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Introduction

Let b : R d → R d and σ : R d → M d be continuous functions, where M d denotes the space of d × d matrices. We assume that b and σ satisfy the following linear growth conditions: there exists L > 0 such that b(x) + σσ ⊤ (x)

1 2 ≤ L(1 + x ), ∀ x ∈ R d , ( H 1 ) 
and we consider a weak solution of the stochastic differential equation

dX t = b(X t )dt + σ(X t )dW t , X 0 = x, ( 1.1) 
i.e. a d-dimensional Brownian motion W and an adapted process X such that the above equation holds.

The aim of this paper is to provide a characterization of the stochastic invariance of a closed set D ⊂ R d , i.e. find necessary and sufficient conditions on the instantaneous drift b and the instantaneous covariance matrix σσ ⊤ under which there exists a weak solution of (1.1) that remains in D for all t ≥ 0, almost surely, given that x ∈ D. (See Definition 2.2 below for a precise formulation.)

The first stochastic invariance results can be found in Stroock and Varadhan [START_REF] Stroock | On the support of diffusion processes with applications to the strong maximum principle[END_REF], Friedman [START_REF] Friedman | Stochastic differential equations and applications[END_REF] and Doss [START_REF] Doss | Liens entre équations différentielles stochastiques et ordinaires[END_REF] . Since then, many extensions were considered in the literature. For an arbitrary closed set, the stochastic invariance was characterized through the second order normal cone in Bardi and Goatin [START_REF] Bardi | Invariant sets for controlled degenerate diffusions: a viscosity solutions approach[END_REF] and Bardi and Jensen [START_REF] Bardi | A geometric characterization of viable sets for controlled degenerate diffusions[END_REF]. Aubin and Doss [START_REF] Aubin | Characterization of stochastic viability of any nonsmooth set involving its generalized contingent curvature[END_REF] used the notion of curvature, while Da Prato and Frankowska [START_REF] Da Prato | Invariance of stochastic control systems with deterministic arguments[END_REF] provided a characterization in terms of the Stratonovich drift. For a closed convex set, the distance function was used in Da Prato and Frankowska [START_REF] Da Prato | Stochastic viability of convex sets[END_REF], and the invariance was characterized for affine jump-diffusions in Tappe [START_REF] Tappe | Stochastic invariance of closed, convex sets with respect to jumpdiffusions[END_REF]. Although these approaches differ, they have at least one thing in common: the tradeoff one has to make between the assumptions on the topology/smoothness of the domain and the regularity of the coefficients b and σ. This makes all of these existing results difficult to apply in practice.

Let us start by highlighting this difficulty through the two main contributions to the literature:

(i) In Bardi and Jensen [START_REF] Bardi | A geometric characterization of viable sets for controlled degenerate diffusions[END_REF], the stochastic invariance is characterized by using Nagumo-type geometric conditions on the second order normal cone. Their main result states that the closed set D is stochastically invariant if and only if

u ⊤ b(x) + 1 2
Tr(vC(x)) ≤ 0, ∀ x ∈ D and (u, v) ∈ N 2 D (x), in which C := σσ ⊤ on D and N 2 D (x) is the second order normal cone at the point x:

N 2 D (x) := (u, v) ∈ R d × S d : u, y -x + 1 2 y -x, v(y -x) ≤ o( y -x 2 ), ∀ y ∈ D .
(1.2) Here, S d stands for the cone of symmetric d × d matrices. In practice, we face two restrictions. Prior to deriving the conditions on b and σ, we have to determine the second order normal cone at all points of a given set. When the boundary is smooth, the computation of the second order normal cone is an easy task, see e.g. [5, Example 1]. However, it is much more challenging in general, by lack of efficient techniques. This renders the result of [START_REF] Bardi | A geometric characterization of viable sets for controlled degenerate diffusions[END_REF] difficult to use in practice. This also corresponds to the positive maximum principle of Ethier and Kurtz [START_REF] Ethier | Markov Processes: Characterization and Convergence[END_REF].

(ii) Building on Doss [START_REF] Doss | Liens entre équations différentielles stochastiques et ordinaires[END_REF], Da Prato and Frankowska [START_REF] Da Prato | Invariance of stochastic control systems with deterministic arguments[END_REF] give necessary and sufficient conditions for the stochastic invariance in terms of the Stratonovich drift and the first order normal cone:

σ(x) ⊤ u = 0 and u, b(x) - 1 2 d j=1 Dσ j (x)σ j (x) ≤ 0, ∀ x ∈ D and u ∈ N 1 D (x), (1.3) 
where σ j (x) denotes the j-th column of the matrix σ(x), Dσ j is the Jacobian of σ j , and the first order normal cone N 1 D (x) at x (sometimes simply called normal cone) is defined as

N 1 D (x) := u ∈ R d : u, y -x ≤ o( y -x ), ∀ y ∈ D . (1.4)
In practice, the first order normal cone is much simpler to compute than the second order cone used in [START_REF] Bardi | A geometric characterization of viable sets for controlled degenerate diffusions[END_REF], see [START_REF] Aubin | Set-valued analysis[END_REF] and [START_REF] Rockafellar | Variational analysis[END_REF]. However, the price to pay is to impose a strong regularity condition on the diffusion matrix σ, which is assumed to be bounded and differentiable on R d , with a bounded Lipschitz derivative. Again, this constitutes a sticking point for applications, it cannot be applied to simple models (think about square-root processes for instance, see below).

The aim of the present paper is to extend the characterization (1.3), given in terms of the easyto-compute first order normal cone, under weaker regularity conditions on the diffusion matrix σ. We make the following seemingly trivial observation: C := σσ ⊤ might be differentiable at a point x while σ is not. It is the case for the square-root process mentioned above, at the boundary point x = 0. Moreover, the terms Dσ j (x)σ j (x) can be rewritten in terms of the Jacobian of C whenever both quantities are well defined, see Proposition 2.4 for a precise formulation. This suggests to reformulate (1.3) with the Jacobian matrices of the columns of C instead of σ.

We prove that this is actually possible. Our main result, Theorem 2.3 below, states that the stochastic invariance is equivalent to the following conditions:

C(x)u = 0 and u, b(x) - 1 2 d j=1 DC j (x)(CC + ) j (x) ≤ 0, ∀ x ∈ D and u ∈ N 1 D (x). (1.5)
Here, (CC + ) j (x) is the j-th column of (CC + )(x) with C(x) + defined as the Moore-Penrose pseudoinverse of C(x), see Definition A.1 in the Appendix. We only assume that

C can be extended to a C 1,1 loc (R d , S d ) function that coincides with σσ ⊤ on D, ( H 2 ) 
in which C 1,1 loc means C 1 with a locally Lipschitz derivative. Note that we do not impose the extension of C to be positive semi-definite outside D, so that σ might only match with its square-root on D. Also, it should be clear that the extension needs only to be local around D.

The term CC + in (1.5) plays the role of the projection on the image of C, see Proposition A.3 in the Appendix and the discussion in Remark 2.5 below. This projection term cannot be removed. To see this, let us consider the square-root process with C(x) = x and

D = R + , so that N 1 D (0) = R -. Then, C(0)(-1) = 0 and -1, b(0) - 1 2 DC(0) ≤ 0
leads to b(0) ≥ 1/2 while the correct condition for invariance is b(0) ≥ 0, which is recovered from (1.5) by using the fact that (CC + )(0) = 0.

This extension of the characterization of Da Prato and Frankowska [START_REF] Da Prato | Invariance of stochastic control systems with deterministic arguments[END_REF] provides for the first time a unified criteria for the case where the volatility matrix may not be C 1 on the whole domain, which is of importance in practical situations. In fact, many models used in practice, in mathematical finance for instance, do not have C 1 volatility maps but satisfy our conditions. This is in particular the case of affine diffusions (see [START_REF] Duffie | Affine processes and applications in finance[END_REF][START_REF] Filipović | Affine diffusion processes: theory and applications[END_REF]), or of polynomial diffusions that are characterized by a quadratic covariance matrix (see [START_REF] Cuchiero | Polynomial processes and their applications to mathematical finance[END_REF][START_REF] Filipović | Polynomial diffusions and applications in finance[END_REF]), etc. When applied to such processes, stochastic invariance results have been so far tweaked in order to fit in the previous set up, or have been proved under limiting conditions, on a case by case basis. For instance, in their construction of affine processes on the cone of symmetric semi-definite matrices, Cuchiero et al. [START_REF] Cuchiero | Affine processes on positive semidefinite matrices[END_REF] start by regularizing the martingale problem before applying the stochastic invariance characterization of [START_REF] Da Prato | Invariance of stochastic control systems with deterministic arguments[END_REF] and then pass to the limit. In Spreij and Veerman [START_REF] Spreij | Affine diffusions with non-canonical state space[END_REF], some stochastic invariance results are also derived for affine diffusions but only on convex sets with smooth boundary. More recently, the mathematical foundation for polynomial diffusions is given in Filipović and Larsson [START_REF] Filipović | Polynomial diffusions and applications in finance[END_REF]. Necessary conditions for the stochastic invariance are derived for basic closed semialgebraic sets. However, these conditions are not sharp, their sufficient conditions differ from their necessary conditions. All the above cases can now be treated by using our characterization. See Section 5 for a generic example.

