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Introduction

Since total variation (TV) regularization was proposed by Rudin, Osher and Fatemi for image denoising [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF], it has proven extremely useful for many applications (and beyond image data, for that matter) like image deblurring [START_REF] Vogel | Fast, robust total variation-based reconstruction of noisy, blurred images[END_REF][START_REF] Chan | Total variation blind deconvolution[END_REF], inpainting [START_REF] Chan | Simultaneous total variation image inpainting and blind deconvolution[END_REF], interpolation [START_REF] Guichard | Total variation based interpolation[END_REF], spectral extrapolation [START_REF] Rougé | Nonlinear spectral extrapolation: new results and their application to spatial and medical imaging[END_REF], image decomposition [START_REF] Vese | Modeling textures with total variation minimization and oscillating patterns in image processing[END_REF], super-resolution [START_REF] Babacan | Total variation super resolution using a variational approach[END_REF], stereovision [START_REF] Miled | A convex optimization approach for depth estimation under illumination variation[END_REF], and much more (see [START_REF] Chambolle | An introduction to total variation for image analysis[END_REF] and references therein for more examples). In the last decade, the development of dual and primaldual formulations [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF][START_REF] Beck | Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems[END_REF][START_REF] Weiss | Efficient schemes for total variation minimization under constraints in image processing[END_REF][START_REF] Fadili | Total variation projection with first order schemes[END_REF][START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] and graph-cuts methods [START_REF] Darbon | Image restoration with discrete constrained total variation part i: Fast and exact optimization[END_REF] has provided efficient algorithms for TV-based minimization problems, thus increasing even further the popularity of TV regularization.

A modern way to explain the efficiency of TV is to see it as a sparsity-promoting model: being defined by Université Paris Descartes, MAP5 (CNRS UMR 8145), Sorbonne Paris Cité, France.

a L 1 norm (of the gradient), TV minimization tends to favor solutions whose gradient is sparse (that is, often takes the value 0), which corresponds to the so-called cartoon images. Of course, real-life photographs are not cartoons, but outside textured regions (which can be ignored in many image analysis tasks) they are close to that. Another explanation of the usefulness of TV is its ability to penalize oscillations (which is typically the kind of structures one wants to avoid when solving an ill-posed inverse problem) while allowing discontinuities at the same time.

When it comes to implementing an optimization problem involving a TV regularization term, like, e.g., TV denoising of an image u 0 by argmin u u -u 0 2 + λTV(u),

(where λ > 0 is a positive parameter selecting the desired amount of regularization), the issue of TV discretization arises. Most algorithms choose to approximate the continuous TV by a sum (over all pixels) of the 2 norm of a discrete finite-difference estimate of the image gradient, that is,

TV d (u) = (k,l)∈Ω (∂ 1 u(k, l)) 2 + (∂ 2 u(k, l)) 2 (2) 
where

∂ 1 u(k, l) = u(k + 1, l) -u(k, l), ∂ 2 u(k, l) = u(k, l + 1) -u(k, l), (3) 
and u : Ω → R is a discrete gray-level image defined on the finite domain Ω ⊂ Z 2 (we purposely ignore boundary issues here, as they are not related to our discussion). In the following, we shall refer to (2) as the discrete TV. In some situations, an anisotropic scheme ( 1 norm) may be used [START_REF] Chambolle | Total variation minimization and a class of binary MRF models[END_REF][START_REF] Louchet | Total variation denoising using iterated conditional expectation[END_REF][START_REF] Abergel | Total variation restoration of images corrupted by poisson noise with iterated conditional expectations[END_REF], leading to the anisotropic discrete TV

TV d ani (u) = (k,l)∈Ω |∂ 1 u(k, l)| + |∂ 2 u(k, l)|.
Curiously enough, as popular as they are, these numerical schemes present strong drawbacks in terms of image quality at pixel and subpixel scales. Indeed, an image obtained by minimizing TV d -based energies is very difficult to interpolate, or, said differently, badly sampled according to Shannon theory. In practice, this means that trying to interpolate such an image will result in the appearance of undesired artifacts (see Fig. 1), generally a mix between blockiness and ringing depending on the interpolation method. This strongly limits the possibility of exploiting an image delivered by a TV d -based scheme, as usual operations like geometric transformations, registration, sub-pixel shape matching, derivative estimates (not to mention others) require well-interpolable images. New discrete schemes have been recently proposed [START_REF] Chambolle | An upwind finite-difference method for total variation-based image smoothing[END_REF][START_REF] Condat | Discrete Total Variation: New Definition and Minimization[END_REF] to improve the isotropy of the discrete TV, but they do not solve (nor address) the interpolability issue we consider here. An image denoised with a classical discrete implementation of TV denoising (a) is improperly sampled, as attested by the aliasing artifact appearing in its Fourier spectrum ((c), red arrow), which is responsible for the undesired oscillating patterns that appear when magnifying the image using Shannon interpolation ((b), red arrows). Note that this artifact is not present on the original image (d). This experiment illustrates the difficulty of manipulating images at a subpixel scale after a processing involving the discrete TV.

In the present paper, we study a new formulation of the discrete TV, which reconciliates TV minimization and Shannon theory. This variant, which we shall name Shannon Total Variation (STV), first appeared in [START_REF] Malgouyres | Edge direction preserving image zooming: a mathematical and numerical analysis[END_REF], and was later explicitly considered in [START_REF] Moisan | How to discretize the total variation of an In the 6th International Congress on Industrial Applied Mathematics[END_REF] and then used in [START_REF] Facciolo Furlan | Irregular to regular sampling, denoising and deconvolution[END_REF][START_REF] Preciozzi | SMOS images restoration from L1A data: A sparsity-based variational approach[END_REF] under the name Spectral Total Variation (but we shall not keep this name since it would introduce a confusion with [START_REF] Gilboa | A spectral approach to total variation[END_REF]). The STV variant consists in estimating the true total variation of the exact (continuous) total variation of the Shannon interpolate of u by using a Riemann sum approximation of the associated integral. We show that STV successfully addresses the above-mentioned issues and delivers images on which the discrete sinc and spline interpolations behave nicely, while preserving the desired properties of TV regularization. The lack of isotropy observed with classical finite difference schemes is also naturally avoided with STV. This comes at the expense of a few Fourier Transforms at each iteration of the optimization process, which is, in most applications, an affordable cost considering the strong benefits in terms of image quality.

The paper is organized as follows. In Section 2, we present the discrete sinc interpolation as a consequence of Shannon sampling Theorem, and discuss in particular the (generally overlooked) difficulties encountered with Nyquist frequencies in the case of even image dimensions. We also give an independent justification of discrete sinc interpolation as the unique linear interpolation that defines invertible subpixellic translations, and discuss the link with B-spline interpolation. In Section 3, we define STV and discuss the choice of the upsampling factor used to discretize the continuous TV integral into a Riemann sum. We then show in Section 4 that STV-based algorithms can be efficiently implemented by deriving a dual formulation which can be used in the powerful Chambolle-Pock optimization procedure. In Section 5, we illustrate the use of STV regularization in the case of several classical applications (denoising and more general inverse problems like deblurring, image magnification with spectrum extrapolation, tomography). We then present a new STV-based image restoration model involving a weight function in Fourier domain, which leads to interesting applications in terms of de-aliasing and can be viewed as an "image Shannonizer" as it provides a way to approximate a given image by a well-sampled one according to Shannon interpolation (Section 6). We finally conclude in Section 7 and present some perspectives.

Shannon interpolation

Shannon Sampling Theorem

A classical way to understand the relation between a (ddimensional) continuous signal and its sampled version is Shannon Sampling Theorem, which can be considered in some way as the foundation of the digital era. In the following, we write x, y = d i=1 x i y i the canonical Euclidean inner product between two vectors x = (x i ) and y = (y i ) of R d .

Theorem 1 (Shannon-Whittaker) Consider a positive real number δ and an absolutely integrable function f : R d → R whose Fourier Transform

f (ξ) = R d f (x) e -i x,ξ dxdy (4) 
satisfies ∀ξ ∈ - π δ , π δ d , f (ξ) = 0. ( 5 
)
Then, f is continuous and uniquely determined by its values on δZ d , as for any

x ∈ R d , f (x) = k∈Z d f (δ k)sinc x δ -k (6) 
where the cardinal sine function is defined on R d by

sinc(x) = d i=1 sin(πx i ) πx i (7) 
with the continuity-preserving convention sin(0) 0 = 1.

In the present paper, we will focus on one-dimensional signals (d = 1) and two-dimensional images (d = 2), but the extension to higher dimensions is straightforward. Apart from establishing a clear correspondence between the support of the Fourier spectrum of the bandlimited function f and the critical sampling step δ permitting its exact reconstruction from discrete samples, Shannon Sampling Theorem provides with Equation 6 (for δ = 1) an interpolation formula that extends to R d a discrete signal initially defined on Z d . However, this formula cannot be used as such in practice since it involves an infinite number of samples. We first discuss that issue in the simpler case d = 1.

