw 1 v and uw 2 v in A such that σ(uw 1 ) = σ(uw 2 ) = s 1 , σ(w 1 v) = σ(w 2 v) = s 2 . Then every signed grid is A-colourable.

Proof. We describe how to obtain an A-colouring φ of any signed grid G, by extending φ from rows to rows. By the assumption on A, there is, in A, an alternating 4-cycle C. Since every signed path can clearly be C-coloured, there is a C-colouring, hence an A-colouring, φ of the first row of G. Now assume, for some i, that φ is a partial A-colouring of all vertices from the first row to the (i -1) th row of G. Assuming the vertices of the i th row are consecutively denoted by b 1 , ..., b n (b 1 being in the first column), we extend φ to these vertices following the order given by their indexes.

Denote by a 1 , ..., a n the vertices from the (i -1) th row of G, where a j b j is an edge for every j = 1, ..., n. When colouring a vertex b j , we of course have to make sure that φ(b j ) = φ(b j-1 ) (if this vertex exists), and that φ(b j ) = φ(a j ). We also note that, if a j+1 exists, then b j+1 cannot be coloured if φ(b j ) = φ(a j+1 ) and σ(b j b j+1 ) = σ(a j+1 b j+1 ). One solution to avoid this technicality, is to always request that φ(b j ) = φ(a j+1 ), which we will maintain at any step of the upcoming colouring procedure.

We are now ready to describe how to extend φ to b 1 , ..., b n . By the assumption on A, every vertex of A is incident to at least two positive edges, and incident to at least two negative edges. Hence, we can colour b 1 so that φ(b 1 ) = φ(a 1 ), φ(a 2 ).

We now go to the general case, i.e. we consider the case where all vertices b 1 , ..., b j-1 have been coloured, for some j -1 ≥ 1, and consider b j . Then we can easily extend φ to b j , in the following way. Recall that φ(b j-1 ) = φ(a j ). By the property of A, applied to u = φ(b j-1 ), v = φ(a j ), s 1 = σ(b j-1 b j ), s 2 = σ(a j b j ), there are at least two possible colours that can be assigned to b j . By assigning to b j a colour different from φ(a j+1 ) (if this vertex exists), we maintain our colouring condition, and hence make sure that the colouring process can be pursued. The i th row of G can hence be coloured, thus all rows of G, concluding the proof.

In order to get an upper bound on the signed chromatic number of all grids, we hence just have to exhibit signed graphs A, of lowest possible order, having the property described in Proposition 3.1. Using a computer program, we have generated all circulant signed graphs C(n, S) with small order n, in order to find a smallest one having the desired property. Our algorithm is the following. For any fixed n, we thus want to generate every circulant signed graph on n vertices. To that aim, we consider every subset S of {1, 2, ..., n -1}, and build the graph A = C(n, S). This can be done by starting from A being the empty graph on n vertices, then adding the positive edges of A (as defined by S), and finally adding all missing edges as negative edges. To then check whether A has the property described in Proposition 3.1, we just have to consider all distinct vertices u, v ∈ {0, ..., n -1}, all combinations of two signs s 1 , s 2 ∈ {-, +}, and count, in A, the number of distinct vertices w such that σ(uw) = s 1 , σ(wv) = s 2 . If A has the desired property, this number should always be at least 2.

The main conclusion of our computation, is the following.

Proposition 3.2. The smallest circulant signed graphs C(n, S) having the property described in Proposition 3.1, have n = 13. An example of a such graph, is C(13, {1, 3, 4}).

Combining Propositions 3.1 and 3.2, we directly get the following.

Theorem 3.3. For every n, m ≥ 1, we have χ s (G(n, m)) ≤ 13.

We now improve the bound in Theorem 3.3 down to 12, still by considering colourings by circulant signed graphs. Following Proposition 3.2, we unfortunately cannot find a circulant signed graph on 12 vertices having the nice property described in Proposition 3.1. We however show that such signed graphs having "almost" this property, can be used to colour any signed grid, provided we are a bit more careful when assigning the colours.

The circulant signed graph from which our bound is obtained, is C(12, {1, 2, 5}) (depicted in Figure 1). To show that every signed grid can be coloured by C(12, {1, 2, 5}), we essentially proceed as in the proof of Proposition 3.1, namely we colour the rows one after another, from the first vertex to the last vertex. As explained above, though, this time the colours should be cautiously chosen, as otherwise it may occur, during the course, that no colour is available for some vertex.