Our proof of the necessary condition is in the spirit of Buckdahn et al. [START_REF] Buckdahn | Another proof for the equivalence between invariance of closed sets with respect to stochastic and deterministic systems[END_REF]. They use a second order stochastic Taylor expansion together with small time behavior results for double stochastic integrals. However, in our case, the stochastic Taylor expansion cannot be applied directly since σ is not differentiable and σ(X) fails to be a semi-martingale whenever an eigenvalue vanishes (see [START_REF] Mijatović | On the loss of the semimartingale property at the hitting time of a level[END_REF]Example 1.2]). We therefore need to develop new ideas. We first observe that, if σ is diagonal, then vanishing eigenvalues can be eliminated by taking the conditional expectation with respect to the path of the Brownian motion acting on the non-vanishing ones. This corresponds to the projection term CC + in (1.5). If σ is not diagonal, we can essentially reduce to the former case by considering its spectral decomposition and a suitable change of Brownian motion (based on the corresponding basis change), see Lemma 3.2 below. However, it requires a smooth spectral decomposition which is not guaranteed when repeated eigenvalues are present.

To avoid this, we need an additional transformation of the state space, see Proposition 3.5.

Conversely, we show that the infinitesimal generator of our diffusion satisfies the positive maximum principle whenever (1.5) holds, see Section 4 below. Applying [START_REF] Ethier | Markov Processes: Characterization and Convergence[END_REF]Theorem 4.5.4] shows that this condition is indeed sufficient. (Note that the approach based on the comparison principle for viscosity solutions used in [START_REF] Bardi | A geometric characterization of viable sets for controlled degenerate diffusions[END_REF][START_REF] Buckdahn | Another proof for the equivalence between invariance of closed sets with respect to stochastic and deterministic systems[END_REF] cannot be applied to our case since σ is not Lipschitz.)

The rest of the paper is organized as follows. Our main result is stated in Section 2. The proofs are collected in Sections 3 and 4. In Section 5, we exemplify our characterization by deriving explicit stochastic invariance conditions for various typical examples of applications. Finally, Section 6 provides a complementary tractable sufficient condition ensuring the stochastic invariance of the interior of a domain. For the convenience of the reader, we collect some standard results of matrix calculus and differentiation in the Appendix.

From now on, all identities involving random variables have to be considered in the a.s. sense, the probability space and the probability measure being given by the context. Elements of R d are viewed as column vectors. The vector e i ∈ R d is the i-th element of the canonical basis, and we use the standard notation I d to denote the d × d identity matrix. We denote by M d the collection of d×d matrices. We say that A ∈ S d (resp. S d + ) if it is a symmetric (resp. and positive semi-definite) element of M d . Given x = (x 1 , . . . , x d ) ∈ R d , diag [x] denotes the diagonal matrix whose i-th diagonal component is x i . If A is a symmetric positive semi-definite matrix, then A 1 2 stands for its symmetric square-root.

Main result

In this section, we state our main result, Theorem 2.3, that extends Theorem 4.1 in Da Prato and Frankowska [START_REF] Da Prato | Invariance of stochastic control systems with deterministic arguments[END_REF] to weaker regularity assumptions.

Since we are dealing with general coefficients b and σ, i.e. not necessarily Lipschitz coefficients, solutions to the stochastic differential equation (1.1) should be considered in the weak sense rather than in the strong sense. Existence is guaranteed by our condition (H 1 ), together with our standing assumption of continuity of b and σ: there exist a filtered probability space (Ω, F, F =(F t ) t≥0 , P) satisfying the usual conditions, a d-dimensional F-Brownian motion W and a F-adapted process X with continuous sample paths such that (1.1) holds P-a.s. See e.g. [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF]Theorems IV.2.3 and IV.2.4]. For later use, note that (H 1 ) implies that, for any positive integer p, there exists

K p,x > 0 such that E [ X t -X s p ] ≤ K p,x |t -s| p 2 (2.1)
for all 0 ≤ s, t ≤ 1. Hence, Kolmogorov's continuity criterion ensures that the sample paths of X are (locally) η-Hölder continuous for any η ∈ (0, 1 2 ) (up to considering a suitable modification). Remark 2.1. The collection Q of possible distributions of X is entirely determined by the infinitesimal generator L defined on the space of smooth functions φ by Lφ := Dφ b+ 1 2 Tr[σσ ⊤ D 2 φ]. Therefore, Q is the same if σ is replaced by σ such that σσ ⊤ = σσ ⊤ , see e.g. [START_REF] Stroock | Multidimensional diffusion processes[END_REF]Remark 5.1.7]. Hence, we can reduce to the case where σ is the symmetric square-root of C on D, which we will assume from now on.

Before stating our main result, let us make precise the definition of stochastic invariance.

Definition 2.2 (Stochastic invariance).

A closed subset D ⊂ R d is said to be stochastically invariant with respect to the diffusion (1.1) if, for all x ∈ D, there exists a weak solution (X, W ) to (1.1) starting at X 0 = x such that X t ∈ D for all t ≥ 0, almost surely.

Our characterization of stochastic invariance reads as follows (see Propositions 3.5 and 4.2 below for the proof). From now on we use the same notation C for C defined as σσ ⊤ on D and for its extension defined in Assumption (H 2 ).

Theorem 2.3 (Invariance characterization).

Let D be closed. Assume that b, σ and C are continuous and satisfy assumptions (H 1 )-(H 2 ). Then, the set D is stochastically invariant with respect to the diffusion (1.1) if and only if

       C(x)u = 0 (2.2a) u, b(x) - 1 2 d j=1 DC j (x)(CC + ) j (x) ≤ 0 (2.2b)
for every x ∈ D and for all u ∈ N 1 D (x). Clearly, the regularity conditions of Theorem 2.3 are much weaker than those of Theorem 4.1 in Da Prato and Frankowska [START_REF] Da Prato | Invariance of stochastic control systems with deterministic arguments[END_REF]. Let us immediately exemplify this by considering the case of the square-root process already mentioned in the introduction. Let D = R + , C(x) = η 2 x with η > 0, and consider the diffusion

dX t = b(X t )dt + η √ X t dW t . Since C(x)C(x) + = 1 {x>0} and N 1 R + (x) = 1 {x=0} R -, Theorem 2.3 implies that R + is stochastically invariant if and only if b(0) ≥ 0, while σ : x ∈ R + → η √ x is not differentiable at 0.
On the other hand, one can easily recover [START_REF] Da Prato | Invariance of stochastic control systems with deterministic arguments[END_REF]Theorem 4.1] under their smoothness assumptions. This is the object of the next proposition (recall that, by Remark 2.1, the study can be reduced to the case C = σ 2 on D).

