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Abstract Discretization schemes commonly used for
total variation regularization lead to images that are
difficult to interpolate, which is a real issue for applica-
tions requiring subpixel accuracy and aliasing control.
In the present work, we reconciliate total variation with
Shannon interpolation and study a Fourier-based esti-
mate that behaves much better in terms of grid invari-
ance, isotropy, artifact removal, and sub-pixel accuracy.
We show that this new variant (called Shannon total
variation) can be easily handled with classical primal-
dual formulations, and illustrate its efficiency on several
image processing tasks, including deblurring, spectrum
extrapolation, and a new aliasing reduction algorithm.

Keywords total variation, image interpolation,
Shannon theory, Legendre-Fenchel duality, aliasing,
image restoration.

1 Introduction

Since total variation (TV) regularization was proposed
by Rudin, Osher and Fatemi for image denoising [50],
it has proven extremely useful for many applications
(and beyond image data, for that matter) like image
deblurring [56,17], inpainting [18], interpolation [30],
spectral extrapolation [48], image decomposition [55],
super-resolution [5], stereovision [36], and much more
(see [13] and references therein for more examples). In
the last decade, the development of dual and primal-
dual formulations [11,6,58,26,15] and graph-cuts meth-
ods [22] has provided efficient algorithms for TV-based
minimization problems, thus increasing even further the
popularity of TV regularization.

A modern way to explain the efficiency of TV is to
see it as a sparsity-promoting model: being defined by
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a L' norm (of the gradient), TV minimization tends to
favor solutions whose gradient is sparse (that is, often
takes the value 0), which corresponds to the so-called
cartoon images. Of course, real-life photographs are not
cartoons, but outside textured regions (which can be
ignored in many image analysis tasks) they are close
to that. Another explanation of the usefulness of TV is
its ability to penalize oscillations (which is typically the
kind of structures one wants to avoid when solving an
ill-posed inverse problem) while allowing discontinuities
at the same time.

When it comes to implementing an optimization
problem involving a TV regularization term, like, e.g.,
TV denoising of an image ug by

argmin |[u — uo||* + ATV (u), (1)

(where A > 0 is a positive parameter selecting the de-
sired amount of regularization), the issue of TV dis-
cretization arises. Most algorithms choose to approxi-
mate the continuous TV by a sum (over all pixels) of
the ¢? norm of a discrete finite-difference estimate of
the image gradient, that is,

TV = Y V(Orulk, D)2+ (Dzu(k, 1)) (2)

(k,H)en

Ou(k,l) =ulk +1,1) — u(k,l),

where { (3)
Oau(k,l) = u(k, 1+ 1) — u(k,l),

and u : {2 — R is a discrete gray-level image defined on
the finite domain 2 C Z? (we purposely ignore bound-
ary issues here, as they are not related to our discus-
sion). In the following, we shall refer to (2) as the dis-
crete TV. In some situations, an anisotropic scheme (¢!
norm) may be used [12,34,1], leading to the anisotropic
discrete TV

TVii(w) = Y [dvulk,1)] + [d2u(k, 1)
(k,1)esn2
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Curiously enough, as popular as they are, these numeri-
cal schemes present strong drawbacks in terms of image
quality at pixel and subpixel scales. Indeed, an image
obtained by minimizing TV9-based energies is very dif-
ficult to interpolate, or, said differently, badly sampled
according to Shannon theory. In practice, this means
that trying to interpolate such an image will result in
the appearance of undesired artifacts (see Fig. 1), gen-
erally a mix between blockiness and ringing depend-
ing on the interpolation method. This strongly limits
the possibility of exploiting an image delivered by a
TV%based scheme, as usual operations like geometric
transformations, registration, sub-pixel shape match-
ing, derivative estimates (not to mention others) re-
quire well-interpolable images. New discrete schemes
have been recently proposed [14,21] to improve the iso-
tropy of the discrete TV, but they do not solve (nor
address) the interpolability issue we consider here.

(b) resampling of (a)

(d) original, resampled

() spectrum of (a)

Fig. 1 Discrete TV produces aliasing. An image de-
noised with a classical discrete implementation of TV denois-
ing (a) is improperly sampled, as attested by the aliasing arti-
fact appearing in its Fourier spectrum ((c), red arrow), which
is responsible for the undesired oscillating patterns that ap-
pear when magnifying the image using Shannon interpolation
((b), red arrows). Note that this artifact is not present on the
original image (d). This experiment illustrates the difficulty
of manipulating images at a subpixel scale after a processing
involving the discrete TV.

In the present paper, we study a new formulation
of the discrete TV, which reconciliates TV minimiza-
tion and Shannon theory. This variant, which we shall

name Shannon Total Variation (STV), first appeared
in [35], and was later explicitly considered in [37] and
then used in [25,44] under the name Spectral Total Vari-
ation (but we shall not keep this name since it would
introduce a confusion with [29]). The STV variant con-
sists in estimating the true total variation of the ex-
act (continuous) total variation of the Shannon inter-
polate of v by using a Riemann sum approximation
of the associated integral. We show that STV success-
fully addresses the above-mentioned issues and delivers
images on which the discrete sinc and spline interpola-
tions behave nicely, while preserving the desired proper-
ties of TV regularization. The lack of isotropy observed
with classical finite difference schemes is also naturally
avoided with STV. This comes at the expense of a few
Fourier Transforms at each iteration of the optimization
process, which is, in most applications, an affordable
cost considering the strong benefits in terms of image
quality.

The paper is organized as follows. In Section 2, we
present the discrete sinc interpolation as a consequence
of Shannon sampling Theorem, and discuss in partic-
ular the (generally overlooked) difficulties encountered
with Nyquist frequencies in the case of even image di-
mensions. We also give an independent justification of
discrete sinc interpolation as the unique linear inter-
polation that defines invertible subpixellic translations,
and discuss the link with B-spline interpolation. In Sec-
tion 3, we define STV and discuss the choice of the up-
sampling factor used to discretize the continuous TV
integral into a Riemann sum. We then show in Sec-
tion 4 that STV-based algorithms can be efficiently im-
plemented by deriving a dual formulation which can be
used in the powerful Chambolle-Pock optimization pro-
cedure. In Section 5, we illustrate the use of STV reg-
ularization in the case of several classical applications
(denoising and more general inverse problems like de-
blurring, image magnification with spectrum extrapola-
tion, tomography). We then present a new ST V-based
image restoration model involving a weight function in
Fourier domain, which leads to interesting applications
in terms of de-aliasing and can be viewed as an “image
Shannonizer” as it provides a way to approximate a
given image by a well-sampled one according to Shan-
non interpolation (Section 6). We finally conclude in
Section 7 and present some perspectives.

2 Shannon interpolation
2.1 Shannon Sampling Theorem

A classical way to understand the relation between a (d-
dimensional) continuous signal and its sampled version
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is Shannon Sampling Theorem, which can be considered
in some way as the foundation of the digital era. In the

following, we write (x,y) = Zle x;y; the canonical
Euclidean inner product between two vectors x = (x;)
and y = (y;) of R%.

Theorem 1 (Shannon-Whittaker) Consider a pos-
itive real number § and an absolutely integrable function
f: R4 = R whose Fourier Transform

J©) = [ Fx)e"™ dudy ()

satisfies V& & [—%, %}d, f(f) =0. (5)

Then, f is continuous and uniquely determined by its
values on 872, as for any x € R?,

x) :Z f(dk)sinc (% - k) (6)
kezd

where the cardinal sine function is defined on R? by

sin( 7T1‘Z
sinc(x

za.

(7)

=1

with the continuity-preserving convention qm(o) =1.

In the present paper, we will focus on one-dimensio-
nal signals (d = 1) and two-dimensional images (d = 2),
but the extension to higher dimensions is straightfor-
ward. Apart from establishing a clear correspondence
between the support of the Fourier spectrum of the
bandlimited function f and the critical sampling step §
permitting its exact reconstruction from discrete sam-
ples, Shannon Sampling Theorem provides with Equa-
tion 6 (for 6 = 1) an interpolation formula that extends
to R? a discrete signal initially defined on Z¢. However,
this formula cannot be used as such in practice since it
involves an infinite number of samples. We first discuss
that issue in the simpler case d = 1.

2.2 Discrete Shannon interpolation of 1-D signals

Let us consider a discrete signal s : Iy — R where
M e N* and Ip; ={0,1,...M — 1}. In order to define
the Shannon interpolate S : R — R of s using (6), we
first need to extend s into an infinite signal §: Z — R,
so that

S(z) = 3(k)sinc(z — k). (8)

kEZ

Extending s with 0 in Z \ Ip; would be a poor solu-
tion, as it would interpolate a constant discrete signal

s by an oscillating function. Instead, the classical so-
lution consists in extending s as a M-periodic function
5(k) = s(k mod M). Using such a periodic extension is
not completely straightforward as it does not fit the hy-
potheses of Shannon Sampling Theorem (a M-periodic
§ : 7Z — R cannot be the sampled version of an ab-
solutely integrable bandlimited function), but we can
formally write

S(x) = Z 5(k) sinc(x — k)

keZ

:ZZ k)sinc(x — k — pM)
pEZ kE€lm

= Z s(k) Zsinc(acfkpr) ,
kel PEL

and the factor of s(k) can be explicitly computed with

Proposition 1 (discrete cardinal sine) Define the
discrete cardinal sine of order M as the M -periodization
of the cardinal sine function, that is,

n

sincd () = ngrfoo Z sinc(z — pM). (9)
p=n
Then, one has
ST e s odd,
M sin (M)
sincdps(z) = ) (10)
M if M is even,
M tan (”—Aj)

where the indeterminate forms 0/0 are solved by conti-
nuity, that is, sinedp(x) =1 for any x € MZ.