To overcome this issue, we proceed as follows. Assume all vertices from the first row up to the (i -1) th row of a signed grid G, have been successively coloured by C(12, {1, 2, 5}) in an arbitrary way (resulting in a partial colouring φ), and that we are now considering an extension of φ to the i th row. Assume a 1 , ..., a n and b 1 , ..., b n denote the successive vertices of the (i -1) th and i th rows, respectively. Prior to actually assigning a colour by φ to each b j , we will first iteratively compute a set ψ(b j ) of possible colours that can be assigned to b j , where these possible colours depend on the set ψ(b j-1 ) (if this vertex exists), and on some of the φ(a j )'s.

We call ψ : V (G) → P({0, ..., 11}) a choice function. Formally, its definition is that, for every j = 1, ..., n and every α j ∈ ψ(b j ) = ∅, there are α 1 ∈ ψ(b 1 ), ..., α j-1 ∈ ψ(b j-1 ) such that, by setting φ(b 1 ) = α 1 , ..., φ(b j-1 ) = α j-1 and φ(b j ) = α j , we obtain a correct extension of φ to the first j vertices of the i th row of G. In other words, for every value α j in ψ(b j ), there are possible correct colours that can be assigned to b 1 , ..., b j-1 , i.e. colours indicated by ψ, which eventually allow us to correctly colour b j with colour α j . Note that this definition implies that if ψ(b n ) = ∅, then a colouring of the i th row of G can be obtained.

It turns out that, assuming the (i -1) th row of G is arbitrarily coloured by C(12, {1, 2, 5}), a such choice function ψ for the i th row can always be obtained. We state this result right away, so that we can then explain how ψ can lead to the desired extension of φ to the i th row. Proposition 3.4. Let G be a signature of G(2, n), whose first-row vertices are successively denoted by a 1 , ..., a n , while its second-row vertices are denoted by b 1 , ..., b n , so that a i , b i are the vertices of the i th column for every i = 1, ..., n. Then, for every colouring φ by C(12, {1, 2, 5}) of the a i 's, there exists a choice function ψ of the b i 's, such that every ψ(b i ) is non-empty.

With Proposition 3.4 in hand, we can finally prove that every signed grid is colourable by C(12, {1, 2, 5}), and, hence, that the signed chromatic number of every grid is at most 12. Theorem 3.5. For every n, m ≥ 1, we have χ s (G(n, m)) ≤ 12.

Proof. We actually prove that every signed grid is colourable by C(12, {1, 2, 5}). The proof goes exactly the same way as that of Proposition 3.1. As a base case, we note that C(12, {1, 2, 5}) has alternating 4-cycles, such as (0, 1, 4, 3, 0), so the first row of any given signed grid G can be coloured by C(12, {1, 2, 5}).

Assume now that all rows of G up to the (i -1) th one have been coloured by C(12, {1, 2, 5}), resulting in a partial colouring φ, and consider the i th row, with consecutive vertices b 1 , ..., b n . Denote by a 1 , ..., a n the consecutive vertices of the (i -1) th row of G, so that a i b i is an edge for every i = 1, ..., n. According to Proposition 3.4, no matter how the a j 's are coloured, there is a nontrivial choice function ψ of the b j 's. In particular, every ψ(b j ) is non-empty. By definition, there is hence a sequence α 1 , ..., α n ∈ {0, 1, ..., 11} of colours, such that α j ∈ ψ(b j ) for every j = 1, ..., n, and, by setting φ(b j ) = α j for every j = 1, ..., n, we get a correct extension of φ to the b j 's. This proves the inductive step, and hence concludes the proof.

The remaining task, is thus to prove Proposition 3.4.

Proof of Proposition 3.4. We determine some of the values in the choice function ψ(b i ) of every b i , one after another, starting from b 1 , and show, in particular, that none of the ψ(b i )'s is empty. Throughout the proof, we call any value in a set assigned by ψ a choice. Furthermore, we say that a choice at a vertex b i is clean, if this choice is different from φ(a i+1 ) (if this vertex exists). So, out of all choices in any ψ(b i ), all but at most one of them are clean.

The proof goes as follows. Assuming we have determined part of the choice functions of all vertices up to, say, b i , and ψ(b i ) was shown to include at least two clean choices, we determine part of the choice functions of the vertices following b i , until either 1) we determine part of ψ for all remaining vertices of the row, or 2) we reach a vertex b j , for which ψ(b j ) is shown to have at least two clean choices. In the latter case, we can then reapply the same procedure, but with b j instead of b i , and pursue the process until all ψ(b i )'s are shown to be non-empty.

We start with b 1 . Since all vertices of C(12, {1, 2, 5}) are incident to at least five negative edges and five positive edges, ψ(b 1 ) includes at least five choices (deduced from φ(a 1 )), at least four of which are clean. It now suffices to prove the claim above, with b i = b 1 .

