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Abstract

In this work we introduce and analyze a novel Hybrid High-Order method for the steady in-
compressible Navier–Stokes equations. The proposed method is inf-sup stable on general polyhedral
meshes, supports arbitrary approximation orders, and is (relatively) inexpensive thanks to the possi-
bility of statically condensing a subset of the unknowns at each nonlinear iteration. We show under
general assumptions the existence of a discrete solution, which is also unique provided a data small-
ness condition is verified. Using a compactness argument, we prove convergence of the sequence of
discrete solutions to minimal regularity exact solutions for general data. For more regular solutions,
we prove optimal convergence rates for the energy-norm of the velocity and the L2-norm of the
pressure under a standard data smallness assumption. More precisely, when polynomials of degree
k ě 0 at mesh elements and faces are used, both quantities are proved to converge as hk`1 (with h
denoting the meshsize).

2010 Mathematics Subject Classification: 65N08, 65N30, 65N12, 35Q30, 76D05

Keywords: Hybrid High-Order, incompressible Navier–Stokes, polyhedral meshes, compactness, error
estimates

1 Introduction

In this work we introduce and analyze a novel Hybrid High-Order (HHO) method for the steady incom-
pressible Navier–Stokes equations. The proposed method is inf-sup stable on general meshes including
polyhedral elements and nonmatching interfaces, it supports arbitrary approximation order, and has a
reduced computational cost thanks to the possibility of statically condensing a subset of both velocity
and pressure degrees of freedom (DOFs) at each nonlinear iteration. A complete analysis covering general
data is provided.

Let Ω Ă Rd, d P t2, 3u, denote a bounded connected open polyhedral domain. The incompressible
Navier–Stokes problem consists in finding the velocity field u : Ω Ñ Rd and the pressure field p : Ω Ñ R
such that

´ν4u`∇uu`∇p “ f in Ω, (1a)

divu “ 0 in Ω, (1b)

u “ 0 on BΩ, (1c)
ż

Ω

p “ 0, (1d)
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where ν ą 0 denotes the (constant) kinematic viscosity and f P L2pΩqd a volumetric body force. For the
convective term, here and in what follows we will use the matrix-vector product notation with vector
quantities treated as column vectors, so that, e.g., ∇uu “

řd
j“1pBjuiquj with ui denoting the ith

component of u and Bj the derivative along the jth direction. Let U :“ H1
0 pΩq

d and P :“ L2
0pΩq with

L2
0pΩq :“

 

q P L2pΩq |
ş

Ω
q “ 0

(

. A classical weak formulation of problem (1) reads: Find pu, pq P U ˆP
such that

νapu,vq ` tpu,u,vq ` bpv, pq “

ż

Ω

f ¨v @v P U , (2a)

´bpu, qq “ 0 @q P P, (2b)

with bilinear forms a : U ˆU Ñ R and b : U ˆ P Ñ R and trilinear form t : U ˆU ˆU Ñ R such that

apu,vq :“

ż

Ω

∇u:∇v, bpv, qq :“ ´

ż

Ω

pdiv vqq, tpw,u,vq :“
1

2

ż

Ω

vT∇uw´ 1

2

ż

Ω

uT∇vw, (3)

where T denotes the transpose operator. Notice that all the discussion below can be easily adapted
to more general boundary conditions, but we stick to the homogeneous Dirichlet case for simplicity
of exposition. Also, the modifications to handle variable kinematic viscosities are briefly discussed in
Remark 5.

The literature on the numerical approximation of problem (2) is vast, and giving a detailed account lies
out of the scope of the present work. We therefore mention here only those numerical methods which share
similar features with our approach. The possibility to increase the approximation order and, possibly, to
use general meshes meshes analogous to the ones considered here are supported by discontinuous Galerkin
(DG) methods. Their application to the incompressible Navier–Stokes problem has been considered in
several works starting from the early 00’s; a non exhaustive list of references includes [3–5,14,18,32,34,
40,41]; cf. also [19, Chapter 6] for a pedagogical introduction. The Hybridizable discontinuous Galerkin
(HDG) method of [9,13] has also been applied to the discretization of the incompressible Navier–Stokes
equations in several recent works [10, 30, 37, 39, 42]. Albeit this is not explicitly pointed out in all of the
above references, also HDG methods often support general meshes as well as the possibility to increase the
approximation order. The relation between HDG and HHO methods (originally introduced in [20] in the
context of quasi-incompressible linear elasticity) has been recently explored in [12] for a pure diffusion
problem. Therein it is shown that, for the same set of globally coupled face-based DOFs, the HHO
technology can improve the original orders of convergence of HDG methods while using fewer element-
based DOFs for the vector variable and reducing the size of the local computations. This technology
can also be used to derive novel HDG methods with the same favorable features as HHO methods; cf.,
in particular, [12, Table 1] for further details.

The HHO scheme studied in this work hinges on DOFs located at mesh elements and faces that are
discontinuous polynomials of degree k ě 0. Based on these DOFs, by solving local problems inside
each element we obtain reconstructions of the velocity and of its gradient that are used to formulate
the diffusive and convective terms in the momentum balance equation, as well as a reconstruction of
the divergence used in the velocity-pressure coupling term. More precisely, the discretization of the
viscous term stems from a variation of the diffusive bilinear form originally introduced in [21]; for the
convective term, we use a skew-symmetric formulation designed so as not to contribute to the kinetic
energy balance in the spirit of the design property [18, (T1)]; the velocity-pressure coupling is, on the
other hand, analogous to that of [2, 22].

The resulting method has several advantageous features: (i) it supports general meshes possibly including
polyhedral elements and nonmatching interfaces (resulting, e.g., from nonconforming mesh refinement);
(ii) it allows one to increase the spatial approximation order to accelerate convergence in the presence
of (locally) regular solutions; (iii) it is (relatively) inexpensive thanks to the possibility of statically con-
densing all element-based velocity DOFs and all but one pressure DOF per element at each nonlinear
iteration (cf. Remark 10 below for further details). Additionally, thanks to the underlying fully discon-
tinuous polynomial spaces, the proposed method can be expected to accommodate abrupt variations of
the unknowns in the vicinity of boundary layers. Existence of a discrete solution is proved in Theorem 12
below for general data resorting to classical arguments in nonlinear analysis [15]. Uniqueness, on the
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other hand, is shown in Theorem 13 below under a standard smallness assumption on the volumetric
body force.

A complete convergence analysis of the method is carried out. First, using a compactness argument
inspired by the recent literature on finite volume methods (cf., e.g., [11,27–29]), we show in Theorem 14
below that the sequence of discrete solutions on a refined mesh family converges (up to a subsequence)
to the continuous one for general data and without assuming more regularity for the exact solution than
required by the weak formulation. Convergence extends to the whole sequence when the continuous
solution is unique. The use of compactness techniques in the context of high-order methods is quite
original, and we can only name [18,19] when it comes to the Navier–Stokes problem. Key technical results
required to prove convergence by compactness are the discrete Sobolev embeddings and compactness
results recently proved in [16] in the context of nonlinear Leray–Lions problems.

Then, in Theorem 15 below, we prove error estimates for regular exact solutions under a suitable data
smallness assumption. When polynomials of degree k ě 0 are used, we show that both the energy-norm
of the velocity and the L2-norm of the pressure converge as hk`1 (h denotes here the meshsize). These
convergence rates are similar to the ones recently derived in [39] for a HDG method with pressure and
velocity spaces chosen as in [25, 43]. A major difference with respect to [39] is that we obtain them
here using polynomials k instead of pk ` 1q inside mesh elements (this is precisely one of the major
outcomes of the HHO technology identified in [12]). Another difference with respect to [10, 39] is that
our trilinear form is expressed in terms of a discrete gradient reconstruction and designed so that it does
not contribute to the kinetic energy balance, a feature which simplifies several arguments in the analysis;
cf. Remark 8 for further details. We also show numerically that the L2-norm of the error on the velocity
converges as hk`2. This result is not surprising, as a similar analysis as the one of [39] can be expected
to apply also in our case (the details are postponed to a future work).

The rest of this paper is organized as follows. In Section 2 we introduce mesh-related notations and
recall a few basic results on broken functional spaces. In Section 3 we define the local reconstructions,
formulate the discretizations of the various terms appearing in (2), and state the discrete problem. In
Section 4 we discuss the existence and uniqueness of a discrete solution, prove convergence to minimal
regularity exact solutions for general data, and estimate the convergence rate for smooth exact solutions
and small data. The theoretical results are illustrated on a numerical example including a comparison
with a HDG-inspired trilinear form. In Section 5 we give proof of the properties of the viscous and
velocity-pressure coupling bilinear forms and of the convective trilinear form used in the analysis.