Discrete Shannon interpolation of 1-D signals

Let us consider a discrete signal s : I M → R where M ∈ N * and I M = {0, 1, . . . M -1}. In order to define the Shannon interpolate S : R → R of s using (6), we first need to extend s into an infinite signal s : Z → R, so that

S(x) = k∈Z s(k) sinc(x -k). (8) 
Extending s with 0 in Z \ I M would be a poor solution, as it would interpolate a constant discrete signal s by an oscillating function. Instead, the classical solution consists in extending s as a M -periodic function s(k) = s(k mod M ). Using such a periodic extension is not completely straightforward as it does not fit the hypotheses of Shannon Sampling Theorem (a M -periodic s : Z → R cannot be the sampled version of an absolutely integrable bandlimited function), but we can formally write

S(x) = k∈Z s(k) sinc(x -k) = p∈Z k∈I M s(k) sinc(x -k -pM ) = k∈I M s(k)   p∈Z sinc(x -k -pM )   ,
and the factor of s(k) can be explicitly computed with Proposition 1 (discrete cardinal sine) Define the discrete cardinal sine of order M as the M -periodization of the cardinal sine function, that is,

sincd M (x) := lim n→+∞ n p=-n sinc(x -pM ). (9) 
Then, one has

sincd M (x) =          sin(πx) M sin πx M if M is odd, sin(πx) M tan πx M if M is even, (10) 
where the indeterminate forms 0/0 are solved by continuity, that is, sincd M (x) = 1 for any x ∈ M Z.

The proof is given in Appendix A. In view of Proposition 1, we can rewrite the interpolation of s as

S(x) = k∈I M s(k) sincd M (x -k). (11) 
Note that for small values of |x| (more precisely, when |x| M ), we have M sin πx M M tan πx M πx, so that sincd M (x) sinc(x), which formally shows the asymptotic equivalence between sinc and sincd M interpolation as M → +∞.

In practice, [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF] is barely used, since there is an equivalent (but numerically more efficient) formulation due to the fact that sincd M is a trigonometric polynomial.

Proposition 2

The function sincd M is a trigonometric polynomial, which can be written

sincd M (x) = Re   1 M α∈ I M e 2iπ αx M   (12) 
Definition 1 The discrete Fourier Transform (DFT) of a signal s :

I M → R is the M -periodic complex- valued signal s defined by ∀α ∈ Z, s(α) = k∈I M s(k)e -2iπ αk M .
Proposition 3 The discrete Shannon interpolation of a signal s : I M → R can be written

S(x) = Re   1 M α∈ I M s(α) e 2iπ αx M   , (13) 
and the real part is required only if M is even.

Proof Thanks to Proposition 2, the Shannon interpolate of s defined by ( 11) can be rewritten

S(x) = k∈I M s(k) Re   1 M α∈ I M e 2iπ α(x-k) M   = Re   1 M α∈ I M k∈I M s(k)e -2iπ αk M e 2iπ αx M  
from which (13) directly follows.

Note that if x ∈ I M , the function α → s(α) e 2iπ αx M is M -periodic, and since I M is an interval of M consecutive values, we have

1 M α∈ I M s(α) e 2iπ αx M = 1 M α∈I M s(α) e 2iπ αx M = s(x)
as we recognize the inverse DFT of s. As expected, the Shannon interpolation defined by ( 13) is exact (that is, the restriction of S to I M is exactly s). Also remark that when M is even, we need a real part to cancel the imaginary part of the term α = -M 2 in the sum (13) since the conjugate term (which would correspond to α = M 2 ) is not present in the sum. The real part can be avoided when s(-M

2 ) = 0, or by considering instead a sum with M + 1 terms, as stated by Proposition 4 Define, for integer M ,

ε M (α) = 1/2 if |α| = M 2 , 1 otherwise. ( 14 
)
The discrete Shannon interpolate of a signal s : I M → R can be written

S(x) = 1 M -M 2 ≤α≤ M 2 ε M (α) • s(α) e 2iπ αx M . (15) 
Note that if M is odd, ε M is identically equal to 1. This asymmetry between the case M odd and M even can be simply explained. Let us define as T M the real vector space of real-valued trigonometric polynomials that can be written as complex linear combinations of (

x → e 2iπ αx M ) -M 2 ≤α≤ M 2 .
If M is odd, dim T M = M and there is a unique element S of T M that exactly interpolates s, and it is given by [START_REF] Chambolle | An introduction to total variation for image analysis[END_REF]. If M is even, dim T M = M + 1 and any element of T M that exactly interpolates s can be written under the form S(x) + λ sin(πx) with λ ∈ R, and the interpolation formula [START_REF] Chambolle | An introduction to total variation for image analysis[END_REF] corresponds to the implicit (minimal norm) choice λ = 0.

Shannon interpolation of 2-D images

Let u :

I M × I N → R be a discrete M × N image. Its 2-dimensional DFT u : Z 2 → C is defined by u(α, β) = k∈I M l∈I N u(k, l)e -2iπ( αk M + βl N ) , (16) 
and the natural extension of ( 11) is Definition 2 The discrete Shannon interpolate of an image u :

I M × I N → R is U : R 2 → R defined by U (x, y) = k∈I M l∈I N u(k, l) sincd M (x -k) sincd N (y -l). ( 17 
)
As in the 1-D case, Definition 2 can be reformulated in the Fourier domain.

Proposition 5

The discrete Shannon interpolate of an image u :

I M × I N → R can be written U (x, y) = 1 M N × -M 2 ≤α≤ M 2 -N 2 ≤β≤ N 2 ε M (α)ε N (β) • u(α, β)e 2iπ( αx M + βy N ) , (18) 
where ε M and ε N are defined in [START_REF] Chambolle | An upwind finite-difference method for total variation-based image smoothing[END_REF].

Proof Simply remark that (12) can be rewritten

sincd M (x) = 1 M -M 2 ≤α≤ M 2 ε M (α)e 2iπ αx N (19) 
and [START_REF] Chan | Simultaneous total variation image inpainting and blind deconvolution[END_REF] follows quite directly from ( 16) and [START_REF] Chan | Total variation blind deconvolution[END_REF].

Note that if both M and N are odd, (18) boils down to

U (x, y) = 1 M N α∈ I M β∈ I N u(α, β)e 2iπ( αx M + βy N ) , (20) 
which is exactly the definition of the inverse DFT of u for integer values of x and y. Thus, one could wonder whether in the general case (M , N even or odd) the generalization of [START_REF] Chambolle | An introduction to total variation for image analysis[END_REF], that is,

U (x, y) = Re      1 M N α∈ I M β∈ I N u(α, β) e 2iπ( αx M + βy N )      , (21) 
would be an equivalent definition of U as in the 1-D case. In fact, [START_REF] Chan | Total variation blind deconvolution[END_REF] and ( 21) both define bivariate trigonometric polynomials of T M ⊗T N that exactly interpolate u in I M × I N , but they differ when both M and N are even. In that case, U (x, y) can still be rewritten in a form similar to [START_REF] Chan | Simultaneous total variation image inpainting and blind deconvolution[END_REF], but we have to change the coeffi-

cient ε M (α)ε N (β) into ε M,N (α, β) =      1 2 if (α, β) = ±( M 2 , N 2 ), 0 if (α, β) = ±(-M 2 , N 2 
), 1 otherwise. [START_REF] Darbon | Image restoration with discrete constrained total variation part i: Fast and exact optimization[END_REF] Thus, one easily shows that

U (x, y) = U (x, y) -u M 2 , N 2 
sin(πx) sin(πy). [START_REF] Drori | A simple algorithm for a class of nonsmooth convex-concave saddlepoint problems[END_REF] Even if this difference is expected to be small for natural images (the Fourier coefficients of a natural image decrease rather quickly as the frequency increases), the true interpolate U is to be preferred to U as it is separable and more invariant; in particular, the transform u → U does not commute with the plane transforms (x, y) → (-x, y) and (x, y) → (x, -y).

In the literature, most papers involving 2-D discrete Shannon interpolation either do not mention this issue [START_REF] Getreuer | Linear methods for image interpolation[END_REF][START_REF] Malgouyres | Edge direction preserving image zooming: a mathematical and numerical analysis[END_REF], or restrict their study to odd dimensions [START_REF] Simon | Influence of unknown exterior samples on interpolated values for band-limited images[END_REF], or use the (slightly incorrect) variant U [START_REF] Briand | Linear filtering : From the continuous spectral definition to the numerical computations[END_REF] (probably because taking the real part is the most simple way to get rid of the imaginary part that naturally appears when Nyquist frequencies are not carefully handled).

Dealing with periodization artifacts

Using discrete Shannon interpolation requires a careful handling of edge effects, as the implicit periodization of the image may produce interpolation artifacts (that is, undesired oscillations) near the boundary of the image domain if the intensity values on the opposite edges of the image domain do not match well. This issue is discussed in detail in [START_REF] Moisan | Periodic plus smooth image decomposition[END_REF], and an efficient solution is proposed that consists in decomposing the original image into the sum of a periodic image and a smooth image. Other solutions exist like symmetrization or apodization using an appropriate weight function (e.g., a Hamming window), but they appear to be less efficient in general. In all the experiments presented throughout this paper (and in particular in Section 5 and 6), the periodic plus smooth decomposition of [START_REF] Moisan | Periodic plus smooth image decomposition[END_REF] will systematically be used.

Shannon interpolation and reversible transforms

As we saw earlier, Shannon Sampling Theorem provides a nice theoretical framework that establishes a oneto-one correspondence between continuous bandlimited and discrete images, which naturally leads to the discrete Shannon interpolation we just presented. Interestingly, there is another justification for Shannon interpolation, that does not explicitly refer to Shannon Sampling Theorem: basically, it is the only linear interpolation that defines invertible subpixellic translations (in a periodic setting). In the following, we assume for simplicity that M is an odd integer, and write S the space of M -periodic signals s : Z → R.

