Optimal Transportation for Data Assimilation
Nelson Feyeux, Maëlle Nodet, Arthur Vidard

To cite this version:
Nelson Feyeux, Maëlle Nodet, Arthur Vidard. Optimal Transportation for Data Assimilation. 5th International Symposium for Data Assimilation (ISDA 2016), Jul 2016, Reading, United Kingdom. , 2016. hal-01349637

HAL Id: hal-01349637
https://hal.science/hal-01349637
Submitted on 28 Jul 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Given a physical system and its state $x(t, x, y)$, partial observations of the system (y_i), and a (numerical) model M simulating the evolution of x:

Let the model M with dense data (see right panel). The Wasserstein cost function writes $W_{2(\rho, \rho_0)}$.

It is common for the distance ρ to be defined as the minimal kinetic energy necessary to transport ρ_0 to ρ, i.e.

$$W_{2(\rho, \rho_0)}^2 = \inf_{\eta} \frac{1}{2} \int \rho(\eta(x) - x)^2 dx.$$

Let $h = 2\rho$. For two functions $\rho_0(x)$ and $\rho_1(x)$, the square of the Wasserstein distance $W_{2(\rho_0, \rho_1)}$ is defined as the minimal kinetic energy necessary to transport ρ_0 to ρ_1:

$$W_{2(\rho_0, \rho_1)}^2 = \inf_{\eta} \frac{1}{2} \int \rho(\eta(x) - x)^2 dx.$$

Can we estimate the initial condition x_0 of the system?

Variational data assimilation consists in retrieving x_0 by minimizing

$$J(x_0) := \sum_i d\left(\mathcal{H}_i \mathcal{M}_i(x_0), y_i^0\right)^2 + \omega d(x_0, x^0)^2.$$

It is common for the distance d to be a weighted L^2 distance. Our main goal is to use the Wasserstein distance W_2 instead, which seems very interesting when dealing with dense data (see right panel). The Wasserstein cost function writes

$$J_N(x_0) := \sum_i W_2(\mathcal{H}_i \mathcal{M}_i(x_0), y_i^0)^2 + \omega W_2(x_0, x^0)^2.$$

Results on a Shallow-water equation

Let the model M be a Shallow-Water equation, with initial condition (h_0, u_0).

$$\mathcal{M}:
\begin{align*}
th \frac{\partial h}{\partial t} + \text{div}(hu) &= 0, \\
h \frac{\partial u}{\partial t} + u \cdot \nabla u &= -gVh.
\end{align*}$$

We control the initial condition h_0 only, thanks to the Wasserstein cost function J_N. We set $u_0 = 0$.

The observations of h^{true} at times t_i.

The average, or barycenter, mininmizes $W_2(\rho, \rho_0)^2 + W_2(\rho, \rho_1)^2$. It is also the optimal ρ in the definition of $W_{2(\rho_0, \rho_1)}$ at time $t = 1/2$.

Example of use of the Wasserstein distance

Optimal transportation and the Wasserstein distance

For two functions $\rho_0(x)$ and $\rho_1(x)$, the square of the Wasserstein distance $W_{2(\rho_0, \rho_1)}$ is defined as the minimal kinetic energy necessary to transport ρ_0 to ρ_1:

$$W_{2(\rho_0, \rho_1)}^2 = \inf_{\eta} \frac{1}{2} \int \rho(\eta(x) - x)^2 dx.$$

Average w.r.t the Wasserstein distance

The average, or barycenter, mininmizes $W_2(\rho, \rho_0)^2 + W_2(\rho, \rho_1)^2$. It is also the optimal ρ in the definition of $W_{2(\rho_0, \rho_1)}$ at time $t = 1/2$.

Results:

Analysis h_0 of the assimilation when using the Euclidean (L^2) or the Wasserstein (W_2) distance.

Values of h and u for the background and true states, as well as analysis for Euclidean and Wasserstein distances, at time $t = t_0$.

Specificities on using the Wasserstein distance

- The Wasserstein distance is only defined for probability measures, i.e. ρ s.t. $\rho \geq 0$ and $\int \rho = 1$.

- The minimization of J_N is performed through a gradient descent, using the Wasserstein gradient, arising from the use of the following Wasserstein scalar product depending on ρ_0.

- The Wasserstein distance $W_{2(\rho, \rho_0)}$ is defined as the minimal kinetic energy necessary to transport ρ_0 to ρ.

- The Wasserstein distance $W_{2(\rho, \rho_0)}$ is defined as the minimal kinetic energy necessary to transport ρ_0 to ρ.

- The Wasserstein distance $W_{2(\rho, \rho_0)}$ is defined as the minimal kinetic energy necessary to transport ρ_0 to ρ.

- The Wasserstein distance $W_{2(\rho, \rho_0)}$ is defined as the minimal kinetic energy necessary to transport ρ_0 to ρ.

$$\text{For } \eta, \eta' \text{ s.t. } \int_I \eta = \int_I \eta' = 0 \quad \text{Let } \Phi, \Phi' \text{ s.t. } -\text{div}(\rho_0 \nabla \Phi) = \eta \text{ (with Neumann BC)}$$

$$\text{and } -\text{div}(\rho_0 \nabla \Phi') = \eta' \quad \text{Then } (\eta, \eta')_W = \int_I \rho_0 \nabla \Phi \cdot \nabla \Phi' dx.$$