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Abstract

In this work we introduce and analyze a novel Hybrid High-Order method for the steady in-
compressible Navier—Stokes equations. The proposed method is inf-sup stable on general polyhedral
meshes, supports arbitrary approximation orders, and is (relatively) inexpensive thanks to the possi-
bility of statically condensing a subset of the unknowns at each nonlinear iteration. We show under
general assumptions the existence of a discrete solution, which is also unique provided a data small-
ness condition is verified. Using a compactness argument, we prove convergence of the sequence of
discrete solutions to minimal regularity exact solutions for general data. For more regular solutions,
we prove optimal convergence rates for the energy-norm of the velocity and the L?-norm of the
pressure under a standard data smallness assumption. More precisely, when polynomials of degree
k > 0 at mesh elements and faces are used, both quantities are proved to converge as h**! (with h
denoting the meshsize).

2010 Mathematics Subject Classification: 65N08, 65N30, 65N12, 35Q30, 76D05

Keywords: Hybrid High-Order, incompressible Navier—Stokes, polyhedral meshes, compactness, error
estimates

1 Introduction

In this work we introduce and analyze a novel Hybrid High-Order (HHO) method for the steady incom-
pressible Navier—Stokes equations. The proposed method is inf-sup stable on general meshes including
polyhedral elements and nonmatching interfaces, it supports arbitrary approximation order, and has a
reduced computational cost thanks to the possibility of statically condensing a subset of both velocity
and pressure degrees of freedom (DOF's) at each nonlinear iteration. A complete analysis covering general
data is provided.

Let Q < RY, d € {2,3}, denote a bounded connected open polyhedral domain. We additionally assume
that © does not have cracks, i.e., it lies on one side of its boundary. The incompressible Navier—Stokes
problem consists in finding the velocity field w : 2 — R? and the pressure field p : © — R such that

—vAu+Vuu+Vp=Ff inQ, (1a)
divu =0 in Q, (1b)

u=0 on 012, (1c)
(1d)

fp=Q
Q
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where v > 0 denotes the (constant) kinematic viscosity and f € L2(Q)¢ a volumetric body force. For the
convective term, here and in what follows we will use the matrix-vector product notation with vector
quantities treated as column vectors, so that, e.g., Vuu = (Z?=1(6jui)uj)1<i<d with u; denoting the ith
component of u and @; the derivative along the jth direction. Let U := H}(2)? and P := L3(Q) with
L3(Q) == {qe L*(Q) | §,q =0}. A classical weak formulation of problem (1)) reads: Find (u,p) € U x P
such that

va(u,v) + t(u,u,v) + b(v,p) = J fv YVveU, (2a)
Q

with bilinear forms ¢ : U x U - Rand b: U x P — R and trilinear form ¢ : U x U x U — R such that

a(u,v) = JQ Vu:Vo, b(v,q) = — Jﬂ(divv)q, t(w, u,v) := %Jﬂ vIVuw — % JQ uTVow, (3)

where T denotes the transpose operator. Notice that all the discussion below can be extended to more

general boundary conditions, but we stick to the homogeneous Dirichlet case for simplicity of exposition.
Also, the modifications to handle variable kinematic viscosities are briefly discussed in Remark

The literature on the numerical approximation of problem is vast, and giving a detailed account
lies out of the scope of the present work. We therefore mention here only those numerical methods
which share similar features with our approach. The possibility to increase the approximation order
and, possibly, to use general meshes meshes analogous to the ones considered here are supported by
discontinuous Galerkin (DG) methods. Their application to the incompressible Navier—Stokes problem
has been considered in several works starting from the early 00’s; a non exhaustive list of references
includes [3H515]/19}33})351/42/43]; cf. also |20, Chapter 6] for a pedagogical introduction. The Hybridizable
discontinuous Galerkin (HDG) method of [10,/14] has also been applied to the discretization of the
incompressible Navier-Stokes equations in several recent works [11,31,/39,4144]. Albeit this is not
explicitly pointed out in all of the above references, also HDG methods often support general meshes
as well as the possibility to increase the approximation order. The relation between HDG and HHO
methods (originally introduced in [21] in the context of quasi-incompressible linear elasticity) has been
recently explored in [13] for a pure diffusion problem. High-order discretizations on general meshes are
also provided by the Virtual Element Method; see, e.g., [6], where a divergence-free virtual space for the
Stokes problem is proposed.

The HHO scheme studied in this work hinges on DOFs located at mesh elements and faces that are
discontinuous polynomials of degree k > 0. Based on these DOFs, by solving local problems inside
each element we obtain reconstructions of the velocity and of its gradient that are used to formulate
the diffusive and convective terms in the momentum balance equation, as well as a reconstruction of
the divergence used in the velocity-pressure coupling terms. More precisely, the discretization of the
viscous term stems from a variation of the diffusive bilinear form originally introduced in [22]; for the
convective term, we use a skew-symmetric formulation designed so as not to contribute to the kinetic
energy balance; the velocity-pressure coupling is, on the other hand, analogous to that of [2,[23].

The resulting method has several advantageous features: (i) it supports general meshes possibly including
polyhedral elements and nonmatching interfaces (resulting, e.g., from nonconforming mesh refinement);
(ii) it allows one to increase the spatial approximation order to accelerate convergence in the presence
of (locally) regular solutions; (iii) it is (relatively) inexpensive thanks to the possibility of statically
condensing all element-based velocity DOFs and all but one pressure DOF per element at each non-
linear iteration (cf. Remark [L0[ below for further details). Additionally, thanks to the underlying fully
discontinuous polynomial spaces, the proposed method can be expected to accommodate abrupt spatial
variations of the unknowns. Existence of a discrete solution is proved in Theorem [12] below for general
data resorting to classical arguments in nonlinear analysis [16]. Uniqueness, on the other hand, is shown
in Theorem [I3] below under a standard smallness assumption on the volumetric body force.

A complete convergence analysis of the method is carried out. First, using a compactness argument
inspired by the recent literature on finite volume methods (cf., e.g., [12,/28-30]), we show in Theorem
below that the sequence of discrete solutions on a refined mesh family converges (up to a subsequence)



to the continuous one for general data and without assuming more regularity for the exact solution than
required by the weak formulation. Convergence extends to the whole sequence when the continuous solu-
tion is unique. The use of compactness techniques in the context of high-order methods is quite original;
see, e.g., [19,20,38] concerning the incompressible Navier—Stokes problem. Key technical results required
to prove convergence by compactness are the discrete Sobolev embeddings and Rellich—-Kondrachov com-
pactness results recently proved in |17] in the context of nonlinear Leray—Lions problems.

Then, in Theorem [15| below, we prove error estimates for regular exact solutions under a suitable data
smallness assumption. When polynomials of degree k > 0 are used, we show that both the energy-norm
of the velocity and the L?-norm of the pressure converge as h**! (h denotes here the meshsize). These
convergence rates are similar to the ones recently derived in [41] for a HDG method with pressure and
velocity spaces chosen as in [26,/45]. A major difference with respect to [41] is that we obtain them
here using polynomials k instead of (k + 1) inside mesh elements (this is precisely one of the major
outcomes of the HHO technology identified in [13]). Another difference with respect to [11,41] is that
our trilinear form is expressed in terms of a discrete gradient reconstruction and designed so that it does
not contribute to the kinetic energy balance, a feature which simplifies several arguments in the analysis;
cf. Remark [§| for further details. We also show numerically that the L?-norm of the error on the velocity
converges as hF+2,

The rest of this paper is organized as follows. In Section [2] we introduce mesh-related notations and
recall a few basic results on broken functional spaces. In Section [3] we define the local reconstructions,
formulate the discretizations of the various terms appearing in , and state the discrete problem. In
Section [4] we discuss the existence and uniqueness of a discrete solution, prove convergence to minimal
regularity exact solutions for general data, and estimate the convergence rate for smooth exact solutions
and small data. The theoretical results are illustrated on a numerical example including a comparison
with a HDG-inspired trilinear form. In Section [5] we give proof of the properties of the viscous and
velocity-pressure coupling bilinear forms and of the convective trilinear form used in the analysis.