By the assumption, ψ(b 1 ) includes at least two clean choices α 1 , α 2 . We note that if, by virtually assigning colour α 1 or α 2 to b 1 , there are, regarding φ(a 2 ), at least three possible colours available for b 2 , then we are done, as, then, ψ(b 2 ) would include at least three choices, at least two of which are clean. We may thus assume that, by virtually colouring b 1 with α 1 or α 2 , at most two choices are available at b 2 . Actually, since α 1 = α 2 , there cannot be less than two such choices, according to the following property of C(12, {1, 2, 5}), which we have checked using a computer. Observation 3.6. The cases where a pair of vertices of C(12, {1, 2, 5}) is, for a fixed signature, not joined by at least two 2-paths with that signature, are when 1) the signature includes two negative edges, and 2) the pair is of the form {α, α + 4} or {α, α -4}, where the operations are understood modulo 12. Furthermore, for such signature and pair, the only joining 2-paths in C(12, {1, 2, 5}) are (α, α + 8, α + 4) and (α, α -8, α -4), respectively.

Let thus β 1 , β 2 be two choices at b 2 . If these two choices are clean, then we are done. Assume thus that one of these two choices, say α 1 , is not clean. Due to the symmetries of C(12, {1, 2, 5}), we may assume, without loss of generality, that φ(a 3 ) = 0, and hence that α 1 = 0. We may, as well, assume that σ(b 2 b 3 ) = σ(a 3 b 3 ), as, otherwise, by virtually colouring b 2 with colour 0, we would get at least five choices at b 3 , and, hence, at least four clean choices.

According to Observation 3.6, since σ(b 2 b 3 ) = σ(b 3 a 3 ), we get, by virtually colouring b 2 with colour α 2 , at least two choices at b 3 . If at least three choices are available, then we are done, according to the same reasons as above. So we may assume that there are only two choices γ 1 , γ 2 at b 3 , when b 2 is virtually coloured with colour α 2 . This situation being exactly the same as earlier, it can be treated similarly. Namely, we can assume that one of γ 1 , γ 2 , say γ 1 , is not clean, hence that φ(a 4 ) = γ 1 . Furthermore, we may assume that σ(b 3 b 4 ) = σ(a 4 b 4 ). Under those assumptions, we again deduce that, by virtually colouring b 3 with colour γ 2 , there are at least two choices available at b 4 . And so on.

By repeatedly applying the above procedure, we either run into a b i such that ψ(b i ) includes at least two clean choices, or successively reveal, until we reach the last vertex of the row, that at least two choices are available, one of which is not clean, at every vertex. We hence end up with ψ being non-empty for every b i , as claimed.

Signed grids of the form G(2, n)

The oriented chromatic number of 2-row grids was fully determined by Fertin, Raspaud and Roychowdhury in [START_REF] Fertin | On the oriented chromatic number of grids[END_REF], wherein it was proved that χ o (G(2, n)) = 6 for every n ≥ 4, while G(2, 2) and G(2, 3) have oriented chromatic number 4 and 5, respectively. We here completely determine the signed chromatic number of 2-row grids, by mainly showing that χ s (G(2, n)) is bounded above by 5 for every n ≥ 3. Hence, for this type of grids, the signed chromatic number is always smaller than the oriented chromatic number.

We start off by noting that G(2, 2), which is the cycle of length 4, admits a signature under which each of its vertices must be coloured with a unique colour. Since G(2, 2) is a subgraph of G(2, n) for every n ≥ 2, by Proposition 4.1 we get that χ s (G(2, n)) ≥ 4 for every n ≥ 2. In the following, we prove that, actually, χ s (G(2, n)) ≥ 5 holds for every n ≥ 3. Proposition 4.2. We have χ s (G(2, 3)) ≥ 5.

Theorem 4.5. We have:

• χ s (G(2, 2)) = 4,
• χ s (G(2, n)) = 5 for every n ≥ 3.

Signed grids of the form G(3, n)

The investigations on the oriented chromatic number of 3-row grids were initiated by Fertin, Raspaud and Roychowdhury, who proved, in [START_REF] Fertin | On the oriented chromatic number of grids[END_REF], that χ o (G(3, 3)) = χ o (G(3, 4)) = χ o (G(3, 5)) = 6, while χ o (G(3, n)) ∈ {6, 7} for every n ≥ 6. Later on, Szepietowski and Targan completely determined, in [START_REF] Szepietowski | A note on the oriented chromatic number of grids[END_REF], the values of χ o (G(3, n)) for every n ≥ 6, by proving that χ o (G(3, 6)) = 6, while χ o (G(3, n)) = 7 for every n ≥ 7.

Before presenting our results on 3-row grids, we first introduce some definitions and terminology that are used throughout this section, and raise some comments that are important to understand our investigations.