Theorem 2 There exists a unique family of linear operators (T z ) z∈R on S such that :

(i) z → T z is continuous, (ii) ∀k, z ∈ Z, T z s(k) = s(k -z), (iii) ∀w, z ∈ R, T w+z = T w • T z , (iv) lim z→0 |z| -1 T z -id 2 is minimal.
It is defined by

T z s(k) = S(k -z), ( 24 
)
where S is the discrete Shannon interpolate of s defined in [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF] or equivalently in [START_REF] Chambolle | An introduction to total variation for image analysis[END_REF].

The Proof is given in Appendix B. Theorem 2 remains true for M even, provided that we define S in this case by

S = s : I M → R, k∈I M (-1) k s(k) = 0 . (25) 
(Note that it is equivalent to assume s(M/2) = 0). This restriction is needed to exclude from S the alternated signal k → (-1) k , which clearly cannot be translated in a way compatible with Hypotheses (ii) and (iii).

Theorem 2 shows that the only minimal continuous semi-group extending the integer (periodic) translations is given by Shannon interpolation. This result is interesting in the sense that it brings another justification to Shannon interpolation without referring to Shannon Sampling Theorem (or to the Fourier Transform, for that matter): among linear interpolation methods, only Shannon interpolation is able to translate images without information loss.

From Equation (74), we can see that a subpixellic translation with Shannon interpolation can be implemented with two DFTs, as

T z s(α) = e -2iπαz/M s(α). (26) 
Moreover, T z is a linear isometry ( T z s 2 = s 2 ), which is another way to explain that no information loss occurs.

Signal and image magnification is also very easy to perform with discrete Shannon interpolation, as it essentially boils down to a zero-padding in the Fourier domain (for even dimensions, it is also necessary to split the coefficients corresponding to Nyquist frequencies α = ± M 2 or β = ± N 2 ). More surprisingly, image rotation can also be implemented efficiently with the DFT (see [START_REF] Yaroslavsky | Signal sinc-interpolation: a fast computer algorithm[END_REF]), thanks to the following factorization of a rotation matrix into a product of shear matrices:

cos θ -sin θ sin θ cos θ = 1 -t 0 1 1 0 sin θ 1 1 -t 0 1 ( 27 
)
with t = tan θ 2 . As a shear transform like

v(x, y) = u(x -ty, y) (28) 
consists in applying 1-D translations to each line of u, a 2-D rotation can be decomposed as a combination of 1-D translations, which can be implemented in the Fourier domain. For that reason, image rotation with discrete Shannon interpolation is a linear isometry, and can thus be considered as a lossless transform.

Link with spline interpolation

A popular alternative to Shannon interpolation is spline interpolation. Without going too much into details (see [START_REF] Unser | Fast B-spline transforms for continuous image representation and interpolation[END_REF][START_REF] Unser | Sampling-50 years after shannon[END_REF] and the references therein), it is worth mentioning the relation between spline and Shannon interpolation, and to understand how they can be combined to yield what is probably the most accurate and efficient linear interpolation of bandlimited signals.

The spline interpolation of order n (n ∈ N) of a signal s ∈ 2 (Z) can be written

S n (x) = k∈Z c(k) β n (x -k), (29) 
where β n : R → R is the spline of order n defined by induction by

β 0 = 1 [-1 2 , 1 
2 ) and

β k+1 = β k * β 0 for all k ∈ N. It can be shown that the signal c : Z → R is uniquely defined by the interpolation constraint S n (k) = s(k), k ∈ Z.
When n ∈ {0, 1}, one has c = s and spline interpolation corresponds to piecewise constant (n = 0) or piecewise affine (n = 1) interpolation. When n > 1, c depends linearly on s and can be efficiently computed using recursive filtering [START_REF] Unser | Fast B-spline transforms for continuous image representation and interpolation[END_REF]. As remarked in [START_REF] Unser | Ten good reasons for using spline wavelets[END_REF], spline interpolation achieves an optimal trade-off between complexity (the support of β n is an interval with length n + 1) and asymptotic accuracy (rate of convergence towards the unsampled signal as the sampling step tends to 0). How does spline interpolation compare with Shannon interpolation? Indeed, (29) can be rewritten as

S n (x) = k∈Z s(k) β n card (x -k), (30) 
where β n card : R → R is the cardinal spline of order n defined in the Fourier domain by

β n card (ξ) = sinc ξ 2π n+1 k∈Z β n (k)e -ikξ . (31) 
This provides a nice interpretation of spline interpolation in the Fourier domain, as the Fourier transform of (30) yields

S n (α) = s(α) β n card (α), ( 32 
)
where s(α) = k∈Z s(k)e -ikα is the Fourier Transform of the discrete signal s. Thus, if S is a bandlimited signal (supp S ⊂ [-π, π]) and s(k) = S(k) for all k ∈ Z, the Fourier transform of S n is deduced from S by periodization and multiplication by β n card . This is to be compared to Shannon interpolation, that recovers the exact signal S since

S(α) = s(α)1 [-π,π] . (33) 
In fact,

β n card → 1 [-π,π] as n → +∞ [2]
(or, equivalently, β n card → sinc), which means that spline interpolation can be viewed as an approximation of Shannon interpolation (the equivalence being asymptotically obtained for n = +∞). For finite n however, the effect of spline interpolation in the Fourier domain is questionable: it creates high frequencies aliases (by spectrum periodization), and then attenuates the whole spectrum (the known part [-π, π] included) by an apodization function that is a smooth approximation of

1 [-π,π] .
This apodization function (that is, β n card ) is represented in Fig. 2 for various values of n.

On the one hand, spline interpolation is computationally efficient, and also versatile: it can be used to magnify an image by an arbitrary factor, or to apply an homography or a non-rigid transform to an image. On the other hand, Shannon interpolation is very accurate, as it does not attenuate known Fourier coefficients or create high-frequency aliases. Getting the best of the two worlds (that is, the accuracy of exact Shannon interpolation and the efficiency of spline interpolation) is easy: magnify the original image by a small factor (e.g. 2), and then use spline interpolation on the magnified image. Fig. 3 illustrates the interest of such a combination in the case of a homographic transform. Applying the same transform with Shannon interpolation alone would be computationally very expensive, but a simple ×2 magnification with Shannon interpolation followed by an homographic transform implemented by a spline of order 3 produces an artifact-free image for a computational cost equivalent to spline interpolation.

In this section, we gave a precise definition of Shannon interpolation (with a careful treatment of Nyquist frequencies in the case of even dimensions), and saw how it provides a nice framework for interpolating bandlimited images with a high degree of accuracy. It is particularly useful for imaging sciences that require an accurate treatment of subpixel scales and a strict control of artifacts (in particular, satellite imaging). As we shall see in the next sections, Shannon interpolation can be made compatible with total variation regularization, provided that we use what we shall call the Shannon total variation.

3 The Shannon total variation

3.1 Definition Let | • | denotes the 2 norm over R 2 , let Ω = I M × I N denote a 2-D discrete domain of size M ×N and u ∈ R Ω
a discrete gray-level image with domain Ω. We define the Shannon total variation of u by

STV ∞ (u) = [0,M ]×[0,N ] |∇U (x, y)| dxdy , ( 34 
)
where U is the Shannon interpolation of u defined in [START_REF] Chan | Total variation blind deconvolution[END_REF], and ∇U : R 2 → R 2 denotes the gradient of the trigonometric polynomial U . No closed-form formula exist for ( 34), but we can approximate this continuous integral with the Riemann sum

STV n (u) = 1 n 2 (k,l)∈Ωn |∇ n u(k, l)| , (35) 
where n ∈ N * , Ω n = I nM × I nN and

∀(k, l) ∈ Ω n , ∇ n u(k, l) = ∇U k n , l n .
In order to compute STV n (u), we need to focus on the practical computation of ∇ n u. By differentiating [START_REF] Chan | Simultaneous total variation image inpainting and blind deconvolution[END_REF], we get the gradient of U , that is,

∀(x, y) ∈ R 2 , ∇U (x, y) = 1 M N -M 2 ≤α≤ M 2 -N 2 ≤β≤ N 2 e 2iπ αx M + βy N g u (α, β) , (36) 
where

g u (α, β) = 2iπ ε M (α)ε N (β) u(α, β) α/M β/N . (37) 
Therefore, ∇ n u can be efficiently computed in the Fourier domain for n ≥ 2 with the following Proposition 6 For any n ≥ 2 and any (α, β) ∈ Ω n := I nN × I nM , we have

∇ n u(α, β) = n 2 g u (α, β) if |α| ≤ M 2 , |β| ≤ N 2 , 0 otherwise, ( 38 
)
where g u is given by [START_REF] Moisan | How to discretize the total variation of an In the 6th International Congress on Industrial Applied Mathematics[END_REF].

Proof The result comes directly when writing [START_REF] Miled | A convex optimization approach for depth estimation under illumination variation[END_REF] with (x, y) = k n , l n , and extending the sum to the frequency domain Ω n by adding zero terms. Note that Ω n contains all the frequencies (α,

β) such that -M 2 ≤ α ≤ M 2 and -N 2 ≤ β ≤ N 2 involved in (36) since n > 1.
The next Proposition establishes an upper-bound for the induced 2 norm (noted ||| • |||) of the ∇ n operator, which will be useful later.