Proposition 2.4. Fix σ ∈ C 1,1 b (R d , S d ) (i.

e. σ is differentiable with a bounded and a globally Lipschitz derivative). Then

C := σ 2 ∈ C 1,1 loc (R d , S d + ) and u, d j=1 Dσ j (x)σ j (x) = u, d j=1 DC j (x)(CC + ) j (x) , for all x ∈ D and u ∈ Ker σ(x).
Proof. Fix x ∈ D and u ∈ Ker σ(x). By using Definition A.7 and Proposition A.8 in the Appendix, we first compute that

DC(x) = D(σ(x) 2 ) = (σ(x) ⊗ I d )Dσ(x) + (I d ⊗ σ(x))Dσ(x),
which clearly shows that C is C 1,1 loc . It then follows from Proposition A.5 and the fact that u ∈ Ker σ(x) that 2 (use the spectral decomposition of σ as in Proposition A.2). Using Proposition A.5 again, the above implies that

(I d ⊗ u ⊤ )DC(x)C(x)C(x) + = (σ(x) ⊗ u ⊤ )Dσ(x)C(x)C(x) + . Observe now that C(x)C(x) + σ(x) = σ(x) since C(x) = σ(x)
Tr (I d ⊗ u ⊤ )DC(x)C(x)C(x) + = Tr σ(x)(I d ⊗ u ⊤ )Dσ(x)C(x)C(x) + = Tr (I d ⊗ u ⊤ )Dσ(x)σ(x) .
Then, by Proposition A.5 and A.8, u,

d j=1 Dσ j (x)σ j (x) = d j=1 u ⊤ D(σ(x)e j )σ(x)e j = d j=1 u ⊤ (e ⊤ j ⊗ I d )Dσ(x)σ(x)e j = d j=1 e ⊤ j (I d ⊗ u ⊤ )Dσ(x)σ(x)e j = Tr (I d ⊗ u ⊤ )Dσ(x)σ(x) = Tr (I d ⊗ u ⊤ )DC(x)C(x)C(x) + = u, d j=1 DC j (x)(CC + ) j (x) , (2.3)
in which the last identity follows by reproducing exactly the same computations in the reverse order with C in place of σ.

The following provides another formulation of (2.2b) that highlights the notion of projection on the image of C.

Remark 2.5 (Interpretation of the projection formulation). Fix x ∈ ∂D and assume that the spectral decomposition of C at x takes the form

C(x) = Q(x)diag [λ 1 (x), . . . , λ r (x), 0, . . . , 0] Q(x) ⊤ , where Q(x)Q(x) ⊤ = I d and λ j (x) > 0 for all 1 ≤ j ≤ r.
Hence, the r-first columns of Q(x), denoted by (q 1 , . . . , q r ) = (q 1 (x), . . . , q r (x)), span the image of C(x) and the projection matrix on the image of C(x) is given by C(x)C(x) + = r j=1 q j q ⊤ j , see Propositions A.3 and A.2 in the Appendix and recall that q j is a column vector. Thus, by (2.3) in the proof of Proposition 2.4 and Proposition A.5 in the Appendix, u,

d j=1 DC j (x)(CC + ) j (x) = Tr (I d ⊗ u ⊤ )DC(x)C(x)C(x) + = r j=1 Tr (I d ⊗ u ⊤ )DC(x)q j q ⊤ j = r j=1 Tr q ⊤ j (I d ⊗ u ⊤ )DC(x)q j = r j=1 u ⊤ (q ⊤ j ⊗ I d )DC(x)q j so that, by Proposition A.8, u, d j=1 DC j (x)(CC + ) j (x) = u, r j=1 D(Cq j )(x)q j = u, r j=1 D q j (Cq j )(x)
in which D q j is the directional derivative with respect to q j :

D q j (Cq j )(x) := lim t→0 C(x + tq j )q j -C(x)q j t . Therefore (2.2b) reads u, b(x)-1 2 r j=1 D q j (Cq j )(x) ≤ 0.
Otherwise stated, C is first projected onto the basis of the image of C(x) before being derived only in the directions of (q 1 , ..., q r ). This is clearly consistent with (2.2a) that states that there cannot be any transverse diffusion of C(x) to the boundary. Therefore, the drift b(x) should only compensate the tangential diffusion given by the projection onto the image of C(x) in order to keep the diffusion in the domain.

Let us conclude this section with an additional comment for the jump-diffusion case.

Remark 2.6 (Adding jumps).

Note that jumps could be included in the dynamics of X. Based on the current work, we provide in [START_REF] Abi Jaber | Stochastic invariance of closed sets for jump-diffusions with non-Lipschitz coefficients[END_REF] an extension of the first order characterization of Theorem 2.3 to the jump-diffusion case. We also derive an equivalent formulation in the semimartingale framework.

Necessary conditions

In this section, we prove that the conditions of Theorem 2.3 are necessary for D to be invariant. Our general strategy is similar to [START_REF] Buckdahn | Another proof for the equivalence between invariance of closed sets with respect to stochastic and deterministic systems[END_REF].

We fix x ∈ D and we consider a smooth function

φ : R d → R such that max D φ = φ(x). Since D is stochastically invariant, let X be a D-valued solution starting from X 0 = x. In particular, φ(X t ) ≤ φ(x), for all t ≥ 0. Then, if σ is sufficiently smooth, by applying Itô's Lemma twice, we obtain t 0 Lφ(X s )ds + t 0 Dφσ(x) + s 0 L(Dφσ)(X r )dr + s 0 D(Dφσ)σ(X r )dW r ⊤ dW s ≤ 0.
Recall Remark 2.1 for the definition of the infinitesimal generator L. Given (now standard) estimates on the small time behavior of single and double stochastic integrals, see e.g. [START_REF] Buckdahn | Another proof for the equivalence between invariance of closed sets with respect to stochastic and deterministic systems[END_REF][START_REF] Cheridito | Small time path behavior of double stochastic integrals and applications to stochastic control[END_REF], this readily implies

Dφ(x)σ(x) = 0 and Dφ(x), b(x) - 1 2 d j=1
Dσ j (x)σ j (x) ≤ 0, under appropriate regularity conditions. It remains to choose a suitable test function φ, i.e. such that Dφ(x) = u ⊤ , to deduce that (2.2a)-(2.2b) must hold when σ is differentiable, recall Proposition 2.4.

In our setting, one can however not differentiate σ j in general. To surround this problem the above can be rewritten in term of the covariance matrix C. The projection term in (2.2a)-(2.2b) will appear through a conditioning argument.

In order to separate the difficulties, we shall first consider the case where C admits a locally smooth spectral decomposition. The general case will be handled in Section 3.2 below.

The case of distinct eigenvalues

As mentioned above, we shall first make profit of having distinct eigenvalues before considering the general case. The main idea consists in using the spectral decomposition of C in the form QΛQ ⊤ in which Q is an orthogonal matrix and Λ is diagonal positive semi-definite. Then, the dynamics of X can be written as

dX t = b(X t )dt + Q(X t )Λ(X t ) 1 2 dB t in which B = • 0 Q(X s ) ⊤ dW s is a Brownian motion.
If Q and Λ are smooth enough, then we can apply the same ideas as the one exposed at the beginning of this section. An additional localization and conditioning argument will allow us to reduce to the case where Λ has only (strictly) positive entries. Note that eigenvalues and the eigenvectors can always be chosen measurable. However, multiple eigenvalues and their corresponding eigenvectors can fail to have the same regularity as C. To ensure a sufficient regularity, we therefore assume in the following Lemma that non-zero eigenvalues are distinct. The general case will be treated later, thanks to a change of variable argument, see Section 3.2 below.

Lemma 3.1. Assume that C ∈ C 1,1 loc (R d , S d ). Let x ∈ D be such that the spectral decomposition of C(x) is given by C(x) = Q(x)diag [λ 1 (x), . . . , λ r (x), 0, . . . , 0] Q(x) ⊤ (3.1)
with λ 1 (x) > λ 2 (x) > • • • > λ r (x) > 0 and Q(x)Q(x) ⊤ = I d , r ≤ d.
Then there exist an open (bounded) neighborhood N (x) of x and two measurable

M d -valued functions on R d , y → Q(y) := [q 1 (y) • • • q d (y)] and y → Λ(y) := diag [λ 1 (y), . . . , λ d (y)] such that (i) C(y) = Q(y)Λ(y)Q(y) ⊤ and Q(y)Q(y) ⊤ = I d , for all y ∈ R d , (ii) λ 1 (y) > λ 2 (y) > ... > λ r (y) > max{λ i (x), r + 1 ≤ i ≤ d} ∨ 0, for all y ∈ N (x), (iii) σ : y → Q(y) Λ(y) 1 2 is C 1,1 (N (x), M d ), in which Q := [q 1 • • • q r 0 • • • 0] and Λ = diag[λ 1 , ..., λ r , 0, ..., 0].
Moreover, we have:

u, d j=1 Dσ j (x)σ j (x) = u, d j=1 DC j (x)(CC + ) j (x) , for all u ∈ Ker(C(x)). (3.2)
Proof. Note that the fact that (q i ) i≤d can be chosen measurable is guaranteed when (C, Λ) is measurable by the fact that each eigenvector solves a quadratic minimization problem, see e.g. [ 

u ⊤ Q(x) = u ⊤ σ(x) = 0.
Since C := σσ ⊤ is differentiable at x, the product rule of Proposition A.8 combined with Proposition A.5 yields

(I d ⊗ u ⊤ )D C(x) = (I d ⊗ u ⊤ ) (σ(x) ⊗ I d )Dσ(x) + (I d ⊗ σ(x))Dσ(x) ⊤ = (σ(x) ⊗ u ⊤ )Dσ(x) = σ(x)(I d ⊗ u ⊤ )Dσ(x). Observing that C = σσ ⊤ = C Q Q⊤ and that Q(x) Q(x) ⊤ = C(x)C(x) + ,
we get by similar computations:

(I d ⊗ u ⊤ )D C(x) = (I d ⊗ u ⊤ ) (C(x)C(x) + ⊗ I d )DC(x) + (I d ⊗ C(x))D Q Q⊤ (x) = C(x)C(x) + (I d ⊗ u ⊤ )DC(x).
Combining the above leads to

Tr (I d ⊗ u ⊤ )Dσ(x)σ(x) = Tr (I d ⊗ u ⊤ )DC(x)C(x)C(x) + ,
which proves (3.2) by similar computations as in the proof of (2.3).