2 Mesh and basic results

Let H Ă R`˚ denote a countable set of meshsizes having 0 as its unique accumulation point. We consider
refined mesh sequences pThqhPH where, for all h P H, Th “ tT u is a finite collection of nonempty disjoint
open polyhedral elements such that Ω “

Ť

TPTh
T and h “ maxTPTh

hT (hT stands for the diameter of

T ). A hyperplanar closed connected subset F of Ω is called a face if it has nonzero pd´ 1q-dimensional
Hausdorff measure and (i) either there exist T1, T2 P Th such that F “ BT1XBT2 (and F is an interface)
or (ii) there exists T P Th such that F “ BT X BΩ (and F is a boundary face). The set of interfaces is
denoted by F i

h, the set of boundary faces by Fb
h , and we let Fh :“ F i

h Y Fb
h . For all T P Th, the set

FT :“ tF P Fh | F Ă BT u collects the faces lying on the boundary of T and, for all F P FT , we denote
by nTF the normal to F pointing out of T . A normal vector nF is associated to each internal face by
fixing once and for all an (arbitrary) orientation, whereas for boundary faces nF points out of Ω.

We assume that pThqhPH is admissible in the sense of [19, Chapter 1], i.e., for all h P H, Th admits a
matching simplicial submesh Th and there exists a real number % ą 0 (the mesh regularity parameter)
independent of h such that the following conditions hold: (i) for all h P H and every simplex S P Th
of diameter hS and inradius rS , %hS ď rS ; (ii) for all h P H, all T P Th, and all S P Th such that
S Ă T , %hT ď hS . We refer to [19, Chapter 1] and [16,17] for a set of geometric and functional analytic
results valid on admissible meshes. We recall, in particular, that, under these regularity assumptions,
the number of faces of each element is uniformly bounded.

3



Let X be a subset of Rd and, for an integer l ě 0, denote by PlpXq the space spanned by the restrictions
to X of polynomials in the space variables of total degree l. In what follows, the set X will represent a
mesh element or face. We denote by πlX : L1pXq Ñ PlpXq the L2-orthogonal projector such that, for all
v P L1pXq,

ż

X

pv ´ πlXvqw “ 0 @w P PlpXq. (4)

The vector- and matrix-valued L2-orthogonal projectors, both denoted by πlX , are obtained applying
πlX component-wise. The following optimal W s,p-approximation properties are proved in [16, Appendix
A.2] using the classical theory of [24] (cf. also [8, Chapter 4]): There is C ą 0 such that, for all l ě 0,
all h P H, all T P Th, all s P t1, . . . , l ` 1u, all p P r1,`8s, all v PW s,ppT q, and all m P t0, . . . , s´ 1u,

|v ´ πlT v|Wm,ppT q ` h
1
p

T |v ´ π
l
T v|Wm,ppFT q ď Chs´mT |v|W s,ppT q, (5)

where Wm,ppFT q is spanned by functions that are in Wm,ppF q for all F P FT . At the global level, the
space of broken polynomial functions on Th of degree l is denoted by PlpThq, and πlh is the corresponding
L2-orthogonal projector. The broken gradient operator on Th is denoted by ∇h.

Let p P r1,`8s. We recall the following continuous trace inequality: There is C ą 0 such that, for all
h P H and all T P Th it holds for all v PW 1,ppT q,

h
1
p

T }v}LppBT q ď C
`

}v}LppT q ` hT }∇v}LppT qd
˘

. (6)

Let an integer l ě 0 be fixed. Using (6) followed by the discrete inverse inequality

}∇v}LppT qd ď Ch´1
T }v}LppT q, (7)

valid for all T P Th and v P PlpT q with C ą 0 independent of h and of T , we obtain the following discrete
trace inequality: There is C ą 0 such that, for all h P H and all T P Th it holds for all v P PlpT q,

h
1
p

T }v}LppBT q ď C}v}LppT q. (8)

Throughout the paper, we often write a À b (resp. a Á b) to mean a ď Cb (resp. a ě Cb) with real
number C ą 0 independent of the meshsize h and of the kinematic viscosity ν. Constants are named
when needed in the discussion.

3 Discretization

In this section we define the discrete counterparts of the various terms appearing in (2), state their
properties, and formulate the discrete problem.

3.1 Discrete spaces

Let a polynomial degree k ě 0 be fixed. We define the following hybrid space containing element-based
and face-based velocity DOFs:

Uk
h :“

˜

ą

TPTh

PkpT qd
¸

ˆ

˜

ą

FPFh

PkpF qd
¸

. (9)

For the elements of Uk
h we use the underlined notation vh “ ppvT qTPTh

, pvF qFPFh
q. We define the global

interpolator Ikh : H1pΩqd Ñ Uk
h such that, for all v P H1pΩqd,

Ikhv :“
`

pπkTvqTPTh
, pπkFvqFPFh

˘

.
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For every mesh element T P Th, we denote by Uk
T and IkT the restrictions to T of Uk

h and Ikh, respectively.
Similarly, vT “ pvT , pvF qFPFT

q denotes the restriction to T of a generic vector vh P U
k
h. Also, for an

element vh P U
k
h, we denote by vh (no underline) the broken polynomial function in PkpThqd such that

vh|T “ vT for all T P Th. Finally, we define on Uk
h the following seminorm:

}vh}
2
1,h :“

ÿ

TPTh

}vT }
2
1,T , (10)

where, for all T P Th,

}vT }
2
1,T :“ }∇vT }2T ` |vT |21,BT , |vT |

2
1,BT :“

ÿ

FPFT

h´1
F }vF ´ vT }

2
F . (11)

The following boundedness property holds for the global interpolator Ikh: For all v P H1pΩqd,

}Ikhv}1,h ď CI}v}H1pΩqd , (12)

with real number CI ą 0 independent of h.

The following velocity and pressure spaces embed the homogeneous boundary conditions for the velocity
and the zero-average constraint for the pressure, respectively:

Uk
h,0 :“

!

vh P U
k
h | vF “ 0 @F P Fb

h

)

, P kh :“

"

qh P PkpThq
ˇ

ˇ

ˇ

ż

Ω

qh “ 0

*

. (13)

It is a simple matter to check that the map }¨}1,h defines a norm on Uk
h,0. We also note the following

discrete Sobolev embeddings, a consequence of [16, Proposition 5.4]: For all p P r1,`8q if d “ 2, p P r1, 6s
if d “ 3, it holds for all vh P U

k
h,0,

}vh}LppΩqd ď Cs}vh}1,h, (14)

with real number Cs ą 0 independent of h.

3.2 Reconstructions of differential operators

Let an element T P Th be fixed. For any polynomial degree l ě 0, we define the local gradient recon-
struction operator Gl

T : Uk
T Ñ PlpT qdˆd such that, for all vT P U

k
T and all τ P PlpT qdˆd,

ż

T

Gl
TvT :τ “ ´

ż

T

vT ¨pdiv τ q `
ÿ

FPFT

ż

F

vF ¨pτ nTF q (15a)

“

ż

T

∇vT :τ `
ÿ

FPFT

ż

F

pvF ´ vT q¨pτ nTF q, (15b)

where we have used integration by parts to pass to the second line. In (15a), the right-hand is designed
to resemble an integration by parts formula where the role of the function in volumetric and boundary
integrals is played by element-based and face-based DOFs, respectively.

For the discretization of the viscous term, we will need the local velocity reconstruction operator rk`1
T :

Uk
T Ñ Pk`1pT qd obtained in a similar spirit as Gk

T and such that, for all vT P U
k
T ,

ż

T

∇rk`1
T vT :∇w “ ´

ż

T

vT ¨4w `
ÿ

FPFT

ż

F

vF ¨p∇wnTF q @w P Pk`1pT qd, (16)

with closure condition
ş

T
prk`1
T vT ´ vT q “ 0.

Finally, we define the discrete divergence operator Dk
T : Uk

T Ñ PkpT q such that, for all vT P U
k
T and all

q P PkpT q,
ż

T

Dk
TvT q “ ´

ż

T

vT ¨∇q `
ÿ

FPFT

ż

F

pvF ¨nTF qq (17a)

“

ż

T

pdiv vT qq `
ÿ

FPFT

ż

F

pvF ´ vT q¨nTF q, (17b)
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where we have used integration by parts to pass to the second line. By definition, we have

Dk
T “ trpGk

T q. (18)

We also define global versions of the gradient, velocity reconstruction, and divergence operators letting
Gl
h : Uk

h Ñ PlpThqdˆd, rk`1
h : Uk

h Ñ Pk`1pThqd, and Dk
h : Uk

h Ñ PkpThq be such that, for all vh P U
k
h

and all T P Th,

pGl
hvhq|T :“ Gl

TvT , prk`1
h vhq|T :“ rk`1

T vT , pDk
hvhq|T :“ Dk

TvT .