The proof is given in Appendix A. In view of Propo-
sition 1, we can rewrite the interpolation of s as

S(x) = Z s(k) sinedps(z — k). (11)

kelnm

Note that for small values Of |z| (more precisely, when
|z| < M), we have M sin 57 ~ M tan 57 ~ 7z, so that
sincd s (z) ~ sinc(x), Wthh formally shows the asymp-
totic equivalence between sinc and sincd p; interpolation
as M — +o0.

In practice, (11) is barely used, since there is an
equivalent (but numerically more efficient) formulation
due to the fact that sincd,; is a trigonometric polyno-
mial.

Proposition 2 The function sincdy; is a trigonomet-
ric polynomial, which can be written

1 ox
sincdps(z) = Re i Z e 5 (12)

aGIAM
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where Ty = [—%, %) NZ and the real part in (12) is
required only if M is even.

Proof The set Iy is made of M consecutive integer
values, and can thus be written

TM:{a,aqu,...aJerl},

where a = —[2]| denotes the (lower) integer part of
%. Thus, if © ¢ MZ we have

a+M—1
§ eQiﬂ% _ § (eQzﬂ'ﬁ)o‘
aGfM a=a
. 1— 62i7r:r
_ 621#% i
1— 621#%

img2eth=1  Sin(mz)

. T -
SIH’JTM

If M is odd, 2a + M — 1 =0 and we get

1 o4Oz sin(mx) .
— e M = ———— = gincd s ()
M Z M sinm 47

aefM

as expected. If M is even, 2a+ M —1 = —1 and we now
obtain

]. . _ax Sin(ﬂ-x) s
R - 2im 7 = " R, —i 57
¢ M Z c M sin wﬁ ofe )
acly
sin(mx)
" Mtan T
= sincd s (2)
as well. O

A consequence of Proposition 2 is that the Shannon
interpolation formula (11) can be rewritten using the
Discrete Fourier Transform recalled below.

Definition 1 The discrete Fourier Transform (DFT)
of a signal s : Ip; — R is the M-periodic complex-
valued signal 5 defined by

Sa) =" s(k)e "4,

kel

Ya € Z,

Proposition 3 The discrete Shannon interpolation of
a signal s : Iy — R can be written

S(z) = Re % S Sa)eim | | (13)

aefM

and the real part is required only if M is even.

Proof Thanks to Proposition 2, the Shannon interpo-
late of s defined by (11) can be rewritten

Sy = Y2 sthRe [ 57 32

ozefM

= Re % Z (Z s(k)e_m”cfxv?) et

CKETJ\/I kel

from which (13) directly follows. O

Note that if € Iy, the function a — 5(a) e 5

is M-periodic, and since I, is an interval of M consec-
utive values, we have

1 e 1 e
i Z S(a) ¥ = i Z S(a) e* ™M = ()

aEIAM a€ln

as we recognize the inverse DFT of 5. As expected, the

Shannon interpolation defined by (13) is exact (that is,
the restriction of S to Iy is exactly s).

Also remark that when M is even, we need a real

M

part to cancel the imaginary part of the term o = —5-

in the sum (13) since the conjugate term (which would

correspond to o = M) is not present in the sum. The

2
real part can be avoided when 5(—%) = 0, or by con-

sidering instead a sum with M + 1 terms, as stated by

Proposition 4 Define, for integer M,

if o =4

1 otherwise.

The discrete Shannon interpolate of a signal s : Iny —
R can be written

en(a) - 5(a) €257 (15)

Note that if M is odd, e is identically equal to 1.
This asymmetry between the case M odd and M even
can be simply explained. Let us define as T); the real
vector space of real-valued trigonometric polynomials
that can be written as complex linear combinations of
(x 62”%)_%&12%. If M is odd, dimTy = M
and there is a unique element S of Th; that exactly
interpolates s, and it is given by (13). If M is even,
dimTy; = M + 1 and any element of T, that exactly
interpolates s can be written under the form S(z) +
Asin(mz) with A € R, and the interpolation formula
(13) corresponds to the implicit (minimal norm) choice
A=0.
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2.3 Shannon interpolation of 2-D images

Let u : Iny X In — R be a discrete M x N image. Its
2-dimensional DFT @ : Z2 — C is defined by

Ao ) = Y ulk, e (5 TR, (16)
keln
€Ty

and the natural extension of (11) is

Definition 2 The discrete Shannon interpolate of an
image u : Iny x Iy — R is U : R? — R defined by
Ulz,y) =
Z u(k, 1) sinedps(x — k) sinedy (y —1).  (17)
keln

leln

As in the 1-D case, Definition 2 can be reformulated in
the Fourier domain.

Proposition 5 The discrete Shannon interpolate of an
image u : Iny X In — R can be written

1
U(%ZJ)_W
x Y em(@)en(B) - ala, T HFR) (18
~M<a<y
—J<p<f

where epr and ey are defined in (14).

Proof Simply remark that (12) can be rewritten

1

sincdps(x) = i ear(a)e?™ N (19)

and (18) follows quite directly from (16) and (17). O

Note that if both M and NV are odd, (18) boils down
to

1 . 2im( 92 +52)
M N
N 2= u(a, Be , (20)

acly
BelN

U($>y) =

which is exactly the definition of the inverse DFT of u
for integer values of x and y. Thus, one could wonder
whether in the general case (M, N even or odd) the
generalization of (13), that is,

would be an equivalent definition of U as in the 1-D
case. In fact, (17) and (21) both define bivariate trigono-
metric polynomials of Ty @ Ty that exactly interpolate

w in Ipy X Iy, but they differ when both M and N are
even. In that case, U'(z,y) can still be rewritten in a
form similar to (18), but we have to change the coeffi-
cient ) (a)en(B) into

3 if (a,B8)==(F, %),

0 if (a,8)==x(-%,5%), (22)

1 otherwise.

5/M,N(0475) =

Thus, one easily shows that

Uz,y) =U(z,y) —u (]2\47 ];[) sin(mx) sin(my).  (23)
Even if this difference is expected to be small for nat-
ural images (the Fourier coefficients of a natural image
decrease rather quickly as the frequency increases), the
true interpolate U is to be preferred to U’ as it is sep-
arable and more invariant; in particular, the transform
u +— U’ does not commute with the plane transforms
(fE,y) = (_xvy) and (fE,y) = ((E, _y)'

In the literature, most papers involving 2-D discrete
Shannon interpolation either do not mention this issue
[28,35], or restrict their study to odd dimensions [51],
or use the (slightly incorrect) variant U’ [10] (probably
because taking the real part is the most simple way to
get rid of the imaginary part that naturally appears
when Nyquist frequencies are not carefully handled).

2.4 Dealing with periodization artifacts

Using discrete Shannon interpolation requires a careful
handling of edge effects, as the implicit periodization of
the image may produce interpolation artifacts (that is,
undesired oscillations) near the boundary of the image
domain if the intensity values on the opposite edges of
the image domain do not match well. This issue is dis-
cussed in detail in [38], and an efficient solution is pro-
posed that consists in decomposing the original image
into the sum of a periodic image and a smooth image.
Other solutions exist like symmetrization or apodiza-
tion using an appropriate weight function (e.g., a Ham-
ming window), but they appear to be less efficient in
general. In all the experiments presented throughout
this paper (and in particular in Section 5 and 6), the
periodic plus smooth decomposition of [38] will system-
atically be used.

2.5 Shannon interpolation and reversible transforms
As we saw earlier, Shannon Sampling Theorem provides

a nice theoretical framework that establishes a one-
to-one correspondence between continuous bandlimited
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and discrete images, which naturally leads to the dis-
crete Shannon interpolation we just presented. Inter-
estingly, there is another justification for Shannon in-
terpolation, that does not explicitly refer to Shannon
Sampling Theorem: basically, it is the only linear inter-
polation that defines invertible subpixellic translations
(in a periodic setting). In the following, we assume for
simplicity that M is an odd integer, and write S the
space of M-periodic signals s : Z — R.

Theorem 2 There exists a unique family of linear op-
erators (T;).er on S such that :

(i) z— T, is continuous,
(ii) Vk,z € Z, T,s(k) = s(k — z),
(iii) YVw,z € R, Tyyqr = Ty 0 T,

(iv) lim |z|~Y| T, —id|| is minimal.
z—0
It is defined by
T.s(k) =Sk — 2), (24)

where S is the discrete Shannon interpolate of s defined
in (11) or equivalently in (13).

The Proof is given in Appendix B. Theorem 2 re-
mains true for M even, provided that we define § in
this case by

S= {s Iy =R, (—1)Fs(k) = o} . (25)

keln

(Note that it is equivalent to assume (M /2) = 0). This
restriction is needed to exclude from S the alternated
signal k + (—1)*, which clearly cannot be translated
in a way compatible with Hypotheses (ii) and (iii).

Theorem 2 shows that the only minimal continu-
ous semi-group extending the integer (periodic) trans-
lations is given by Shannon interpolation. This result
is interesting in the sense that it brings another justi-
fication to Shannon interpolation without referring to
Shannon Sampling Theorem (or to the Fourier Trans-
form, for that matter): among linear interpolation meth-
ods, only Shannon interpolation is able to translate im-
ages without information loss.

From Equation (74), we can see that a subpixellic
translation with Shannon interpolation can be imple-
mented with two DFTs, as

T.s(or) = e 22/ M g(a). (26)
Moreover, T, is a linear isometry (||T.s|2 = |sl2),

which is another way to explain that no information
loss occurs.

Signal and image magnification is also very easy to
perform with discrete Shannon interpolation, as it es-
sentially boils down to a zero-padding in the Fourier
domain (for even dimensions, it is also necessary to
split the coefficients corresponding to Nyquist frequen-
cies a = :l:% or B = :l:%) More surprisingly, image
rotation can also be implemented efficiently with the
DFT (see [60]), thanks to the following factorization of
a rotation matrix into a product of shear matrices:

cosf —sin@\ (1t 1 0 1-—t (27)
sinf cosf® /  \0 1 sinf 1 01
with ¢ = tan g. As a shear transform like

U(l‘, y) - u(x - tya y) (28)

consists in applying 1-D translations to each line of w,
a 2-D rotation can be decomposed as a combination
of 1-D translations, which can be implemented in the
Fourier domain. For that reason, image rotation with
discrete Shannon interpolation is a linear isometry, and
can thus be considered as a lossless transform.