Whenever dealing with a (signed) grid G = G(3, n), we assume that its vertices are labelled by a 1 , ..., a n , b 1 , ..., b n and c 1 , ..., c n , where the a i 's are the consecutive vertices of the first row, the b i 's are the consecutive vertices of the second row, and the c i 's are the consecutive vertices of the third row. We also assume, for every i = 1, ..., n, that the vertices of the i th column are a i , b i , c i (see Figure 4 (left) for an illustration).

Let A be a fixed signed graph, and assume now that G is a signed grid. In the sequel, we will mainly colour G by extending an A-colouring φ from column to column, starting from the first column. In doing so, for each column i, we get a set of possible triplets of colours, which are 3-element sets (α, β, γ) ∈ {0, 1, ..., |V (A)| -1} 3 such that, when extending φ to the i th column, we can set φ(a i ) = α, φ(b i ) = β and φ(c i ) = γ. Note that every triplet (α, β, γ) verifies β = α, γ.

When extending φ to the i th column of G, it turns out that the possible colours for a i , b i , c i , i.e. the possible triplets (α i , β i , γ i ) of colours that can be assigned to this column, are highly dependent of the triplet (α i-1 , β i-1 , γ i-1 ) of colours assigned to the (i-1) th column. Also, assuming φ(a i-1 ) = α i-1 , φ(b i-1 ) = β i-1 , φ(c i-1 ) = γ i-1 , the possible triplets (α i , β i , γ i ) depend on the set of five edges {a i-1 a i , b i-1 b i , c i-1 c i , a i b i , b i c i }, which form a signed subgraph that we call a 2-comb. Formally, a 2-comb, refers to a graph obtained from a path uw 1 w 2 w 3 v of length 4, by joining w 2 to a new pendant vertex w. Under that labelling, we say that the 2-comb joins u, w, v, and call w 1 w 2 w 3 the spine of the 2-comb. We note that any (signed) 3-row grid can be obtained, starting from a (signed) 2-path, by repeatedly joining a new (signed) 2-comb onto a (signed) 2-path (first step) or the spine of a previous (signed) 2-comb (other steps).

Back to our context, the possible triplets (α i , β i , γ i ) for the i th column are precisely those 3element sets such that A has a 2-comb joining α i-1 , β i-1 , γ i-1 , with spine α i β i γ i , and whose edge signs are precisely the signs of the 2-comb joining the (i -1) th and the i th columns of G.

Lower bounds

We start off by investigating general lower bounds on the signed chromatic number of 3-row grids. As a starting point, we point out that, for some signatures of G(3, 3), at least six colours are needed. Proposition 5.1. We have χ s (G(3, 3)) ≥ 6.

Proof. Let G be the signature of G(3, 3) depicted in Figure 4 (left), and assume, for contradiction, that there is a signature A of K 5 such that G admits an A-colouring φ.

We note that every two vertices of a 2 , b 1 , b 3 , c 2 are joined by an alternating 2-path. For this reason, all colours φ(a 1 ), φ(a 2 ), φ(b 1 ), φ(b 3 ), φ(c 2 ) must be different. As in Figure 4 (left), let us assume, without loss of generality, that φ(b 2 ) = 0, φ(a 2 ) = 1, φ(b 3 ) = 2, φ(c 2 ) = 3 and φ(b 1 ) = 4. This reveals that, in A, edges {0, 1} and {0, 4} are positive, while {0, 2} and {0, 3} are negative. Now consider c 3 . Since b 2 and c 3 are joined by an alternating 2-path, we have either φ(c 3 ) = 1 or φ(c 3 ) = 4. At this point of the proof, we may assume that φ(c 3 ) = 1. This reveals that, in A, edge {1, 2} is negative, while {1, 3} is positive. Now consider c 1 . Since c 1 is joined by an alternating 2-path to both b 2 and c 3 , we must have φ(c 1 ) = 2. Hence, edges {2, 3} and {2, 4} are negative in A.

For similar reasons, vertex a 1 must receive colour 2 or 3 by φ. Actually, we cannot have φ(a 1 ) = 2 since edge {1, 2} was shown to be negative in A. So, we have φ(a 1 ) = 3.

We finally note that a 3 cannot be coloured with either of colours 0, 1, 2, due to some edges or alternating 2-paths of G. Furthermore, we cannot have φ(a 3 ) = 3 since edge {2, 3} is negative in A, or φ(a 3 ) = 4 since edge {2, 4} is negative in A. Hence a 3 cannot be assigned a valid colour by φ, a contradiction.

It turns out that some signed 3-row grids need at least seven colours to be coloured. The existence of such grids was attested by means of a computer, by employing the following arguments.