Proposition 7 For any n ≥ 2, we have

|||∇ n ||| ≤ nπ √ 2 . ( 39 
)
Proof Let u ∈ R Ω , from [START_REF] Moisan | Periodic plus smooth image decomposition[END_REF] we deduce

∇ n u 2 = n 2 g u 2 ≤ 4π 2 n 4 u 2 1 4 + 1 4 , (40) 
since for any (α,

β) such as |α| ≤ M 2 and |β| ≤ N 2 , we have |ε M (α)ε N (β) α M | 2 ≤ 1 4 and |ε M (α)ε N (β) β N | 2 ≤ 1 4 .
Then, using the Parseval identity in [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate O(1/k 2 )[END_REF], that is,

∇ n u 2 = 1 n 2 M N ∇ n u 2 and 1 M N u 2 = u 2 , yields ∇ n u 2 ≤ 2π 2 n 2 u 2
and consequently [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF].

Similarly to Proposition 6, we can compute the adjoint of ∇ n in the Fourier domain (the proof is detailed in Appendix C).

Proposition 8 Let div n = -∇ * n , then for any n ≥ 2, p = (p x , p y ) ∈ R Ωn × R Ωn , and (α, β) ∈ Ω := I M × I N , we have

div n (p)(α, β) = 2iπ α M h px (α, β) + β N h py (α, β) , with h px (α, β) =                p x (α, β) if |α| < M 2 , |β| < N 2 1 2 ( p x (α, β) -p x (-α, β)) if α = -M 2 , |β| < N 2 1 2 ( p x (α, β) + p x (α, -β)) if |α| < M 2 , β = -N 2 1 4 s 1 =±1 s 2 =±1 s 1 p x (s 1 α, s 2 β) if (α, β) = (-M 2 , -N 2 ) ,
and

h py (α, β) =                p y (α, β) if |α| < M 2 , |β| < N 2 1 2 ( p y (α, β) + p y (-α, β)) if α = -M 2 , |β| < N 2 1 2 ( p y (α, β) -p y (α, -β)) if |α| < M 2 , β = -N 2 1 4 s 1 =±1 s 2 =±1 s 2 p y (s 1 α, s 2 β) if (α, β) = (-M 2 , -N 2 ) .
Notice that Propositions 6 to 8 can be easily adapted to the case n = 1. However, we shall not need to consider this case as STV 1 happens to be a poor approximation of STV ∞ (see next section). Note also that similar definitions and propositions could be established for the U variant of Shannon interpolation mentioned in [START_REF] Condat | Discrete Total Variation: New Definition and Minimization[END_REF]. This variant yields somewhat simpler formulas (no weights are required to handle Nyquist frequencies in the case of even dimensions) since all operators can be obtained by taking the real part of complex-valued images. However, in addition to being less invariant (as discussed in the end of Section 2.3), U is also computationally less efficient as it requires the computation of DFTs of complex-valued images.

Choice of the oversampling factor n

When estimating STV ∞ (u) with STV n (u), which value of the oversampling factor n should we choose? We experimentally observed on many images that the convergence with respect to n is extremely fast, so that in practice choosing n = 2 or n = 3 is enough. Note that an estimate of STV ∞ (u) could also be obtained by using a finite difference scheme on the image magnified with Shannon interpolation, that is,

n -1 TV d (Z n u) with ∀(k, l) ∈ Ω n , Z n u(k, l) = U k n , l n .
Both estimate are consistent in the sense that

lim n→+∞ STV n (u) = lim n→+∞ n -1 TV d (Z n u) = STV ∞ (u) .
However, the convergence speed is much worse for the latter, which comforts us in the choice of STV n (see Table 1).

n n -1 TV d (Z n u) STV n (u) 1 1.6 • 10 -1 1.8 • 10 -2 2 4.2 • 10 -2 1.3 • 10 -3 3 2.1 • 10 -2 1.7 • 10 -4 5 8.6 • 10 -3 7.3 • 10 -5 10 2.8 • 10 -3 3.4 • 10 -6
Table 1 Relative errors of two STV ∞ estimates. We compare two estimates of STV ∞ (u) when u is the classical "Lena" image. As we can observe, the relative errors are much smaller with STV n (u) (third column) than with n -1 TV d (Z n u) (second column), and the convergence with respect to n is faster. Even for n = 2, the STV 2 estimate is very accurate with a relative error of 0.1% or so. This experiment has been repeated on many other images, including pure noise images, and yielded similar conclusions for all of them.

As concerns the idea of estimating STV ∞ (u) with STV 1 (u), the following result shows that it could lead to incorrect results, as controlling STV 1 (u) is not sufficient to control STV ∞ (u). We believe that, on the contrary, such a control is ensured as soon as n ≥ 2, even though we have no proof of this affirmation yet.

Theorem 3 There exists no constant C such that

STV ∞ (u) ≤ C • STV 1 (u)
for any positive integer M and any discrete image u of size M × M .

The proof is given in Appendix D. It consists in building a sequence of discrete images u M with size

M × M such that STV 1 (u M ) is fixed but STV ∞ (u M ) increases to +∞ with M .
In all the experiments reported in this paper, we used STV n with n = 3, but we observed only very slight improvements (and sometimes none) compared to the case n = 2, which should probably be preferred when computational issues are important. Note also that one could choose non-integer values of n (only nM and nN have to be integers), which could also be interesting for computational issues.

4 Duality tools for handling the STV regularizer in a variational framework

Recall of convex analysis

We here briefly recall some classical convex analysis results needed for non-smooth convex optimization. We refer to [START_REF] Ekeland | Convex Analysis and Variational Problems[END_REF] for a more detailed presentation.

Consider a finite-dimensional real vector space E and let E denotes its dual space, that is, the set of linear mappings from

E to R. Let R denotes the set R ∪ {-∞, +∞} and •, • : E × E → R the bilinear mapping defined by ∀ϕ ∈ E , ∀u ∈ E, ϕ, u = ϕ(u) .
An affine function on E is a function A : u → ϕ, u +α, where ϕ ∈ E is called the slope of A and α ∈ R the constant term. We denote by Γ (E) the set of functions F : E → R which are the pointwise supremum of a family of affine functions over E. One can show that F is an element of Γ (E) if and only if it is convex and lower semi-continuous (l.s.c.) and does not take the value -∞ unless it is constant. In order to dismiss singular cases, we say that F is proper if it never assumes the value -∞ and is different from the constant +∞. We denote by Γ 0 (E) the set of proper elements of Γ (E).

Given a function F : E → R, the Γ -regularization of F is the largest element of Γ (E) which lower bounds F , or, equivalently, the pointwise supremum of all affine functions that lower bound F . Note that an affine function A with slope ϕ ∈ E and constant term α ∈ R satisfies A ≤ F if and only if α ≤ -F (ϕ), where

F (ϕ) = sup u∈domF ϕ, u -F (u) , (41) 
and domF = {u ∈ E, F (u) < +∞}. The function F : E → R is called the Legendre-Fenchel transform of F (or the polar, or the conjugate of F ). It is an element of Γ (E ), as it can be seen as the pointwise supremum over the dual space E of all affine functions {A u } u∈domF defined by

∀u ∈ domF, A u : ϕ → ϕ, u -F (u) .
Since here E has finite dimension, it is a reflexive space and the Legendre-Fenchel transform of F (noted F ) is an element of Γ (E ) (and thus an element of Γ (E)), which happens to be exactly the Γ -regularization of F .

In particular F ≤ F and we have the characterization

F ∈ Γ (E) ⇔ F = F , (42) 
which is very useful to derive a primal-dual reformulation of an optimization problem when the cost function decomposes as a sum with at least one term in Γ (E). Besides, since E (endowed with the Euclidean inner product) is a Hilbert space, it is self-dual in the sense that any element of E can be represented as the inner product with an element of E, which is very useful in practical computations.

Chambolle-Pock Algorithm

The recent use in imaging of those powerful convex analysis tools based on duality allowed to properly handle total variation-based variational problems (see e.g. [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF][START_REF] Zhu | An efficient primal-dual hybrid gradient algorithm for total variation image restoration[END_REF]). This initiated some flourishing theoretical research (see e.g. [START_REF] Aujol | Dual norms and image decomposition models[END_REF][START_REF] Fadili | Total variation projection with first order schemes[END_REF]) as well as the development of efficient numerical schemes [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF][START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF][START_REF] Beck | A fast iterative shrinkagethresholding algorithm for linear inverse problems[END_REF][START_REF] Weiss | Efficient schemes for total variation minimization under constraints in image processing[END_REF][START_REF] Ochs | iPiano: inertial proximal algorithm for nonconvex optimization[END_REF][START_REF] Drori | A simple algorithm for a class of nonsmooth convex-concave saddlepoint problems[END_REF][START_REF] Raguet | A generalized forward-backward splitting[END_REF] dedicated to nonsmooth optimization. We will here briefly recall the formulation of the celebrated first order primaldual algorithm of Chambolle and Pock [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF], which can be used to address various total variation based image processing tasks and comes with nice convergence theorems. Consider X and Y two finite-dimensional real vector spaces, an inner product •, • over Y and the generic saddle-point problem

min x∈X max y∈Y G(x) + Kx, y -F (y) , (43) 
where F ∈ Γ 0 (Y ), G ∈ Γ 0 (X) and K : X → Y denotes a linear operator. We set H : (x, y) → G(x) + Kx, y -F (y) and we assume that problem [START_REF] Parikh | Proximal algorithms[END_REF] has at least one solution (i.e. a saddle-point of H). Recall that thanks to [START_REF] Ochs | iPiano: inertial proximal algorithm for nonconvex optimization[END_REF], for any x ∈ X we have

F (Kx) = F (Kx) = sup y∈Y Kx, y -F (y) , (44) 
therefore one can interpret Equation ( 43) as a primaldual formulation of the primal problem

min x∈X G(x) + F (Kx) (45) 
as soon as the sup y∈Y is indeed a maximum (which will be the case in practice). The proximal splitting algorithm proposed by Chambolle and Pock in [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] (see also [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF][START_REF] Rockafellar | Convex analysis[END_REF], or more recently [START_REF] Parikh | Proximal algorithms[END_REF][START_REF] Combettes | Proximal splitting methods in signal processing[END_REF] for more details about proximity operators and proximal algorithms) for solving problem ( 43) is described in Algorithm 1 below.