Proposition 1 (Properties of Gl
h). The global discrete gradient operator Gl

h satisfies the following
properties:

1) Boundedness. For all l ě 0 and all vh P U
k
h, it holds

}Gl
hvh}L2pΩqdˆd À }vh}1,h. (19)

2) Consistency. For all l ě 0 and all v P HmpΩqd with m “ l ` 2 if l ď k, m “ k ` 1 otherwise,

}Gl
hI

k
hv ´∇v}L2pΩqdˆd `

˜

ÿ

TPTh

hT }G
l
T I

k
Tv ´∇v}2L2pBT qdˆd

¸
1
2

À hm´1}v}HmpΩqd . (20)

As a consequence, for all Φ P C8c pΩq
d and all l, k such that m ą 1 (i.e., provided l “ 0 if k “ 0),

Gl
hI

k
hΦ Ñ ∇Φ strongly in L2pΩqdˆd.

3) Sequential consistency. Let pvhqhPH denote a sequence in pUk
h,0qhPH bounded in the }¨}1,h-norm.

Then, there is v P U such that

• vh Ñ v strongly in LppΩqd for all p P r1,`8q if d “ 2, p P r1, 6q if d “ 3;

• Gl
hvh á ∇v weakly in L2pΩqdˆd for all l ě 0.

Proof. 1) Boundedness. Let an element T P Th be fixed, make τ “ Gl
TvT in (15b) and use the Cauchy–

Schwarz inequality followed by the discrete trace inequality (8) with p “ 2 to infer, for all vT P U
k
T ,

}Gl
TvT }L2pT qdˆd À }vT }1,T .

Squaring the above inequality and summing over T P Th, (19) follows.

2) Consistency. Let v P HmpΩqd. For all T P Th, plugging the definition of IkTv into (15a), we get, for
all τ P PlpT qdˆd,

ż

T

pGl
T I

k
Tv ´∇vq:τ “ ´

ż

T

pπkTv ´ vq¨pdiv τ q `
ÿ

FPFT

ż

F

pπkFv ´ vq¨pτ nTF q. (21)

Recalling the definition (4) of πkT and πkF , we get from the previous expression that

@n ď k,

ż

T

pGl
T I

k
Tv ´∇vq:τ “ 0 @τ P PnpT qdˆd, (22)

since pdiv τ q P Pn´1pT qd Ă PkpT qd and τ |FnTF P PnpF qd Ă PkpF qd. If l ď k, this shows in particular
that for all T P Th it holds

Gl
T I

k
Tv “ π

l
T∇v, (23)

and (20) is an immediate consequence of the approximation properties (5) of the L2-orthogonal projector.
On the other hand, if l ą k, making τ “ Gl

T I
k
Tv ´ π

l
h∇v in (21) and using the Cauchy–Schwarz,

discrete inverse (7) and trace (8) inequalities (both with p “ 2) to bound the right-hand side, we infer
}Gl

T I
k
Tv ´ π

l
h∇v}L2pT qdˆd À hk}v}Hk`1pT qd . Hence, using the triangle inequality, we arrive at

}Gl
T I

k
Tv ´∇v}L2pT qdˆd À hkT }v}Hk`1pT qd ,

and (20) follows squaring and summing over T P Th.
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3) Sequential consistency. The proof for l “ k in the scalar case is given in [16, Proposition 5.6]. A close
inspection shows that the arguments still stand when l ‰ k provided that we replace πkTΦ by π0

TΦ.

Remark 2 (Commuting property for Dk
h). Combining (23) with (18), it is a simple matter to infer the

following commuting property for Dk
h: For all v P U ,

Dk
hI

k
hv “ πkhpdiv vq. (24)

This property is crucial to prove the inf-sup condition of Proposition 9 below using classical arguments
in the analysis of saddle-point problems (cf., e.g., the reference textbook [7]).

3.3 Viscous term

The viscous term is discretized by means of the bilinear form ah such that, for all uh,vh P U
k
h,

ahpuh,vhq :“

ż

Ω

Gk
huh:Gk

hvh ` shpuh,vhq, (25)

with stabilization bilinear form sh defined as follows:

shpuh,vhq :“
ÿ

TPTh

ÿ

FPFT

h´1
F

ż

F

δkTFuT ¨δ
k
TFvT ,

where, for all T P Th and all F P FT , we have introduced the face-based residual operator δkTF : Uk
T Ñ

PkpF qd such that
δkTFvT :“ πkF

`

vF ´ r
k`1
T vT ´ π

k
T pvT ´ r

k`1
T vT q

˘

. (26)

This specific form of the penalized residual ensures the following consistency property (cf. [21, Remark
6] for further insight): For all v P Hk`2pΩqd,

shpI
k
hv, I

k
hvq

1{2 À hk`2}v}Hk`2pΩq. (27)

The proof of the following result is postponed to Section 5.1.

Proposition 3 (Properties of ah). The bilinear form ah has the following properties:

1) Stability and boundedness. It holds, for all vh P U
k
h,

C´1
a }vh}

2
1,h ď }vh}

2
a,h :“ ahpvh,vhq ď Ca}vh}

2
1,h, (28)

with real number Ca ą 0 independent of h. Consequently, the map }¨}a,h defines a norm on Uk
h,0

uniformly equivalent to }¨}1,h.

2) Consistency. For all v P U XHk`2pΩqd, it holds

sup
whPU

k
h,0,}wh}1,h“1

ˇ

ˇ

ˇ

ˇ

ż

Ω

4v¨wh ` ahpI
k
hv,whq

ˇ

ˇ

ˇ

ˇ

À hk`1}v}Hk`2pΩqd . (29)

3) Sequential consistency. Let pvhqhPH denote a sequence in pUk
h,0qhPH bounded in the }¨}1,h-norm with

limit v P U (cf. point 3) in Proposition 1). Then, it holds for all Φ P C8c pΩq
d

ahpvh, I
k
hΦq Ñ apv,Φq.

Some remarks are of order.
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Remark 4 (Alternative viscous bilinear form). An alternative choice corresponding to the original HHO
bilinear form of [21] is

ahpuh,vhq :“

ż

Ω

∇hrk`1
h uh:∇hrk`1

h vh ` shpuh,vhq,

where the difference with respect to (25) lies in the fact that ∇hrk`1
h replacesGk

h in the consistency term.
Properties 1)–2) in Proposition 3 are straightforward consequences of [21, Lemma 4 and Theorem 8],
respectively. Property 3), on the other hand, would require proving for ∇hrk`1

h sequential consistency
as in point 3) of Proposition 1.
Remark 5 (Variable kinematic viscosity). A more general form for the viscous term in (1a) accomodating
variable kinematic viscosities ν : Ω Ñ R is

´divσpuq, σpuq “ 2ν∇su,

where ∇s denotes the symmetric gradient operator. Our discretization can be modified to accomodate
this case adapting the ideas developed in [20] in the framework of linear elasticity. Assume, for the sake
of simplicity, that ν is piecewise constant on a partition of Ω, and that for all h P H the mesh Th is
compliant with the partition (so that jumps of ν only occur at interfaces). For all T P Th, we define the
discrete symmetric gradient operator Gk

s,T :“ 1
2

`

Gk
T ` pG

k
T q

T
˘

(with Gk
T defined by (15a)) and we use

instead of (16) the velocity reconstruction such that, for all vT P U
k
T ,

ż

T

∇sr
k`1
T vT :∇sw “ ´

ż

T

vT ¨divp∇swq `
ÿ

FPFT

ż

F

vF ¨p∇swnTF q @w P Pk`1pT qd (30a)

and
ż

T

prk`1
T vT ´ vT q “ 0,

ż

T

∇sr
k`1
T vT “

1

2

ÿ

FPFT

ż

F

pnTF b vF ´ vF b nTF q . (30b)

Letting Gk
s,h : Uk

h Ñ Pk`1pThqdˆd be such that, for all vh P U
k
h, pGk

s,hvhq|T “ G
k
s,TvT , the viscous term

in (43a) below is discretized by means of the bilinear form

aν,hpuh,vhq :“

ż

Ω

2νGk
s,huh : Gk

s,hvh ` sν,hpuh,vhq,

with stabilization bilinear form

sν,hpuh,vhq :“
ÿ

TPTh

ÿ

FPFT

2νT
hF

ż

F

δkTFuT ¨δ
k
TFvT ,

where νT :“ ν|T P P0pT q and δkTF is formally defined as in (26) but using the velocity reconstruction
operator defined by (30). In the analysis, the main difference with respect to constant kinematic viscosi-
ties is that the polynomial degree k should be taken ě 1 in order to ensure coercivity by a discrete Korn
inequality (cf. in particular [20, Lemma 4] for insight into this point).