Roughly speaking, our method to show that a 7-chromatic signed grid exists, consisted in showing the existence, for every signature A of K 6 , of a signed 3-row grid G A that is not Acolourable. With such a signed grid in hand for every A, one can just imagine a big signed 3-row grid including every of the G A 's, so that it cannot be coloured by any signature of K 6 . Our method for showing the existence of such grids G A , was partly inspired from a computer-assisted proof described in [START_REF] Dybizbański | Oriented chromatic number of grids is greater than 7[END_REF], which was used to exhibit oriented grids with large oriented chromatic number. So that our proof scheme could be used, a necessary ingredient was the explicit list L of all nonisomorphic signatures of K 6 , out of the 2 15 possible signatures. To obtain L, we have proceeded as follows. Assuming the vertices of K 6 are denoted by 0, ..., 5, while each edge (i, j) is denoted by e i,j (where i < j), we note that every signature A of K 6 is uniquely identified by an integer where b(e i,j ) = 1 if e i,j is positive, and b(e i,j ) = 0 otherwise. Furthermore, r(A) can easily be computed for every A, and, vice-versa, we can easily reconstruct A from r(A).

Clearly, the signatures of K 6 that are isomorphic to A, are obtained by preserving the edge signs, but relabelling the vertices of A in every possible way. In other words, to every permutation π of {0, ..., 5} corresponds a signature A of K 6 which is isomorphic to A, and verifies r(A ) = r(A) (unless π is the identity function). Using a computer, we could hence generate the indexes of the non-isomorphic signatures of K 6 , basically by iterating through all indexes one after another (from 0 to 2 15 -1), next deducing, at each step, the indexes of the signatures that are isomorphic to the considered signature (by computing, for every permutation of the vertex set, the index of the resulting graph), and, during the course, "marking" those indexes which have not been deduced while treating a previous index. These marked indexes are basically our list L, as, from every index r(A) in L, we can easily retrieve A by looking at the binary representation of r(A).

To reduce the list L, we also made use of the following observation. For a signature A of K 6 , let A -1 be the signature being the inverse of A, namely the signature obtained by reversing all edge signs (all positive edges become negative, and vice-versa). Then we note that if a grid G A cannot be A-coloured, then, by reversing all edge signs in G A , we obtain a grid G A -1 which cannot be A -1 -coloured. Hence, in L, we can as well keep only one of each r(A), r(A -1 ).

Implementing the above algorithm, we have ended up with a list of 78 non-isomorphic signatures of K 6 to consider. For every A of these signatures, we have verified the existence of G A , as follows.

Start from G A being a 2-path a 1 b 1 c 1 with two positive edges, which will be the first column of G A . Note that, since A is fixed, already there are some possible triplets (α 1 , β 1 , γ 1 ) of colours that can be assigned to a 1 , b 1 , c 1 , respectively, by an A-colouring φ of G A . We denote by C 1 the set of all these possible triplets. Now add a second column with vertices a 2 , b 2 , c 2 to G A , by just joining a 1 , b 1 , c 1 by a signed 2-comb with spine a 2 b 2 c 2 , whose edges are signed in an arbitrary way. If G A is A-colourable, then the set C 2 of possible triplets (α 2 , β 2 , γ 2 ) of colours that can be assigned to a 2 , b 2 , c 2 , when extending φ, should be non-empty. More precisely, for a fixed signature of the 2-comb, and for every (α 1 , β 1 , γ 1 ) ∈ C 1 , set C 2 contains those triplets (α 2 , β 2 , γ 2 ) such that A has a signed 2-comb joining α 1 , β 1 , γ 1 , with the corresponding signature, and with spine α 2 β 2 γ 2 . It is worth emphasizing the fact that the triplets in C 2 are quite dependent of the signature of the 2-comb attached to the first column. By repeating this process (i.e. attaching a new signed 2-comb to the last column of G A ), we can get an arbitrarily long signed 3-row grid, and, for the specific signatures of the used 2-combs, we can iteratively (i.e. on the fly) deduce the triplets of colours in every C i .

In order to get a signed 3-row grid that is not A-colourable, we just need to show that, for specific signatures of the used 2-combs, there is an i such that C i gets empty. The choice we made, is to always sign the joining 2-combs, so that next set C i is of minimum size. Implementing this strategy through a computer program, we observed that, for every A of the 78 signatures of K 6 in L, a non-colourable signed 3-row grid, with the edges from its first column being both positive, can always be obtained by using at most five joining 2-combs. Hence, we verified the following. Theorem 5.2. There exists a n 0 , such that for every n ≥ n 0 , we have χ s (G(3, n)) ≥ 7.

Upper bounds

Our upper bounds on the signed chromatic number of 3-row grids, rely on the existence of circulant signed graphs with properties analogous to that described in the statements of Proposition 3.1 and Observation 4.4 (but for 3-row grids).