Algorithm 1: Chambolle-Pock resolvant algorithm for problem ( 43)

Initialization: Choose τ, σ > 0, θ ∈ [0, 1],
x 0 ∈ X, y 0 ∈ Y , and set x 0 = x 0 (note: for θ = 1, convergence towards a solution of (43) was proven in [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] when τ σ|||K||| 2 < 1).

Iterations: For k ≥ 0, update x k , y k and x k as follows,

y k+1 = argmin y∈Y 1 2σ y -(y k + σKx k ) 2 2 + F (y) x k+1 = argmin x∈X 1 2τ x -x k -τ K * y k+1 2 2 + G(x) x k+1 = x k+1 + θ x k+1 -x k
In the case θ = 0, one iteration k of Algorithm 1 consists in a proximal ascent of y → H(x k , y) followed by a proximal descent of x → H(x, y k+1 ), yielding a semi-implicit variant of the classical Arrow-Hurwicz algorithm [START_REF] Arrow | Studies in linear and non-linear programming[END_REF]. In the case θ > 0, the iterate x k+1 = x k+1 + θ x k+1 -x k represents a linear approximation (or extrapolation) of the next iterate x k+2 based on the current and the previous iterates x k+1 and x k ; it is used to make the scheme more implicit and prove the convergence (in the case θ = 1 and τ σ|||K||| 2 < 1) of the sequence (x k , y k ) k≥0 towards a saddle-point of H, with an estimate of the convergence rate in O(1/N ) after N iterations (see Theorem 1 in [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]). Notice that some accelerated variants of this algorithm were also proposed by the same authors, which under regularity assumptions on F and G achieve better convergence rates, thanks to Nesterov-like acceleration strategies [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate O(1/k 2 )[END_REF] (see Algorithms 2 and 3 in [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]).

Dual formulation of the Shannon total variation

The STV n operator defined in [START_REF] Malgouyres | Edge direction preserving image zooming: a mathematical and numerical analysis[END_REF] can be rewritten under the form

STV n (u) = 1 n 2 ∇ n u 1,2 , noting • 1,2 the norm over the space R Ωn × R Ωn defined by ∀g ∈ R Ωn × R Ωn , g 1,2 = (x,y)∈Ωn |g(x, y)| .
One easily checks that the dual norm of

• 1,2 is the norm • ∞,2 defined by ∀p ∈ R Ωn × R Ωn , p ∞,2 = max (x,y)∈Ωn |p(x, y)| .
Consequently (see e.g. [START_REF] Boyd | Convex optimization[END_REF]), the Legendre-Fenchel transform of • 1,2 , noted • 1,2 , is the indicator function of the closed unit ball for the norm • ∞,2 , defined by

∀p ∈ R Ωn × R Ωn , δ • ∞,2≤1 (p) = 0 if p ∞,2 ≤ 1 , +∞ otherwise.
We will now use the duality tools described in Section 4.1 to derive a dual formulation of our STV n operator.

Proposition 9 (dual formulation of STV n ) For any integer n ≥ 1 and for any image u ∈ R Ω ,

STV n (u) = max p∈R Ωn ×R Ωn 1 n 2 ∇ n u, p -δ • ∞,2 ≤1 (p) . Proof Since • 1,2 is convex and l.s.c. over R Ωn × R Ωn , it is an element of Γ (R Ωn × R Ωn ), thereby • 1,2 =
• 1,2 thanks to [START_REF] Ochs | iPiano: inertial proximal algorithm for nonconvex optimization[END_REF]. Besides, given any image u ∈ R Ω , one has

STV n (u) = 1 n 2 ∇ n u 1,2 = 1 n 2 ∇ n u 1,2 . Therefore, STV n (u) = 1 n 2 ∇ n u 1,2 , i.e.
STV n (u) = sup

p∈R Ωn ×R Ωn 1 n 2 ∇ n u, p R Ωn ×R Ωn -p 1,2 ,
and p 1,2 is exactly δ • ∞,2≤1 (p). Last, one can see that the supremum is attained, since it is nothing but the maximum of the inner product term over the closed unit ball for the dual norm • ∞,2 .

The Huber STV

The use of TV d as a regularizer for image processing applications has a well-known drawback, the so-called staircasing effect, which is the creation of piecewise constant regions with artificial boundaries where one would have expected smooth intensity variations (see for instance [START_REF] Nikolova | Local strong homogeneity of a regularized estimator[END_REF][START_REF] Chan | High-order total variation-based image restoration[END_REF][START_REF] Ring | Structural properties of solutions to total variation regularization problems[END_REF] for theoretical results about the staircasing). Several variants of TV d have been proposed in order to avoid this undesirable effect (see for instance [START_REF] Bredies | Total generalized variation[END_REF][START_REF] Louchet | Posterior expectation of the total variation model: properties and experiments[END_REF][START_REF] Louchet | Total variation denoising using iterated conditional expectation[END_REF]). In the numerical experiments that will be presented in Section 5, we observed that although this staircasing effect is significantly attenuated when using the STV n variant of TV d , it remains present (at least visually) in the processed images.

In the case of TV d , a classical way to get rid of the staircasing effect consists in replacing the 2 norm | • | of the gradient in the definition of the TV operator by its smooth Huber approximation with parameter α > 0 (coming from the statistical literature [START_REF] Huber | Robust Estimation of a Location Parameter[END_REF][START_REF] Huber | Robust regression: asymptotics, conjectures and Monte Carlo[END_REF], and used for instance in [START_REF] Weiss | A proximal method for inverse problems in image processing[END_REF][START_REF] Werlberger | Anisotropic Huber-L1 Optical Flow[END_REF][START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]). It is defined by

∀y ∈ R 2 , H α (y) = |y| 2 2α if |y| ≤ α , |y| -α 2 otherwise . (47) 
The same adaptation can be easily done in the case of STV by replacing the 2 norm by the Huber-function H α in Equations ( 34) and [START_REF] Malgouyres | Edge direction preserving image zooming: a mathematical and numerical analysis[END_REF], which in the case of the Riemann approximation leads to

HSTV α,n (u) = 1 n 2 (x,y)∈Ωn H α (∇ n u(x, y)) , (48) 
for any image u ∈ R Ω . Next Proposition establishes a dual reformulation of [START_REF] Rougé | Nonlinear spectral extrapolation: new results and their application to spatial and medical imaging[END_REF].

Proposition 10 (dual formulation of HSTV α,n ) Let α > 0 and n ≥ 1. For any image u ∈ R Ω , one has

HSTV α,n (u) = max p∈R Ωn ×R Ωn 1 n 2 ∇ n u, p -δ • ∞,2 ≤1 (p) -α 2n 2 p 2 2 .
The Proof is given in Appendix E. In the following, we shall use the dual formulations of STV n and HSTV α,n provided by Propositions 9 and 10 in order to reformulate many optimization problems frequently considered in image restoration in their primal-dual form [START_REF] Parikh | Proximal algorithms[END_REF].

Image processing applications

In this section, we illustrate the interest of STV in the case of several TV-based image processing applications. As we shall see, replacing the classical discrete TV by STV does not raise any theoretical nor numerical difficulty, and brings clear improvements regarding subpixellic scales.

Image denoising

The STV variant of the denoising model (1) proposed by Rudin, Osher and Fatemi (ROF) in [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] writes

argmin u∈R Ω u -u 0 2 2 + λ STV n (u) , (49) 
where u 0 ∈ R Ω denotes the observed image with (discrete) domain Ω, and λ ≥ 0 is the so-called regularity parameter that controls the trade-off between the data-fidelity term (the square 2 distance to u 0 ) and the regularity term STV n (u) in the minimization process.

Using Proposition 9, we immediately get a primal-dual reformulation of [START_REF] Ruderman | The statistics of natural images[END_REF],

argmin u∈R Ω max p∈R Ωn ×R Ωn u -u 0 2 2 + λ n 2 ∇ n u, p -δ • ∞,2≤1 (p) , (50 
) which has exactly the form of ( 43) with (x, y) = (u, p),

G(u) = u -u 0 2 2 , K = λ n 2 ∇ n (with adjoint K * = -λ n 2 div n ), and 
F (p) = δ • ∞,2≤1 (p).
Notice that replacing STV n (u) by HSTV α,n (u) into (49) leads to the Huber STV n variant of ROF. In view of Proposition 10, it amounts to replace the term

F (p) = δ • ∞,2≤1 (p) by F (p) = δ • ∞,2≤1 (p)+ λα 2n 2 p 2 2
into the primal-dual problem [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF].