We can now adapt the arguments of [START_REF] Buckdahn | Another proof for the equivalence between invariance of closed sets with respect to stochastic and deterministic systems[END_REF]. In the following we use the notion of proximal normals. A vector u ∈ R d is said to be a proximal normal to D at a point x if u = d D (x + u), where d D is the distance function to D. We denote by N 1,prox D (x) the cone spanned by all proximal normals. Note however that (2.2a)-(2.2b) holds at x for all proximal normals u ∈ N 1,prox D (x) if and only if it holds for all u ∈ N 1 D (x). Indeed,

N 1,prox D (x) ⊂ N 1 D (x) ⊂ co lim sup D∋y→x N 1,prox D (y) , ( 3.3) 
where lim sup stands for the Painlevé-Kuratowski upper limit (see e.g. [START_REF] Aubin | Set-valued analysis[END_REF][START_REF] Da Prato | Invariance of stochastic control systems with deterministic arguments[END_REF]) and co is the closed convex hull (see also [ Proof. It follows from the discussion before our lemma that it suffices to prove our claim for u ∈ N 1,prox D (x). Let (X, W ) denote a weak solution starting at

X 0 = x such that X t ∈ D for all t ≥ 0. If x / ∈ ∂D, then N 1,prox D (x) = {0}
and there is nothing to prove. We therefore assume from now on that x ∈ ∂D. We fix u ∈ N 1,prox D (x).

Step 1. We first claim that there exists a function Step 2. Since D is invariant under the diffusion X, φ(X t ) ≤ φ(x), for all t ≥ 0. From now on, we use the notations of Lemma 3.1. By the above and Itô's lemma:

φ ∈ C ∞ b (R d , R) with compact support in N (x) such that max
0 ≥ t 0 Lφ(X s )ds + t 0 Dφ(X s )σ(X s )dW s = t 0 Lφ(X s )ds + t 0 (DφQΛ 1 2 Q ⊤ )(X s )dW s in which L is the infinitesimal generator of X. Let us define the Brownian motion B = • 0 Q(X s ) ⊤ dW s , recall that Q is orthogonal, together with B = Λ(x)Λ(x) + B = (B 1 , .., B r , 0, ..., 0) ⊤ and B⊥ = (I d -Λ(x)Λ(x) + )B = (0, ..., 0, B r+1 , ..., B d ), recall Proposition A.2. Since Q Λ 1 2 = QΛ 1
2 , the above inequality can be written in the form

0 ≥ t 0 Lφ(X s )ds + t 0 Dφ(X s )σ(X s )d Bs + t 0 (DφQΛ 1 2 )(X s )d B⊥ s .
Let (F B s ) s≥0 be the completed filtration generated by B. By [28, Corollaries 2 and 3 of Theorem 5.13], [START_REF] Kurtz | Lectures on Stochastic Analysis[END_REF]Lemma 14.2], and the fact that the martingale B⊥ is independent of B, we obtain

0 ≥ t 0 E F B s [Lφ(X s )]ds + t 0 E F B s [Dφ(X s )σ(X s )]d Bs = t 0 E F B s [Lφ(X s )]ds + t 0 E F B s [Dφ(X s )σ(X s )]dB s ,
where the last equality holds because the (dr) columns of σ are 0. We now apply Lemma 3.3 below to (Dφσ)(X) and use [28, Corollaries 2 and 3 of Theorem 5.13] and [START_REF] Kurtz | Lectures on Stochastic Analysis[END_REF]Lemma 14.2] again to find a bounded adapted process η such that

0 ≥ t 0 θ s ds + t 0 α + s 0 β r dr + s 0 γ r dB r ⊤ dB s (3.4)
where

θ := E F B • [Lφ(X • )] , α ⊤ := (Dφσ)(x) = u ⊤ Q(x)Λ(x) 1 2 β := E F B • [D(Dφσ)(X • )b(X • ) + η • ] , γ := E F B • [D(Dφσ)σ(X • )] ,
recall from Step 1 that Dφ(x) = u ⊤ .

Step 3. We now check that we can apply Lemma 3.4 below. First note that all the above processes are bounded. This follows from Lemma 3.1, (H 1 ) and the fact that φ has compact support. In addition, given T > 0, the independence of the increments of B implies that

θ s = E F B T
[Lφ(X s )] for all s ≤ T . It follows that θ is a.s. continuous at 0.

Similarly, γ = E F B T [D(Dφσ)σ(X • )] on [0, T ]. Moreover, since Dφσ is C 1,1 , F := D(Dφσ)σ is
Lipschitz and Jensen's inequality combined with (2.1) implies that we can find L ′ > 0 such that

E γ s -γ r 4 ≤ E F (X s ) -F (X r ) 4 ≤ L ′ |s -r| 2 , for all 0 ≤ s, r ≤ 1.
By Kolmogorov's continuity criterion, up to considering a suitable modification, γ has ǫ-Hölder sample paths for all 0 < ǫ < 1 4 , in particular t 0 γ sγ 0 2 ds = O(t 1+ǫ ) for 0 < ǫ < 1 2 .

Step 4. In view of Step 3, we can apply Lemma 3.4 to (3.4) to deduce that α = 0 and θ 0 - 

1 2 Tr(γ 0 ) ≤ 0. Multiplying the first equation by Λ(x) 1 2 Q ⊤ (x) implies that 0 = α ⊤ Λ(x) 1 2 Q ⊤ (x) = u ⊤ Q(x)Λ(x) 1 2 Λ(x) 1 2 Q ⊤ (x) = u ⊤ C(x)
+ (I d ⊗ u ⊤ )Dσσ (x) = u ⊤ b(x) - 1 2 Tr (I d ⊗ u ⊤ )Dσσ (x),
which is equivalent to (2.2b) by (3.2) and similar computations as in the proof of (2.3).

The rest of this section is dedicated to the proof of the two technical lemmas that were used above. Our first result is a slight extension of Itô's lemma to only C 1,1 function. It is based on a simple application of Komlós lemma (note that the assumption that f has a compact support in the following is just for convenience, it can obviously be removed by a localization argument, in which case the process η is only locally bounded).

Lemma 3.3. Assume that b and σ are continuous and that there exists a solution (X, W ) to

(1.1). Let f ∈ C 1,1 (R d , R) have compact support.
Then, there exists an adapted bounded process η such that

f (X t ) = f (x) + t 0 (Df (X s )b(X s ) + η s ) ds + t 0 Df (X s )σ(X s )dW s for all t ≥ 0.
Proof. Since f ∈ C 1,1 has a compact support, we can find a sequence (f n ) n in C ∞ with compact support (uniformly) and a constant K > 0 such that

(i) D 2 f n ≤ K, (ii) f n -f + Df n -Df ≤ K
n , for all n ≥ 1. This is obtained by considering a simple mollification of f . By applying Itô's Lemma to f n (X), we get

f n (X t ) = f n (x) + t 0 Df n (X s )b(X s )ds + t 0 η n s ds + t 0 Df n (X s )σ(X s )dW s in which η n := 1 2 Tr[D 2 f n σσ ⊤ ](X). Since σσ ⊤ is continuous, (i) above implies that (η n ) n is uniformly bounded in L ∞ (dt × dP). By [17, Theorem 1.3], there exists ( η n ) ∈ Conv(η k , k ≥ n) such that η n → η dt ⊗ dP almost surely. Let N n ≥ 0 and (λ n k ) n≤k≤Nn ⊂ [0, 1] be such that η n = Nn k=n λ n k η k and Nn k=n λ n k = 1. Set f n := Nn k=n λ n k f k . Then, f n (X t ) = f n (x) + t 0 D f n (X s )b(X s )ds + t 0 η n s ds + t 0 D f n (X s )σ(X s )dW s . (3.5)
By dominated convergence, t 0 η n s ds converges a.s. to t 0 η s ds. Moreover, (ii) implies that

f n (X t ) -f (X t ) ≤ Nn k=n λ n k f k (X t ) -f (X t ) ≤ Nn k=n λ n k K k ≤ K n , so that f n (X t ) converges a.s. to f (X t ). Similarly, t 0 D f n (X s )σ(X s )dW s → t 0 Df (X s )σ(X s )dW s and t 0 D f n (X s )b(X s )ds → t 0 Df (X s )b(X s )ds
in L 2 (Ω, F, P) as n → ∞, and therefore a.s. after possibly considering a subsequence. It thus remains to send n → ∞ in (3.5) to obtain the required result.