2 Mesh and basic results

Let # < R{ denote a countable set of meshsizes having 0 as its unique accumulation point. We consider
refined mesh sequences (7;,)nen where, for all h € H, T, = {T'} is a finite collection of nonempty disjoint
open polyhedral elements such that Q = UTeTh T and h = maxge7, hr (hr stands for the diameter of
T). For all h € H, the set of mesh faces Fy, is a finite collection of disjoint subsets I of Q such that, for
any F € F,, F is an open subset of a hyperplane of R? such that |F|;_; > 0 and |F\F|s_1 = 0 with |-|q_1
denoting the (d — 1)-dimensional Hausdorff measure. Additionally, it holds that (Jyer, 0T = Uper, F
and, for all F' € F},, (i) either there exist 77,75 € Ty, such that F' = 077 n 0T (and F' is an interface)
or (ii) there exists T' € T, such that F = 0T n 02 (and F is a boundary face). The set of interfaces is
denoted by F., the set of boundary faces by F7, and it holds that F;, = F. U F}. For all T € Ty, the set
Fr :={F € F, | F c 0T} collects the faces lying on the boundary of T and, for all F' € Fr, we denote
by nrp the normal to F' pointing out of 7. A normal vector np is associated to each internal face by
fixing once and for all an (arbitrary) orientation, whereas for boundary faces npg points out of Q.

We assume that (7p)pen is admissible in the sense of [20, Chapter 1], i.e., for all h € H, T;, admits a
matching simplicial submesh T}, and there exists a real number ¢ > 0 (the mesh regularity parameter)
independent of h such that the following conditions hold: (i) for all h € H and every simplex S € Tj
of diameter hg and inradius rg, phs < rg; (ii) for all h € H, all T € Tj, and all S € T, such that
S c T, ohr < hg. We refer to |20, Chapter 1] and [17,/18] for a set of geometric and functional analytic
results valid on admissible meshes. We recall, in particular, that, under these regularity assumptions,
the number of faces of each element is uniformly bounded.

Let X be a subset of R? and, for an integer I > 0, denote by P!(X) the space spanned by the restrictions
to X of polynomials in the space variables of total degree [. In what follows, the set X will represent a
mesh element or face. We denote by b : L'(X) — P!(X) the L?-orthogonal projector such that, for all



ve LY(X),
fX(v —rhv)w =0 Yw e P1(X). (4)

The vector- and matrix-valued L?-orthogonal projectors, both denoted by 7rlX, are obtained applying

7rlX component-wise. The following optimal W#P-approximation properties are proved in |17, Appendix

A 2] using the classical theory of |25] (cf. also [9, Chapter 4]): There is C' > 0 such that, for all [ > 0,
all he H,all T e Ty, all se {1,...,1+ 1}, all pe [1,+0], all v e W*P(T), and all m € {0,...,s — 1},

1
[v = whvlwma () + hi v — Tpvlwms () < CRE ™ [0lwen (), (5)

where W™P(Fr) is spanned by functions that are in WP (F) for all F' € Fp. At the global level, the
space of broken polynomial functions on 7y, of degree [ is denoted by P!(73), and 7}, is the corresponding
L2-orthogonal projector. The broken gradient operator on 7y, is denoted by Vj,.

Let p € [1,+00]. We recall the following continuous trace inequality: There is C > 0 such that, for all
heH and all T € Ty, it holds for all ve WhP(T),

1
h;‘ Hv”LP(é‘T) <C (HUHLP(T) + hTHVUHLp(T)d) . (6)
Let an integer [ > 0 be fixed. Using @ followed by the discrete inverse inequality
IVolLoirys < Chzt o] Loy, (7)

valid for all T € T;, and v € PY(T') with C' > 0 independent of h and of T', we obtain the following discrete
trace inequality: There is C' > 0 such that, for all h € H and all T € 7y, it holds for all v € P{(T),

1
hillvlLeory < ClvlLer)- (8)
Throughout the paper, we often write a < b (resp. a 2 b) to mean a < Cb (resp. a > Cb) with real

number C' > 0 independent of the meshsize h and of the kinematic viscosity v. Constants are named
when needed in the discussion.

3 Discretization

In this section we define the discrete counterparts of the various terms appearing in , state their
properties, and formulate the discrete problem.

3.1 Discrete spaces

Let a polynomial degree k > 0 be fixed. We define the following hybrid space containing element-based
and face-based velocity DOF's:

Uj = ( X P’“(T)d> x ( X P’“(F)d>~ (9)
TeTh FeFy

For the elements of U} we use the underlined notation v;, = ((v7)reT,, (VF)rez, ). We define the global
interpolator It : H'(Q)% — U such that, for all v € H!(Q),

lZ'U = ((Wl;"v)TeTha (W]%U)Fe]-‘h) .

For every mesh element 1" € T, we denote by Qifp and I’ ]% the restrictions to 1" of Ql,i and I ]fl, respectively.
Similarly, v, = (vr, (VF)per,) denotes the restriction to T of a generic vector v, € Uy. Also, for an



element v, € Qﬁ, we denote by vy (no underline) the broken polynomial function in P*(7;,)? such that
v = v for all T' € Tj,. Finally, we define on U Z the following seminorm:

%,h = 2 |vp ?,T7 (10)
TeT

|y,

where, for all T € Ty,

1 ors loplfor = Z he'|vr —vr|%. (11)
FE]‘—T

%,T = |Vor|7 + |vp

|lvp

The following boundedness property holds for the global interpolator I 2: For all v e H'(Q)4,
[Liolhn < Crllola @, (12)

with real number C; > 0 independent of h. Its proof relies on the stability properties of the L?-projectors
on elements and faces proved in [17].

The following velocity and pressure spaces embed the homogeneous boundary conditions for the velocity
and the zero-average constraint for the pressure, respectively:

Uy, = {yh eUy |vp=0 VFef};}, Py = {qh € P*(Th) ’ J an = o}. (13)
Q

It is a simple matter to check that the map |[|-[|1; defines a norm on U’ ’fL,O. We also note the following
discrete Sobolev embeddings, a consequence of |17, Proposition 5.4]: Forall p € [1,+0) ifd = 2, p € [1, 6]
if d = 3, it holds for all v,, € QZ’O,

lvnlze @) < Csllwp i, (14)

with real number Cs > 0 independent of h.

3.2 Reconstructions of differential operators

Let an element T € 7T, be fixed. For any polynomial degree | > 0, we define the local gradient recon-
struction operator G : U% — PY(T)#*4 such that, for all v, € U% and all T € P/(T)4x4,

JT GhupT = —J-T vy (divT) +F€Z}:-T JF vi (Tnrr) (15a)

- JT Vorr+ Y] L@F ~—op)(rnrp), (15b)

FEJ:T

where we have used integration by parts to pass to the second line. In (15a)), the right-hand is designed
to resemble an integration by parts formula where the role of the function in volumetric and boundary
integrals is played by element-based and face-based DOFs, respectively.