For both STV n and HSTV α,n regularizers, the corresponding primal-dual problem can be numerically solved by specializing Algorithm 1, which yields Algorithm 2 below. Notice that (39) yields the upper bound

|||K||| ≤ λπ √ 2
n , which is useful to set the parameters τ and σ of the algorithm. The images resulting from the different (discrete or Shannon, Huber or usual) TVbased image denoising models are compared in Fig. 4 and 5: we illustrate in Fig. 4 the improved behavior of STV over the classical discrete TV regarding posterior interpolation, and do the same in Fig. 5 for the Huber variant.

Algorithm 2: Chambolle-Pock resolvant Algorithm for Problem (49)

Initialization: Choose τ, σ > 0, θ ∈ [0, 1], u 0 ∈ R Ω , p 0 ∈ R Ω n × R Ω n ,
set u 0 = u 0 and set ν = 1 when using the STV n regularizer and ν = 1 + σ αλ n 2 when using the HSTV α,n regularizer. Denote by π ∞,2 the 2 projection on the closed unit ball for the norm

• ∞,2 in R Ω n × R Ω n , which is defined by ∀(x, y) ∈ Ω n , π ∞,2 (p)(x, y) = p(x, y) max (1, |p(x, y)|) , for any p ∈ R Ω n × R Ω n .
Iterations: For k ≥ 0, update p k , u k and u k with

p k+1 = π ∞,2 p k + σλ n 2 ∇ n u k /ν u k+1 = u k + τ λ n 2 div n p k+1 + 2τ u 0 1 + 2τ u k+1 = u k+1 + θ u k+1 -u k (51a) (51b) (51c)

Inverse problems

Let us now consider the more general case of a linear inverse problem addressed with quadratic data fidelity and STV regularization. It writes

ũ ∈ argmin u∈R Ω Au -u 0 2 2 + λ STV n (u) , (52) 
where u 0 ∈ R ω denotes the observed image (ω being a finite subset of Z 2 , possibly ω = Ω) and A : R Ω → R ω is a linear operator which may model the convolution with the impulse response of an acquisition device (defocus or motion blur for instance) or other linear observation mechanisms such as tomography, downsampling, loss of image regions, etc.

Proposition 11 (primal-dual formulation of (52)) Any solution ũ of Problem (52) satisfies

ũ ∈ argmin u∈R Ω max p∈R Ωn ×R Ωn q∈R ω G(u) + Ku, (p, q) -F (p, q) ,
where

G(u) = 0, F (p, q) = δ • ∞,2≤1 (p) + q 2 + u 0 2 2
and K : R Ω → R Ωn × R Ωn ×R ω is the linear operator defined by

Ku = λ n 2 ∇ n u, Au for any u ∈ R Ω . Proof Writing f (v) = v -u 0 2 2 , one easily gets the expression of the Legendre-Fenchel transform of f , that is f (q) = q 2 +u 0 2 2 -u 0 2 2 . Besides, since f ∈ Γ 0 (R ω ), we have Au -u 0 2 2 = f (Au) = f (Au) = sup q∈R ω Au, q -q 2 + u 0 2 2 + u 0 2 2 , ( 53 
)
and the supremum is attained since the cost functional is concave, differentiable, and its gradient vanishes at the point q = 2(Au -u 0 ). Replacing the quadratic term accordingly into [START_REF] Unser | Sampling-50 years after shannon[END_REF], removing the constant u 0 2 2

(which does not change the set of minimizers), and replacing as well the STV n term by its dual formulation using Proposition 9, we obtain the desired result.

Again, the Huber version of ( 52) is obtained by replacing the STV n (u) term by HSTV α,n (u), which simply changes

F (p, q) = δ • ∞,2≤1 (p) + q 2 + u 0 2 2 into F (p, q) = δ • ∞,2≤1 (p) + αλ 2n 2 p 2 2 + q 2 + u 0 2 2 .
Note that the adjoint of K (defined in Proposition 11) is K * (p, q) = -λ n 2 div n p + A * q, and its induced 2 norm satisfies

|||K||| 2 ≤ ||| λ n 2 ∇ n ||| 2 + |||A||| 2 ≤ 2 πλ n 2 + |||A||| 2 .
Thus, Chambolle-Pock Algorithm can be rewritten in the present case as Algorithm 3 below. The update of the dual variable (here the tuple (p, q)) in the generic Algorithm 1 was split into two independent updates thanks to the additive separability with respect to p and q of the function (p, q) → Ku, (p, q) -F (p, q). Algorithm 3: Chambolle-Pock resolvant Algorithm for Problem ( 52)

Initialization: Choose τ, σ > 0, θ ∈ [0, 1], u 0 ∈ R Ω , p 0 ∈ R Ω n × R Ω n , q 0 ∈
R ω , set u 0 = u 0 and set ν as in Algorithm 2.

Iterations: For k ≥ 0, update p k , u k and u k with

p k+1 = π ∞,2 p k + σλ n 2 ∇ n u k /ν q k+1 = 2 q k + 2σ Au k -u 0 2 + σ u k+1 = u k + τ λ n 2 div n p k+1 -τ A * q k+1 u k+1 = u k+1 + θ u k+1 -u k

Application to image deconvolution

In the case of image deconvolution, the linear operator A in ( 52) is the convolution with a point spread function k A (modeling for instance some blurring phenomenon such as diffraction, defocus, motion blur, . .

. ). Let us consider such a discrete convolution kernel k

A ∈ R ω A with finite domain ω A ⊂ Z 2 ,

and define the associated operator

A : R Ω → R ω by Au(x, y) = (a,b)∈ω A k A (a, b) u(x -a, y -b) , (55) 
where ω denotes the subset of Ω made of all the pixels (x, y) ∈ Ω such as (x, y) -ω A ⊂ Ω. In order to use Algorithm 3, we need the explicit expression of A * : R ω → R Ω , which writes

A * v(x, y) = (a,b)∈ω A k A (a, b) v(x + a, y + b) , (56) 
for v ∈ R ω and (x, y) ∈ Ω, with the convention that v(x + a, y + b) = 0 when (x + a, y + b) ∈ ω. One easily checks that |||A||| ≤ ||k A || 1 as well.

Most authors define the convolution with kernel k A as an operator A : R Ω → R Ω at the cost of an extension of u outside of Ω, usually a periodic or a mirroring condition, or a zero-extension. Such a convention simplifies the analysis (and the computations, especially in the periodic case where the convolution can be implemented with the DFT), but we shall not use it here as it is unrealistic and thus of little help to process real data. Experiments illustrating STV deblurring are displayed in Fig. 6 (motion blur) and 7 (out of focus).

Application to image zooming and inpainting

The variational formulation [START_REF] Unser | Sampling-50 years after shannon[END_REF] can be used to perform many other image processing tasks: as soon as we can derive a closed-form expression for A, its adjoint A * , and estimate an upper bound for |||A|||, Algorithm (3) can be implemented without difficulty. We here mention two more examples of applications (zoom and inpainting), each corresponding to a particular choice of A. We experimentally checked that, in both cases, the use of STV n instead of TV yields nicely interpolable images.

In the case of image zooming, the operator A is often assumed to be a blurring kernel followed by a subsampling procedure (see [START_REF] Malgouyres | Edge direction preserving image zooming: a mathematical and numerical analysis[END_REF][START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]). A simple particular case is the discrete captor integration model A : R Ω → R ω defined by

Au(x, y) = 1 δ 2 (a,b)∈I 2 δ u(δx + a, δy + b) , (57) 
where ω = I M × I N denotes a small discrete domain and Ω = I δM × I δN a bigger one, δ (the magnification factor) being an integer at least equal to 2. In that case, we easily obtain the relation |||A||| = 1 δ and the expression of the adjoint operator A * : R ω → R Ω as

A * v(x, y) = 1 δ 2 v x δ , y δ . (58) 
Another example is image inpainting, which aims at estimating plausible image intensities in a (nonempty) subpart ω 0 of the image domain Ω where the information is missing. In that case, ω = Ω, the operator A : R Ω → R Ω is defined by Au(x, y) = 1 ω0 (x, y) • u(x, y) , and one easily checks that A * = A (A is a diagonal operator) and |||A||| = 1.