We remind to the reader that, as described in the introduction of this section, we systematically colour any signed grid from column to column, by essentially extending triplets of colours from 2-comb to 2-comb. In that spirit, the following property directly yields upper bounds on the signed chromatic number of signed 3-row grids. Proposition 5.3. Suppose we have a signed graph A such that, for every three distinct vertices u, v, w of A, and for every set {s 1 , s 2 , s 3 , s 4 , s 5 } of {-, +} 5 , there exists, in A, a 2-comb, joining u, w, v and with spine w 1 w 2 w 3 , such that σ(uw

1 ) = s 1 , σ(ww 2 ) = s 2 , σ(vw 3 ) = s 3 , σ(w 1 w 2 ) = s 4 , σ(w 2 w 3 ) = s 5 . Then every signed grid G(3, n) is A-colourable.
Proof. We prove by induction on n, the number of columns, that every signature G of G(3, n) can be A-coloured, provided A has the desired property. In case n = 1, we note that G is actually a signed path on two edges. Since, by our assumption on A, signed graph A has both positive edges and negative edges, and has positive edges incident to negative edges, it should be clear that a 1 , b 1 , c 1 can be coloured.

Assume now that the claim is true for every n up to value i -1, and consider the case n = i. By the induction hypothesis, there exists an A-colouring φ of the n -1 first columns of G, which form a signature of G(3, n -1). We now extend φ the i th column, i.e. to the vertices a i , b i , c i . To that aim, consider the signed 2-comb C of G joining a i-1 , b i-1 , c i-1 with spine a i b i c i . According to the initial assumption on A, no matter what the triplet (φ(a i-1 ), φ(b i-1 ), φ(c i-1 )) is, and no matter what the signs on the edges of C are, we can find, in A, a 2-comb joining φ(a i-1 ), φ(b i-1 ), φ(c i-1 ), and with the same edge signs as C. Denote its spine by α i β i γ i . Then we can simply extend φ to a i , b i , c i , by setting φ(a i ) = α i , φ(b i ) = β i , φ(c i ) = γ i . This concludes the proof.

Hence, by showing that a signed graph A with small order has the property described in Proposition 5.3, we immediately get that every signed 3-row grid is A-colourable, thus that its signed chromatic number is at most |V (A)|. Using again a computer, we have determined that the smallest circulant signed graphs having that property, have order 10. We now improve the upper bound in Theorem 5.5 down to 9, by showing that every signed 3-row grid can be coloured by the circulant signed graph C(9, {2, 4}) (illustrated in Figure 4 (right)). The colouring strategy we use, is again the column-to-column one that we have used earlier. We however have to be more careful here, because, as indicated by Proposition 5.4, there are situations where a colouring of the (i -1) th column cannot be extended to the i th one, namely because C(9, {2, 4}) does not admit all possible kinds of signed 2-combs.

Following Proposition 5.4, we know that C(9, {2, 4}) has bad triplets, namely triplets (α, β, γ) of colours such that C(9, {2, 4}) has no 2-comb, with a particular signature, joining α, β, γ. Hence, when colouring a new column of a signed 3-row grid, we should avoid getting a bad triplet, as it might then not be possible to extend the partial colouring to the next column.

Using a computer program to enumerate all 3-element sets of colours (α, β, γ) and, for every signature, all signed 2-combs joining α, β, γ in C(9, {2, 4}), we came up with the following characterization of the bad triplets in C(9, {2, 4}).

Observation 5.6. A triplet (α, β, γ) of C(9, {2, 4}) is bad, if and only if (β, γ) = (α + 2, α + 4), (β, γ) = (α -2, α -4), (β, γ) = (α + 3, α + 6) or (β, γ) = (α -3, α -6)
, where the operations are understood modulo 9.

When colouring a column, we should as well avoid using a non-bad triplet (α, β, γ) of colours such that, for a particular fixed signature, all signed 2-combs with that signature, joining α, β, γ in C(9, {2, 4}), have a bad spine, i.e. a spine α β γ such that (α , β , γ ) is bad. We call such a triplet dangerous. Once again, the dangerous triplets of C(9, {2, 4}) can easily be generated using a computer, and, hence, characterized.

Observation 5.7. A non-bad triplet (α, β, γ) of C(9, {2, 4}) is dangerous, if and only if (β, γ) = (α + 2, α + 5), (β, γ) = (α -2, α -5), (β, γ) = (α + 2, α + 6), (β, γ) = (α -2, α -6), (β, γ) = (α + 3, α + 5), (β, γ) = (α -3, α -5), (β, γ) = (α + 4, α + 6), or (β, γ) = (α -4, α -6), where the operations are understood modulo 9.