3.4 Convective term

For the discretization of the convective term, we consider here the following trilinear form Uk
hˆU

k
hˆU

k
h

expressed in terms of the discrete gradient operator G2k
h :

thpwh,uh,vhq :“
1

2

ż

Ω

vT
hG

2k
h uhwh ´

1

2

ż

Ω

uT
hG

2k
h vhwh. (31)

This expression mimicks the continuous one given in (3) with G2k
h replacing the continuous gradient

operator. Notice that, in the practical implementation, one does not need to actually compute G2k
h to

evaluate th. Instead, the following expression can be used, obtained by applying (15a) twice to expand
the terms involving G2k

h :

thpwh,uh,vhq “
ÿ

TPTh

tT pwT ,uT ,vT q,
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where, for all T P Th,

tT pwT ,uT ,vT q :“ ´
1

2

ż

T

uT
T∇vT wT `

1

2

ż

T

vT
T∇uT wT

`
1

2

ÿ

FPFT

ż

F

puF ¨vT qpwT ¨nTF q ´
1

2

ÿ

FPFT

ż

F

pvF ¨uT qpwT ¨nTF q.
(32)

The proof of the following result is postponed to Section 5.2.

Proposition 6 (Properties of th). The trilinear form th has the following properties:

1) Skew-symmetry. For all vh,wh P U
k
h,0, it holds

thpwh,vh,vhq “ 0. (33)

2) Boundedness. For all uh,vh,wh P U
k
h,0, it holds

|thpwh,uh,vhq| ď Ct}wh}1,h}uh}1,h}vh}1,h, (34)

with real number Ct ą 0 independent of h.

3) Consistency. For all v P U XHk`2pΩqd such that div v “ 0, it holds

sup
whPU

k
h,0,}wh}1,h“1

ˇ

ˇ

ˇ

ˇ

ż

Ω

wT
h∇v v ´ thpI

k
hv, I

k
hv,whq

ˇ

ˇ

ˇ

ˇ

À hk`1}v}H2pΩqd}v}Hk`2pΩqd . (35)

4) Sequential consistency. Let pvhqhPH denote a sequence in pUk
h,0qhPH bounded in the }¨}1,h-norm with

limit v P U (cf. point 3) in Proposition 1). Then, for all Φ P C8c pΩq
d it holds

thpvh,vh, I
k
hΦq Ñ tpv,v,Φq. (36)

Some remarks are of order.
Remark 7 (Design guidelines). The trilinear form th appears in the analysis carried out in Section 4
only through its properties detailed in Proposition 6, with the sole exception of Step 4 in the proof of
Theorem 14 (strong convergence of the pressure), which requires a more intimate use of its expression.
Such properties can therefore be intended as design guidelines.
Remark 8 (Comparison with a HDG trilinear form). A trilinear form inspired by the recent HDG
literature is

tHDG
h pwh,uh,vhq :“

ÿ

TPTh

tHDG
T pwT ,uT ,vT q, (37)

where, for all T P Th,

tHDG
T pwT ,uT ,vT q :“ ´

1

2

ż

T

uT
T∇vT wT `

1

2

ż

T

vT
T∇uT wT

`
1

2

ÿ

FPFT

ż

F

puF ¨vT qpwF ¨nTF q ´
1

2

ÿ

FPFT

ż

F

pvF ¨uT qpwF ¨nTF q

`
η

2

ÿ

FPFT

ż

F

puF ´ uT q¨pvF ´ vT q|wF ¨nTF |.

This trilinear form has been recently proposed in [39] (cf. Definition 3.3 therein and also [10]), where a
HDG method is considered with element-based DOFs that are polynomials of degree pk` 1q (recall that
here we use polynomials of degree k, cf. (9)) and the viscous term is discretized as in [36,38] in order to
improve the convergence rates to match the ones of HHO methods (cf. [12] for further details, in particular
Remark 2.2). Comparing the above expression of tHDG

T with (32), we observe the following differences:
(i) wF replaces wT in both terms in the second line; (ii) a nonnegative stabilization corresponding to the
term in the third line is added, including an user-dependent parameter η ě 0 (taken equal to 1 in [39]).
Our analysis can be adapted to this trilinear form. In particular, all the properties listed in Proposition 6
hold for tHDG

h with η “ 0.
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3.5 Pressure-velocity coupling

The pressure-velocity coupling is realized by means of the bilinear form bh on Uk
hˆP

k
h such that, for all

pvh, qhq P U
k
h ˆ P

k
h ,

bhpvh, qhq :“ ´

ż

Ω

Dk
hvhqh. (38)

The proof of the following result is postponed to Section 5.3.

Proposition 9 (Properties of bh). The bilinear form bh has the following properties:

1) Inf-sup stability. For all qh P P
k
h (with P kh defined by (13)), it holds

}qh}L2pΩq À sup
vhPU

k
h,0,}vh}1,h“1

bhpvh, qhq. (39)

2) Consistency. For all q P Hk`1pΩq it holds

sup
vhPU

k
h,0,}vh}1,h“1

ˇ

ˇ

ˇ

ˇ

ż

Ω

∇q¨vh ´ bhpvh, πkhqq
ˇ

ˇ

ˇ

ˇ

À hk`1}q}Hk`1pΩq. (40)

3) Sequential consistency. We have sequential consistency for bh in the following sense:

• Let pqhqhPH denote a sequence in pP kh qhPH bounded in the L2pΩq-norm and weakly converging to
q P P . Then, for all Φ P C8c pΩq

d it holds

bhpI
k
hΦ, qhq Ñ bpΦ, qq. (41)

• Let pvhqhPH denote a sequence in pUk
h,0qhPH bounded in the }¨}1,h-norm with limit v P U (cf.

point 3) in Proposition 1). Then, for all ϕ P C8c pΩq it holds

bhpvh, π
k
hϕq Ñ bpv, ϕq. (42)

3.6 Discrete problem

The discrete problem reads: Find puh, phq P U
k
h,0 ˆ P

k
h such that

νahpuh,vhq ` thpuh,uh,vhq ` bhpvh, phq “

ż

Ω

f ¨vh @vh P U
k
h,0, (43a)

´bhpuh, qhq “ 0 @qh P P
k
h . (43b)

Remark 10 (Efficient implementation). When solving the system of nonlinear algebraic equations corre-
sponding to (43) by a first-order (Newton-like) algorithm, all element-based velocity DOFs and all but
one pressure DOF per element can be locally eliminated at each iteration by computing the corresponding
Schur complement element-wise. As all the computations are local, this static condensation procedure
is a trivially parallel task which can fully benefit from multi-thread and multi-processor architectures.
For the details, we refer to [22, Section 6.2], where the Stokes problem is considered (the only variation
here is that also the linearized convective term appears in the matrices therein denoted by AT ). As a
result, after the elimination to boundary DOFs corresponding to Dirichlet boundary conditions, we end
up solving at each iteration a linear system of size

d cardpF i
hq

ˆ

k ` d´ 1

d´ 1

˙

` cardpThq.
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4 Analysis of the method

In this section we study the existence and uniqueness of the solution to the HHO scheme (43), prove
convergence to the exact solution for general data, and derive convergence rates under a standard data
smallness assumption.

4.1 Existence and uniqueness

The existence of a solution to problem (43) can be proved using the following topological degree lemma
(cf., e.g., [15]), as originally proposed in [26] in the context of finite volumes for nonlinear hyperbolic
problems; see also [18,29] for the Navier–Stokes equations.

Lemma 11 (Topological degree). Let W be a finite-dimensional functional space equipped with a norm
}¨}W , and let the function Ψ : W ˆ r0, 1s ÑW satisfy the following assumptions:

1) Ψ is continuous;

2) There exists µ ą 0 such that, for any pw, ρq PW ˆ r0, 1s, Ψpw, ρq “ 0 implies }w}W ‰ µ;

3) Ψp¨, 0q is an affine function and the equation Ψpw, 0q “ 0 has a solution w PW such that }w}W ă µ.

Then, there exists w P V such that Ψpw, 1q “ 0 and }w}W ă µ.

Theorem 12 (Existence and a priori bounds). There exists a solution puh, phq P U
k
h,0 ˆ P kh to (43),

which satisfies the a priori bounds

}uh}1,h ď CaCsν
´1}f}L2pΩqd , }ph}L2pΩq ď C

´

}f}L2pΩqd ` ν
´2}f}2L2pΩqd

¯

, (44)

with Ca and Cs as in (28) and (14), respectively, and C ą 0 real number independent of both h and ν.