Constrained minimization

In some situations, it is desirable to consider constrained minimization problems of the type ũ ∈ argmin

u∈R Ω STV n (u) subject to Au = u 0 , (59) 
where u 0 denotes the observed image with discrete domain ω, ũ denotes the reconstructed image with discrete domain Ω, and A denotes again a linear operator from R Ω to R ω . In other words, we are interested in the computation of an image ũ having the smallest Shannon TV among those satisfying the constraint Au = u 0 . Remark that the inverse problem [START_REF] Unser | Sampling-50 years after shannon[END_REF] is none other than a relaxed version of (59). In the presence of noise, it is better to use the relaxed formulation, but the constrained model ( 59) may be interesting when the level of noise in u 0 is low, especially because it does not require the setting of any regularization parameter λ. 52)). As in Fig. 4, the regularization parameter λ is set in such a way that the amount of estimated noise (here the quantity Aũ -u 0 2 , where ũ is the restored image) is the same for both methods. The resulting images (c) and (d) are quite similar, but the magnified views (f) and (g) (magnification of factor 4 with Shannon interpolation) clearly shows that they strongly differ in terms of interpolability: as in the denoising case, the interpolated TV d image exhibit strong ringing artifacts, whereas the interpolated STV image does not. Using Proposition 9, we obtain a primal-dual reformulation of (59),

ũ ∈ argmin u∈R Ω max p∈R Ωn ×R Ωn δ A -1 (u0) (u) + 1 n 2 ∇ n u, p -δ • ∞,2≤1 (p) , (60) 
where the (closed and convex) set

A -1 (u 0 ) := u ∈ R Ω , Au = u 0
is assumed to be nonempty, and δ P denotes the indicator function of a set P (that is, δ P (p) = 0 if p ∈ P, +∞ otherwise). A solution of Problem ( 60) can be numerically computed using Algorithm 4, taking

G = δ A -1 (u0) , F = δ • ∞,2≤1 and K = 1 n 2 ∇ n in Chambolle-Pock Al- gorithm.
Algorithm 4: Chambolle-Pock resolvant Algorithm for Problem (60)

Initialization: Choose τ, σ > 0, θ ∈ [0, 1], u 0 ∈ R Ω , p 0 ∈ R Ω n × R Ω n ,
set u 0 = u 0 and define ν and π ∞,2 as in Algorithm 2. Denote by π 0 the 2 projection from R Ω onto the (closed and convex) set

A -1 (u 0 ) = u ∈ R Ω , Au = u 0 . Iterations: For k ≥ 0, update p k , u k and u k with p k+1 = π ∞,2 p k + σ n 2 ∇ n u k /ν u k+1 = π 0 u k + τ n 2 div n p k+1 u k+1 = u k+1 + θ u k+1 -u k
To illustrate the general framework above, we will consider in the next section the problem of reconstructing an image from partial measurements in the Fourier domain. A particular case is image magnification (assuming that the original low-resolution image does not suffer from aliasing), which corresponds to the recovery of high-frequency components only, but other situations (like tomography) require spectrum interpolation in a more complicated domain. Note also that many other applications, such as image inpainting or image zooming presented in Section 5.2.2, can be easily handled as well with the constrained formulation (59).

Application to spectrum extrapolation

Given an image u 0 ∈ R Ω whose spectrum u 0 is known on a certain (symmetric) subdomain ω 0 of Ω, how to extend this spectrum to the whole spectral domain Ω? The trivial zero-padding approach, which amounts to extending the spectrum with the constant zero, yields a very oscillatory image in general, in reason of the irregularity (missing Fourier coeffients) of the extrapolated spectrum. A more satisfying reconstruction can be obtained with a variational approach: among all possible spectrum extensions, choose the one that minimizes a given energy. This kind of approach was used by Rougé and Seghier [START_REF] Rougé | Nonlinear spectral extrapolation: new results and their application to spatial and medical imaging[END_REF], who considered the Burg entropy, and by Guichard and Malgouyres [START_REF] Guichard | Total variation based interpolation[END_REF][START_REF] Malgouyres | Edge direction preserving image zooming: a mathematical and numerical analysis[END_REF], who used the discrete TV (but in a slightly different framework, since they take as input a subsampled image which suffers from aliasing). We here consider the energy STV n ; in a constrained formulation, this is a particular case of (59), since the frequency constraint ( u and u 0 are equal on ω 0 ) can be enforced under the form Au = u 0 where A = F -1 • M ω0 • F (F and F -1 denote the direct and inverse discrete Fourier transforms respectively, the operator M ω0 denotes the pointwise multiplication of a element of C Ω with 1 ω0 , and u 0 is implicitly set to zero outside ω 0 ). Note that the 2 projection π 0 onto the set A -1 (u 0 ) is simply obtained in the Fourier domain with

∀u ∈ R Ω , ∀(α, β) ∈ Ω, π 0 (u)(α, β) = u 0 (α, β) if (α, β) ∈ ω 0 u(α, β) otherwise .
Some examples of spectrum extrapolations are proposed in Fig. 8 and9.

Regularization with weighted frequencies

Using STV as a regularizer leads to iterative algorithms that operate in the Fourier domain. This has a nonnegligible computational cost, even though this kind of algorithms is common nowadays and there exist very efficient implementations of the Fourier Transform, like FFTW [START_REF] Frigo | The design and implementation of FFTW3[END_REF]. We now consider an image restoration model that benefits from the availability of the Fourier transform of the current image at each iteration.

Model

Given an input image u 0 : Ω → R (with Ω = I M × I N ) and a symmetric non-negative map γ : Ω → R+, we consider the minimization problem

argmin u∈R Ω u -u 0 2 γ + λ STV n (u) , (62) 
where λ > 0 is a regularization parameter and

u -u 0 2 γ = 1 |Ω| (α,β)∈ Ω γ(α, β) • | u(α, β) -u 0 (α, β)| 2
is a weighted squared distance between u and u 0 (strictly speaking, it defines a distance only if γ does not vanish). Model [START_REF] Zhu | An efficient primal-dual hybrid gradient algorithm for total variation image restoration[END_REF] generalizes two other models considered above. Indeed, STV image denoising ( 49) is obtained with γ ≡ 1, while the choice γ = 1 ω0 leads to a relaxed version of spectrum extrapolation considered in Section 5.3.1. Choosing a more general (non-binary) weight map γ provides a way to selectively regularize the Fourier coefficients of the input image u 0 : when γ(α, β) is large, one expects to obtain u(α, β) ≈ u 0 (α, β); on the contrary, the coefficients u(α, β) corresponding to small (or zero) values of γ(α, β) are essentially driven by STV regularization.

Algorithm

Replacing the STV n term by its dual formulation (Proposition 9) into (62) yields the primal-dual problem

argmin u∈R Ω max p∈R Ωn ×R Ωn u -u 0 2 γ + λ n 2 ∇ n u, p -δ • ∞,2≤1 (p) . ( 63 
)
In order to apply Algorithm 1 to (63), one needs to perform at each iteration k the primal update

u k+1 = argmin u∈R Ω 1 2τ u -u k+1/2 2 2 + u -u 0 2 γ , (64) 
where u k+1/2 = u k + τ λ n 2 div n p k+1 . Thanks to Parseval Identity, this can be rewritten

u k+1 = argmin u∈R Ω 1 2τ |Ω| u -u k+1/2 2 2 + u -u 0 2 γ , (65) 
from which we easily obtain the explicit formula for the update given in Algorithm 5.

Algorithm 5: Chambolle-Pock resolvant algorithm for problem [START_REF] Zhu | An efficient primal-dual hybrid gradient algorithm for total variation image restoration[END_REF] 

Initialization: Choose τ, σ > 0, θ ∈ [0, 1], u 0 ∈ R Ω , p 0 ∈ R Ω n × R Ω n ,
set u 0 = u 0 and define ν and π ∞,2 as in Algorithm 2.

Iterations: For k ≥ 0, update p k , u k and u k with

p k+1 = π ∞,2 p k + σλ n 2 ∇ n u k /ν u k+1/2 = u k + τ λ n 2 div n p k+1 u k+1 = F -1 u k+1/2 + 2τ γ • u 0 1 + 2τ γ u k+1 = u k+1 + θ u k+1 -u k

Image Shannonization

One interesting application of Model ( 62) is its ability to (partly or fully) remove aliasing from a given image, thus providing what we could call an "Image Shannonizer". We did not thoroughly investigate this phenomenon yet but the first results we obtained using the simple Gaussian weight function

γ(α, β) = e -π 2 σ 2 α 2 M 2 + β 2 N 2 (66) 
seem interesting enough to be mentioned here.

Aliasing arises when a continuous image is not sampled in accordance with Shannon Theorem, that is, when the sampling step is too large compared to the highest frequency component that the image contains. In that case, the sampled image will be aliased, which means that its discrete Fourier coefficients will be the sum of one correct value and several incorrect values arising from higher frequencies that cannot be represented in the available discrete Fourier domain. In practice, since the power spectrum of natural images tends to exhibit a power-law decrease (see [START_REF] Ruderman | The statistics of natural images[END_REF]), aliasing mostly impacts the highest frequencies of the discrete image in general; it is thus logical to choose for γ a decreasing function of the distance to the origin. The isotropic map (66) is a possibility, but it would certainly be worth exploring other choices.

The Shannon interpolate of an aliased image is very oscillatory in general, because the aliased component define a trigonometric polynomial with improper aliased frequencies. Therefore, we can expect Model [START_REF] Zhu | An efficient primal-dual hybrid gradient algorithm for total variation image restoration[END_REF] to show interesting aliasing removal performances, as STV is strongly affected by oscillations. Indeed, we can observe in Fig. 10 and 11 that the aliasing of the input image u 0 (which is clearly visible on its spectrum) is completely removed after processing through the Image Shannonizer, without introducing noticeable blur on the image.

Conclusion

In this paper we showed that images delivered by variational TV-based models could not be easily interpolated when the TV is discretized with a classical finite difference scheme. However, we demonstrated on several examples that a variant called STV (for Shannon TV) successfully addresses this issue, and can be efficiently handled using Legendre-Fenchel duality and Chambolle-Pock Algorithm. We easily adapted the STV variant to Huber-TV regularization, which let us believe that STV could be easily applied to other variants of the discrete TV as well; for example, the Total Generalized Variation (TGV) proposed in [START_REF] Bredies | Total generalized variation[END_REF] involves higher order derivatives that could be computed exactly as in the STV approach. The choice of the upsampling factor n used to estimate STV with a Riemann sum was discussed and it was shown that n = 1 was inadequate. However, it would be interesting to further investigate this issue and prove that n = 2 (or intermediate values between 1 and 2) guarantees a close correspondence between the true STV and its estimate STV n .