2.6 Link with spline interpolation

A popular alternative to Shannon interpolation is spline
interpolation. Without going too much into details (see
[53,52] and the references therein), it is worth mention-
ing the relation between spline and Shannon interpola-
tion, and to understand how they can be combined to
yield what is probably the most accurate and efficient
linear interpolation of bandlimited signals.

The spline interpolation of order n (n € N) of a
signal s € ?(Z) can be written

S™(x) =Y (k) B"(x — k), (29)

keZ

where 5" : R — R is the spline of order n defined
by induction by g° = 1i_1 1 and R+ = gk % g0 for
all £ € N. It can be shown that the signal ¢ : Z —
R is uniquely defined by the interpolation constraint
S™(k) = s(k),k € Z. When n € {0,1}, one has ¢ = s
and spline interpolation corresponds to piecewise con-
stant (n = 0) or piecewise affine (n = 1) interpolation.
When n > 1, ¢ depends linearly on s and can be ef-
ficiently computed using recursive filtering [53]. As re-
marked in [54], spline interpolation achieves an optimal
trade-off between complexity (the support of ™ is an
interval with length n + 1) and asymptotic accuracy
(rate of convergence towards the unsampled signal as
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the sampling step tends to 0). How does spline inter-
polation compare with Shannon interpolation? Indeed,
(29) can be rewritten as

S™(x) =Y (k) Blualx — k), (30)

kEZ

where 37 ; : R — R is the cardinal spline of order n

defined in the Fourier domain by
. ¢ n+1
(smcﬁ)

T ien Br(k)e R

This provides a nice interpretation of spline interpola-
tion in the Fourier domain, as the Fourier transform of
(30) yields

—

glard (f)

(31)

(@) = 5(a) B q (@), (32)
where (o) = ", ., s(k)e~*** is the Fourier Transform
of the discrete signal s. Thus, if S is a bandlimited
signal (supp S C [—7,7]) and s(k) = S(k) for all k €
Z, the Fourier transform of S, is deduced from S by
periodization and multiplication by B/g;;. This is to be
compared to Shannon interpolation, that recovers the

exact signal S since
S(a) = 3(Q) 1|y n. (33)

In fact, ﬂ/?;i — 1j_rx as n — 400 [2] (or, equiva-
lently, 82 4 — sinc), which means that spline interpo-
lation can be viewed as an approximation of Shannon
interpolation (the equivalence being asymptotically ob-
tained for n = 400). For finite n however, the effect of
spline interpolation in the Fourier domain is question-
able: it creates high frequencies aliases (by spectrum
periodization), and then attenuates the whole spectrum
(the known part [—m, 7] included) by an apodization
function that is a smooth approximation of 1;_; .

This apodization function (that is, /g‘;l) is represented
in Fig. 2 for various values of n.

On the one hand, spline interpolation is computa-
tionally efficient, and also versatile: it can be used to
magnify an image by an arbitrary factor, or to apply an
homography or a non-rigid transform to an image. On
the other hand, Shannon interpolation is very accurate,
as it does not attenuate known Fourier coefficients or
create high-frequency aliases. Getting the best of the
two worlds (that is, the accuracy of exact Shannon in-
terpolation and the efficiency of spline interpolation) is
easy: magnify the original image by a small factor (e.g.
2), and then use spline interpolation on the magnified
image. Fig. 3 illustrates the interest of such a combina-
tion in the case of a homographic transform.

7
1t _ — siﬁc |
/ : R order 1
order 3 ----—--
08 - ! order 9 -~
06 b A i i
04 S 1
,”‘ “\\
02 | R 1
0 -
_02 C '”\‘ L L L L L L L ) ‘\V“ b |
8 6 4 2 0 2 4 6 8

Fig. 2 Cardinal splines in the Fourier domain. The
Fourier transform of the interpolation kernels 37, , are rep-
resented for n = 1,3,9. As n increases, they get closer to
the ideal low-pass filter obtained with the sinc kernel. The
approximation is responsible for blur (attenuation of known
frequencies) and aliasing (creation of high frequencies dupli-
cated from existing low frequencies) on spline-interpolated
images.

(c) order 9 spline

(d) Shannon + order 3 spline

Fig. 3 High quality homographic transforms using
a combination of Shannon and spline interpolations.
Applying an homographic transform to an image (a) requires
the use of an interpolation scheme. Spline kernels are inter-
esting but may produce undesired artifacts (the slight super-
imposed line hatch patterns in b,c) due to the creation of
spurious high frequencies. Applying the same transform with
Shannon interpolation alone would be computationally very
expensive, but a simple X2 magnification with Shannon inter-
polation followed by an homographic transform implemented
by a spline of order 3 produces an artifact-free image for a
computational cost equivalent to spline interpolation.

In this section, we gave a precise definition of Shan-
non interpolation (with a careful treatment of Nyquist
frequencies in the case of even dimensions), and saw
how it provides a nice framework for interpolating ban-
dlimited images with a high degree of accuracy. It is
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particularly useful for imaging sciences that require an
accurate treatment of subpixel scales and a strict con-
trol of artifacts (in particular, satellite imaging). As we
shall see in the next sections, Shannon interpolation can
be made compatible with total variation regularization,
provided that we use what we shall call the Shannon to-
tal variation.

3 The Shannon total variation
3.1 Definition

Let | - | denotes the £? norm over R?, let 2 = Iy x I
denote a 2-D discrete domain of size M x N and u € R¥?
a discrete gray-level image with domain (2. We define
the Shannon total variation of u by

VU (z,y)| dzdy ,

STV oo (u) = / (34)

[0,M]x[0,N]

where U is the Shannon interpolation of u defined
in (17), and VU : R? — R? denotes the gradient of
the trigonometric polynomial U. No closed-form for-
mula exist for (34), but we can approximate this con-
tinuous integral with the Riemann sum

1
STV (u) = — > Vaulk, D),
(k,1)eq2,

(35)

where n € N*, 2, = I,pr X I,n and

V(k,1) € 2,, Vyu(k,l)=VU(E L),

In order to compute STV, (u), we need to focus on
the practical computation of V,u. By differentiating
(18), we get the gradient of U, that is, V(z,y) € R?,

. (az By
) = gy 3 H ) o), a0

1

vz

<
<

N‘Zm‘?

a<
B<
where

ga(a, B) = 2im ers(@)en (B) (e, B) <O‘/ M > NEYe

B/N
Therefore, V,,u can be efficiently computed in the Fourier
domain for n > 2 with the following

—

Proposition 6 For anyn > 2 and any (a, B) € §2,, :=
I,n X I,p, we have

2 - 3 M N
Vau(a, f) = {n R A

0 otherwise,

where gg 1s given by (37).

Proof The result comes directly when writing (36) with
(z,y) = (£, 1), and extending the sum to the frequency
domain !/2; by adding zero terms. Note that (/2; contains
all the frequencies (o, ) such that —% <a< % and

—& < B < & involved in (36) since n > 1. O

The next Proposition establishes an upper-bound
for the induced ¢? norm (noted ||| - |||) of the V,, oper-
ator, which will be useful later.

Proposition 7 For any n > 2, we have

[1Vall] < mv/2. (39)
Proof Let u € R¥, from (38) we deduce

NAIE 212 2 asn2 (1,1
Vol = [oga]* < 4wt P (2 45) . (40)

since for any (o, 8) such as || < & and 8] < &, we

have [er(a)en(B)]? < § and |€M(a)€N(B)%|2 <1
Then, using the Parseval identity in (40), that is,

— 1 =N
V0t = — <Vl and @l = [lul?,

1
n?MN
yields || V,ul? < 27%n?||u||? and consequently (39). O

Similarly to Proposition 6, we can compute the ad-
joint of V,, in the Fourier domain (the proof is detailed
in Appendix C).

Proposition 8 Let div, = =V}, then ]igr any n > 2,
p= (pz,py) € R x R and (o, B) € 2:= Iy x Iy,
we have

e 5) = 20 ez + hgs(ea))

with hg(a, B) =

pa(c. B) iflal < ¥, 18 < 5
L (Pa(eB) = Pa(—a.B) ifa=—-% |8 <&
L (a0, B) + Pale,—B)) ifla] <M, p=-%
i Z 51@(51a732ﬁ) if (avﬂ) = (_%a _%)’
s;=+1
so=%+1

and hg- (o, B) =
py (. )

if la] < &, Bl < %

%(@(O[,ﬁ)ﬂ- @(_avﬁ)) ifa = _%7 ‘Bl < %
L (B (@, B) = By (o, —B)) iflal <M, g=-X
Y sy (siens28)  if (a.8) = (4, -5).
s;==+1
so==1
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Notice that Propositions 6 to 8 can be easily adapted
to the case n = 1. However, we shall not need to con-
sider this case as STV, happens to be a poor approx-
imation of STV, (see next section). Note also that
similar definitions and propositions could be established
for the U’ variant of Shannon interpolation mentioned
n (21). This variant yields somewhat simpler formulas
(no weights are required to handle Nyquist frequencies
in the case of even dimensions) since all operators can
be obtained by taking the real part of complex-valued
images. However, in addition to being less invariant (as
discussed in the end of Section 2.3), U’ is also compu-
tationally less efficient as it requires the computation
of DFTs of complex-valued images.