Proof. We consider the finite-dimensional space W k
h :“ Uk

h,0 ˆ P
k
h equipped with the norm

}pwh, rhq}W,h :“ }wh}1,h ` ν
´1}rh}L2pΩq

and the function Ψ : W k
h ˆ r0, 1s Ñ W k

h such that, for given pwh, rhq P W
k
h and ρ P r0, 1s, pξ

h
, ζhq “

Ψppwh, rhq, ρq is defined as the unique solution of

pξ
h
,vhq0,h “ νahpwh,vhq ` ρthpwh,wh,vhq ` bhpvh, rhq ´

ż

Ω

f ¨vh @vh P U
k
h,0, (45a)

ż

Ω

ζhqh “ ´bhpwh, qhq @qh P P
k
h , (45b)

where p., .q0,h is the L2-like scalar product on W k
h defined by

pwh,vhq0,h :“

ż

Ω

wh¨vh `
ÿ

TPTh

ÿ

FPFT

hF

ż

F

pwF ´wT q¨pvF ´ vT q.

We next check the assumptions of the topological degree lemma.

1) Since W k
h is a finite-dimensional space, the bilinear forms ah and bh, the trilinear form th, and the

scalar products are continuous, and so is the case for the function Ψ.

2) Let pwh, rhq PW
k
h be such that Ψppwh, rhq, ρq “ p0, 0q for some ρ P r0, 1s. We next show that

}pwh, rhq}W,h ď pCaCs ` Cqν
´1}f}L2pΩqd ` Cν

´3}f}2L2pΩqd ,

and point 2) in Lemma 11 is verified for

µ “ pCaCs ` Cqν
´1}f}L2pΩqd ` Cν

´3}f}2L2pΩqd ` ε

11



with ε ą 0. Recalling the coercivity of ah expressed by the first inequality in (28), making vh “ wh in
(45a) and observing that thpwh,wh,whq “ 0 owing to skew-symmetry (33) and that bhpwh, rhq “ 0
owing to (45b) with qh “ rh, we have

νC´1
a }wh}

2
1,h ď ν}wh}

2
a,h “

ż

Ω

f ¨wh ď }f}L2pΩqd}wh}L2pΩqd ď Cs}f}L2pΩqd}wh}1,h,

where we have used the discrete Poincaré inequality (14) with p “ 2 to conclude. The bound on wh

follows. To prove the bound on rh, we proceed as follows:

}rh}L2pΩq À sup
vhPU

k
h,0,}vh}1,h“1

bhpvh, rhq

“ sup
vhPU

k
h,0,}vh}1,h“1

ˆ
ż

Ω

f ¨vh ´ νahpwh,vhq ´ ρthpwh,wh,vhq

˙

À }f}L2pΩqd ` ν}wh}1,h ` ρ}wh}
2
1,h À }f}L2pΩqd ` ν

´2}f}2L2pΩqd ,

where we have used the inf-sup condition (39) on bh in the first line and (45a) to pass to the second
line; the Cauchy–Schwarz and the discrete Poincaré inequalities together with the boundedness of ah
and th expressed by the second inequality in (28) and by (34), respectively, are used to pass to the
third line; the bound on the velocity and the fact that ρ ď 1 allow to conclude.

3) Ψp¨, 0q is an affine function from W k
h to W k

h . The fact that Ψp¨, 0q is invertible corresponds to the well-
posedness of the HHO scheme for the Stokes problem, and can therefore be proved using the arguments
of [22, Lemma 3] (which classically rely on the coercivity of ah expressed by the first inequality in (28)
and the inf-sup condition (39) for bh). Additionally, the unique solution pwh, rhq PW

k
h to the equation

Ψppwh, rhq, 0q “ 0 satisfies }pwh, rhq}W,h ă µ as a consequence of point 2).

The existence of a solution to (43) is an immediate consequence of Lemma 11. Observing that, if
puh, phq PW

k
h solves (43), then Ψppuh, phq, 1q “ p0, 0q, the bounds (44) follow from point 2) above.

We next consider uniqueness, which can be classically proved under a data smallness condition.

Theorem 13 (Uniqueness of the discrete solution). Assume that the right-hand side verifies

}f}L2pΩqd ď
ν2

2C2
aCtCs

(46)

with Ca, Ct and Cs as in (28), (34), (14) respectively. Then, the solution puh, phq P U
k
h,0 ˆ P

k
h of (43)

is unique.

Proof. Let pu1,h, p1,hq P U
k
h,0 ˆ P

k
h and pu2,h, p2,hq P U

k
h,0 ˆ P

k
h solve (43), and let

wh :“ u1,h ´ u2,h and rh :“ p1,h ´ p2,h.

Taking the difference of the discrete momentum balance equation (43a) written for puh, phq “ pu1,h, p1,hq

and puh, phq “ pu2,h, p2,hq, we infer that it holds for all vh P U
k
h,0,

νahpwh,vhq ` thpu1,h,wh,vhq ` thpwh,u2,h,vhq ` bhpvh, rhq “ 0. (47)

Making vh “ wh in the above equation, observing that thpu1,h,wh,whq “ 0 owing to skew-symmetry
(cf. point 1) in Proposition 6), that bhpwh, rhq “ 0 (this is a consequence of the discrete mass balance
equation (43b) written for u1,h and u2,h with qh “ rh), and using the boundedness (28) of ah and (34)
of th, we obtain

`

νC´1
a ´ Ct}u2,h}1,h

˘

}wh}
2
1,h ď 0.

By the a priori bounds (44) and the assumption (46) on f , the first factor in the left-hand side is ą 0.
As a result, we infer wh “ 0, thus proving uniqueness for the velocity. Plugging this result into (47), it
is inferred that for all vh P U

k
h,0 it holds bhpvh, rhq “ 0. The inf-sup stability (cf. point 1) in Proposition

9) then gives
}rh}L2pΩq À sup

vhPU
k
h,0,}vh}1,h“1

bhpvh, rhq “ 0,

which proves uniqueness for the pressure.
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4.2 Convergence to minimal regularity solutions

Theorem 14 (Convergence to minimal regularity solutions). Let pThqhPH denote and admissible mesh
sequence as in Section 2, and let ppuh, phqqhPH be such that, for all h P H, puh, phq P U

k
h,0 ˆ P kh solves

(43). Then, it holds up to a subsequence with pu, pq P U ˆ P solution of the continuous problem (2),

1) uh Ñ u strongly in LppΩqd for all p P r1,`8q if d “ 2, p P r1, 6q if d “ 3;

2) Gk
huh Ñ ∇u strongly in L2pΩqdˆd;

3) shpuh,uhq Ñ 0;

4) ph Ñ p strongly in L2pΩq.

If, in addition, the solution to (2) is unique (which is the case if the smallness condition detailed in [31,
Eq. (2.12), Chapter IV] holds for f), convergence extends to the whole sequence.

Proof. The proof proceeds in several steps. In Step 1 we prove the existence of a limit for the sequence
of discrete solutions. In Step 2 we show that this limit is indeed a solution of the continuous problem
(2). In Step 3 we prove the strong convergence of the velocity gradient and of the jumps, and in Step
4 the strong convergence of the pressure.

Step 1. Existence of a limit. Since, for all h P H, puh, phq P U
k
h,0 ˆ P

k
h solves (43), we infer combining

the a priori bound (44) and point 3) in Proposition 1 that there exists pu, pq P U ˆ P such that

(i) uh Ñ u strongly in LppΩqd for all p P r1,`8q if d “ 2, p P r1, 6q if d “ 3;

(ii) Gl
huh á ∇u weakly in L2pΩqdˆd for all l ě 0;

(iii) ph á p weakly in L2pΩq.

Step 2. Identification of the limit. We next prove that pu, pq P U ˆ P is a solution of (2). Let Φ P

C8c pΩq
d. We apply the sequential consistency of the viscous, convective and pressure terms (respectively

expressed by point 3) in Proposition 3, point 4) in Proposition 6 and point 3) in Proposition 9) to infer

νahpuh, I
k
hΦq ` thpuh,uh, I

k
hΦq ` bhpI

k
hΦ, phq Ñ νapu,Φq ` tpu,u,Φq ` bpΦ, pq.

Furthemore, we have πkhΦ Ñ Φ strongly in L2pΩqd, which implies
ż

Ω

f ¨πkhΦ Ñ

ż

Ω

f ¨Φ.

Finally, point 3) of Proposition 9 gives for all ϕ P C8c pΩq

bhpuh, π
k
hϕq Ñ bpu, ϕq.

As a result, we can conclude by density that pu, pq P U ˆ P is a solution of (2) and point 1) is proved.

Step 3. Strong convergence of the velocity gradient and of the jumps. Making vh “ uh in (43a) and
observing that thpuh,uh,uhq “ 0 owing to skew-symmetry (33) and that bhpuh, phq “ 0 owing to (43b)
with qh “ ph, we have

ν}Gk
huh}

2
L2pΩqdˆd ď νahpuh,uhq “

ż

Ω

f ¨uh.