One should of course be cautious with non-bad and non-dangerous triplets (α, β, γ) of colours such that, for some signature, all signed 2-combs with that signature, joining α, β, γ in C(9, {2, 4}), have a bad or dangerous spine. However, we checked, using a computer, that every non-bad and non-dangerous triplet (α, β, γ) is good, in the sense that, in C(9, {2, 4}), for every signature there is a signed 2-comb with that signature, joining α, β, γ, and with a good spine, i.e. a spine α β γ such that (α , β , γ ) is good. Observation 5.8. Every non-bad and non-dangerous triplet is good.

We are now ready to improve the bound in Theorem 5.5. Theorem 5.9. For every n ≥ 1, we have χ s (G(3, n)) ≤ 9.

Proof. We actually prove, by induction on n, that every signature G of G(3, n) can be coloured by C(9, {2, 4}), implying the result. The colouring strategy we use, is again the column-to-column strategy that we have been using so far, but restricted to good triplets of colours. More precisely, we show that the columns of G can be coloured one after another, in such a way that the triplets of colours, assigned by the colouring φ, are all good.

As a base case, assume n = 1. In case a 1 b 1 and b 1 c 1 are both positive, we can set e.g. φ(a 1 ) = 0, φ(b 1 ) = 4, φ(c 1 ) = 0. If a 1 b 1 and b 1 c 1 are both negative, we can here set e.g. φ(a 1 ) = 0, φ(b 1 ) = 1, φ(c 1 ) = 0. Finally, if, say, a 1 b 1 is positive while b 1 c 1 is negative, we can set e.g. φ(a 1 ) = 0, φ(b 1 ) = 2, φ(c 1 ) = 1. In every case, we get that (φ(a 1 ), φ(b 1 ), φ(c 1 )) is a good triplet, according to Observation 5.8, which concludes this case.

Assume now that the claim is true for every n up to some value i -1, and consider the next step n = i. By the induction hypothesis, we can colour the i -1 first columns of G, as they form a signature of G(3, n -1), in such a way that all triplets of colours are good. Let φ be such a colouring. We now extend φ to the i th column of G, namely to its vertices a i , b i , c i , in a good way. To that aim, consider, in G, the signed comb C joining a i-1 , b i-1 , c i-1 with spine a i b i c i . According to the definition of a good triplet, and because (φ(a i-1 ), φ(b i-1 ), φ(c i-1 )) is good, there has to be, in C(9, {2, 4}), a signed comb with the same edge signs as C, joining (φ(a i-1 ), φ(b i-1 ), φ(c i-1 )), and with a good spine α i β i γ i , i.e. (α i , β i , γ i ) is a good triplet. So we can extend φ to a i , b i , c i by just setting φ(a i ) = α i , φ(b i ) = β i , φ(c i ) = γ i . This proves the inductive step, and, hence, the claim.

Conclusion

In this article, we have initiated the study of the signed chromatic number of grids, our main goal being to compare how the oriented and signed chromatic numbers behave in these graphs. As a conclusion, we first summarize and discuss our results, independently of our original motivation, before commenting on the connexion between the two chromatic parameters.

Concerning the signed chromatic number of grids, we have provided several bounds for both general grids and 2-or 3-row grids. We have notably shown that the maximum signed chromatic number of a grid lies in between 7 and 12. For 2-row grids, we managed to completely determine their signed chromatic number, while, for 3-row grids, we have obtained partial results.

In order to establish lower bounds on the signed chromatic number, it is necessary to prove that some signed grid cannot be A-coloured by any A being a signature of some complete graph. Due to the number of signatures and of possible colourings to consider, computers are useful tools in this context. Our experimentations, though, tend to show that, on small instances, determining, via a computer, the signed chromatic number of a grid is less tractable than computing its oriented chromatic number. Concerning 3-row grids, we did not manage to show that they have signed chromatic number at most 7, nor to disprove it. However, applying the exact same procedure from Section 5.1 on non-isomorphic signatures of K 7 , we managed to reduce the list L to only 44 potential colouring signatures of K 7 to consider. It might be that one of these 44 candidates can colour every signed 3-row grid.

In order to establish upper bounds, we have decided to design colourings by circulant signed graphs only, as we thought the regular and symmetric structure of these graphs should grant convenient properties. It might be, though, that some of our upper bounds can easily be improved, by just considering colourings by other kinds of signed graphs. However, it is worth mentioning that, concerning the colouring strategies we have designed, we did our best to make sure that these strategies could not be easily applied with smaller circulant signed graphs.