3.2 Choice of the oversampling factor n

When estimating STV o, (u) with STV, (u), which value
of the oversampling factor n should we choose? We ex-
perimentally observed on many images that the con-
vergence with respect to n is extremely fast, so that
in practice choosing n = 2 or n = 3 is enough. Note
that an estimate of STV (u) could also be obtained
by using a finite difference scheme on the image magni-
fied with Shannon interpolation, that is, n‘lTVd(Znu)
with

k1
kD) e, ZoulkD=U(Z 2.
(kD) € k) =v (%,1)

Both estimate are consistent in the sense that

lim STV,(u)= lim n 'TVY(Z,u)=STV.(u).
n—-4o0o n—-4o0o
However, the convergence speed is much worse for the

latter, which comforts us in the choice of STV, (see
Table 1).

n T TVY(Z,u) STV,(u)
1 1.6-101 1.8-102
2 4.2-1072 1.3-10°3
3 2.1-10~2 1.7-10~4
5 8.6-10—3 7.3.10°5
10 2.8-10~3 3.4-10-96

Table 1 Relative errors of two STV, estimates. We
compare two estimates of STV (u) when u is the classi-
cal “Lena” image. As we can observe, the relative errors
are much smaller with STV, (u) (third column) than with
n~1TVY(Z,u) (second column), and the convergence with
respect to n is faster. Even for n = 2, the STVy estimate
is very accurate with a relative error of 0.1% or so. This ex-
periment has been repeated on many other images, including
pure noise images, and yielded similar conclusions for all of
them.

As concerns the idea of estimating STV o (u) with
STV (u), the following result shows that it could lead
to incorrect results, as controlling STV (u) is not suf-
ficient to control STV (u). We believe that, on the
contrary, such a control is ensured as soon as n > 2,
even though we have no proof of this affirmation yet.

Theorem 3 There exists no constant C' such that
STV (u) <C-STVq(u)

for any positive integer M and any discrete image u of

size M x M.

The proof is given in Appendix D. It consists in
building a sequence of discrete images up; with size
M x M such that STVy(ups) is fixed but STV o (unr)
increases to +oo with M.

In all the experiments reported in this paper, we
used STV, with n = 3, but we observed only very slight
improvements (and sometimes none) compared to the
case n = 2, which should probably be preferred when
computational issues are important. Note also that one
could choose non-integer values of n (only nM and nN
have to be integers), which could also be interesting for
computational issues.

4 Duality tools for handling the STV
regularizer in a variational framework

4.1 Recall of convex analysis

We here briefly recall some classical convex analysis re-
sults needed for non-smooth convex optimization. We
refer to [24] for a more detailed presentation.

Consider a finite-dimensional real vector space E
and let E* denotes its dual space, that is, the set of
linear mappings from F to R. Let R denotes the set
R U {—00,+0o0} and {-,-) : E* x E — R the bilinear
mapping defined by

Voe E*X, Vue E, (p,u)=pu).

An affine function on F is a function A : u +— (p, u)+a,
where ¢ € E* is called the slope of A and o € R the
constant term. We denote by I'(E) the set of functions
F : E — R which are the pointwise supremum of a
family of affine functions over E. One can show that F'is
an element of I'(F) if and only if it is convex and lower
semi-continuous (l.s.c.) and does not take the value —oo
unless it is constant. In order to dismiss singular cases,
we say that F' is proper if it never assumes the value
—oo and is different from the constant +oco. We denote
by I'h(E) the set of proper elements of I'(E).
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Given a function F : E — R, the I'-regularization
of F is the largest element of I'(E) which lower bounds
F, or, equivalently, the pointwise supremum of all affine
functions that lower bound F'. Note that an affine func-
tion A with slope ¢ € E* and constant term o € R
satisfies A < F'if and only if o < —F*(yp), where
F*(¢) =

sup (p,u) — F(u), (41)

uedomF
and domF = {u € E, F(u) < 4oo}. The function
F*: E* — R is called the Legendre-Fenchel transform
of F (or the polar, or the conjugate of F). It is an
element of I'(E*), as it can be seen as the pointwise
supremum over the dual space E* of all affine functions
{Au}ucdomp defined by

Yu € domF, A, :¢— (p,u) — F(u).

Since here E has finite dimension, it is a reflexive space
and the Legendre-Fenchel transform of F* (noted F**)
is an element of I'(E**) (and thus an element of I'(E)),
which happens to be exactly the I'-regularization of F'.
In particular F** < F and we have the characterization

Fel(E)& F*=F, (42)

which is very useful to derive a primal-dual reformu-
lation of an optimization problem when the cost func-
tion decomposes as a sum with at least one term in
I'(E). Besides, since E (endowed with the Euclidean
inner product) is a Hilbert space, it is self-dual in the
sense that any element of E* can be represented as the
inner product with an element of E, which is very useful
in practical computations.

4.2 Chambolle-Pock Algorithm

The recent use in imaging of those powerful convex
analysis tools based on duality allowed to properly han-
dle total variation-based variational problems (see e.g.
[11,62]). This initiated some flourishing theoretical re-
search (see e.g. [4,26]) as well as the development of
efficient numerical schemes [15,20,7,58,42,23,45] dedi-
cated to nonsmooth optimization. We will here briefly
recall the formulation of the celebrated first order primal-
dual algorithm of Chambolle and Pock [15], which can
be used to address various total variation based image
processing tasks and comes with nice convergence the-
orems.

Consider X and Y two finite-dimensional real vector
spaces, an inner product (-,-) over Y and the generic
saddle-point problem

minmax G(z) + (Kz,y) — F*(y) ,

rzeX yey

(43)

where F € IH(Y), G € I'h(X) and K : X — Y denotes
a linear operator. We set H : (z,y) — G(z)+ (Kz,y) —
F*(y) and we assume that problem (43) has at least one
solution (i.e. a saddle-point of H). Recall that thanks
o (42), for any x € X we have

F(Kz) = F*(Kz) = Sg(f{x,y) —F*(y),

(44)

therefore one can interpret Equation (43) as a primal-
dual formulation of the primal problem

min G(z)+ F(Kx)

(45)
as soon as the sup,cy is indeed a maximum (which
will be the case in practice). The proximal splitting al-
gorithm proposed by Chambolle and Pock in [15] (see
also [39,47], or more recently [43,19] for more details
about proximity operators and proximal algorithms) for

solving problem (43) is described in Algorithm 1 below.

Algorithm 1: Chambolle-Pock resolvant algo-
rithm for problem (43)

Initialization: Choose 7,0 >0, 0 € [0,1], 2° € X,
y0 €Y, and set T° = 2°

(note: for 0 = 1, convergence towards a solution of
(43) was proven in [15] when Tol||K]|||? < 1).

Iterations: For k > 0, update z*,y* and TF as
follows,

yk+l = argmin i Hy — (y’C + JKEk)||§ + F*(y)
yey

2kt = argmin i ||ac — (mk — TK*yk'H) ||§ + G(z)
xeX

FhHL = ghtl Ly (xk+1 _ xk)

In the case = 0, one iteration k of Algorithm 1
consists in a proximal ascent of y — H(x*,y) followed
by a proximal descent of x + H(z,y**1), yielding a
semi-implicit variant of the classical Arrow-Hurwicz al-
gorithm [3]. In the case § > 0, the iterate "1 =
AR (x’““ - xk) represents a linear approximation
(or extrapolation) of the next iterate z°*2 based on the
current and the previous iterates z*t! and z*; it is used
to make the scheme more implicit and prove the con-
vergence (in the case § = 1 and 7o|||K|||* < 1) of the
sequence (z*, y*)x>0 towards a saddle-point of H, with
an estimate of the convergence rate in O(1/N) after N
iterations (see Theorem 1 in [15]). Notice that some ac-
celerated variants of this algorithm were also proposed
by the same authors, which under regularity assump-
tions on F* and G achieve better convergence rates,
thanks to Nesterov-like acceleration strategies [40] (see
Algorithms 2 and 3 in [15]).
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4.3 Dual formulation of the Shannon total variation

The STV,, operator defined in (35) can be rewritten
under the form STV, (u) = 25| V,ul|1,2, noting || - [|1,2
the norm over the space R”» x R defined by

ha= > lg(z.y)l.

(z,y)€2n

Vg € R xR, g

One easily checks that the dual norm of || - |12 is the
norm || - ||s0,2 defined by

Vp € R xR ||p|loce = max |p(z,y)].
(z,y)ENR,

Consequently (see e.g. [8]), the Legendre-Fenchel

transform of || - |12, noted || - [|T 5, is the indicator
function of the closed unit ball for the norm || - |jco,2 s
defined by

0 if [plloc2 <1,

‘QVL 'Qn —
Vp € R X R, 5“"""’*2§1(p) {—i—oo otherwise.

We will now use the duality tools described in Sec-
tion 4.1 to derive a dual formulation of our STV, op-
erator.

Proposition 9 (dual formulation of STV,,)
For any integer n > 1 and for any image u € R?,

1
STV, (u) = peRg}LameKmVn%P) =0l e 2<1(P) -
Proof Since || - ||1.2 is convex and Ls.c. over Rn x Rn

it is an element of I'(R%» x R), thereby | - |12 =
| - li% thanks to (42). Besides, given any image u €
R, one has STV, (u) = 25| Vauli,2 = |22 Vaull12 .
Therefore, STV,,(u) = H#VnuH:*z, ie.

STV,(u)=  sup

pERZn xR2n

<%VHU7P>RQH XR?n Hp' T,Q )

and [|p[|7 5 is exactly d). . ,<1(p). Last, one can see that
the supremum is attained, since it is nothing but the
maximum of the inner product term over the closed
unit ball for the dual norm || - ||c0,2- O

4.4 The Huber STV

The use of TV as a regularizer for image processing
applications has a well-known drawback, the so-called
staircasing effect, which is the creation of piecewise con-
stant regions with artificial boundaries where one would
have expected smooth intensity variations (see for in-
stance [41,16,46] for theoretical results about the stair-
casing). Several variants of TV have been proposed in
order to avoid this undesirable effect (see for instance
[9,33,34]). In the numerical experiments that will be

presented in Section 5, we observed that although this
staircasing effect is significantly attenuated when using
the STV, variant of TVY, it remains present (at least
visually) in the processed images.