Since uh converges to u strongly in L2pΩqd and u is a solution of (2), we have

ν lim sup }Gk
huh}

2
L2pΩqdˆd ď lim sup

ż

Ω

f ¨uh “

ż

Ω

f ¨u “ ν}∇u}2L2pΩqdˆd .

This estimate combined with the weak convergence of Gk
huh to ∇u implies the strong convergence of

the velocity gradient Gk
huh to ∇u in L2pΩqdˆd. On the other hand, we also obtain that ahpuh,uhq

converges to }∇u}2L2pΩqdˆd , and finally we get

shpuh,uhq “ ahpuh,uhq ´

ż

Ω

Gk
huh:Gk

huh Ñ 0. (48)
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This proves points 2) and 3).

Step 4. Strong convergence of the pressure. Observing that ph P P , from the surjectivity of the contin-
uous divergence operator from U to P we infer the existence of vph P U such that

div vph “ ph and }vph}H1pΩqd À }ph}L2pΩq. (49)

We let, for all h P H, pvph,h :“ Ikhvph , and study the properties of the sequence ppvph,hqhPH. For all h P H,
it holds

}pvph,h}1,h À }vph}H1pΩqd À }ph}L2pΩq À }f}L2pΩqd ` ν
´2}f}2L2pΩqd , (50)

where we have used the boundedness (12) of Ikh in the first inequality, (49) in the second, and the a
priori bound (44) on the pressure to conclude. Then, by point 3) in Proposition 1, there exists vp P U

such that pvph,h Ñ vp strongly in LppΩqd for all p P r1, 4s and Gl
hpvph,h á ∇vp weakly in L2pΩqdˆd for

all l ě 0. Moreover, by uniqueness of the limit in the distribution sense, it holds that

div vp “ p (51)

Making vh “ pvph,h in the discrete momentum balance equation (43a) and recalling the commuting
property (24), we have

}ph}
2
L2pΩq “ ´bhppvph,h, phq “ νahpuh, pvph,hq ` thpuh,uh, pvph,hq ´

ż

Ω

f ¨pvph,h. (52)

We study the limit of the three terms on the right of (52) using the convergence properties for the
discrete solution proved in the previous points. Combining the strong converge of Gk

huh with the weak
convergence of Gk

hpvph,h gives
ż

Ω

Gk
huh:Gk

hpvph,h Ñ

ż

Ω

∇u:∇vp.

Moreover, the convergence (48) of the jumps of uh and the uniform bound (50) imply

shpuh, pvph,hq ď shpuh,uhq
1
2 ˆ shppvph,h, pvph,hq

1
2 Ñ 0,

so that, in conclusion, we have for the viscous term

ahpuh, pvph,hq Ñ apu,vpq.

Observing that the convergence properties of the sequences puhqhPH and ppvph,hqhPH are respectively

analogous to those of the sequences pIkhΦqhPH and pvhqhPH in point 4) of Proposition 6, we can prove
proceeding in a similar way that

thpuh,uh, pvph,hq Ñ tpu,u,vpq.

Finally, by strong convergence of pvph,h to vp in L2pΩqd, we readily infer for the source term

ż

Ω

f ¨pvph,h Ñ

ż

Ω

f ¨vp.

Collecting the above convergence results and using the momentum balance equation (2a) together
with (51) leads to

lim sup }ph}
2
L2pΩq ď νapu,vpq ` tpu,u,vpq ´

ż

Ω

f ¨vp “ ´bpvp, pq “ }p}
2
L2pΩq,

and the strong convergence of the pressure in L2pΩq stated in point 4) follows.
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4.3 Convergence rates for small data

Theorem 15 (Convergence rates for small data). Let pu, pq P U ˆ P and puh, phq P U
k
h,0 ˆ P kh solve

problems (2) and (43), respectively, and assume uniqueness (which holds, in particular, if both small-
ness conditions [31, Eq. (2.12), Chapter IV] and (46) are verified). Assume, moreover, the additional
regularity pu, pq P Hk`2pΩqd ˆHk`1pΩq, as well as

}f}L2pΩqd ď
ν2

2CICaCtp1` C2
Pq
, (53)

with CI , Ca and Ct as in (12), (28) and (34), respectively, and CP Poincaré constant only depending on
Ω such that, for all v P U , }v}L2pΩqd ď CP}∇v}L2pΩqdˆd . Let

puh :“ Ikhu, pph :“ πkhp.

Then, there is C ą 0 independent of both h and ν such that

}uh ´ puh}1,h ` ν
´1}ph ´ pph}L2pΩq ď Chk`1

` `

1` ν´1}u}H2pΩqd
˘

}u}Hk`2pΩqd ` ν
´1}p}Hk`1pΩq

˘

. (54)

Corollary 16 (Convergence rates for small data). Under the above assumptions, it holds

}Gk
huh ´∇u}L2pΩqdˆd ` shpuh,uhq

1{2 ` ν´1}ph ´ p}L2pΩq À

hk`1
` `

1` ν´1}u}H2pΩqd
˘

}u}Hk`2pΩqd ` ν
´1}p}Hk`1pΩq

˘

,

where the second term in the left-hand side accounts for the jumps of the discrete solution.

Proof. Using the triangle inequality, we infer

}Gk
huh ´∇u}L2pΩqdˆd ` shpuh,uhq

1{2 ` ν´1}ph ´ p}L2pΩq ď

}∇u´Gk
hpuh}L2pΩqdˆd ` shppuh, puhq

1{2 ` ν´1}p´ pph}L2pΩq

` }uh ´ puh}a,h ` ν
´1}ph ´ pph}L2pΩq.

The terms in the second line can be estimated recalling the consistency property (20) for the gradient
reconstruction and using the approximation properties (5) of the L2-orthogonal projector and the con-
sistency properties (27) of sh. For the terms in the third line, recall the norm equivalence (28) and
use (54).

Remark 17 (Extension to other hybrid discretizations). The following proof extends without modifica-
tions to any bilinear forms ah and bh and trilinear form th that match, respectively, the properties 1) and
2) in Proposition 3, 1)–3) in Proposition 9, and 1) and 2) in Proposition 6, respectively. Such properties
can therefore be intended as design guidelines.

Proof of Theorem 15. Let, for the sake of brevity, peh, εhq :“ puh ´ puh, ph ´ pphq. The proof proceeds in
three steps: in Step 1, we identify the consistency error and derive a lower bound in terms of }eh}1,h
using the data smallness assumption, in Step 2 we estimate the error on the velocity and in Step 3 the
error on the pressure.

Step 1. Consistency error and lower bound. It is readily inferred from the discrete momentum balance
equation (43a) that it holds, for all vh P U

k
h,0,

νahpeh,vhq ` thpuh,uh,vhq ´ thppuh, puh,vhq ` bhpvh, εhq “ Ehpvhq, (55)

with consistency error

Ehpvhq :“ pf ,vhq ´ ahppuh,vhq ´ thppuh, puh,vhq ´ bhpvh, pphq.
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Making vh “ eh in (55), and observing that thpuh,uh, ehq “ thpuh, puh, ehq owing to the skew-symmetry
property (33), and that bhpeh, εhq “ bhpuh, εhq ´ bhppuh, εhq “ 0 owing to (43b) and since Dk

hpuh “
πkhpdivuq “ 0 (cf. (24) and (1b)), we infer

Ehpehq “ ν}eh}
2
a,h ` thpeh, puh, ehq

ě νC´1
a }eh}

2
1,h ´ Ct}puh}1,h}eh}

2
1,h

ě
`

νC´1
a ´ CtCIp1` C

2
Pqν

´1}f}H´1pΩqd
˘

}eh}
2
1,h Á ν}eh}

2
1,h,

(56)

where we have used the coercivity of ah expressed by the first inequality in (28) together with the
boundedness (34) of th to pass to the second line, the boundedness (12) of Ikh with the standard a priori
estimate }u}H1pΩqd ď p1` C

2
Pqν

´1}f}H´1pΩqd on the exact solution to infer

}puh}1,h ď CI}u}H1pΩqd ď CIp1` C
2
Pqν

´1}f}H´1pΩqd , (57)

and the data smallness assumption (53) to conclude.

Step 2. Estimate on the velocity. Observing that f “ ´ν4u`∇u u`∇p a.e. in Ω (cf. (1a)), it holds
for all vh P U

k
h,0,

|Ehpvhq| ď ν

ˇ

ˇ

ˇ

ˇ

ż

Ω

p4uq¨vh ` ahppuh,vhq
ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

Ω

vT
h∇uu´ thppuh, puh,vhq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

Ω

∇p¨vh ´ bhpvh, pphq
ˇ

ˇ

ˇ

ˇ

.