For the discretization of the viscous term, we will need the local velocity reconstruction operator r’;fl :

U% — PF1(T)? obtained in a similar spirit as G5 and such that, for all v, € U%.,

J VrkHly, Vw = —f v Aw + Z vp-(Vwnrp) Yaw e P*+HL(T)4, (16)
T T FeFr F

with closure condition {,(rf v, —vr) = 0.

Finally, we define the discrete divergence operator DX : U% — P¥(T') such that, for all v, € U% and all
q € P¥(T),

J Dijvgpq = —J vr-Vg+ Y. | (vrnrr)g (17a)
T T FeFr F
= f (divor)g+ >, | (vr—wvr)nrrg, (17b)
T FE]‘—T F



where we have used integration by parts to pass to the second line. By definition, we have

DE = tr(G%). (18)

We also define global versions of the gradient, velocity reconstruction, and divergence operators letting
Gl Uy — PYT,) ™, vhtl . UF — PH1(T)? and Df : Uy — P*(T,) be such that, for all v, € U},
and all T € Tp,

k+1

(Glvp)ir i= Ghop, (P = kv, (Dfvy)ir = Dhwg.

Proposition 1 (Properties of Gﬁl) The global discrete gradient operator Gﬁl satisfies the following
properties:

1) Boundedness. For alll >0 and all v, € U¥, it holds

l
|Ghvnlz@yaxa < |vpf1n- (19)

2) Consistency. For alll >0 and all ve H™(Q)? withm =1+ 2 if | < k, m = k + 1 otherwise,

3
|G I — Vol p2(qyaxe + < Z hy|GY Ik — V’U|2L2(9T)dxd> < hmﬂ”UHHm(Q)d' (20)
TeTh

As a consequence, for all ® € CX(Q)? and all I,k such that m > 1 (i.e., provided | = 0 if k = 0),
GLI}® — V& strongly in L?(Q)4*9,

3) Sequential consistency. Let (v),)nen denote a sequence in (Q];L,O)he’}.t bounded in the |-|1 n-norm.
Then, there is v € U such that, as h — 0, up to a subsequence,

e v;, — v strongly in LP(Q)? for all pe [1,+m) ifd=2, pe [1,6) if d = 3;
o Glv, — Vv weakly in L*(Q)?*? for all 1 > 0.

Proof. 1) Boundedness. Let an element T € T, be fixed, make 7 = G, in (T5b) and use the Cauchy—
Schwarz inequality followed by the discrete trace inequality with p = 2 to infer, for all v, € U ;,

|Grvr| L2 (ryaxa < Jvg|ir-

Squaring the above inequality and summing over T € Tj,, follows.

2) Consistency. Let v e H™(Q)9. For all T € Ty, plugging the definition of l’%v into (15a)), we get, for
all T e PY(T)4xd]

| @i -voyr -~

(mhv —v)-(divT) + Z f (7w —v)-(Tnrr). (21)
T FeFp F

Recalling the definition of & and 7%, we get from the previous expression that
vn <k, f (GhIkv —Vo)r =0 YrePY(T)™ (22)
T

since (divr) € P~ 1(T)? <« P¥(T)? and 7 pnrp € P"(F)? < PE(F)%. If | < k, this shows in particular
that for all 7" € 7, it holds
Gy Ikv = b Vo, (23)

and is an immediate consequence of the approximation properties (5] of the L2-orthogonal projector.

On the other hand, if [ > k, making T = GlTlév 77T§LV’U in and using the Cauchy—Schwarz, discrete
inverse (7)) and trace inequalities (both with p = 2) to bound the right-hand side, we infer

||Gé~l§w’0 - ﬂ%V’UHLz(T)dxd < th'UHHkJrl(T)d. (24)



Hence, using the triangle inequality, we arrive at
Lk
|G Lyv — V| g2 (pyaxa < h”lc“”vHH’““(T)da

and the bound for the first term in follows squaring and summing over 7' € T,. To prove the bound
for the second term we observe that it holds, for all T € Ty,
5l Tk Tl Tk ! 3.1
h%”GTlT’U — V’UHLZ(aT)dxd < h%HGTlT’U — WTVUHLZ((‘)T)dXd + hwaﬂ'Tvv — V’UHLz(aT)dxd
1 1k
< |GrLiv — 7 Vo] 2 ryaxa + B v i gya
where we have inserted +m} Vv inside the norm and used the triangle inequality in the first line, while
we have used the discrete trace inequality with p = 2, and the approximation properties of 7rlT to pass

to the second line. Using to estimate the first term in the right-hand side of the above inequality,
the bound for the second term in is readily proved squaring and summing over T € 7.

3) Sequential consistency. The proof for | = k in the scalar case is given in |17, Proposition 5.6]. A close
inspection shows that the arguments still stand when [ # k provided that we replace 7k.® by #%.®. O

Remark 2 (Commuting property for D’,fb) Combining with , it is a simple matter to infer the
following commuting property for DZ: For all v e U,

DiItw = ¥ (divw). (25)
This property is crucial to prove the inf-sup condition of Proposition [J] below using classical arguments

in the analysis of saddle-point problems (cf., e.g., the reference textbook [8]).

3.3 Viscous term

The viscous term is discretized by means of the bilinear form aj;, on QZ xQ’fL such that, for all u,, v;, € QZ,

an(uy,vy,) = L Glw,:Grv, + sp(w,,vy,), (26)

with stabilization bilinear form s; defined as follows:

snwy,v,) == ), Y hy! L 8 puur-8 pur,

TeTn, FEFT

where, for all T € 7, and all F € Fr, we have introduced the face-based residual operator 8%, : Uk —
P*(F)? such that
87 pvp = h (ve — 75 o — wh(vr — i og)) . (27)

This specific form of the penalized residual ensures the following consistency property (cf. [22, Remark
6] for further insight): For all v € H*+2(Q),

1
sn(Lpv, ITv)2 < hWF v ez (. (28)

The proof of the following result is postponed to Section [5.1
Proposition 3 (Properties of ay). The bilinear form ay, has the following properties:

1) Stability and boundedness. It holds, for all v, € Qlfb,
Ca_luﬂhﬁ,h < Hthi,h = an(vy,,v),) < CaHQhH%,ha (29)

with real number C, > 0 independent of h. Consequently, the map |-|a,n defines a norm on QZ,O
uniformly equivalent to |-|1,n-




2) Consistency. For allve U n H**2(Q)4, it holds

Dvwy, + an(Liv,w,)| < B o] s oo, (30)
Q

sup
ﬂhegﬁ,oy”ﬂh [1,n=1

3) Sequential consistency. Let (v,)nen denote a sequence in (Qﬁ,o)heq{ bounded in the |-|1,n-norm with
limit v € U (cf. point 8) in Proposition . Then, it holds for all ® € C*(Q)?, as h — 0, up to a
subsequence,

an(vy, Iy ®) — a(v, ®).

Some remarks are of order.