In the case of TVY, a classical way to get rid of the
staircasing effect consists in replacing the ¢2 norm | - |
of the gradient in the definition of the TV operator by
its smooth Huber approximation with parameter a > 0
(coming from the statistical literature [31,32], and used
for instance in [57,59,15]). It is defined by

% if |y| <a, (47)

ly| — § otherwise.

Vy € R?, Hol(y) = {

The same adaptation can be easily done in the case of
STV by replacing the £2 norm by the Huber-function
H, in Equations (34) and (35), which in the case of the
Riemann approximation leads to

HSTVa,n(u):% Z Ha (Vau(z,y)) , (48)

(z,y)€2n

for any image u € R. Next Proposition establishes a
dual reformulation of (48).

Proposition 10 (dual formulation of HSTV,, ,,)
Let a > 0 and n > 1. For any image u € R?, one has

HSTV,.,(u) =

max {1z Vnu, p) = 0 .<1(p) — oz lpl3 -

pERSn xRn

The Proof is given in Appendix E. In the following, we
shall use the dual formulations of STV,, and HSTV,,
provided by Propositions 9 and 10 in order to reformu-
late many optimization problems frequently considered
in image restoration in their primal-dual form (43).

5 Image processing applications

In this section, we illustrate the interest of STV in the
case of several TV-based image processing applications.
As we shall see, replacing the classical discrete TV by
STV does not raise any theoretical nor numerical diffi-
culty, and brings clear improvements regarding subpix-
ellic scales.

5.1 Image denoising

The STV variant of the denoising model (1) proposed
by Rudin, Osher and Fatemi (ROF) in [50] writes

argmin ||u — ug||3 + ASTV,,(u) , (49)
u€ERS?
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where ug € R denotes the observed image with (dis-
crete) domain 2, and A > 0 is the so-called regular-
ity parameter that controls the trade-off between the
data-fidelity term (the square ¢ distance to ug) and the
regularity term STV, (u) in the minimization process.
Using Proposition 9, we immediately get a primal-dual
reformulation of (49),

argmin max
weR? DPERSZn xRZn

lu = uoll3 + (2 Vnu, p) = 0 o<1(p) ,  (50)

which has exactly the form of (43) with (x,y) = (u,p),
Gu) = |lu — wl3, K = %Vn (with adjoint K* =
—,’%Qdivn)7 and F*(p) = 5”.Hx12§1(p).

Notice that replacing STV, (u) by HSTV, ,(u)
into (49) leads to the Huber STV,, variant of ROF. In
view of Proposition 10, it amounts to replace the term
F*(p) = ) <1 (p) by F*(p) = 8y o<1 (0) + 555 I3
into the primal-dual problem (50).

For both STV,, and HSTV,, ,, regularizers, the cor-
responding primal-dual problem can be numerically sol-
ved by specializing Algorithm 1, which yields Algo-
rithm 2 below. Notice that (39) yields the upper bound
[I1K]|] < MT‘/E, which is useful to set the parameters
7 and o of the algorithm. The images resulting from
the different (discrete or Shannon, Huber or usual) TV-
based image denoising models are compared in Fig. 4
and 5: we illustrate in Fig. 4 the improved behavior of
STV over the classical discrete TV regarding posterior
interpolation, and do the same in Fig. 5 for the Huber
variant.

Algorithm 2: Chambolle-Pock resolvant Algo-
rithm for Problem (49)

Initialization: Choose 7,0 > 0, 6 € [0,1], u® € R%,
p0 € RPn x R?n | set u® = u® and set v = 1 when
using the STV, reqularizer and v =1+ a‘;—é when
using the HSTV o » regularizer. Denote by moo,2 the
02 projection on the closed unit ball for the norm

I lloo,2 in R?n x R?n | which is defined by

p(z,y)

v($7 y) E ‘Qn7 —7
max (1, [p(z, y)|)

Too,2(p) (%, y) =

for any p € R¥» x R»,

Iterations: For k > 0, update p*, u* and @* with

pFtl = Too,2 ((pk + %Vnﬂk) /1/) (5la)
k A4 k+1 2
I N i M e (51b)
1427
ahtl =kt 49 (uk+1 — uk) (51c)

5.2 Inverse problems

Let us now consider the more general case of a linear
inverse problem addressed with quadratic data fidelity
and STV regularization. It writes

@ € argmin ||Au — ug||3 + ASTV,,(u), (52)
u€ERS?

where up € R“ denotes the observed image (w being a
finite subset of Z2, possibly w = 2) and A : R? — R¥ is
a linear operator which may model the convolution with
the impulse response of an acquisition device (defocus
or motion blur for instance) or other linear observation
mechanisms such as tomography, downsampling, loss of
image regions, etc.

Proposition 11 (primal-dual formulation of (52))
Any solution @ of Problem (52) satisfies

@€ argmin  max - G(u) + (Ku, (p,q)) = F*(p,9) ,

wER? peER?n xRn
gER”

where G(u) = 0, F*(p.g) = 814 ,<1(p) + 1§ + uol}3
and K : R¥? — (RQ" X RQ") X R¥ is the linear operator
defined by Ku = (2V,u, Au) for any u € R? .
Proof Writing f(v) = ||[v — ug||%, one easily gets the
expression of the Legendre-Fenchel transform of f, that
is f*(q) = |4 +uoll3—||uo||3- Besides, since f € IH(RY),
we have
[Au = uoll3 = f(Au) = f**(Au)

sup (Au, g) — |2 + uo|2 + [uoll2,
qeERw

53)

and the supremum is attained since the cost functional
is concave, differentiable, and its gradient vanishes at
the point ¢ = 2(Au—ug). Replacing the quadratic term
accordingly into (52), removing the constant |lugl|3
(which does not change the set of minimizers), and re-
placing as well the STV,, term by its dual formulation
using Proposition 9, we obtain the desired result. a

Again, the Huber version of (52) is obtained by re-
placing the STV, (u) term by HSTV, , (u), which sim-
ply changes F*(p,q) = .. ,<1(p) + [|§ + uol3 into
F*(9,q) = 0 o<1 (D) + 525 [IPI13 + [|4 + o3

Note that the adjoint of K (defined in Proposi-
tion 11) is K*(p,q) = —%divnp+A*q7 and its induced
£? norm satisfies

AN 2
KNP < M2 Valll? + AN < 2(22)7 + 1Al

Thus, Chambolle-Pock Algorithm can be rewritten in
the present case as Algorithm 3 below. The update of
the dual variable (here the tuple (p,q)) in the generic
Algorithm 1 was split into two independent updates
thanks to the additive separability with respect to p
and ¢ of the function (p, q) — (Ku, (p,q)) — F*(p,q).
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(c) STV (Shannon TV, n = 3)

e -
e
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|

|
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STV: details STV: bicubic interpolation STV: Shannon interpolation

Fig. 4 Comparison of discrete TV and Shannon TV for image denoising. A noisy image (top, left) undergoing
additive white Gaussian noise with zero mean and standard deviation o = 20 (see also the reference image in Fig. 5) was
processed with the ROF model using the TVY (top, center) and STV3 (top, right) discretizations. The regularity parameter
A was set in order to get the same norm of the estimated noise (the difference between the noisy and the restored image) in
each simulation. In the second row we display a cropping of the TV9-restored image oversampled with factor 3 using different
interpolation methods (from left to right: nearest neighbor, bicubic spline and Shannon interpolation). In the third row, the
same operation is realized on the STV-restored image. We can see that images TV and STV images look globally similar. The
details on the left of rows 2 and 3 reveal the presence of staircasing in both cases, but this artifact is significantly attenuated
in the case of STV. Looking at the second row, we see that the TV image cannot be interpolated in a satisfying way, since
both bicubic and Shannon interpolation methods yield images with undesirables oscillations (ringing) localized near objects
contours. This is not the case with the STV image, that can be interpolated without creating artifacts with both bicubic and
Shannon interpolations (row 3).
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Huber TV4 Huber STV (n = 3)

i
=
oL@ -

Huber TVY: details Huber TV9: bicubic interpolation

™

ra
=
2

=il =

- <
STV: details Huber STV: details Huber STV: bicubic interpolation

Fig. 5 Image denoising with Huber-TV and Huber-STV. This experiment is similar to Fig. 4, except that we here
consider the Huber variant (with o = 5) of ROF denoising, both for the TVY and STV discretizations. As expected, the Huber
variant avoids the staircasing effect for both discretizations (TVY and STV). However, it does not solve the interpolability
issue for TV9: the bicubic interpolation of Huber TVY presents several ringing artifacts (like the non-Huber TV displayed in
Fig. 4), and these artifacts are again completely avoided by considering the STV discretization.
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Algorithm 3: Chambolle-Pock resolvant Algo-
rithm for Problem (52)

Initialization: Choose 7,0 > 0, § € [0,1], u® € R,
p? € RZn x R, q0 € R, set u® = u® and set v as
in Algorithm 2.

Iterations: For k > 0, update p*, v and u® with
P = o (0 + 2305 1)
qk+1 _ 2q¢*% + 20 (AE’C — uo)
240
whktl =k &+ ;—édivnpk"'l — 7—A*qk+1

T S S R (uk+1 - uk)

5.2.1 Application to image deconvolution

In the case of image deconvolution, the linear operator
Ain (52) is the convolution with a point spread function
ka (modeling for instance some blurring phenomenon
such as diffraction, defocus, motion blur, ...). Let us
consider such a discrete convolution kernel k4 € R¥A
with finite domain w4 C Z2, and define the associated
operator A : R — R¥ by

Au(x,y) = Z ka(a,b)u(z —a,y —b), (55)

(a,b)Ewa

where w denotes the subset of {2 made of all the pixels
(x,y) € 2 such as (z,y) —wa C 2. In order to use
Algorithm 3, we need the explicit expression of A* :
R — R, which writes

A*v(z,y) = Z ka(a,b)v(xz+a,y+b), (56)

(a,b)Ewa

for v € R¥ and (z,y) € {2, with the convention that
v(x +a,y+b) =0 when (v + a,y +b) ¢ w. One easily
checks that ||| A]|| < ||kal|1 as well.

