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Data assimilation

Given
• a physical system and its state x(t, x);
• partial observations of the system (yo

i )i;
• a (numerical) model M simulating the evo-

lution of x;

✬

✫

✩

✪

E.g., for the atmosphere, the
state x(t, x, y) gathers the differ-
ent variables
• humidity H(t, x, y);
• velocities u(t, x, y);
• temperature T (t, x, y);
• pressure p(t, x, y).

Can we estimate the initial condition x0 of the system?

t0 − 8h t0 − 6h t0 − 4h t0 − 2h

Variational data assimilation consists in retrieving x0 by minimizing
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It is common for the distance d to be a weighted L2 distance. Our main goal to
use the Wasserstein distance W2 instead, which seems very interesting when dealing
with dense data (see right panel). The Wasserstein cost function writes
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Optimal transportation and the Wasserstein distance

For two functions ρ0(x) and ρ1(x), the square of the Wasserstein distance
W2(ρ0, ρ1) is defined as the minimal kinetic energy necessary to transport ρ0 to ρ1,

W2(ρ0, ρ1)
2 := inf

(ρ(t, x),v(t, x))
∂tρ + div(ρv) = 0

ρ(0, x) = ρ0(x), ρ(1, x) = ρ1(x)

1

2

��

[0,1]×Ω

ρ|v|2 dtdx.

For the Wasserstein distance to be well-defined, one needs

ρ0 ≥ 0, ρ1 ≥ 0 and
�

Ω

ρ0 =

�

Ω

ρ1 = 1.

Average w.r.t the Wasserstein distance
The average, or barycenter, minimizes W2(ρ, ρ0)

2 + W2(ρ, ρ1)
2. It is also the

optimal ρ in the definition of W2(ρ0, ρ1)
2 at time t = 1/2.

ρ0 ρ1

W2 average L2 average

Example of use of the Wasserstein distance

(Source : Cuturi, Doucet, Fast computation of Wasserstein barycenters)

← Images to interpolate
←Euclidean barycenter
←Wasserstein barycenter

Results on a Shallow-water equation

Let the model M be a Shallow-Water equation, with initial condition (h0, u0),

M :





∂h

∂t
+ div(ρu) = 0

∂u

∂t
+ u ·∇u = −g∇h.

We control the initial condition h0 only, thanks to the Wasserstein cost function JW . We
set u0 = 0.✬

✫

✩

✪

t1 t2 t3 t4 t5 t6

The observations of htrue at times ti
✬

✫

✩

✪True and background initial conditions

Results :

✬

✫

✩

✪

Analysis h0 of the assimilation when using the Euclidean (L2) or the Wasser-
stein (W2) distance.

✬

✫

✩

✪

Values of h and u for the background and true states, as well as analysis for
Euclidean and Wasserstein distances, at time t = t6

Specifities on using the Wasserstein distance

• The Wasserstein distance is only defined for probability measures, i.e. ρ s.t.

ρ ≥ 0 and
�

Ω

ρ = 1

Relaxations of the latter constraint are possible, however complex;
• the W2 interpolation works well if ρ0 and ρ1 are of distinct support;
• when J (ρn0 ) → minρ0 J (ρ0), then there is only weak convergence of ρn0 to ρopt

0 :
oscillations or diracs can occur!

• Computing the Wasserstein distance is expensive [Peyré, Papadakis, Oudet, 2013];

• The minimization of JW is performed through a gradient descent, using the Wasser-
stein gradient, arising from the use of the following Wasserstein scalar product de-
pending on ρ0,

For η, η� s.t.
�

Ω

η =

�

Ω

η� = 0

Let Φ,Φ� s.t. −div(ρ0∇Φ) = η (with Neumann BC)
−div(ρ0∇Φ�) = η�

Then �η, η��W =

�

Ω

ρ0∇Φ ·∇Φ� dx.

[Reference] Nelson Feyeux, Maëlle Nodet, Arthur Vidard. Optimal Transport for Data Assimilation. 2016. <hal-01342193>

This work has been supported by the region Rhône-Alpes.