Remark 4 (Alternative viscous bilinear form). An alternative choice corresponding to the original HHO
bilinear form of [22] is

an(wy,,vy) = J Vhrﬁﬂﬂmvh’"ﬁ“ﬂh + sn(wy,vy),
Q

where the difference with respect to (26)) lies in the fact that Vh'r ! replaces GF 5 in the consistency term.
Properties 1)-2) in Proposition [3] are btralghtforward consequences of [22, Lemma 4 and Theorem 8],
respectively. Property 3), on the other hand, would require proving for Vrkt n ! sequential consistency
as in point 3) of Proposition || I

Remark 5 (Variable kinematic viscosity). A more general form for the viscous term in accommo-
dating variable kinematic viscosities v : 2 — R is

—diveo(u), o(u) = 2vVsu,

where Vy denotes the symmetric gradient operator. Our discretization can be modified to accommodate
this case adapting the ideas developed in [21] in the framework of linear elasticity. Assume, for the sake
of simplicity, that v is piecewise constant on a partition of 2, and that for all h € H the mesh 7} is
compliant with the partition (so that jumps of v only occur at interfaces). For all T € Tj, we define the
discrete symmetric gradient operator GfﬁT = %(G’]% + (GZ})T) (with G%. defined by (T5a))) and we use
instead of the velocity reconstruction such that, for all v, € Q’%,

f Vsrl;flyT:VSw = —f vr-div(Vsw) Z J v (Vswnrr) Yw € Pk+1(T)d (31a)
T T FE]‘—T

and
f (ri oy —vr) =0, f Veritlo, = J nrr @Up —vp @ NyE) . (31b)
T T FE]:T

Letting G¥ B ;U — PFH1(T;)9%d be such that, for all v, € U}, (nyhyh)w = GS’TQT, the viscous term
in - below is discretized by means of the bilinear form

k k
ayn (W, vy) = J 220G puy, - GG vy, + sun(wy, vy),
Q
with stabilization bilinear form

2VT
su.n(up,vy,) 1= 5TF“T 5TFQT»
TG’Th FE]'—T

where vr = v € P(T) and 6T r is formally defined as in (27)) but using the velocity reconstruction
operator defined by . In the analysis, the main difference Wlth respect to constant kinematic viscosi-
ties is that the polynomial degree k should be taken > 1 in order to ensure coercivity by a discrete Korn
inequality (cf. in particular [21, Lemma 4] for insight into this point).



3.4 Convective term

For the discretization of the convective term, we consider here the following trilinear form on U} x U} x
Qﬁ expressed in terms of the discrete gradient operator Gik:

1 1
th(wp, wy,vy,) == 5 L UEGikEh wp — 5 J-Q UEGikﬂh Wh,. (32)

This expression mimicks the continuous one given in (3) with G replacing the continuous gradient
operator. Notice that, in the practical 1mplementat10n one does not need to actually compute G
evaluate t. Instead, the following expression can be used, obtained by applying (15a) twice to expand
the terms involving G2’C

tn(wy, wy,vp) = D) tr(wp, up, vy),

TeTh
where, for all T € Ty,
1 T 1 T
tr(wp, Up, vp) 1= ~3 upVor wr + 3 vpVur wr
T T (33)
1 1
+ 5 Z (up~'vT)(wT~nTF) — 5 Z (vF~uT)(wT~nTF).
F F
FeFr FeFr
The proof of the following result is postponed to Section [5.2]
Proposition 6 (Properties of t;,). The trilinear form t;, has the following properties:
1) Skew-symmetry. For all v;,w,; € Qi,m 1t holds
th(wy, vy, vy) = 0. (34)
2) Boundedness. For all w,, v, w,;, € Qﬁ,o, it holds
[th(wy,, wy, vp)| < C|w (35)
with real number Cy > 0 independent of h.
3) Consistency. For allve U n H**2(Q)? such that dive = 0, it holds
sup f wiVv v —ty (I, Iv,w,)| < hk+1HUHH2(Q)dHU”HYC+2(Q)d. (36)
w,; eU h() ”whHl n=1

4) Sequential consistency. Let (v;,)nen denote a sequence in (Q]Z,o)heﬂ bounded in the |-|1,n-norm with
limit v e U (cf. point 8) in Proposition . Then, for all ® € C*(Q)? it holds, as h — 0, up to a
subsequence,

th(yh,yh,ﬁi{)) — t(v,v, ®). (37)

Some remarks are of order.

Remark 7 (Design guidelines). The trilinear form ¢; appears in the analysis carried out in Section
only through its properties detailed in Proposition [6] with the sole exception of Step 4 in the proof of
Theorem (strong convergence of the pressure), which requires a more intimate use of its expression.
Such properties can therefore be intended as design guidelines.

Remark 8 (Comparison with a HDG discretization). A discretization of the convective term inspired by
the recent HDG literature is obtained replacing t; by

tI}:IDG (wh7 Uy, vh Z tHDG(wT7 ur, vT) (38)
TeTh



where, for all T € Ty,

1
u%VvT wr + 3 J v%VuT wr

1
a }
P (W, wp, vyp) = _if .

T
" % F;FT JF(UF.UT)(wF.nTF) B % F;FT JF(UF'UT)(U’F'RTF)

+Q Z (UF—UT)'(UF—UT)|1UF-’I’LTF|.
FE]‘—T F

This discretization has been recently proposed in [41] (cf. Definition 3.3 therein and also [11]), where a
HDG method is considered with element-based DOFs that are polynomials of degree (k + 1) (recall that
here we use polynomials of degree k, cf. @) and the viscous term is discretized as in |37,/40] in order to
improve the convergence rates to match the ones of HHO methods (cf. [13] for further details, in particular
Remark 2.2). Comparing the above expression of t}P¢ with 7 we observe the following differences:
(i) wr replaces wr in both terms in the second line; (ii) a nonnegative stabilization corresponding to the
term in the third line is added, including an user-dependent parameter n > 0 (taken equal to 1 in [41]).
It can be proved that all the properties listed in Proposition |§| hold for tEDG with n = 0.

3.5 Pressure-velocity coupling

The pressure-velocity coupling is realized by means of the bilinear form b, on QZ X P}’f such that, for all
(Qhaqh) EQZ X P}]:7

br(vy,, qn) == —f DFv,qn. (39)
Q

The proof of the following result is postponed to Section [5.3]
Proposition 9 (Properties of by). The bilinear form by, has the following properties:

1) Inf-sup stability. For all g5, € Pf (with P} defined by (13))), it holds

lan]z2) < sup br (v, qn)- (40)

EheQ’;,mHﬂhHI,hzl

2) Consistency. For all g € H**1(Q) it holds

sup L Va-on = bu(wy, mhq)| £ B gl e o). (41)

EhEQZ,()vHEhHl,hZI

3) Sequential consistency. We have sequential consistency for by, in the following sense:

o Let (qn)nen denote a sequence in (PF)pez bounded in the L(Q)-norm and weakly converging to
qge P ash — 0, up to a subsequence. Then, for all ® e C*(Q)? it holds

b(IF®, q) — b(®, q). (42)

o Let (v),)nen denote a sequence in (Qlﬁ,o)hey bounded in the |-|1,n-norm with limit v e U (cf.
point 8) in Proposition . Then, for all p € CF(Q) it holds

by (v, Tp) — b(v, ). (43)

10



3.6 Discrete problem

The discrete problem reads: Find (w,,pp) € U}, o x Pf such that

vap(wy,, vy) + th(wy, wy, v,) + bp(vy, pr) = J fvn  Yu,eUl,, (44a)
Q
—bn(uy, qn) =0 Vg, € Py (44b)

Remark 10 (Efficient implementation). When solving the system of nonlinear algebraic equations corre-
sponding to by a first-order (Newton-like) algorithm, all element-based velocity DOFs and all but
one pressure DOF per element can be locally eliminated at each iteration by computing the corresponding
Schur complement element-wise. As all the computations are local, this static condensation procedure
is a trivially parallel task which can fully benefit from multi-thread and multi-processor architectures.
For the details, we refer to [23| Section 6.2], where the Stokes problem is considered (the only variation
here is that also the linearized convective term appears in the matrices therein denoted by Ar). As a
result, after the elimination to boundary DOF's corresponding to Dirichlet boundary conditions, we end
up solving at each iteration a linear system of size

k+d-1

dcard(F) ( d_1

) + card(Th,).