Most authors define the convolution with kernel k4
as an operator A : R”? — R at the cost of an exten-
sion of u outside of 2, usually a periodic or a mirroring
condition, or a zero-extension. Such a convention sim-
plifies the analysis (and the computations, especially in
the periodic case where the convolution can be imple-
mented with the DF'T), but we shall not use it here as it
is unrealistic and thus of little help to process real data.
Experiments illustrating STV deblurring are displayed
in Fig. 6 (motion blur) and 7 (out of focus).

5.2.2 Application to image zooming and inpainting

The variational formulation (52) can be used to perform
many other image processing tasks: as soon as we can

derive a closed-form expression for A, its adjoint A*,
and estimate an upper bound for |||A4]||, Algorithm (3)
can be implemented without difficulty. We here mention
two more examples of applications (zoom and inpaint-
ing), each corresponding to a particular choice of A. We
experimentally checked that, in both cases, the use of
STV,, instead of TV yields nicely interpolable images.

In the case of image zooming, the operator A is often
assumed to be a blurring kernel followed by a subsam-
pling procedure (see [35,15]). A simple particular case
is the discrete captor integration model A : R? — R¥
defined by

1
Au(w,y) =55 > u(dr+a,0y+0), (57)
(a,b)el?

where w = Ij; x Iy denotes a small discrete domain
and 2 = Isp x Isn a bigger one, § (the magnification
factor) being an integer at least equal to 2. In that
case, we easily obtain the relation |||A||| = % and the
expression of the adjoint operator A* : R¥ — R as

Aol y) = o (15] (1) (58)

Another example is image inpainting, which aims at
estimating plausible image intensities in a (nonempty)
subpart wy of the image domain {2 where the infor-
mation is missing. In that case, w = (2, the operator
A :R? — R? is defined by

Au(‘rvy) = ]lwo(xvy) : U(IL}y),

and one easily checks that A* = A (A is a diagonal
operator) and |||4]]| = 1.
5.3 Constrained minimization

In some situations, it is desirable to consider constrained
minimization problems of the type

@ € argmin STV, (u)
u€R®?

subject to  Au = ug , (59)

where ug denotes the observed image with discrete do-
main w, % denotes the reconstructed image with dis-
crete domain {2, and A denotes again a linear operator
from R to R¥. In other words, we are interested in the
computation of an image @ having the smallest Shannon
TV among those satisfying the constraint Au = ug. Re-
mark that the inverse problem (52) is none other than
a relaxed version of (59). In the presence of noise, it
is better to use the relaxed formulation, but the con-
strained model (59) may be interesting when the level of
noise in ug is low, especially because it does not require
the setting of any regularization parameter \.
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(e) blurry & noisy: details

s

(f) TV9-restored: Shannon interpolation (g) STV-restored: Shannon interpolation

Fig. 6 Motion deblurring with discrete TV and Shannon TV. A degraded (blurry and noisy) image (a) is synthesized
by convolving the reference image (b) with a real-data motion blur kernel and then adding a white Gaussian noise with zero-
mean and standard deviation o = 2. The degraded image (a) is then processed by solving the corresponding TVY and STV3
regularized inverse problems (Equation (52)). As in Fig. 4, the regularization parameter X is set in such a way that the amount
of estimated noise (here the quantity ||A@ — uol|2, where @ is the restored image) is the same for both methods. The resulting
images (c) and (d) are quite similar, but the magnified views (f) and (g) (magnification of factor 4 with Shannon interpolation)
clearly shows that they strongly differ in terms of interpolability: as in the denoising case, the interpolated TV image exhibit
strong ringing artifacts, whereas the interpolated STV image does not.
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/ A 4
(c) Huber TV

(e) blurry & noisy: details

(f) Huber TV: bicubic interpolation (g) Huber STV: bicubic interpolation

Fig. 7 Out-of-focus deblurring using Huber TV and Huber STV. This experiment is similar to Fig. 6, except that we
here used a fluorescence microscopy image of actin filaments and microtubules in interphase cells (source cellimagelibrary.org,
CIL number 240, first channel), a synthetic out-of-focus blur kernel defined by the indicator of a disk with radius 7 pixels, and
we replaced the TV and STV 3 regularizers by their Huber versions (o = 5). The conclusions are identical.
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Using Proposition 9, we obtain a primal-dual refor-
mulation of (59),

% € argmin ~_max
weR? DPERPn xR

841 (up) (1) + {7z Vit p) = 8] o<1 (P) 5 (60)
where the (closed and convex) set

A (ug) = {ue R, Au= uo }

is assumed to be nonempty, and dp denotes the indica-
tor function of a set P (that is, dp(p) =0if p € P, +o0
otherwise). A solution of Problem (60) can be numeri-
cally computed using Algorithm 4, taking G = 6 4-1(y,),
F* =0 0<1 and K = n—gvn in Chambolle-Pock Al-
gorithm.

Algorithm 4: Chambolle-Pock resolvant Algo-
rithm for Problem (60)

Initialization: Choose 7,0 > 0, § € [0,1], u® € R%,
p0 € R?n x R set u° = u® and define v and 7o 2
as in Algorithm 2. Denote by mo the £2 projection
from R onto the (closed and convex) set

A=Y (uo) = {u eR?, Au=uo}.

Iterations: For k > 0, update p*, u* and T* with

k41

moo,2 (P + ;HVnT") /v)
k+1)

p

k41

u = o (uk + #divnp

gkl =kt 4 (uk+1 _ uk)

To illustrate the general framework above, we will
consider in the next section the problem of reconstruct-
ing an image from partial measurements in the Fourier
domain. A particular case is image magnification (as-
suming that the original low-resolution image does not
suffer from aliasing), which corresponds to the recovery
of high-frequency components only, but other situations
(like tomography) require spectrum interpolation in a
more complicated domain. Note also that many other
applications, such as image inpainting or image zoom-
ing presented in Section 5.2.2, can be easily handled as
well with the constrained formulation (59).

5.8.1 Application to spectrum extrapolation

Given an image ug € R whose spectrum g is known
on a certain (symmetric) subdomain @y of 2, how to
extend this spectrum to the whole spectral domain 27
The trivial zero-padding approach, which amounts to
extending the spectrum with the constant zero, yields
a very oscillatory image in general, in reason of the

irregularity (missing Fourier coeffients) of the extrap-
olated spectrum. A more satisfying reconstruction can
be obtained with a variational approach: among all pos-
sible spectrum extensions, choose the one that mini-
mizes a given energy. This kind of approach was used
by Rougé and Seghier [48], who considered the Burg
entropy, and by Guichard and Malgouyres [30,35], who
used the discrete TV (but in a slightly different frame-
work, since they take as input a subsampled image
which suffers from aliasing). We here consider the en-
ergy STV,,; in a constrained formulation, this is a par-
ticular case of (59), since the frequency constraint (u
and Uy are equal on @y) can be enforced under the form
Au = ug where A = F~1o Mg, o F (F and F~! de-
note the direct and inverse discrete Fourier transforms
respectively, the operator Mg, denotes the pointwise
multiplication of a element of C? with 15,, and 4 is
implicitly set to zero outside &p). Note that the £2 pro-
jection g onto the set A~1(ug) is simply obtained in
the Fourier domain with

vu € R?, Y(a, B) € 02,

— _ [ (e, B)if (o, 8) €@
mo(u)(a, B) = { ao(a,ﬂ) otherwise . i

Some examples of spectrum extrapolations are proposed
in Fig. 8 and 9.

6 Regularization with weighted frequencies

Using STV as a regularizer leads to iterative algorithms

that operate in the Fourier domain. This has a non-

negligible computational cost, even though this kind of

algorithms is common nowadays and there exist very

efficient implementations of the Fourier Transform, like

FFTW [27]. We now consider an image restoration model
that benefits from the availability of the Fourier trans-

form of the current image at each iteration.

6.1 Model

Given an input image ug : 2 — R (with 2 = I x Iy)
and a symmetric non-negative map v : 2 — R+, we
consider the minimization problem

argmin ||u — I/LBH?Y +ASTV,(u), (62)
uERS?

where A > 0 is a regularization parameter and

LS (@, B) - fia, B) - (e, B)

~ —~2
@ —uoll] = 57
(a,8)ef

|£2]

is a weighted squared distance between u and ug (strictly
speaking, it defines a distance only if v does not vanish).
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input image (uo) TVvd

ug: spectrum TV9: spectrum STV: spectrum reference: spectrum

Fig. 8 Image zooming with spectrum extrapolation. An input image (1st column) is synthesized by setting to 0 the
high frequency components (that is, outside a square @Wg) of a reference image (4th column). Spectrum extrapolation is then
realized using either the discrete TV (2nd column) or the STV (3rd column). For each image of the first row, the spectrum
(Fourier modulus, in log scale) is displayed below on the second row. As we can observe, the constrained TV minimization
framework (59) is efficient for spectrum extrapolation: both discretizations manage to reconstruct part of the missing high
frequencies and remove the ringing patterns observed in the input image. However, STV is to be preferred to discrete TV as
it manages to avoid the aliasing artifacts of the latter (red arrows), and delivers nicely interpolable images.

ro padding)
NI

% ,r..f

reference: spectrum up: spectrum STV: spectrum

Fig. 9 Image reconstruction from partial measurements in the Fourier domain. We here reproduce a simplified
tomography inversion experiment: a reference image (1st column) is sampled in the Fourier domain along several discrete rays
(covering around 35% of the whole frequency domain), and two image reconstruction methods are compared. The first one
consists in setting the missing Fourier coefficients to 0 (2nd column), which produces severe ringing artifacts. Extrapolating the
missing Fourier coefficients with the constrained STV minimization framework (59) yields a much nicer image (3rd column)
which can be easily interpolated. As in Fig. 8, the spectrum of each image of the first row is displayed on the second row.
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Model (62) generalizes two other models considered
above. Indeed, STV image denoising (49) is obtained
with v = 1, while the choice v = 15 leads to a re-
laxed version of spectrum extrapolation considered in
Section 5.3.1. Choosing a more general (non-binary)
weight map =~ provides a way to selectively regular-
ize the Fourier coefficients of the input image ug: when
~(«, B) is large, one expects to obtain u(«, 8) ~ ug(a, B);
on the contrary, the coefficients @(«, 3) corresponding
to small (or zero) values of v(a, §) are essentially driven
by STV regularization.