Using (29), (35) and (40), respectively, to estimate the three terms in the right-hand side, it is readily
inferred that

S :“ sup
vhPU

k
h,0,}vh}1,h“1

|Ehpvhq| À νhk`1
`

1` ν´1}u}H2pΩqd
˘

}u}Hk`2pΩqd ` h
k`1}p}Hk`1pΩq, (58)

so that, in particular,

|Ehpehq| ď S}eh}1,h À
“

νhk`1
`

1` ν´1}u}H2pΩqd
˘

}u}Hk`2pΩqd ` h
k`1}p}Hk`1pΩq

‰

}eh}1,h. (59)

Combining (56) with (59), the estimate on the velocity in (54) follows.

Step 3. Estimate on the pressure. Let us now estimate the error on the pressure. We have

}εh}L2pΩq À sup
vhPU

k
h,0,}vh}1,h“1

bhpvh, εhq

“ sup
vhPU

k
h,0,}vh}1,h“1

rEhpvhq ´ νahpeh,vhq ´ thpuh,uh,vhq ` thppuh, puh,vhqs

“ sup
vhPU

k
h,0,}vh}1,h“1

rEhpvhq ´ νahpeh,vhq ´ thpeh,uh,vhq ´ thppuh, eh,vhqs

À S` ν
`

1` ν´1}uh}1,h ` ν
´1}puh}1,h

˘

}eh}1,h

À S` ν
`

1` ν´2}f}L2pΩqd ` ν
´2}f}H´1pΩqd

˘

}eh}1,h À S` ν}eh}1,h,

(60)

In (60), we have used the inf-sup inequality (39) on bh in the first line and the error equation (55) to
pass to the second line; to pass to the third line, we have inserted ˘thppuh,uh,vhq and used the linearity
of th in its first and second arguments; to pass to the fourth line, we have used the boundedness (28) of
ah and (34) of th; to pass to the fifth line, we have used the a priori bounds (44) on }uh}1,h and (57)
on }puh}1,h; the data smallness assumption (53) gives the conclusion. The estimate on the pressure then
follows using (58) and (54), respectively, to further bound the addends in the right-hand side of (60).

4.4 Numerical example

To close this section, we provide a numerical example that demonstrates the convergence properties of
our method. We solve on the two-dimensional square domain Ω :“ p´0.5, 1.5q ˆ p0, 2q the Dirichlet
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problem corresponding to the exact solution pu, pq of [35] with u “ pu1, u2q such that, introducing the

Reynolds number Re :“ p2νq´1 and letting λ :“ Re´
`

Re2 ` 4π2
˘1{2

,

u1pxq :“ 1´ exppλx1q cosp2πx2q, u2pxq :“
λ

2π
exppλx1q sinp2πx2q,

and pressure given by

ppxq :“ ´
1

2
expp2λx1q `

λ

2
pexpp4λq ´ 1q .

We take here ν “ 1 and consider two sequences of refined meshes obtained by linearly mapping on Ω the
mesh family 2 of [33] and the (predominantly) hexagonal mesh family of [23] (both meshes were originally
defined on the unit square). The implementation uses the static condensation procedure discussed in
Remark 10. The convergence results for k “ 2 and k “ 3 are reported in Figures 1 and 2, respectively.
Using the notation of Theorem 15, we separately plot the H1-error on the velocity }uh ´ puh}1,h, the
L2-error on the pressure }ph´ pph}L2pΩq, and the L2-error on the velocity }uh´ puh}L2pΩqd . For the sake of

completeness, we consider both the trilinear forms th given by (31) and tHDG
h given by (37) (with η “ 0).

In both cases, we obtain similar results, and the H1-error on the velocity as well as the L2-error on the
pressure converge as hk`1 as expected. The L2-error on the velocity, on the other hand, converges as
hk`2. Notice also that this means that the error }rk`1

h uh ´ u}L2pΩqd can be proved to converge as hk`2

following a similar reasoning as in [2, Corollary 4.6]. The details are omitted for the sake of brevity.

}uh ´ puh}1,h }uh ´ puh}L2pΩqd }ph ´ pph}L2pΩq
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(a) th, k “ 2
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10´2

10´1
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(b) th, k “ 3
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1

(c) tHDG
h , η “ 0, k “ 2

10´2 10´1.8 10´1.6 10´1.4 10´1.2

10´6

10´5

10´4

10´3

10´2

10´1

100

4

1

5

1

(d) tHDG
h , η “ 0, k “ 3

Figure 1: Cartesian mesh family, errors versus h. The triangles indicate reference slopes. The trilinear
forms th and tHDG

h are defined by (31) and (37), respectively.
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}uh ´ puh}1,h }uh ´ puh}L2pΩqd }ph ´ pph}L2pΩq
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(b) th, k “ 3
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(c) tHDG
h , η “ 0, k “ 2
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(d) tHDG
h , η “ 0, k “ 3

Figure 2: Hexagonal mesh family, errors versus h. The triangles indicate reference slopes. The trilinear
forms th and tHDG

h are defined by (31) and (37), respectively.

5 Properties of the discrete bilinear and trilinear forms

We gather in this section the proofs of Propositions 3, 6 and 9.

5.1 Viscous bilinear form

Proof of Proposition 3. We only sketch the proof and provide references for the details.

1) This norm equivalence follows taking p “ 2 in [16, Lemma 5.2], where the scalar case is considered;
cf. also [21, Lemma 4], where a slightly different expression for aT is studied (cf. Remark 4).

2) We adapt the arguments of [21, Theorem 8]. For the sake of brevity, we let pvh :“ Ikhv in what follows.
Integrating by parts element-by-element, and using the single-valuedness of ∇v nF at interfaces and the
fact that wF “ 0 on boundary faces to insert wF into the second term, we have

ż

Ω

4v¨wh “ ´
ÿ

TPTh

˜

ż

T

∇v:∇wT `
ÿ

FPFT

ż

F

pwF ´wT q
T∇v nTF

¸

. (61)

On the other hand, using on each element T P Th the definition (15b) of Gk
T (with vT “ wT and

τ “ Gk
T pvT ), we have

ahppvh,whq “
ÿ

TPTh

˜

ż

T

Gk
T pvT :∇wT `

ÿ

FPFT

ż

F

pwF ´wT q
TGk

T pvT nTF

¸

` shppvh,whq. (62)
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Summing (61) and (62), observing that the first terms in parentheses cancel out as a result of the Euler
equation (22) for Gk

T , and using the Cauchy–Schwarz inequality followed by the trace approximation
properties (20) of Gk

T , the consistency properties (27) of sh, and the norm equivalence (28), we get
ˇ

ˇ

ˇ

ˇ

ż

Ω

4v¨wh ` ahppvh,whq

ˇ

ˇ

ˇ

ˇ

À

˜

ÿ

TPTh

hT }G
k
T pvT ´∇v}2L2pBT qdˆd ` shppvh, pvhq

¸1{2

ˆ

˜

ÿ

TPTh

|wT |
2
1,BT ` shpwh,whq

¸1{2

À hk`1}v}Hk`2pΩqd}wh}1,h,

which concludes the proof of (29).

3) The sequential consistency can be proved following steps 1) and 2) of [16, Theorem 4.6], where the
scalar case is considered.

5.2 Convective trilinear form

Proof of Proposition 6. 1) Skew-symmetry. This property is straightforward from the definition of th.

2) Boundedness. For all wh,uh,vh P U
k
h,0, using Hölder inequalities, we have

|thpwh,uh,vhq| À }vh}L4pΩqd}G
2k
h uh}L2pΩqdˆd}wh}L4pΩqd ` }uh}L4pΩqd}G

2k
h vh}L2pΩqdˆd}wh}L4pΩqd

À }vh}1,h}uh}1,h}wh}1,h,

where the conclusion follows using several times the discrete Sobolev embedding (14) with p “ 4 and the
boundedness (19) of G2k

h .