4 Analysis of the method

In this section we study the existence and uniqueness of the solution to the HHO scheme (44)), prove
convergence to the exact solution for general data, and derive convergence rates under a standard data
smallness assumption.

4.1 Existence and uniqueness

The existence of a solution to problem can be proved using the following topological degree lemma
(cf., e.g., |16]), as originally proposed in [27] in the context of finite volumes for nonlinear hyperbolic
problems; see also |19}|30] for the Navier—Stokes equations.

Lemma 11 (Topological degree). Let W be a finite-dimensional functional space equipped with a norm
|-lw, and let the function ¥ : W x [0,1] — W satisfy the following assumptions:

1) W is continuous;

2) There exists u > 0 such that, for any (w,p) € W x [0,1], U(w, p) = 0 implies |w|w # u;

3) W(-,0) is an affine function and the equation ¥(w,0) = 0 has a solution w € W such that |w|w < p.
Then, there exists w € V' such that ¥(w,1) =0 and |w|lw < p.

Theorem 12 (Existence and a priori bounds). There exists a solution (w,pn) € Qﬁo x PF to ,
which satisfies the a priori bounds

lwp 10 < CaCsv ™ £l L2 (s Ipnlr2@) < € (HfHL2(Q)d + V_2||fH%2(Q)d) ; (45)
with Cy and Cy as in and , respectively, and C > 0 real number independent of both h and v.

Proof. We consider the finite-dimensional space W}’f = QZO X P,’f equipped with the norm

|G, i) lwa == lwp 1 + v~ ral 2o

11



and the function ¥ : W} x [0,1] — W} such that, for given (w,,r,) € W} and p € [0,1], (&, Cn) =
U((wy,rr), p) is defined as the unique solution of

(&, vn)on = van(wy, v,) + ptp(wy,, wy, v,) + bp(vy, 1) — L fon Vv, eUky,, (46a)

J Chan = —bn(wy,, qn) Yy, € PF, (46b)
Q

where (.,.)o,5 is the L%-like scalar product on W} defined by

(wy,, vy )o.n = L wyvp+ YY) hFJ (wp —wr)-(vr —vr).

TeT, FeFr F

We next check the assumptions of the topological degree lemma.

)

2)

Since W,’f is a finite-dimensional space, the bilinear forms a; and by, the trilinear form ¢;, and the
scalar products are continuous, and so is the case for the function .

Let (wy,,r,) € WF be such that ¥((wy, 1), p) = (0,0) for some p € [0,1]. We next show that
I(awn )l < (CaCi + OO FlLzaqays + Co 1 F 2y,
and point 2) in Lemma [11}is verified for
p = (CaCs + CW | FlL2@ys + Cv 2| fl720ya + €

with € > 0. Recalling the coercivity of a; expressed by the first inequality in 7 making v, = w;, in
(46a) and observing that ¢, (w;,w,,w,) = 0 owing to skew-symmetry and that by (w;,,r,) =0
owing to (46b]) with g, = rp,, we have

v s |3 < vlw,? = L Fwn <|[flrz@elwnlrz@)e < Csl Fllrz@e|ws lin,

where we have used the discrete Poincaré inequality with p = 2 to conclude. The bound on w,,
follows. To prove the bound on 7}, we proceed as follows:

|2l z20) < sup br(vp, 1)

E]LEQ};,",YWHE;,, ”l,hzl

= sup (J- fon —vap(wy,, v;,) — Pth(whawhavh))
Q

E}LEQﬁ,oaHE}L ”1,h=1

S | Flez@a + viwpln + plwslf n < £l 2@ + v 721 £ 172 ()0

where we have used the inf-sup condition on by, in the first line and (46a)) to pass to the second
line; the Cauchy—Schwarz and the discrete Poincaré inequalities together with the boundedness of aj
and t;, expressed by the second inequality in and by , respectively, are used to pass to the

third line; the bound on the velocity and the fact that p < 1 allow to conclude.

W(-,0) is an affine function from W} to WF. The fact that ¥(-,0) is invertible corresponds to the well-
posedness of the HHO scheme for the Stokes problem, and can therefore be proved using the arguments
of [23| Lemma 3] (which classically rely on the coercivity of aj, expressed by the first inequality in
and the inf-sup condition for by). Additionally, the unique solution (w,,,75) € W} to the equation
U((wy,,71),0) = 0 satisfies |[(wy,, 7n)|w,n < p as a consequence of point 2).

The existence of a solution to is an immediate consequence of Lemma Observing that, if
(wy,,pn) € W) solves ([d4)), then ¥((uy,,pn), 1) = (0,0), the bounds follow from point 2) above. O

We next consider uniqueness, which can be classically proved under a data smallness condition.

12



Theorem 13 (Uniqueness of the discrete solution). Assume that the right-hand side verifies

2
14
(FAVERSEES 2C2C,C (47)

with C,, Cy and Cs as in , , respectively. Then, the solution (w,,,pn) € Qz,o X P,’f of

1S unique.
Proof. Let (w; j,,p1,n) € Qﬁ,o x PF and (wy,, p2,n) € Qi,o x PF solve ([44), and let

Wy, = Uq, — Uy, and T4 1= P1p — P2.h-

Taking the difference of the discrete momentum balance equation (44a)) written for (wy,,pn) = (w; 5, P1,1)
and (wy,,pn) = (Ua p, P2,n), We infer that it holds for all v, € Qﬁ,m

vap(Wy, vp,) + th(Wy py W, vy) + th(Wh, Us p, 0y) + br(vy, 78) = 0. (48)

Making v, = w), in the above equation, observing that t;(w; j, w,,w,) = 0 owing to skew-symmetry
(cf. point 1) in Proposition [6]), that b, (w,,r,) = 0 (this is a consequence of the discrete mass balance
equation written for w, , and w, ;, with g, = r), and using the boundedness of a;, and
of t;,, we obtain

(ch;l — Ciluy l1n) |y, ih <0.

By the a priori bounds and the assumption on f, the first factor in the left-hand side is > 0.
As a result, we infer w; = 0, thus proving uniqueness for the velocity. Plugging this result into , it
is inferred that for all v, € Qﬁ,o it holds by (v},, ) = 0. The inf-sup stability (cf. point|l) in Proposition
[9) then gives

Il L2y < sup bn(vp,, ) =0,
E}LEQZ‘Oa”Eh”lJtzl

which proves uniqueness for the pressure. O

4.2 Convergence to minimal regularity solutions

Theorem 14 (Convergence to minimal regularity solutions). Let (Tp)rey denote and admissible mesh
sequence as in Section@, and let ((wy,,pn))nen be such that, for all h € H, (u,,pn) € Qﬁ’o x PF solves
(44). Then, it holds up to a subsequence with (u,p) € U x P solution of the continuous problem ,

1) wy, — wu strongly in LP(Q)? for allp e [1,+) ifd =2, pe [1,6) if d = 3;

2) Giu,, — Vu strongly in L*(Q)4<4;

3) sn(wy,up) — 0;

4) pn — p strongly in L*(Q).

If, in addition, the solution to is unique (which is the case if the smallness condition detailed in [32,
Eq. (2.12), Chapter IV] holds for f), convergence extends to the whole sequence.