6.2 Algorithm

Replacing the STV,, term by its dual formulation
(Proposition 9) into (62) yields the primal-dual problem

argmin  max
ueR? DPERSZn xXRZn

~ —~ 12

I — |2 + (2 Vinu,p) = 0 .<i(p) . (63)
In order to apply Algorithm 1 to (63), one needs to
perform at each iteration k£ the primal update

2
u"! = argmin - Hu - ukH/QHQ + || — %Hi ,  (64)

u€ER?

where «**1/2 = ¥ + Z2div, p**1. Thanks to Parseval
Identity, this can be rewritten

—

. 1 ~ —11% ~ 2
uk+l = Argmin 5o Hu - uk+1/2H2 + [[u —aoll , (65)
u€R

from which we easily obtain the explicit formula for the
update given in Algorithm 5.

Algorithm 5: Chambolle-Pock resolvant algo-
rithm for problem (62)

Initialization: Choose 7,0 >0, 6 € [0,1], u°® € R,
p0 € RZn x R%n | set ©° = u® and define v and Too,2
as in Algorithm 2.

Iterations: For k > 0, update p*, u* and w* with

pk+1 = Too,2 ((Pk + %Vnﬁk) /V)

uk+1/2 — uk + %div7lpk+l

k41 F-1 <“k+1/2 + 277'175>
u =

14 277

T S R +9(uk+1 7uk>

6.3 Image Shannonization

One interesting application of Model (62) is its abil-
ity to (partly or fully) remove aliasing from a given
image, thus providing what we could call an “Image
Shannonizer”. We did not thoroughly investigate this
phenomenon yet but the first results we obtained using
the simple Gaussian weight function
2 2

V(e B) = efﬂ%z(%+%>

seem interesting enough to be mentioned here.

Aliasing arises when a continuous image is not sam-
pled in accordance with Shannon Theorem, that is,
when the sampling step is too large compared to the
highest frequency component that the image contains.
In that case, the sampled image will be aliased, which
means that its discrete Fourier coeflicients will be the
sum of one correct value and several incorrect values
arising from higher frequencies that cannot be repre-
sented in the available discrete Fourier domain. In prac-
tice, since the power spectrum of natural images tends
to exhibit a power-law decrease (see [49]), aliasing most-
ly impacts the highest frequencies of the discrete image
in general; it is thus logical to choose for v a decreas-
ing function of the distance to the origin. The isotropic
map (66) is a possibility, but it would certainly be worth
exploring other choices.

The Shannon interpolate of an aliased image is very
oscillatory in general, because the aliased component
define a trigonometric polynomial with improper aliased
frequencies. Therefore, we can expect Model (62) to
show interesting aliasing removal performances, as STV
is strongly affected by oscillations. Indeed, we can ob-
serve in Fig. 10 and 11 that the aliasing of the input
image ug (which is clearly visible on its spectrum) is
completely removed after processing through the Im-
age Shannonizer, without introducing noticeable blur
on the image.

(66)

7 Conclusion

In this paper we showed that images delivered by varia-
tional T'V-based models could not be easily interpolated
when the TV is discretized with a classical finite differ-
ence scheme. However, we demonstrated on several ex-
amples that a variant called STV (for Shannon TV) suc-
cessfully addresses this issue, and can be efficiently han-
dled using Legendre-Fenchel duality and Chambolle-
Pock Algorithm. We easily adapted the STV variant
to Huber-TV regularization, which let us believe that
STV could be easily applied to other variants of the
discrete TV as well; for example, the Total Generalized



The Shannon Total Variation 21

input image: details Shannonization: details frequency attenuation: details

input image: spectrum Shannonization: spectrum frequency attenuation: spectrum

Fig. 10 Image “Shannonization”. The input image (left column) is slightly aliased, as indicated by the periodic con-
tinuation patterns (see red arrows) that appear in its Fourier spectrum (3rd row). Processing this image with the “Image
Shannonizer” (62) results in a visually similar image (middle column) that seems aliasing-free (the patterns are not visible
any more on the 3rd row). In comparison, a generic frequency attenuation process (on the right column, with a Gaussian
attenuation map) produces a large amount of blur while being less efficient in terms of aliasing removal.
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input image Shannonization frequency attenuation

Fig. 11 Details of Fig. 10 with Shannon resampling. Different Parts of the three images of the first row of Fig. 10
are shown after Shannon interpolation. As expected, the output of the “Image Shannonizer” (middle) is well interpolable,
contrary to the input image (left) on which oscillations appear. A simple frequency attenutation (right) is not efficient, since
it introduces a large amount of undesired blur.
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Variation (TGV) proposed in [9] involves higher order
derivatives that could be computed exactly as in the
STV approach.

The choice of the upsampling factor n used to es-
timate STV with a Riemann sum was discussed and
it was shown that n = 1 was inadequate. However, it
would be interesting to further investigate this issue
and prove that n = 2 (or intermediate values between 1
and 2) guarantees a close correspondence between the
true STV and its estimate STV,,.

We also presented a new STV-based restoration mo-
del relying on a weight map in the Fourier domain,
and showed that in certain cases it could be used as
an “Image Shannonizer”, which transforms an image
into a very similar one that can be easily interpolated
(with Shannon interpolation or spline interpolation for
example). This seems particularly interesting, as most
images are not perfectly sampled (and hence difficult to
interpolate) and would hence benefit a lot from this pro-
cess. This opens new perspectives on aliasing removal
(and thus super-resolution from a single image), but
several questions are still to be answered, in particular
concerning the choice of the weight map.
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and the limit sincd v (z) = limy,— 00 Sn(z) can be computed Hence,
explicitly using classical series expansions (due to Euler):
@
oo hm |2| YT — id||2 = 2 max |— +p(a)' (72)
1 1 1 1
VtER\ 7L, —— =+ + , acly | M
tant t — t —pm t+pm
p=1 and since = € (—%,1) and p(a) € Z for any a € Tar, the

1 1
= — 1)P .
sint +Z( ) ( — pm t+pﬂ')

If N is odd, (—1)?N = (—1)? and we obtain

in Nt
sincdn () = ]S\llnsint =

sinmx
cwx )
N sin N

and if N is even, (—1)PN =1 and the other series yields

in Nt
sincdy (z) = ]S\;r‘zant =

sinmx

Ntanﬁ

as announced. O

B Proof of Theorem 2

Since each operator T is linear and translation-invariant (Hy-
pothesis (7)), it can be written as a convolution, that is,

> (k= Ds(l), (67)

lely

Tes(k) = (Y= x s) (k) :=

where 7, is an element of S. Taking the DFT of (67), we
obtain

= 9. ()3(a). (68)

Now, from Hypothesis (iii) we immediately get

Va € Z, fz\s(oz)

Vo w €R YA €L, Prpw(@) = (@)t (@), (69)
and by continuity of z — 1, (o) (deduced from Hypothesis
(i)) we obtain

VaeZ, — P.(a)=er(M= (70)

—2imo

for some (o) € C. Since wl(a) =e ™ , we have

@) = ~2in (£ +0(@) (71)

where p(a) € Z and p(—a) =
real-valued implies that v, (—a)
Last, we compute

—p(a) (the fact that T,u is
=z(a)").

T — id||3

= sup
IIsll2=1

IT=s — sl3

— sup |Ts - 313
M js),=1

1 —21‘17(&-5—1)(01))2
—  sup le M —
M ysi3=m 2

12 - |3(a)|?

aEIAM

4 max sin? (7r (g—i—p a)z)
aGfM M ( )

2
— 42,2 o 2
= 47°2° max (M +p(a)) +Zgo(z ).

a€ly

right-hand term of (72) is minimal if and only if p(a) = 0 for
all « € Ipns. We conclude from (71) and (70) that

Va e In,  tha(a) = e 2imaz/M (73)

and thus (68) can be rewritten as

Tzs(k) _ Z g(a)€72i7ro¢z/M€72i7ro¢k/M’ (74)

aEfA4

which is exactly S(k — z) thanks to (13) (recall that the real
part is not needed because M is odd). Therefore, (24) is a nec-
essary form for a set of operators (T,) satisfying Hypotheses
(i) to (iv).

Conversely, one easily checks that the operators (T) de-
fined by (24) satisfy the Hypotheses (i) to (iv). |

C Proof of Proposition 8

Let us denote by V,, zu and V., yu the two elements of R¢»
such that V,u = (Vi zu, Vi, yu). In the following, the nota-
tion (-,-) x stands for the usual Euclidean (respectively Her-
mitian) inner product over the real (respectively complex)
Hilbert space X. We have

(Vnt, p)ron xron = (Vi 2, pa)ron + (Vi,yU Dy)ron -

Recall that we defined div,, = —V? , the opposite of the ad-

joint of V. Noting divn,. = —V7, . and divy,y = —V], |
we have

(Vnt, p)ron xron = (U, —=divp, 2 (pz) — diva,y (Dy))re

so that we identify divy, (p) = diva,.(pz) + divn y(py) Let
us focus on the computation of div,,,(pz). Let .Ql, Qg, (23,
£24 be the sets defined by

D = {(ep) €R? |o| < §, |8 < §} 22
% = {(+4,8) e B2 |8 < ) 22
(/@_{(ai ) ER?, |a| < 2} nz2
2= {4, £5)} 2.