The following adapts [9, Lemma 2.1] to our setting, see also [START_REF] Bruder | Super-replication of European options with a derivative asset under constrained finite variation strategies[END_REF][START_REF] Cheridito | Small time path behavior of double stochastic integrals and applications to stochastic control[END_REF][START_REF] Cheridito | The multi-dimensional superreplication problem under gamma constraints[END_REF].

Lemma 3.4. Let (W t ) t≥0 denote a standard d-dimensional Brownian motion on a filtered probability space (Ω, F, (F t ) t≥0 , P). Let α ∈ R d and (β t ) t≥0 , (γ t ) t≥0 and (θ t ) t≥0 be adapted processes taking values respectively in R d , M d and R and satisfying

(1) β is bounded,

(2) t 0 γ s 2 ds < ∞, for all t ≥ 0,

(3) there exists a random variable η > 0 such that a.s.

t 0 γ s -γ 0 2 ds = O(t 1+η ) for t → 0, (3.6) 
(4) θ is a.s. continuous at 0.

Suppose that for all t ≥ 0

t 0 θ s ds + t 0 α + s 0 β r dr + s 0 γ r dW r ⊤ dW s ≤ 0. (3.7)
Then,

(a) α = 0, (b) -γ 0 ∈ S d + , (c) θ 0 -1 2 Tr(γ 0 ) ≤ 0. Proof. Since (W i t ) 2 = 2 t 0 W i s dW i s + t, (3.7) reduces to (θ 0 - 1 2 Tr(γ 0 ))t + d i=1 α i W i t + d i=1 γ ii 0 2 (W i t ) 2 + 1≤i =j≤d γ ij 0 t 0 W i s dW j s + R t ≤ 0,
where

R t = t 0 (θ s -θ 0 )ds + t 0 s 0 β r dr ⊤ dW s + t 0 s 0 (γ r -γ 0 )dW r ⊤ dW s =: R 1 t + R 2 t + R 3 t .
In 

The general case

We can now turn to the general case. Proof. If x lies in the interior of D, then N 1 D (x) = {0} and there is nothing to prove. We therefore assume from now on that x ∈ ∂D. Let Λ and Q be defined through the spectral decomposition of C, as in (3.1) but with only λ 1 (x) ≥ • • • ≥ λ d (x). We shall perform a change of variable to reduce to the conditions of Lemma 3.2. To do this, we fix 0 < ǫ < 1 and define

A ǫ = Q(x)diag (1 -ǫ), (1 -ǫ) 2 , . . . , (1 -ǫ) d Q(x) ⊤ .
Since D is invariant with respect to the diffusion X, D ǫ := A ǫ D is invariant with respect to the diffusion X ǫ := A ǫ X. Note that

dX ǫ = b ǫ (X ǫ )dt + C ε (X ǫ ) 1 2 dW in which b ǫ := A ǫ b((A ǫ ) -1 •) and C ǫ := A ǫ C((A ǫ ) -1 •)(A ǫ ) ⊤
have the same regularity and growth as b and C. Moreover, the positive eigenvalues of C ǫ are all distinct at

x ǫ := A ǫ x, as C ǫ (x ε ) = Q(x)diag (1 -ǫ)λ 1 (x), . . . , (1 -ǫ) d λ d (x) Q(x) ⊤ .
We can therefore apply Lemma 3.2 to (X ǫ , D ǫ ):

       C ǫ (x ǫ )u ǫ = 0 (3.8a) u ǫ , b ǫ (x ǫ ) - 1 2 d j=1 DC j ǫ (x ǫ )(C ǫ C + ǫ ) j (x ǫ ) ≤ 0 (3.8b)
for all u ǫ ∈ N 1 A ǫ D (x ǫ ). We now easily verify that

N 1 A ǫ D (x ǫ ) = (A ǫ ) -1 N 1 D (x)
, recall the definition in (1.4). Finally, by sending ǫ → 0 in (3.8a) and (3.8b), we get by continuity:

       C(x)u = 0 u, b(x) - 1 2 d j=1 DC j (x)(CC + ) j (x) ≤ 0,
for all u ∈ N 1 D (x), which ends the proof.

Sufficient conditions

In this section, we prove that the necessary conditions of Proposition 3.5 are also sufficient. We start by showing in Proposition 4.1 that (2.2a) and (2.2b) imply that the generator L of X satisfies the positive maximum principle: Lφ(x) ≤ 0 for any x ∈ D and any function Then, the generator L satisfies the positive maximum principle. Proof. We fix x ∈ D. For 1 ≤ j ≤ d, let us consider the following deterministic control system:

φ ∈ C 2 (R d , R) such that max D φ = φ(x) ≥ 0, see e.
y ′ (t) = C(y(t))σ(x) + e j y(0) = x, ( 4.1) 
where σ(x) + is the pseudoinverse of σ(x). Since C is locally Lipschitz and verifies condition (2.2a), [15, Proposition 2.5] combined with (3.3) implies that D is invariant with respect to the deterministic control system (4.1). Then, by definition of the second order normal cone in (1.2),

u, y( √ h) -x + 1 2 v(y( √ h) -x), y( √ h) -x ≤ o(||y( √ h) -x|| 2 )
for any (u, v) ∈ N 2 D (x). On the other hand, since C is C 1,1 loc , a Taylor expansion around 0 yields

y( √ h) = x + √ hC(x)σ(x) + e j + h 2 (e ⊤ j σ(x) + ⊗ I d )DC(x)C(x)σ(x) + e j + o(h),
recall Proposition A.8 and note that (σ

+ ) ⊤ = σ + since σ is symmetric. Now observe that u ∈ N 1 D (x) whenever (u, v) ∈ N 2 D (x).
In particular, u ⊤ C(x) = 0 under (2.2a). Combining the above, and recalling Proposition A.5 then leads to

h 2 e ⊤ j (σ(x) + ⊗ u ⊤ )DC(x)C(x)σ(x) + e j + h 2 e ⊤ j σ(x) + C(x)vC(x)σ(x) + e j ≤ o(h).
Note that σ + σ + = C + and that Cσ + σ + C = CC + C = C, see e.g. Definition A.1 and Proposition A.2, and recall that (σ(x) + ⊗ u ⊤ ) = σ(x) + (I d ⊗ u ⊤ ) by Proposition A.5. Then, dividing the above by h/2 and sending h → 0 before summing over 1 ≤ j ≤ d yields

Tr (I d ⊗ u ⊤ )DC(x)C(x)C(x) + + Tr (vC(x)) ≤ 0.
In view of (2.2b) and (2.3), this shows that

b(x), u + 1 2 Tr(vC(x)) ≤ u, b(x) - 1 2 d j=1 DC j (x)(CC + ) j (x) ≤ 0 for all (u, v) ∈ N 2 D (x).
To conclude, it remains to observe that (Dφ(x), Proof. We already know from Proposition 4.1 that L satisfies the positive maximum principle. Then, [START_REF] Ethier | Markov Processes: Characterization and Convergence[END_REF]Theorem 4.5.4] yields the existence of a solution to the martingale problem associated to L with sample paths in the space of càdlàg functions with values in D ∆ := D ∪ {∆}, the onepoint compactification of D. The discussion preceding [10, Proposition 3.2] and [20, Proposition 5.3.5], recall our linear growth conditions (H 1 ), then shows that the solution has a modification with continuous sample paths in D. Finally, [START_REF] Ethier | Markov Processes: Characterization and Convergence[END_REF]Theorem 5.3.3] implies the existence of a weak solution (X, W ) such that X t ∈ D for all t ≥ 0 almost surely.