Proof. The proof proceeds in several steps. In Step 1 we prove the existence of a limit for the sequence
of discrete solutions. In Step 2 we show that this limit is indeed a solution of the continuous problem
. In Step 3 we prove the strong convergence of the velocity gradient and of the jumps, and in Step
4 the strong convergence of the pressure.

Step 1. Emistence of a limit. Since, for all h € H, (u,,pr) € QZ,O X P}’f solves , we infer combining
the a priori bound and point 3) in Proposition [I] that there exists (u,p) € U x P such that, up to a
subsequence as h — 0,

(i) up — w strongly in LP(Q)9 for all p e [1,+0) if d = 2, pe [1,6) if d = 3;
(i) GYu;, — Vu weakly in L2(Q)%*¢ for all [ > 0;

13



(iii) pp — p weakly in L?(Q).

Step 2. Identification of the limit. We next prove that (u,p) € U x P is a solution of . Let ® €
C>(Q)?. We apply the sequential consistency of the viscous, convective and pressure terms (respectively
expressed by point [3]) in Proposition [3| point 4) in Proposition |§| and point [3) in Proposition E[) to infer

van(uy, I, ®) + th(wy, wy, I, ®) + b (L, @, pn) — va(u, @) + t(u, u, ®) + b(®, p).
Furthemore, we have wf® — & strongly in L2(Q)9, which implies
frrd — J f-®.
Q Q
Finally, point |3)) of Proposition |§| gives for all ¢ € CZ(Q)
b (wy, ) = b(u, ).
As a result, we can conclude by density that (u,p) € U x P is a solution of and point [I]) is proved.

Step 3. Strong convergence of the velocity gradient and of the jumps. Making v, = wu, in (44a)) and
observing that ¢, (uy, uy, ;) = 0 owing to skew-symmetry and that by, (uy,pr) = 0 owing to (44b)
with ¢ = pp, we have

VG |2 qyiea < van(w,,w,) = jﬂf-uh.

Since wy, converges to u strongly in L?(€2)? and u is a solution of (2)), we have

Vlimsup HGﬁth%Q(Q)dXd < lim Supf f'uh = f .fu = VHV’U’H?JQ(Q)dXd'
Q

Q

This estimate combined with the weak convergence of G’fbgh to Vu implies the strong convergence of
the velocity gradient Gyu,, to Vau in L?(Q)?*?. On the other hand, we also obtain that aj(u;,u;)
converges to HVuH%z(Q)dxd, and finally we get

sn(up, up) = an(uy, w,) — f Gﬁﬂh:Giﬂh — 0. (49)
Q
This proves points |2]) and .

Step 4. Strong convergence of the pressure. Observing that p, € P, from the surjectivity of the contin-
uous divergence operator from U to P we infer the existence of v,, € U such that

divoy, =pn and vy, [g1@)e < [PalLz@)- (50)

We let, for all h e H, v, , = l’;«i’Upm and study the properties of the sequence (¥,,, j,)net- For all h e H,
it holds

10, wlin < [vp, a1 @) S llpnllzz) S 1F1L2@)e + szan%Z(Q)d’ (51)

where we have used the boundedness of I 2 in the first inequality, in the second, and the a
priori bound on the pressure to conclude. Then, by point 3) in Proposition |1} there exists v, € U

such that ©,, 5 — v, strongly in LP(2)? for all p € [1,4] and Gﬁl@p}“h — Vv, weakly in L?(2)?*¢ for

all [ = 0. Moreover, by uniqueness of the limit in the distribution sense, it holds that
dive, =p (52)

Making v;, = @, ;, in the discrete momentum balance equation (44a)) and recalling the commuting
property , we have

thHQL?(Q) = —bh@ph,mph) = Vah(ﬂh,@ph,h) + th(ﬂhaﬂha@ph,h) - JQ F0p, (53)
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We study the limit of the three terms on the right of using the convergence properties for the
discrete solution proved in the previous points. Combining the strong converge of G'fbgh with the weak

convergence of Ghvp Wb glves

J Ghuh p’“h *’J‘ Vu:V’l)p.
Q

Moreover, the convergence of the jumps of u; and the uniform bound imply

[N

1 ~ ~
Sh(uhﬁfph ) < sn(wp,up)? x sh(gph,h’yph,h) — 0,

so that, in conclusion, we have for the viscous term

h(uhv Yy, h) - a(uavp)'

Observing that the convergence properties of the sequences (wy)nen and (U, j)nen are respectively

Ypy,h
analogous to those of the sequences (I h(I>) her and (v,)pew in point 4) of Proposition |§|, We can prove
proceeding in a similar way that

th(up, wy, 0 Yy, ) = t(u7u7vp)'

Finally, by strong convergence of ¥, , to v, in L?(Q)%, we readily infer for the source term

L F B = JQ Fop.

Collecting the above convergence results and using the momentum balance equation together
with leads to

lim sup th”%P(Q) < VCL(’LL, vp) + t(ua U,’Up) - J;l f'vp = —b(’l)p7p) = Hp”%?(Q)v

and the strong convergence of the pressure in L?(£2) stated in point [4) follows. O

4.3 Convergence rates for small data

Theorem 15 (Convergence rates for small data). Let (u,p) € U x P and (w,,,pn) € U} 0 x P solve
problems and | ., respectively, and assume umqueness (which holds, in particular, zf both small-
ness condztzons 132, Eq. (2.12), Chapter IV] and (A7) are verified). Assume, moreover, the additional
reqularity (u,p) € H’”Q(Q)d x H*1(Q), as well as

2

2(0)d < s
fleer < 566,60+ 0p)

(54)

with Cr, Cy and Cy as in , and , respectively, and Cp Poincaré constant only depending on
Q such that, for allv e U, |v]r2q)e < Cp|Vv|r2(qyixe. Let

b, =T, Pni=mhp.
Then, there is C > 0 independent of both h and v such that
|y, — G ll1,n + v pn = Dullzz) < CREPH((1+ v wl gegoye) [wlmrrz@ye + v plaesi@))- (55)

Corollary 16 (Convergence rates for small data). Under the above assumptions, it holds

1 _
|Gy, — V| p2yaxa + sp(wy, w,)? + v pn — pllrz) <

P14 v ] gegaye) [wmrezye + v plaes @)

where the second term in the left-hand side accounts for the jumps of the discrete solution.
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Proof. Using the triangle inequality, we infer

1 _
HGI}CLHh — Vu|2qyaxa + sn(wy,, uy,)? +v pn —plr2@) <

A~ A~ A~ 1 _ ~
|V — GEaiy, | 12 yaxa + sn(@y, 85)2 + v D — Bl r20)

+ |y, — @y lan + v pn — Pl r2(o)-

The terms in the second line can be estimated recalling the consistency property for the gradient
reconstruction and using the approximation properties of the L2-orthogonal projector and the con-
sistency properties of sp. For the terms in the third line, recall the norm equivalence and

O

use .

Remark 17 (Extension to other hybrid discretizations). The following proof extends without modifica-
tions to any bilinear forms a;, and by, and trilinear form ¢;, that match, respectively, the properties 1) and
2) in Proposition 1)-3) in Proposition@, and 1) and 2) in Proposition|§|7 respectively. Such properties
can therefore be intended as design guidelines.

Proof of Theorem[15 Let, for the sake of brevity, (e, €p) := (w), — @y, pn — Pr). The proof proceeds in
three steps: in Step 1, we identify the consistency error and derive a lower bound in terms of |ey |1,
using the data smallness assumption, in Step 2 we estimate the error on the velocity and in Step 3 the
error on the pressure.

