Optimal Transportation for Data Assimilation

Nelson FEYEUX, Maëlle NODET, Arthur VIDARD Inria & Université Grenoble-Alpes Data assimilation Given • a physical system and its state x(t, x);

• partial observations of the system (y o i ) i ; • a (numerical) model M simulating the evolution of x; ✬ ✫ ✩ ✪ E.g., for the atmosphere, the state x(t, x, y) gathers the different variables

• humidity H(t, x, y);

• velocities u(t, x, y);

• temperature T (t, x, y);

• pressure p(t, x, y).

Can we estimate the initial condition x 0 of the system?
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Variational data assimilation consists in retrieving x 0 by minimizing

J (x 0 ) := � i d � H i M i (x 0 ) � �� � Mapping of x0 on the space of y o i , y o i � 2 + ω d � x 0 , x b 0 � 2 . ( 1 
)
It is common for the distance d to be a weighted L 2 distance. Our main goal to use the Wasserstein distance W 2 instead, which seems very interesting when dealing with dense data (see right panel). The Wasserstein cost function writes

J W (x 0 ) := � i W 2 � H i M i (x 0 ), y o i � 2 + ω W 2 � x 0 , x b 0 � 2 . ( 2 
)
Optimal transportation and the Wasserstein distance

For two functions ρ 0 (x) and ρ 1 (x), the square of the Wasserstein distance W 2 (ρ 0 , ρ 1 ) is defined as the minimal kinetic energy necessary to transport ρ 0 to ρ 1 ,

W 2 (ρ 0 , ρ 1 ) 2 := inf (ρ(t, x), v(t, x)) ∂ t ρ + div(ρv) = 0 ρ(0, x) = ρ 0 (x), ρ(1, x) = ρ 1 (x) 1 2 � � [0,1]×Ω ρ|v| 2 dtdx.
For the Wasserstein distance to be well-defined, one needs

ρ 0 ≥ 0, ρ 1 ≥ 0 and � Ω ρ 0 = � Ω ρ 1 = 1.

Average w.r.t the Wasserstein distance

The average, or barycenter, minimizes W 2 (ρ, ρ 0 ) 2 + W 2 (ρ, ρ 1 ) 2 . It is also the optimal ρ in the definition of W 2 (ρ 0 , ρ 1 ) 2 at time t = 1/2.
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Example of use of the Wasserstein distance We control the initial condition h 0 only, thanks to the Wasserstein cost function J W . We set u 0 = 0.

✬ ✫ ✩ ✪ t 1 t 2 t 3 t 4 t 5 t 6
The observations of h true at times t i Specifities on using the Wasserstein distance

• The Wasserstein distance is only defined for probability measures, i.e. ρ s.t.

ρ ≥ 0 and

� Ω ρ = 1
Relaxations of the latter constraint are possible, however complex;

• the W 2 interpolation works well if ρ 0 and ρ 1 are of distinct support;

• when J (ρ n 0 ) → min ρ0 J (ρ 0 ), then there is only weak convergence of ρ n 0 to ρ opt 

(

  Source : Cuturi, Doucet, Fast computation of Wasserstein barycenters) ← Images to interpolate ← Euclidean barycenter ← Wasserstein barycenter Results on a Shallow-water equation Let the model M be a Shallow-Water equation, with initial condition (h 0 , u 0 ), ∇u = -g∇h.

✪

  Analysis h 0 of the assimilation when using the Euclidean (L 2 ) or the Wasserstein (W 2 ) distance. h and u for the background and true states, as well as analysis for Euclidean and Wasserstein distances, at time t = t 6

0 :

 0 oscillations or diracs can occur! • Computing the Wasserstein distance is expensive [Peyré, Papadakis, Oudet, 2013];• The minimization of J W is performed through a gradient descent, using the Wasserstein gradient, arising from the use of the following Wasserstein scalar product depending on ρ 0 , For η, η � s.t.Let Φ, Φ � s.t. -div(ρ 0 ∇Φ) = η (with Neumann BC) -div(ρ 0 ∇Φ � ) = η � Then �η, η � � W = � Ω ρ 0 ∇Φ • ∇Φ � dx.[Reference] Nelson Feyeux, Maëlle Nodet, Arthur Vidard. Optimal Transport for Data Assimilation. 2016. <hal-01342193>This work has been supported by the region Rhône-Alpes.