Concerning the relation between the oriented and signed chromatic numbers, our results show that these two parameters are quite close for grids. This is mainly established by the lower and upper bounds we know on the maximum values of these parameters for grids: while it is known that the maximum oriented chromatic number of a grid lies in between 8 and 11, we have shown that the maximum signed chromatic number of a grid lies in between 7 and 12. Some disparities, though, are worth mentioning. For 2-row grids, while the oriented chromatic number is 6 in general, the signed chromatic number is 5 in general. We still do not know whether 3-row grids with signed chromatic number 8 exist, but, if this is the case, that would be quite interesting, as these grids have oriented chromatic number at most 7. In that spirit, it could as well be interesting considering 4-row grids, which have oriented chromatic number at most 7, according to [START_REF] Szepietowski | A note on the oriented chromatic number of grids[END_REF].

Figure 1 :

 1 Figure 1: The circulant signed graph C(12, {1, 2, 5}). Black (resp. gray) edges are positive (resp. negative) edges.

Figure 2 :

 2 Figure 2: A 4-colouring of a signature of G(2, 2) (left), a 5-colouring of a signature of G(2, 3) (middle), and the circulant signed graph C(5, {1}) (right). Black (resp. gray) edges are positive (resp. negative) edges.
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 41 We have χ s (G(2, 2)) = 4. Proof. Consider the signature of G(2, 2) depicted in Figure 2 (left). Clearly, in this signed graph, every two non-adjacent vertices are joined by an alternating 2-path. It hence cannot be coloured with less than |V (G(2, 2))| colours, implying that χ s (G(2, 2)) = 4.

Figure 4 :

 4 Figure 4: A 6-colouring of a signature of G(3, 3) (left), and the circulant signed graph C(9, {2, 4}) (right). Black (resp. gray) edges are positive (resp. negative) edges.
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 5455 The smallest circulant signed graphs C(n, S) having the property described in Proposition 5.3, have n = 10. An example of a such graph, is C(10, {2, 4}).From Propositions 5.3 and 5.4, we thus directly get the following. For every n ≥ 1, we have χ s (G(3, n)) ≤ 10.

 

In order to avoid digons, one should request S to not include two elements summing up to n.
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Proof. To be convinced of this statement, consider the signature of G(2, 3) depicted in Figure 2 (middle), and assume, for contradiction, that it admits a 4-colouring φ. We note that the vertices a 1 , a 2 , b 1 , b 2 form exactly the signature of G(2, 2) described in the proof of Proposition 4.1. As explained earlier, these four vertices must be assigned different colours by φ. Assume φ(a 1 ) = 0, φ(a 2 ) = 1, φ(b 1 ) = 2 and φ(b 2 ) = 3 without loss of generality. Now, because a 3 is adjacent to a 2 , and a 3 is joined by alternating 2-paths to both a 1 and b 2 , clearly we must have φ(a 3 ) = 2. But now, b 3 cannot be assigned any of colours 1, 2 or 3 for the same reasons, while it cannot be assigned colour 0, since a 1 b 1 and a 3 b 3 have different signs, and φ(a 3 ) = φ(b 1 ) = 2. So b 3 cannot be assigned a colour by φ, contradicting our initial hypothesis.

Again, since G(2, 3) is a subgraph of G(2, n) for every n ≥ 3, Proposition 4.2 implies that χ s (G(2, n)) ≥ 5 holds for every n ≥ 3. Actually, it turns out that five colours are sufficient to colour any signature of any 2-row grid. Proof. We actually show that every signature of G(2, n), with n ≥ 1, can be coloured by the circulant signed graph C(5, {1}) (see Figure 2 (right)). To that aim, let us first point out the following property of C(5, {1}). Observation 4.4. For every two distinct vertices u, v of C(5, {1}), and for every set {s 1 , s 2 , s 3 } of {-, +} 3 , there exists a 3-path uw 1 w 2 v in C(5, {1}) such that σ(uw 1 ) = s 1 , σ(w

Proof. Due to the signature-preserving automorphisms of C(5, {1}), it should be clear that we may restrict our attention to the cases (u, v) = (0, 1) and (u, v) = (0, 2). Furthermore, only six of the sets among {-, +} 3 have to be considered. To see that the claim holds, refer to Figure 3 To complete the colouring by C(5, {1}), it now suffices to repeatedly apply the following procedure. Assuming vertices a i-1 and b i-1 have been coloured in the previous step, we extend φ to a i and b i . Let s 1 , s 2 , s 3 be the signs of a i-1 a i , a i b i , b i b i-1 , respectively. According to Observation 4.4 (applied to u = φ(a i-1 ), v = φ(b i-1 ) and s 1 , s 2 , s 3 ), there exists a 3-path (φ(a i-1 ), α, β, φ(b i-1 )) in C(5, {1}) whose edges have sign s 1 , s 2 , s 3 , respectively. By hence setting φ(a i ) = α and φ(b i ) = β, we get an extension of φ to a i and b i .

From all of the previous results, we end up with the following characterization of the signed chromatic number of 2-row grids.