Step 1. Consistency error and lower bound. It is readily inferred from the discrete momentum balance
equation ([#4a)) that it holds, for all v, € U7,
vap(epn, vp) + th(Wn, Wy, vy) — th (W, Uy, vy) + On (g, €0) = En(vy), (56)

with consistency error

En(vy) = (f,vn) — anlly, vy) — th(Qy, By, vy,) — bu(vy, Pr)-
Making v, = e, in , and observing that t, (uy,, uy, e,) = tn(uw,, Uy, €,) owing to the skew-symmetry
property (34), and that by(ey,€n) = bu(uy,en) — bu(@y,,n) = 0 owing to and since D¥a, =
i (diva) = 0 (cf. and (b)), we infer
Enley) = VHQhH?L,h +tn(en, uy,ep)
> vC; enl? n — Celay|unlen s (57)

> (vC = COr(1+ CRW M f -1 @)e) lenli 1 2 Ve

2
1,h>

where we have used the coercivity of a; expressed by the first inequality in together with the
boundedness of t;, to pass to the second line, the boundedness of I Z with the standard a priori
estimate |u] g1 (qye < (1+ CB)v || f] g-1(q) on the exact solution to infer

l1n < Crfuf grg)e < Cr(1+ C%)VflufHH—l(Q)dv (58)
and the data smallness assumption to conclude.

Step 2. Estimate on the velocity. Observing that f = —vAu + Vu u+ Vp a.e. in Q (cf. ), it holds
for all v, € Qﬁ’o,

@,

Enwy) < v +

| wron+ @ v i ‘ [ o= butens).
Q Q

Using , and , respectively, to estimate the three terms in the right-hand side, it is readily
inferred that

J viVuu — t,(dy,, Gy, vy,)
Q

S:= sup 1En(vy)| S vh (1 + V_1Hu||H2(o)d) ”UHHk+2(Q)d + hk-H”pHH’“*l(Q)v (59)

Eh,EQﬁ,ovHEhHI,hzl
so that, in particular,
[Enen)] < Slenlin < ™ (1 + v ulwe o)) lularz@ya + B plgeao)] lenlin.  (60)

Combining with , the estimate on the velocity in follows.
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Step 3. Estimate on the pressure. Let us now estimate the error on the pressure. We have

HGhHB(Q) < sup bh(gm Eh)
QhEQﬁyovah H1’h,=1

sup [En(vp) — van(en, vy) — th(wy, Wy, vy) + th(Uy, Uy, vy)]
v,€U} o.lvgl1,n=1

o 61
= sup [gh(gh) - Vah(ghayh) - th(gh;ﬂh,yh) — th(@hvghvgh)] ( )
Qh,EQﬁp»HEh,Hl.hzl

<S+v 1+ v wlun + v dg) ) lesln
SSHv (L4 v flrze + v 2| Fla-1 ) len

In , we have used the inf-sup inequality on by, in the first line and the error equation (56) to
pass to the second line; to pass to the third line, we have inserted =+, (@, u;, v,) and used the linearity
of ¢, in its first and second arguments; to pass to the fourth line, we have used the boundedness (29) of
ap, and of t; to pass to the fifth line, we have used the a priori bounds ({45) on |uwy |1, an
on |4y, |1,n; the data smallness assumption gives the conclusion. The estimate on the pressure then
follows using and (55)), respectively, to further bound the addends in the right-hand side of (61)). O

1Lh S S+ veyl

1,h>

4.4 Numerical example

To close this section, we provide a numerical example that demonstrates the convergence properties of
our method. We solve on the two-dimensional square domain © := (—0.5,1.5) x (0,2) the Dirichlet
problem corresponding to the exact solution (w,p) of [36] with w = (u1,u2) such that, introducing the

1
Reynolds number Re := (2v)! and letting A := Re — (Re? + 472) 2,

A
ui(x) := 1 — exp(Axy) cos(2mzs), ug(x) = o exp(Azy) sin(27z,),

and pressure given by
1 A
p(x) = —3 exp(2Ax1) + 3 (exp(4X) — 1).

We take here v = 1 and consider two sequences of refined meshes obtained by linearly mapping on {2 the
mesh family 2 of [34] and the (predominantly) hexagonal mesh family of [24] (both meshes were originally
defined on the unit square). The implementation uses the static condensation procedure discussed in
Remark The convergence results for k = 2 and k = 3 are reported in Figures [l and [2] respectively.
Using the notation of Theorem we separately plot the H!'-error on the velocity |u, — @y||1,n, the
L2-error on the pressure |py —Pnllz2(0), and the L2-error on the velocity |uy, —p| 2(qye- For the sake of
completeness, we consider both the trilinear forms ¢, given by and tEDG given by (with = 0).
In both cases, we obtain similar results, and the H'-error on the velocity as well as the L?-error on the
pressure converge as h**! as expected. The L2-error on the velocity, on the other hand, converges as
hE+2. Notice also that this means that the error |7}, — u|2(gya can be proved to converge as hF+2
following a similar reasoning as in |2, Corollary 4.6]. The details are omitted for the sake of brevity.

5 Properties of the discrete bilinear and trilinear forms

We gather in this section the proofs of Propositions [3] [6] and [0

5.1 Viscous bilinear form
Proof of Proposition[3. We only sketch the proof and provide references for the details.

1) This norm equivalence follows taking p = 2 in [17, Lemma 5.2], where the scalar case is considered;
cf. also [22, Lemma 4], where a slightly different expression for ar is studied (cf. Remark .
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Figure 1: Cartesian mesh family, errors versus h. The triangles indicate reference slopes. The trilinear
forms t;, and tI,;IDG are defined by and , respectively.

2) We adapt the arguments of [22, Theorem 8]. For the sake of brevity, we let @, := Ifv in what follows.
Integrating by parts element-by-element, and using the single-valuedness of Vv np at interfaces and the
fact that wr = 0 on boundary faces to insert wp into the second term, we have

J Avwyp, = — 2 (J Vv:Vwr + 2 J (wp —wT)TV'vnTF> . (62)
Q2 TeT, \YT FeFp JF

On the other hand, using on each element 7' € 7} the definition (15b) of Glfp (with v, = wyg and
T = GE3,), we have

an(vy,, wy,) = Z <J GI%QT:V'U’T + Z (wp — ’U’T)TG@@T "TF> + Sh@hvwh)- (63)
TeTn \YT Ferp Y F

Summing (62]) and (63]), observing that the first terms in parentheses cancel out as a result of the Euler
equation (22)) for G7., and using the Cauchy—Schwarz inequality followed by the trace approximation
properties (20) of G’%, the consistency properties of sp, and the norm equivalence , we get

J Av-wy, + ap (v, wy,)
Q

[N

1
2
< ( E hT”GlTC“@T_vv”%,Q(BT)dXd +Sh(6h’6h>> X ( E |wT%,6T+Sh(wh7wh)>

TeTh TeTh

< BP0 e e |wp |1,
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Figure 2: Hexagonal mesh family, errors versus h. The triangles indicate reference slopes. The trilinear
forms ¢;, and tI}fDG are defined by and , respectively.

which concludes the proof of .

3) The sequential consistency can be proved following steps 1) and 2) of Theorem 4.6], where the
scalar case is considered. O

5.2 Convective trilinear form

Proof of Proposition[6 1) Skew-symmetry. This property is straightforward from the definition of t,.

2) Boundedness. For all w,,,u,,v, € Qﬁ,o, using Holder inequalities, we have

\vhHm(Q)dHGikﬂhﬂL?(mdxdHwh\|L4(Q)d + HuhHL‘*(Q)d“GithHLQ(Q)dXdHwhHL‘l(Q)d

where the conclusion follows using several times the discrete Sobolev embedding with p = 4 and the
boundedness of G3*.