D 2 φ(x)) ∈ N 2 D (x) whenever φ ∈ C 2 (R d , R) is such that max D φ = φ(x) ≥ 0. Hence, Lφ(x) ≤ 0.

A generic application

We show in this section how Theorem 2.3 can be applied in various examples of application. We restrict to a two-dimensional setting for ease of computations and notations.

We first provide a generic tractable characterization for the stochastic invariance of all state spaces D ⊂ R 2 of the following form:

D = {(x, x) ∈ R 2 , x ∈ D 1 and φ(x, x) ∈ D 2 }, (5.1) 
where D 1 ⊂ R and D 2 ⊂ R are closed subsets and φ is a continuously differentiable function.

Then, D can be characterized through Φ : (x, x) → (x, φ(x, x)) by

D = Φ -1 (D 1 × D 2 ),
and [36, Exercise 6.7 and Proposition 6.41] provides the following description of the normal cone whenever Φ is differentiable at x and its Jacobian DΦ(x) has full rank (H x ) holds at any point x ∈ D.

Proposition 5.1. Fix x = (x, x) ∈ D such that (H x ) holds. Then,

N 1 D (x) = ū + ∂ 1 φ(x) u ∂ 2 φ(x) u , ū ∈ N 1 D 1 (x) and u ∈ N 1 D 2 (φ(x, x)) ,
in which ∂ i φ is the derivative with respect to the i-th component. 

= ( b, b) ⊤ , C = (C ij ) ij and ∂ u = u 2 ∂ 1 -u 1 ∂ 2 .
(5.2) Proposition 5.2. Let D be as in (5.1) and x = (x, x) ∈ ∂D be such that 

(H x ) holds. Fix u = (u 1 , u 2 ) ⊤ ∈ N 1 D (x)
             C(x) = C 11 (x)   1 -u 1 u 2 -u 1 u 2 u 2 1 u 2 2   , (5.3a) u, b(x) - 1 {C 11 (x) =0} 2(u 2 1 + u 2 2 ) u 1 u 2 ∂ u (C 11 -C 22 )(x) + (u 2 2 -u 2 1 )∂ u C 12 (x) ≤ 0. (5.3b) (b) Or, u = 0, u 1 = ū and          C(x)1 {ū =0} = C 22 (x) 0 0 0 1 1 {ū =0} , (5.4a) ū b(x) - 1 {C 22 (x) =0} 2 ∂ 2 C 12 (x) ≤ 0. (5.4b) Proof. Case (a), u = 0: Since DΦ(x) has full rank, ∂ 2 φ(x) = 0 and therefore u 2 = 0. Since C(x) ∈ S 2 , (2.2a) is clearly equivalent to (5.3a). If C 11 (x) = 0, (5.3a) implies that u = (ū + ∂ 1 φ(x) u, ∂ 2 φ(x) u) ⊤ spans the kernel of C(x).
Therefore, by Proposition A.3,

C(x)C(x) + = I 2 - 1 u 2 uu ⊤ = 1 u 2 1 + u 2 2 u 2 2 -u 1 u 2 -u 1 u 2 u 2 1 . Straightforward computations yield u, 2 j=1 DC j (x)(CC + ) j (x) = 1 u 2 1 + u 2 2 u 1 u 2 ∂ u (C 11 -C 22 )(x) + (u 2 2 -u 2 1 )∂ u C 12 (x) ,
recall the notations introduced in (5.2). This shows the equivalence between (2.2b) and (5.3b) when C 11 (x) = 0. If C 11 (x) = 0, then (5.3a) implies that C(x)C(x) + = 0 and (2.2b) reads u, b(x) ≤ 0.

Case (b), u = 0: If ū = 0, then u = 0 and there is nothing to prove. Otherwise,

u 1 = ū = 0. Since C(x) ∈ S 2 , (2.2a) is clearly equivalent to C 11 (x) = 0 and C 21 (x) = C 12 (x) = 0, that is (5.4a). If C 22 (x) = 0, then (5.4a) provides C(x)C(x) + = 0 0 0 1 ,
and straightforward computations yield u,

2 j=1 DC j (x)(CC + ) j (x) = ū∂ 2 C 12 (x),
which shows the equivalence between (2.2b) and (5.4b) when C 22 (x) = 0. If C 22 (x) = 0, then C(x)C(x) + = 0 and (2.2b) reads ūb (x) ≤ 0.

Note that ū = 0 when D 1 = R, which will be the case from now on. In the sequel, we impose more structure on the coefficients, as it is usually done in the construction of invariant diffusions. This permits to deduce an explicit form of (b, C) on the whole domain from the boundary conditions (5.3a)-(5.3b). As already stated, Theorem 2.3 can be directly applied to a large class of diffusions, e.g. affine diffusions [START_REF] Duffie | Affine processes and applications in finance[END_REF][START_REF] Filipović | Affine diffusion processes: theory and applications[END_REF][START_REF] Spreij | Affine diffusions with non-canonical state space[END_REF] and polynomial diffusions [START_REF] Filipović | Polynomial diffusions and applications in finance[END_REF][START_REF] Larsson | Polynomial diffusions on compact quadric sets[END_REF], not only for closed subsets of R d , but even when D ⊂ S d (as in [START_REF] Cuchiero | Affine processes on positive semidefinite matrices[END_REF]) since S d can be identified with R

d(d+1) 2
by using the half-vectorization operator. We start by defining these two main structures.

Definition 5.3 (Affine and polynomial diffusions). X is a polynomial diffusion on D if:

(i) There exist bi , b i ∈ R, 0 ≤ i ≤ 2, and A i ∈ S 2 , 1 ≤ i ≤ 5, such that b : x → b(x) := ( b(x), b(x)) ∈ R 2 and C : x → C(x) ∈ S 2
have the following form:

     b(x) = b0 + b1 x + b2 x, b(x) = b 0 + b 1 x + b 2 x, C(x) = A 0 + A 1 x + A 2 x + A 3 x2 + A 4 x x + A 5 x 2 ,
(5.5)

for all x = (x, x) ∈ D.

(ii) C(x) ∈ S d + , for all x ∈ D. When A i = 0 for all 3 ≤ i ≤ 5, we say that X is an affine diffusion. If we now impose the structural condition (5.5), then straightforward computations lead to the characterization in [START_REF] Duffie | Affine processes and applications in finance[END_REF] for affine diffusions. The case of polynomial diffusions can be treated similarly.

Example 5.5 (Parabolic convex state space). Let us consider the following parabolic state space:

D = {(x, x) ∈ R 2 , x ≥ x2 }.
Then, with the previous notations, D 1 = R, D 2 = R + and φ(x, x) = x -x2 . Therefore, the first order normal cone given by Proposition 5.1 reads

N 1 D (x) = -2x 1 R -, for all x = (x, x2 ) ∈ ∂D.
Conditions (5.3a)-(5.3b) are therefore equivalent to

           C(x) = C 11 (x) 1 2x 2x 4x 2 , (5.6a) u, b(x) - 1 {C 11 (x) =0} 2(1 + 4x 2 ) -2x∂ u (C 11 -C 22 )(x) + (1 -4x 2 )∂ u C 12 (x) ≥ 0, (5.6b) 
for all x ∈ R, x = (x, x2 ) and u = (-2x, 1) ⊤ .

If we now impose an additional affine structure on the diffusion X = ( X, X), as in Duffie et al. [START_REF] Duffie | Affine processes and applications in finance[END_REF]Section 12.2], we recover the characterization given in Gourieroux and Sufana [START_REF] Gourieroux | A Classification of Two-Factor Affine Diffusion Term Structure Models[END_REF]Proposition 2]. Indeed, Proposition 5.2 says that D is invariant if and only if there exists α ≥ 0 such that (a)

C(x) = α 1 2x 2x 4 x , for all x = (x, x) ∈ D, (5.7) 
(b) b2 = 0 and

     b 2 > 2 b1 and ( b 1 -2 b0 ) 2 ≤ 4( b 2 -2 b1 )( b 0 -α) or b 2 = 2 b1 , b 1 = 2 b0 and b 0 ≥ α.
(5.8)

Let us detail the computations: (a) The covariance matrix C(x) ∈ S 2 + is of the form (5.6a) on the boundary. Since C is affine in (x, x2 ), then necessarily C 11 (x) is constant (or else C 22 (x) would have at least a polynomial dependence of order 3 in x). Therefore, there exists α such that C(x) has the form (5.7) at x = (x, x2 ), in which α ≥ 0 to ensure that C(0) ∈ S 2 + . Finally, C needs to have the same form (5.7) on the whole state space D, since it is affine. (b) We now derive the form of the drift vector b(x) = ( b(x), b(x)) ∈ R 2 by using (5.6b). From (5.7), elementary computations show that condition (5.6b) is equivalent to

-2 b2 x3 + ( b 2 -2 b1 )x 2 + ( b 1 -2 b0 )x + b 0 -α ≥ 0, for all x ∈ R,
which is equivalent to (5.8), when α > 0. If α = 0, the same conclusion holds. Conversely, (5.7) clearly implies (2.2a) and (ii) of Definition 5.3 since det(C(x)) = 4α( x-x2 ) ≥ 0 and x ≥ 0 for all (x, x) ∈ D. Moreover, (5.8) leads to (5.3b) by the same computations as above.