3) Consistency. Set, for the sake of brevity, pvh :“ Ikhv. Integrating by parts element-by-element,
recalling that div v “ 0, and using the single-valuedness of pv¨nF qv at interfaces together with the fact
that wF “ 0 on boundary faces to insert wF into the third term, we have

ż

Ω

wT
h∇v v “

1

2

˜

ż

Ω

wT
h∇v v ´

ż

Ω

vT∇hwh v ´
ÿ

TPTh

ÿ

FPFT

ż

F

pv¨nTF qpwF ´wT q¨v

¸

. (63)

On the other hand, using on each element T P Th the definition (15b) of G2k
T (with vT “ wT and

τ “ pvT b pvT ), we have

thppvh, pvh,whq “
1

2

˜

ż

Ω

wT
hG

2k
h pvh pvh ´

ż

Ω

pvT
h∇hwh pvh ´

ÿ

TPTh

ÿ

FPFT

ż

F

ppvT ¨nTF qpwF ´wT q¨pvT

¸

. (64)

Subtracting (64) from (63) and inserting in the right-hand side of the resulting expression the quantity

˘
1

2

˜

ż

Ω

wT
hG

2k
h pvh v `

ż

Ω

vT∇hwh pvh `
ÿ

TPTh

ÿ

FPFT

ż

F

pv¨nTF qpwF ´wT q¨pvT

¸

,

we arrive at
ż

Ω

wT
h∇v v ´ thpI

k
hv, I

k
hv,whq “

1

2

ż

Ω

wT
h p∇v ´G

2k
h pvhqv `

1

2

ż

Ω

wT
hG

2k
h pvh pv ´ pvhq

`
1

2

ż

Ω

ppvh ´ vq
T∇hwh pvh `

1

2

ż

Ω

vT∇hwh ppvh ´ vq

`
1

2

ÿ

TPTh

ÿ

FPFT

ż

F

pppvT ´ vq¨nTF qpwF ´wT q¨pvT

`
1

2

ÿ

TPTh

ÿ

FPFT

ż

F

pv¨nTF qpwF ´wT q¨ppvT ´ vq.

(65)
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Denote by T1, . . . ,T6 the addends in the right-hand side of the above expression. For the first term,
using for all T P Th the Euler equation (22) with τ “ wT b π

0
Tv P PkpT qdˆd, we infer

T1 “
1

2

ż

Ω

wT
h p∇v ´G

2k
h pvhqpv ´ π

0
hvq.

Hence, using the Hölder inequality followed by the approximation properties (20) of G2k
h and (5) of π0

h

(with m “ 0, p “ 4, s “ 1), we obtain

|T1| À hk`1}wh}L4pΩqd}v}Hk`1pΩqd}v}W 1,4pΩqd À hk`1}wh}1,h}v}Hk`1pΩqd}v}H2pΩqd , (66)

where the conclusion follows using the discrete Sobolev embedding (14) with p “ 4 to bound the first
factor and the continuous injection H2pΩq ÑW 1,4pΩq valid in d P t2, 3u on domains satisfying the cone
condition to bound the third (cf. [1, Theorem 4.12]).

Using again the Hölder inequality, the boundedness (19) ofG2k
h and (12) of Ikh to infer }G2k

h pvh}L2pΩqdˆd À

}v}H1pΩqd , and the approximation properties (5) of πkh (with m “ 0, p “ 4, and s “ k ` 1), we infer

|T2| À hk`1}wh}L4pΩqd}v}H1pΩqd}v}Wk`1,4pΩqd À hk`1}wh}1,h}v}H1pΩqd}v}Hk`2pΩqd , (67)

where the conclusion follows from the discrete Sobolev embedding (14) with p “ 4 together with the
continuous injection Hk`2pΩq Ñ W k`1,4pΩq valid for all k ě 0 and d P t2, 3u on domains satisfying the
cone condition (cf. [1, Theorem 4.12]).

Proceeding similarly, we have for the third and fourth terms

|T3| ` |T4| À hk`1}∇hwh}L2pΩqdˆd

`

}pvh}L4pΩqd ` }v}L4pΩqd
˘

}v}Wk`1,4pΩqd

À hk`1}wh}1,h}v}H1pΩqd}v}Hk`2pΩqd ,
(68)

where, to pass to the second line, we have used the definition (10) of the }¨}1,h-norm to bound the first
factor, the discrete and continuous Sobolev embeddings to estimate the L4pΩqd-norms in the second
factor, the boundedness (12) of Ikh to further bound }pvh}1,h À }v}H1pΩqd , and the continuous injection

Hk`2pΩq ÑW k`1,4pΩq to conclude.

Finally, for the fifth and sixth term, using Hölder inequalities and the trace approximation properties
(5) of the L2-orthogonal projector (with m “ 0, p “ 4, and s “ k ` 1), we obtain

|T5| ` |T6| À hk`1}v}Wk`1,4pΩqd

˜

ÿ

TPTh

|wT |
2
1,BT

¸1{2

ˆ

˜

ÿ

TPTh

hT

´

}v}4L4pBT qd ` }pvT }
4
L4pBT qd

¯

¸
1
4

À hk`1}v}Hk`2pΩqd}wh}1,h}v}H2pΩqd ,

(69)

where, to pass to the second line, we have used the continuous injection Hk`2pΩq Ñ W k`1,4pΩq for
the first factor, the definition (10) of the }¨}1,h-norm for the second factor, and the continuous (6) and
discrete (8) trace inequalities with p “ 4 followed by the continuous injection H2pΩq Ñ W 1,4pΩq for
the third factor. Taking absolute values in (65), and using (66)–(69) to bound the right-hand side, (35)
follows.

4) Sequential consistency. We have, letting for the sake of brevity pΦh :“ IkhΦ,

thpvh,vh,
pΦhq “

1

2

ż

Ω

pΦ
T

hG
2k
h vh vh ´

1

2

ż

Ω

vT
hG

2k
h
pΦh vh :“ T1 ` T2.

Since vh Ñ v and pΦh Ñ Φ strongly in L4pΩqd, pΦhbvh Ñ Φbv strongly in L2pΩqdˆd. Hence, recalling
that G2k

h vh á ∇v weakly in L2pΩqdˆd owing to point 4) in Proposition 1, we infer that

T1 “
1

2

ż

Ω

G2k
h vh:ppΦh b vhq Ñ

1

2

ż

Ω

ΦT∇v v.

For the second term, observing that vh b vh Ñ v b v and G2k
h
pΦh Ñ ∇Φ strongly in L2pΩqdˆd, we

readily get

T2 “
1

2

ż

Ω

G2k
h
pΦh:pvh b vhq Ñ

1

2

ż

Ω

vT∇Φv.

The conclusion follows from the above results recalling the definition (3) of t.
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5.3 Velocity-pressure coupling bilinear form

Proof of Proposition 9. 1) Inf-sup stability. We deploy similar arguments as in [6, Lemma 4] and [22,
Lemma 3]. Let qh P P

k
h and denote by S the supremum in (39). Observing that qh P P , from the

surjectivity of the continuous divergence operator from U to P we infer the existence of vqh P U such
that div vqh “ qh and }vqh}H1pΩqd À }qh}L2pΩq. Then, we have

}qh}
2
L2pΩq “ ´bhpI

k
hvqh , qhq ď S}Ikhvqh}1,h À S}vqh}H1pΩqd À S}qh}L2pΩq,

where we have used the commuting property (24) for Dk
h, the definition of the supremum, the boundeness

(12) of Ikh, and }vqh}H1pΩqd À }qh}L2pΩq to conclude.

2) Consistency. Integrating by parts element-by-element, and using the fact that the jumps of q vanish
at interfaces by the assumed regularity and that vF “ 0 on boundary faces to insert vF into the second
term, we have

ż

Ω

∇q¨vh “ ´
ÿ

TPTh

˜

ż

T

qpdiv vT q `
ÿ

FPFT

ż

F

qpvF ´ vT q¨nTF

¸

. (70)

On the other hand, using (17b) on each element T P Th to express the right-hand side of (38), we have

´ bhpvh, π
k
hqq “

ÿ

TPTh

˜

ż

T

πkT qpdiv vT q `
ÿ

FPFT

ż

F

πkT qpvF ´ vT q¨nTF

¸

. (71)

Summing (70) and (71), observing that the first terms in parentheses cancel out by the definition (4) of
πkT since pdiv vT q P Pk´1pT q Ă PkpT q, and using for the second terms the Cauchy–Schwarz inequality
followed by the trace approximation properties (5) of πkT , we infer that

ˇ

ˇ

ˇ

ˇ

ż

Ω

∇q¨vh ´ bhpvh, πkhqq
ˇ

ˇ

ˇ

ˇ

ď

˜

ÿ

TPTh

hT }π
k
T q ´ q}

2
L2pBT q

¸1{2

ˆ

˜

ÿ

TPTh

|vT |
2
1,BT

¸1{2

À hk`1}q}Hk`1pΩq}vh}1,h.

Passing to the supremum in the above expression, (40) follows.

3) Sequential consistency. Recalling (18), Dk
h “ trpGk

hq and the sequential consistency (41) is a straight-
forward consequence of point 2) in Proposition 1 combined with a weak-strong convergence argument.
Similarly, the sequential consistency (42) follows from the fact that Dk

hvh á div v weakly in L2pΩq as a
consequence of point 3) in Proposition 1 and πkhϕÑ ϕ strongly in L2pΩq.
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