[th(wy,, wp,v,)| < |
< v

3) Consistency. Set, for the sake of brevity, v, = I l,fb'v. Integrating by parts element-by-element,
recalling that dive = 0, and using the single-valuedness of (v-np)v at interfaces together with the fact
that wgr = 0 on boundary faces to insert wg into the third term, we have

JQwEVvv=;<JQwEVvvJ v Vwp, v — Z Z f vnrp)(wr — wr)- ) (64)

TeTn FeFr
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On the other hand, using on each element T € 7y, the definition (I5b) of G2 (with v, = w, and
T = Ur ® Ur), we have

th(Oy, Uy, w),) = (J wl G, vy — f By Vywy, By, — Z Z J vrnrp)(wp —wr)- 'UT> . (65)
Q TeTh, FeFr
Subtracting from and inserting in the right-hand side of the resulting expression the quantity
1
5 w h 'vhv+ vV wy, Oy + Z Z vnTF)(wF—wT) Ur
£ TeTy, FeFr

we arrive at

Jw Vov —t,(I5v, ITv,w,) th G7o,) v+ = f'w G5, (v —y)
Q
+ff (05, —v)'Vpwy, 0y + = J vIV,wy, (05, —v)
2 Jo 2 Jo 66)
+f Z J or —v)nrr)(wp — wr)-0
TGThFEJ:T

+§ Z J (vnrp)(wp —wr)-(Vr — v).

TeTy, FEFT

Denote by ¥1,...,%s the addends in the right-hand side of the above expression. For the first term,
using for all T' € T, the Euler equation with 7 = wr ® 79 € P¥(T)?*?, we infer

f wl (Vo — Gi*9,) (v — whv).

Hence, using the Holder inequality followed by the approximation properties of G3* and () of 79
(with m =0, p=4, s = 1), we obtain

1T1| < B wn | pagayal vl e e yall vl m2 ), (67)

where the conclusion follows using the discrete Sobolev embedding with p = 4 to bound the first
factor and the continuous injection H?(Q2) — W14(Q) valid in d € {2, 3} on domains satisfying the cone
condition to bound the third (cf. [1, Theorem 4.12]).

Using again the Holder inequality, the boundedness of Gik and of I Z to infer HGik@ nlr2@yixa <
|v] g1 ()¢, and the approximation properties of ¥ (with m =0, p = 4, and s = k + 1), we infer

|Ta| < th”wh\|L4(Q)dHU\|H1(Q)dHUHWHM(Q)d S hk+1HQh”1,thHH1(Q)dHU||H’“+2(Q)47 (68)

where the conclusion follows from the discrete Sobolev embedding with p = 4 together with the
continuous injection H**2(Q) — W*+L4(Q) valid for all k > 0 and d € {2, 3} on domains satisfying the
cone condition (cf. |1, Theorem 4.12]).

Proceeding similarly, we have for the third and fourth terms

T3] + |Ta| < thrl||Vh'whHL?(Q)M (H@hHm(Q)d + HUHL‘*(Q)d) HUHWHM(Q)d

69
< h’k+1 ”Qh ( )

)d ||’UHHk+2(Q)d,

where, to pass to the second line, we have used the definition of the |-|1,,-norm to bound the first
factor, the discrete and continuous Sobolev embeddings to estimate the L*(2)%-norms in the second
factor, the boundedness of IF to further bound |8y ]1.n < [v] g1 (q)e, and the continuous injection
H¥*2(Q) —» Wk+14(Q) to conclude.
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Finally, for the fifth and sixth term, using Holder inequalities and the trace approximation properties
of the L?-orthogonal projector (with m =0, p = 4, and s = k + 1), we obtain

, 3
5] + 16| < B ol (Z lelaT> x (Z hr (Iolisorys + '?””'%4(””)) (70)

TeTh TeTh

< hk+1HvHHk+2(Q)dHwhHi,hHUHHQ(Q)””

where, to pass to the second line, we have used the continuous injection H¥*2(Q2) — Wk+L4(Q) for
the first factor, the definition of the || ,-norm for the second factor, and the continuous (6)) and
discrete trace inequalities with p = 4 followed by the continuous injection H?(Q) — W4(Q) for
the third factor. Taking absolute values in , and using f to bound the right-hand side,
follows.

4) Sequential consistency. We have, letting for the sake of brevity éh = ffL(I’,
1 T 2k E )
th(vh7vh7¢h QhGh 'Uh'Uh_§ Q'UhGh Qh’vh = ‘Il -‘r‘:g

Since vy, = v and ®;, — ® strongly in L*(Q)?, ®, @), — ® @ strongly in L2(Q)?*?. Hence, recalling
that G3Fv, — Vo weakly in L?(Q)%*¢ owing to point 3) in Proposition we infer that

1 1
T, = f G¥Fv, (), @) — J Vv,
2 2 Jq

For the second term, observing that vy, ® v, — v ® v and Gikih — V& strongly in L?(2)9*4, we
readily get

1 = 1
Ty = 7f G¥*®, (v, ®@vp) — 7J vIVP .
2 Jo 2 Jo
The conclusion follows from the above results recalling the definition of t. O

5.3 Velocity-pressure coupling bilinear form

Proof of Proposition[4 1) Inf-sup stability. We deploy similar arguments as in |7, Lemma 4] and [23|
Lemma 3]. Let g5 € P}f and denote by S the supremum in . Observing that ¢, € P, from the
surjectivity of the continuous divergence operator from U to P we infer the existence of vy, € U such
that divvg, = qn and |vy, [ g1@)e < |gn]L2(q)- Then, we have

k k
lanliz@) = —on(Lyvg,. an) < S|Lyvg, lin < Slvg, @) < Slanlrzo).

where we have used the commuting property (25) for D}, the definition of the supremum, the boundeness
([12) of I}, and ||v,, I (ye < llgn] z2(e) to conclude.

2) Consistency. Integrating by parts element-by-element, and using the fact that the jumps of ¢ vanish
at interfaces by the assumed regularity and that vy = 0 on boundary faces to insert v into the second

term, we have
J Vgv, = — Z (j q(divor) + Z f q(vp — UT)-nTF> . (71)
2 TeT, \T FeFp VF

On the other hand, using (17b]) on each element T' € T}, to express the right-hand side of , we have
_ bh(gh,ﬂ-ﬁq) = Z <J 7TTq(d1V vr) Z f ﬂ'Tq vp —vr): nTF> (72)
TeTi, \T FeFr

Summing and 7 observing that the first terms in parentheses cancel out by the definition of
P

7k since (divor) € PF~1(T) = P¥(T), and using for the second terms the Cauchy—Schwarz inequality
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followed by the trace approximation properties of k. we infer that

1 1
2 2
L Vgvp — bh(”haﬁﬁf])‘ < ( Z hr|wfq — Q||2L2(a:r)> x ( Z |”T|iaT> S hk+1“Q|‘H’“+1(Q)|‘Qh|

1,h-

TeTh TeTh

Passing to the supremum in the above expression, follows.

3) Sequential consistency. Recalling (18)), Df = tr(GY) and the sequential consistency is a straight-
forward consequence of point 2) in Proposition [l combined with a weak-strong convergence argument.
Similarly, the sequential consistency follows from the fact that beyh — div v weakly in L?(Q2) as a

consequence of point 3) in Proposition [I| and 7F¢ — ¢ strongly in L?(Q). O
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