Example 5.6 (Parabolic concave state space). We now consider the epigraph of the concave function

x → -x 2 , D = {(x, x) ∈ R 2 , x ≥ -x 2 }. It follows that D 1 = R, D 2 = R + , φ(x, x) = x + x2 and N 1 D (x) = 2x 1 R -, for all x = (x, -x 2 ) ∈ ∂D,
from Proposition 5.1. Hence, conditions (5.3a)- (5.3b) are now equivalent to

           C(x) = C 11 (x) 1 -2x -2x 4x 2 , (5.9a) u, b(x) - 1 {C 11 (x) =0} 2(4x 2 + 1) 2x∂ u (C 11 -C 22 )(x) + (1 -4x 2 )∂ u C 12 (x) ≥ 0, (5.9b)
for all x ∈ R, x = (x, -x 2 ) and u = (2x, 1) ⊤ ∈ -N 1 D (x). Let us first note that the above shows that we can not construct an affine diffusion living in D, that is not degenerate, unless it lives on the boundary only. Indeed, if C is affine then C 11 =: α has to be constant, because of (5.9a), and C is of the form (5.9a) with (-x) in place of x2 .

Since C(x) ∈ S 2 + , we must have α ≥ 0 and det C(x) = -4α 2 ( x + x2 ) ≥ 0. Thus, α = 0 unless we restrict to points (x, x) on the boundary. If we do so, it is not difficult to derive a necessary and sufficient condition on the coefficients from the identity X = -X2 .

We now impose a polynomial structure on the diffusion X = ( X, X), such that X is affine on its own, i.e. b and C 11 are of affine form and only depend on x. This extends [START_REF] Larsson | Polynomial diffusions on compact quadric sets[END_REF]Example 5.2] and entirely characterizes the stochastic invariance of D with respect to this structure of diffusion. By Proposition 5.1, D is invariant if and only if there exist α, β ≥ 0, such that (a)

C(x) = α -2αx -2αx (4α + β)x 2 + β x , for all x = (x, x) ∈ D, (5.10) 
(b) b2 = 0 and

     b 2 < 2 b1 and ( b 1 + 2 b0 ) 2 ≤ 4(-b 2 + 2 b1 )( b 0 + α) or b 2 = 2 b1 , b 1 = -2 b0 and b 0 ≥ -α . ( 5 

.11)

Let us do the computations explicitly: (a) The covariance matrix C(x) ∈ S 2 + is of the form (5.9a) on the boundary. Therefore, C 11 (x) ≥ 0, for all x ∈ ∂D. Since C 11 is affine and only depends on x ∈ R, then necessarily C 11 is a non-negative constant on the whole space D. Therefore, there exists α ≥ 0 such that C 11 (.) = α on D. Moreover, (5.5) reads on the boundary

C(x) = A 0 + A 1 x + (A 3 -A 2 )x 2 -A 4 x3 + A 5 x4 , for all x ∈ R.
Therefore, comparing with (5.9a) leads to A 4 = A 5 = 0 and the existence of

β, β ′ such that C is of the form α -2αx -2αx 4αx 2 + 0 β ′ β ′ β ( x + x2 )
on the whole space D. We now use the fact that C(D) ⊂ S 2 + . In particular, taking x = 0 shows that we must have αβ x-(β ′ ) 2 x 2 ≥ 0 for all x ≥ 0, so that β ′ = 0. Similarly, 4αx 2 +β( x+x 2 ) ≥ 0 must hold for all x ∈ D, which is equivalent to β ≥ 0. (b) We now derive the form of the drift vector b(x) = ( b(x), b(x)) ∈ R 2 by using (5.9b). Since X is affine on its own, b2 = 0. From (5.10), elementary computations show that condition (5.9b) is equivalent to

(-b 2 + 2 b1 )x 2 + ( b 1 + 2 b0 )x + b 0 + α ≥ 0, for all x ∈ R,
which is equivalent to (5.11), when α > 0. If α = 0, the same conclusion holds. Conversely, (5.10)- (5.11) show that X is a polynomial diffusion such that X is affine on its own since det(C(x)) = αβ( x + x2 ) ≥ 0 and 4αx 2 + β( x + x2 ) ≥ 4αx 2 ≥ 0 for all (x, x) ∈ D. (5.10) clearly implies (2.2a). Moreover, (5.11) leads to (5.3b) by the same computations as above.

We conclude with a final remark on the interplay between the local geometry of the boundary, the coefficients b and C and the structure of the diffusion. with respect to the convexity of the domain. When the domain is convex, as in Example 5.5, the drift is necessarily inward pointing since b 0 ≥ α, with α ≥ 0 from (5.8). However, when the domain is concave, as in Example 5.6, the drift could even be outward pointing. This follows from the fact that b 0 ≥ -α, with α ≥ 0 in (5.11). 

{x ≥ x2 } (i) Affine diffusion b(0) {x ≥ -x 2 } (ii) Polynomial diffusion b(0)

Additional remark on the boundary non-attainment

In this last section, we provide a sufficient condition for the stochastic invariance of the interior of D, when D has a smooth boundary. We conclude by using [37, Proposition 3.5] (after a change of the sign, since D is assumed to be a connected subset of {x, Φ(x) > 0} in [START_REF] Spreij | Affine diffusions with non-canonical state space[END_REF]Proposition 3.5]).

C ∈ C 1 (R d , S d + ). Then D is stochastically invariant if there exists v ∈ R d such that        DΦ(x)C(x) = Φ(x)v ⊤ (6.1a) DΦ(x), b(x) - 1 
Example 6.2. (i) Square root process: Let us consider again the process defined by dX t = b(X t )dt+η √ X t dW t , for some η > 0, on D = R + . Then, Φ : x → -x and (6.1a)-(6.1b) are equivalent to v = η 2 and b(0) ≥ η 2 2 . These are the well known conditions for the boundary non-attainment of the square-root process.

(ii) Affine diffusions: More generally, let D ⊂ R d satisfy the assumptions of Proposition 6.1 and take C(x) = A 0 + d j=1 A j x j for some A j ∈ S d , 1 ≤ j ≤ d. Then differentiating C shows that condition (6.1b) is equivalent to DΦ(x), b(x) -1 2 d j=1 (A j ) j ≤ 0 yielding [START_REF] Spreij | Affine diffusions with non-canonical state space[END_REF]Proposition 3.7].

(iii) Jacobi diffusion: Set D = (0, 1] and consider a polynomial diffusion X on D, i.e. b is affine and C is a polynomial of degree two. Theorem 2.3 applied on [0, 1] immediately yields that de dynamics of X must be of the form dX t = κ(θ -X t )dt + η X t (1 -X t )dW t where κ, η ≥ 0 and 0 ≤ θ ≤ 1. Now a localized version of Proposition 6.1 shows that D = (0, 1] is stochastically invariant under the additional condition that κθ ≥ η 2 2 . Proposition 6.1 is important in practice since it gives, in many cases, the existence and the uniqueness of a global strong solution to (1.1) as discussed in the following remark. 

A Matrix tools

For the reader's convenience, we collect in this Appendix some definitions and properties of matrix tools intensively used in the proofs throughout the article. For a complete review and proofs we refer to [START_REF] Magnus | The elimination matrix: some lemmas and applications[END_REF][START_REF] Magnus | Matrix differential calculus with applications in statistics and econometrics[END_REF][START_REF] Neudecker | Symmetry, 0-1 matrices and jacobians[END_REF].

We start by recalling the definition of the Moore-Penrose pseudoinverse which generalizes the concept of invertibility of square matrices, to non-singular and non-square matrices. In the following, we denote by M m,n the collection of m × n matrices. We now collect some useful identities on the Kronecker product. 