Notice that some sets among !/2\2, (/2\3 and 2, may be empty
according to the parity of M and N. Now, let hg: be the
function defined in Proposition 8 and let us show that

S LT .«
Y(a,B) € 2, divy,2(pe)(e, B) = 2Z7TMhI’j: (a, B). (75)
Given z € C, we denote as usual by z* the conjugate of z.

Thanks to Parseval identity, and using Proposition 6 (because
we assumed n > 2), we have

1 —
(Vin,eU, Do )ron = m(vn,m%pz>cﬂn
1

=y 2 Vewul(@B) (Fx(e,8)”
(o, B)ER,

— (o, B) (zmsm(a)sN(ﬁ) —Da(a, 6))
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It follows that
(Vin,2U, Pz )ron = S1+ S2 + S35+ 5S4,
where for all k € {1,2,3,4}, we have set
1
Sp = ——
F= N 2 _
(e, B)EL

Consider S; first. Since we have epr(a) = en(8) =1 and
hg= (o, B) = paz (e, B) for all (o, B) € £21, we recognize

1
Si=uny 2

M N
lal<iH, [BI<5

— (e, B) (m%hﬁ (a,,@)) "

Now consider Ss. If M is odd, ﬁg is empty and S = 0.
Otherwise, since epr(a)en(8) = 1/2 for all (o, B) € 22, by
grouping together the terms (—%, 6) and (%,/3), we get

1
=y 2

a=—24 <X

- a(a7 B)

la__ la :
x (2imy e ) — 2im ) (-0, 6) )

2 M
1 =N L« *
=N ; i — (o, B) (QZWMhi,; (a, ,3)) ,
a=—"7,18I<%

since we have set h@(—%,ﬁ) = % (P= —%75) — Pz %75))
for |B] < N/2.

Similarly for the term S3. When N is odd, 25 = 0 and
S3 = 0. Otherwise, when N is even, we have e (a)en(8) =
1/2 for all (a, B) € 23, thus, by grouping together the terms

(a, —%) and (a, %), we get

1 ~
So=yn 2 TH@d
la| <%, p==71

2
®

1o _o la o
x (2imy e ) + 20w 2 ,—6) )

1
T MN Z
laj <, 8=—1

— (e, B) (QiW%hﬁ(oh 6)) .

since we have set hg- (o, = &) = 1 (p2(a, = %) + Pz (o, )
for |oo] < M/2.

Lastly, let us consider S4. When M and N are both even
(otherwise !/21 = (0 and S4 = 0), we immediately get

*

1 -
2i7r181 %pz (s10,820)

Sy = —t(e, B) >

s;=+1,s2==+1
- . *
= —U(CY,B) Zlﬁﬁhﬁ(a,ﬁ) )

since for all (o, B8) € 24, we have em(a)en(B) =1/4 and we
have set hz-(a, ) = %ZslziLSQ:il s1pz(s10, 5213).

Finally, we can write S; + S2 + S3 + S4 as a sum over f\l,
indeed,

<Vn,zuypz>]RQ = Sl + SZ + SB + S4

:ﬁ S (e, B) (21271'%}7,@(6&,,8)) :
(a,B)€R

i, 8) (2imers (@ ()7 (@8) )

and using again the Parseval identity, we get (75). With a
similar approach, one can check that

Y(a,B) € 2, divn.y(py)(a, B) = 2i7r%hi,; (, ),

where hg> is defined in Proposition 8. Consequently, for any
(a, B) € 2, we have

v ()0 5) = 2 (g (0 8) + Lotz (0.9))

which ends the proof of Proposition 8. O

D Proof of Theorem 3

Recall that for any integer M, we denote by Ths the real
vector space of real-valued trigonometric polynomials that
can be written as complex linear combination of the family

24 e
(x — €™M )_um_,-u. In order to prove Theorem 3 we
2 — - 2

need the following Lemma.

Lemma 1 Let M =2m + 1 be an odd positive integer. The
functions F' and G defined by,

24

Vo €R, F(z)= % 3 M, Ga) = Fla) - F(a— 1),

a=—m

are both in Thr and G satisfies

M—1 M

8 2M
> jowi=2, [ lc@ldez S () 2.
k=0 1 s s
Proof F is in T by construction, and so is G as the differ-
ence of two elements of Thps. Writing w = 77, we can notice
that F'(0) =1 and

ein(fm)z 1 — e2imz sin (71'213)

M "1- 2wz  Msin (wx)’

Ve € (0,M), F(z)=

so that F'(k) = 0 for all integers k € [1, M — 1]. Consequently,
G(0) = 1, G(1) = —1 and G(k) = 0 for all integers k €
[2, M — 1], thus

M-—-1
Y lak)] = GO)] +G(1)] =2,

k=0

yielding the first announced result of the Lemma. Now, re-
mark that the sign changes of G in (0,2m+1) occur at integer
points 2,3,...2m and in % (by symmetry). Thus, we have

M 2m k+1
= = —1)k z) dx
J.f/l Go)de = 3 (~1) /k G(z)d

k=1
2m—1

k41
=2 (—1)k F(z)dzx,
X,

since for all z € [0, M], we have G(z) = F(z) — F(x — 1) and
(because M is odd) F(z) = F(M — z). It follows that

2m 1
J>2 (Z(—nk /k+ F(m)dm) -2,
k

k=0

since |F| < 1 everywhere.
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Consequently, by isolating the index o = 0 in the defini-
tion of F, we get J > 2 (J' + ﬁ) — 2, with

2m
(-D* [
J = elivaz j..
P TR SR

—m<a<m

a#0

By exchanging the sums and grouping identical terms, we
obtain

2m i i
1 e2zwa(k+1) _ 62'Lwak
7= M Z Z(il)k . 2iwa
—m<alm k=0
0
L am (76)
_ Z - (762iwa>k )
—m<alm o k=1
a#0
After summation of the geometric progression
2m ;i
Z (_e2iwo¢)k — _pliva 1 — g2iwa(2m)
— T oo

= 1 + eliwa

 isin(2 sin(2 B

_ eWo‘zsm( wma) _ isin(2wma — Ta) _ _itan(wa),
cos(wa) cos(wa)
Equation (76) finally leads to
S= Y L) = 23 e
= — - tan(wa) = — wa
T M g
—m<a<m a=1

a#0

tant

where g =t — . Now since g is positive and increasing

on (0, 3 ), we have

m

Z g(wa) > /Om g(wz)dz = é/owm g(t)dt.

a=1

Using the lower bound g(t) > % tant for ¢t € (0, 7)), we finally
get
4 wm 4 4 w
J’>—/ tantdt = —— 1 = ——logsin [ —
z = an — og cos(wm) — logsin (2)

T

4 2
and thus J' > - log (7>, from which the inequality an-
s w

nounced in Lemma 1 follows.

Now, let us prove the Theorem 3 by building a discrete
image w such that STV (u) is fixed but STV (u) increases
with the image size. We consider the function H defined by

Vo € R, H(z)= /Z G dt,
0

where G € T is the real-valued M-periodic trigonometric
polynomial defined in Lemma 1 (M = 2m + 1). Since the in-
tegral of G over one period is zero (fOM G(t)dt = 0), H is also
an element of Ths. Consequently, the bivariate trigonometric
polynomial defined by

Y(ay) €B: Ulwy) = 3 H(),

beongs to T ® T, and since M is odd it is exactly the
Shannon interpolate of the discrete image defined by
V(k‘,l) € In X Iy,

u(k,1) = U(k, ). (77)

In particular, by definition of STV and STV o, we have

> VUKD,

(k,l)en

and STV (u) :/
[0

STVl (u) =

- VU (z,y)| dzdy .

)

From Lemma 1, we have on the one hand,

> IVU(K, D)

(k,l)en

STVy(u) =

2m 2m
=Y |H' (k)= |Gk) =2,
k=0 k=0

and on the other hand,

STV oo (1) = /

[0, M]

M
VU (2, 9)| dedy = / B ()] de
2 0

M 2M
:/ |G(z)| dz > %log <—) —2.
0 o ™

which cannot be bounded from above by a constant indepen-
dent of M. [}

E Proof of Proposition 10

Let u € R?, n € N and o € R such that n > 1 and o > 0.
One can rewrite HSTV, , (u) = %Ha (Vnu), where

> Halgl@,y).

(z,y)€902,

Vg € R x R, H,(g) =

Let us show that the Legendre-Fenchel transform of H, is
H(p) =6y ..<1(p) + <llpll3 -

One easily checks that H, € I'(R?), and it follows that
H, € I'(R¥» x R). Thus, for any image u € R, we have
Ho(Vau) = H*(Vyu) and

HY*(Vou) = sup
PER?n X R2n

Besides, we have Hj(p) = >_(, ,)cn, Ha(p(z,y)), and the
Legendre-Fenchel transform of Ho is the function H% (z) =
d).1<1(2)+ 2|z|?, where §|.|<1 denotes the indicator function

(Vnu,p) — H.(p) - (78)

of the unit ball for the 2 norm in R2. Indeed, it is proven
in [43] that H is the Moreau envelope (or Moreau-Yosida
regularization) [39,61] with parameter « of the ¢2 norm | - |,
or equivalently the infimal convolution (see [47]) between the
two proper, convex and l.s.c functions fi(z) = |z| and f2(z) =
i|az|2, that is

Vy € R Haly) = (hDf2) (v) == inf fi(2) + faly —2) -

Thus, we have H% = (f10f2)* = ff + f5 (see [47,43]), lead-
ing exactly to H%(z) = 6. 1<1(2) + 5|z|? for any z € R?,
since we have f} = z — 6. 1<1(2) and f3 = z — Z|z|%. It
follows that for any p € R?» x R, we have

Hip)= > Hip@,v) =0 ..<1(p) + Zlpll3, (79)
(z,y)€02,

and the supremum (78) is a maximum for the same reason as
in the proof of Proposition 9. Finally, writing HSTV 4 » (u) =
#HQ (Vou) = #H;* (Vynu) using (78) and (79) leads to the
announced result. O
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