A ⊗ B = B(A ⊗ I n 2 ) if m 1 = 1.
The following definitions extend the concept of Jacobian matrix and show how to nicely stack the partial derivatives of a matrix-valued function F : M n,q → M m,p by using the vectorization operator (see [START_REF] Magnus | Matrix differential calculus with applications in statistics and econometrics[END_REF]Chapter 9]).

Definition A.6 (Vectorization operator).

Let A ∈ M m,n . The vectorization operator vec transforms the matrix into a vector in R mn by stacking all the columns of the matrix A one underneath the other.

Definition A.7 (Jacobian matrix). Let F be a differentiable map from M n,q to M m,p . The Jacobian matrix DF (X) of F at X is defined as the following mp × nq matrix:

DF (X) = ∂ vec(F (X)) ∂ vec(X) ⊤ .
Proposition A.8 (Product rule). Let G be a differentiable map from M n,q to M m,p and H be a differentiable map from M n,q to M p,l . Then, D(GH) = (H ⊤ ⊗ I m )DG + (I l ⊗ G)DH.

Dφ

  = φ(x) = 0 and Dφ(x) = u ⊤ . Indeed, it follows from[START_REF] Rockafellar | Variational analysis[END_REF] Chapter 6.E] that one can find κ > 0 such that u, yx ≤ κ 2 yx 2 for all y ∈ D. Then, one can set ψ := u, •x -κ 2 • -x 2 and define φ := ψρ in which ρ is a C ∞ b function with values in [0, 1], compact support included in N (x), and satisfying ρ = 1 in a neighborhood of x.

2

 2 , or equivalently C(x)u = 0 since C(x) is symmetric. The second identity combined with Dφ(x) = u ⊤ and Proposition A.8 shows that 0 ≥Lφ(x) -1 Tr σ⊤ D 2 φσ

Proposition 3 . 5 (

 35 Necessary conditions of Theorem 2.3). Let the conditions of Theorem 2.3 hold and assume that D is stochastically invariant with respect to the diffusion (1.1). Then conditions (2.2a) and (2.2b) hold for all x ∈ D and u ∈ N 1 D (x).

Proposition 4 . 1 .

 41 g.[20, p165]. Then, classical arguments, mainly[START_REF] Ethier | Markov Processes: Characterization and Convergence[END_REF] Theorem 4.5.4], yield the existence of a solution to the corresponding martingale problem that stays in D, see Proposition 4.2 below.The following proposition is inspired by[START_REF] Da Prato | Invariance of stochastic control systems with deterministic arguments[END_REF] Remark 5.6]. Under the assumptions of Theorem 2.3, assume that (2.2a)-(2.2b) hold for all x ∈ D and u ∈ N 1 D (x).

Proposition 4 . 2 (

 42 Sufficient conditions of Theorem 2.3). Under the assumptions of Theorem 2.3, assume that conditions (2.2a) and (2.2b) hold for all x ∈ D and u ∈ N 1 D (x). Then, D is stochastically invariant with respect to the diffusion (1.1).

When x lies in

  the interior of D, N 1 D (x) = {0} and (2.2a)-(2.2b) are trivially verified. Hence, it suffices to control b and C on the boundary of the domain in order to ensure the stochastic invariance of D as stated by the following proposition, in which we use the notations b

as in Proposition 5 . 1 .

 51 Under the assumptions of Theorem 2.3, (2.2a)-(2.2b) are equivalent to the following: (a) Either u = 0 and

  Then, it is clear that b and C are C ∞ and satisfy the linear growth conditions (H 1 ).In what follows, we highlight the interplay between the geometry/curvature of the boundary and the coefficients b and C. The three explicit examples below characterize the invariance for flat, convex and concave boundaries.

Example 5 . 4 ( 2 ∂ 1 C

 5421 Canonical state space). Fix D 1 = R, D 2 = R + and φ(x, x) = x. Then D = R × R + and N 1 D (x) = {0} × 1 {x=0} R -.Hence, (5.3a)-(5.3b) are equivalent to C(x, 0) = C 11 (x, 012 (x, 0) ≥ 0, for all x ∈ R.

Remark 5 . 7 .

 57 (i) Curvaceous boundary and covariance matrix: the curvature of the boundary plays a crucial role in determining the covariance structure. In Example 5.4, the canonical state space, which shows no curvature, imposes strict constraints on the covariance matrix. Whereas, for curved domains, as in Examples 5.5-5.6, the first order normal cone is a more complicated object and induces a richer covariance structure on the boundary. (ii) Convexity and drift direction: Figure 1 visualizes the direction of the drift b(0) = ( b0 , b 0 )

Figure 1 :

 1 Figure 1: Interplay between the convexity of the domain and the direction of the drift: (i) Inward pointing drift for convex domains (Example 5.5). (ii) Possible outward pointing drift for concave domains (Example 5.6).

2 dj=1

 2 DC j (x)e j ≤ 0 (6.1b) for all x ∈ D.Proof. Fix x ∈ D. By differentiating (6.1a) with the help of Propositions A.8 and A.5, we obtainvDΦ(x) = (C(x) ⊗ I 1 )D 2 Φ(x) + (I d ⊗ DΦ(x))DC(x) = C(x)D 2 Φ(x) + (I d ⊗ DΦ(x))DC(x),which, combined with (6.1b), leads to DΦ(x), b(x) ≤ 1 2 Tr (I d ⊗ DΦ(x) ⊤ )DC(x) ) -1 DΦ(x)C(x)DΦ(x) ⊤ .

Remark 6 . 3 . 1 2

 631 Let D be as in Proposition 6.1. Assume that C ∈ C 2 ( D, S d + ) and that b is locally Lipschitz (which is clearly the case for affine and polynomial diffusions). By [23, Remark 1 page 131], σ = C is locally Lipschitz on D. Therefore, when the boundary is never attained, (1.1) starting from any element x ∈ D admits a global strong solution and pathwise-uniqueness holds.

Definition A. 1 ( 1 2

 11 Moore-Penrose pseudoinverse). Fix A ∈ M m,n . The Moore-Penrose pseudoinverse of A is the unique n × m matrix A + satisfying:AA + A = A, A + AA + = A + , AA + and A + A are Hermitian. Proposition A.2. If A ∈ M d has the spectral decomposition QΛQ ⊤ for some orthogonal matrix Q ∈ M d and a diagonal matrix Λ = diag [(λ i ) i≤d ] ∈ M d . Then, A + = QΛ + Q ⊤ in which Λ + = diag (λ -1 i 1 {λ i =0}) i≤d , andAA + = Qdiag (1 {λ i =0} ) i≤d Q ⊤ . If moreover A is positive semi-definite and B = A , then B + = Q(Λ + ) 1 2 Q ⊤ . Proposition A.3. If A ∈ M m,n, then AA + is the orthogonal projection on the image of A.

Definition A. 4 ( 5 .

 45 Kronecker product). LetA = (a ij ) i≤m 1 ,j≤n 1 ∈ M m 1 ,n 1 and B ∈ M m 2 ,n 2 . The Kronecker product (A ⊗ B) is defined as the m 1 m 2 × n 1 n 2 matrix A ⊗ B =    a 11 B • • • a 1n 1 B . . . . . . a m 1 1 B • • • a m 1 n 1 B Let A and B be as in Definition A.4, C ∈ M n 1 ,n 3 and D ∈ M n 2 ,n 4 . Then, (A ⊗ B)(C ⊗ D) = (AC ⊗ BD), A ⊗ B = A(I n 1 ⊗ B) if m 2 = 1,

  view of [9, Lemma 2.1], it suffices to show that R t /t → 0 almost surely. To see this, first note that R 1 t = o(t) a.s. since θ is continuous at 0. Moreover, [11, Proposition 3.9] implies that R 2 The continuity assumption (3.6) implies that M i s = O(s 1+η ) almost surely. By the Dambis-Dubins-Schwarz theorem, (M i s ) s≥0 is therefore a timechanged Brownian motion, see e.g. [35, Theorem V.1.6]. By the law of iterated logarithm for Brownian motion (M i

	• 0	d j=1 M ij r dW j

t = o(t) a.s., as β is bounded. It remains to prove that R 3 t = o(t) a.s. To see this, define

M ij = γ ijγ ij 0 and M i = r for all 1 ≤ i, j ≤ d. s ) 2 = O(s 1+ η 2 ) almost surely. Hence, R 3 t = O(t 2+ η

2 ) almost surely. By applying the Dambis-Dubin-Schwarz theorem and the law of iterated logarithm again, we obtain that R 3 t = o(t) a.s.