We also presented a new STV-based restoration model relying on a weight map in the Fourier domain, and showed that in certain cases it could be used as an "Image Shannonizer", which transforms an image into a very similar one that can be easily interpolated (with Shannon interpolation or spline interpolation for example). This seems particularly interesting, as most images are not perfectly sampled (and hence difficult to interpolate) and would hence benefit a lot from this process. This opens new perspectives on aliasing removal (and thus super-resolution from a single image), but several questions are still to be answered, in particular concerning the choice of the weight map.

and the limit sincd N (x) = lim n→∞ S n (x) can be computed explicitly using classical series expansions (due to Euler):

∀t ∈ R \ πZ, 1 tan t = 1 t + ∞ p=1 1 t -pπ + 1 t + pπ , 1 sin t = 1 t + ∞ p=1 (-1) p 1 t -pπ + 1 t + pπ .
If N is odd, (-1) pN = (- 

B Proof of Theorem 2

Since each operator T z is linear and translation-invariant (Hypothesis (ii)), it can be written as a convolution, that is,

T z s(k) = (ψ z s)(k) := l∈I M ψ z (k -l)s(l), (67) 
where ψ z is an element of S. Taking the DFT of (67), we obtain

∀α ∈ Z, T z s(α) = ψ z (α) s(α). (68) 
Now, from Hypothesis (iii) we immediately get

∀z, w ∈ R, ∀α ∈ Z, ψ z+w (α) = ψ z (α) ψ w (α), (69) 
and by continuity of z → ψ z (α) (deduced from Hypothesis (i)) we obtain

∀α ∈ Z, ψ z (α) = e γ(α)z (70) for some γ(α) ∈ C. Since ψ 1 (α) = e -2iπα M
, we have

γ(α) = -2iπ α M + p(α) (71) 
where p(α) ∈ Z and p(-α) = -p(α) (the fact that T z u is real-valued implies that ψ z (-α) = ψ z (α) * ). Last, we compute

T z -id 2 2 = sup s 2 =1 T z s -s 2 2 = 1 M sup s 2 =1 T z s -ŝ 2 2 = 1 M sup ŝ 2 2 =M α∈ I M |e -2iπ( α M +p(α))z -1| 2 • |ŝ(α)| 2 = 4 max α∈ I M sin 2 π α M + p(α) z = 4π 2 z 2 max α∈ I M α M + p(α) 2 + o z→0 (z 2 ). Hence, lim z→0 |z| -1 T z -id 2 = 2π max α∈ I M α M + p(α) (72) 
and since α M ∈ (-1 2 , 1 2 ) and p(α) ∈ Z for any α ∈ I M , the right-hand term of (72) is minimal if and only if p(α) = 0 for all α ∈ I M . We conclude from (71) and (70) that

∀α ∈ I M , ψ z (α) = e -2iπαz/M , (73) 
and thus (68) can be rewritten as

T z s(k) = 1 M α∈ I M s(α)e -2iπαz/M e -2iπαk/M , (74) 
which is exactly S(k -z) thanks to (13) (recall that the real part is not needed because M is odd). Therefore, ( 24) is a necessary form for a set of operators (T z ) satisfying Hypotheses (i) to (iv). Conversely, one easily checks that the operators (T z ) defined by [START_REF] Ekeland | Convex Analysis and Variational Problems[END_REF] satisfy the Hypotheses (i) to (iv).

C Proof of Proposition 8

Let us denote by ∇ n,x u and ∇ n,y u the two elements of R Ω n such that ∇ n u = (∇ n,x u, ∇ n,y u). In the following, the notation •, • X stands for the usual Euclidean (respectively Hermitian) inner product over the real (respectively complex) Hilbert space X. We have

∇ n u, p R Ωn ×R Ωn = ∇ n,x u, p x R Ωn + ∇ n,y u, p y R Ωn .
Recall that we defined div n = -∇ * n , the opposite of the adjoint of ∇ n . Noting div n,x = -∇ * n,x and div n,y = -∇ * n,y , we have

∇ n u, p R Ωn ×R Ωn = u, -div n,x (p x ) -div n,y (p y ) R Ω .
so that we identify div n (p) = div n,x (p x ) + div n,y (p y ). Let us focus on the computation of div n,x (p x ). Let Ω 1 , Ω 2 , Ω 3 , Ω 4 be the sets defined by

Ω 1 = (α, β) ∈ R 2 , |α| < M 2 , |β| < N 2 ∩ Z 2 Ω 2 = ± M 2 , β ∈ R 2 , |β| < N 2 ∩ Z 2 Ω 3 = α, ± N 2 ∈ R 2 , |α| < M 2 ∩ Z 2 Ω 4 = ± M 2 , ± N 2 ∩ Z 2 .
Notice that some sets among Ω 2 , Ω 3 and Ω 4 may be empty according to the parity of M and N . Now, let h p x be the function defined in Proposition 8 and let us show that

∀(α, β) ∈ Ω, div n,x (p x )(α, β) = 2iπ α M h p x (α, β). (75) 
Given z ∈ C, we denote as usual by z * the conjugate of z. Thanks to Parseval identity, and using Proposition 6 (because we assumed n ≥ 2), we have 

∇ n,x u, p x R Ωn = 1 n 2 M N ∇ n,x u, p x C Ωn

D Proof of Theorem 3

Recall that for any integer M , we denote by T M the real vector space of real-valued trigonometric polynomials that can be written as complex linear combination of the family (x → e 2iπ αx M ) -M 2 ≤α≤ M

2

. In order to prove Theorem 3 we need the following Lemma. where g = t → tan t t . Now since g is positive and increasing on (0, π

2 ), we have which cannot be bounded from above by a constant independent of M .

E Proof of Proposition 10

Let u ∈ R Ω , n ∈ N and α ∈ R such that n ≥ 1 and α > 0.

One can rewrite HSTV α,n (u) = 1 n 2 H α (∇ n u), where

∀g ∈ R Ω n × R Ω n , H α (g) = (x,y)∈Ω n
H α (g(x, y)) .

Let us show that the Legendre-Fenchel transform of H α is

H α (p) = δ • ∞,2 ≤1 (p) + α 2 p 2 2 .
One easily checks that H α ∈ Γ (R 2 ), and it follows that H α ∈ Γ (R Ω n × R Ω n ). Thus, for any image u ∈ R Ω , we have H α (∇ n u) = H α (∇ n u) and

H α (∇ n u) = sup p∈R Ωn ×R Ωn ∇ n u, p -H α (p) . (78) 
Besides, we have H α (p) = (x,y)∈Ω n H α (p(x, y)), and the Legendre-Fenchel transform of H α is the function H α (z) = δ |•|≤1 (z) + α 2 |z| 2 , where δ |•|≤1 denotes the indicator function of the unit ball for the 2 norm in R 2 . Indeed, it is proven in [START_REF] Parikh | Proximal algorithms[END_REF] that H α is the Moreau envelope (or Moreau-Yosida regularization) [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF][START_REF] Yosida | Functional Analysis[END_REF] with parameter α of the 2 norm | • |, or equivalently the infimal convolution (see [START_REF] Rockafellar | Convex analysis[END_REF]) between the two proper, convex and l.s.c functions f 1 (x) = |x| and f 2 (x) =

1 2α |x| 2 , that is ∀y ∈ R 2 , H α (y) = (f 1 f 2 ) (y) := inf x∈R 2 f 1 (x) + f 2 (y -x) .
Thus, we have H α = (f 1 f 2 ) = f 1 + f 2 (see [START_REF] Rockafellar | Convex analysis[END_REF][START_REF] Parikh | Proximal algorithms[END_REF]), leading exactly to 

Fig. 1

 1 Fig.1Discrete TV produces aliasing. An image denoised with a classical discrete implementation of TV denoising (a) is improperly sampled, as attested by the aliasing artifact appearing in its Fourier spectrum ((c), red arrow), which is responsible for the undesired oscillating patterns that appear when magnifying the image using Shannon interpolation ((b), red arrows). Note that this artifact is not present on the original image (d). This experiment illustrates the difficulty of manipulating images at a subpixel scale after a processing involving the discrete TV.

Fig. 2 Fig. 3

 23 Fig. 2 Cardinal splines in the Fourier domain. The Fourier transform of the interpolation kernels β n card are represented for n = 1, 3, 9. As n increases, they get closer to the ideal low-pass filter obtained with the sinc kernel. The approximation is responsible for blur (attenuation of known frequencies) and aliasing (creation of high frequencies duplicated from existing low frequencies) on spline-interpolated images.

Fig. 4 Fig. 5

 45 Fig.4Comparison of discrete TV and Shannon TV for image denoising. A noisy image (top, left) undergoing additive white Gaussian noise with zero mean and standard deviation σ = 20 (see also the reference image in Fig.5) was processed with the ROF model using the TV d (top, center) and STV 3 (top, right) discretizations. The regularity parameter λ was set in order to get the same norm of the estimated noise (the difference between the noisy and the restored image) in each simulation. In the second row we display a cropping of the TV d -restored image oversampled with factor 3 using different interpolation methods (from left to right: nearest neighbor, bicubic spline and Shannon interpolation). In the third row, the same operation is realized on the STV-restored image. We can see that images TV d and STV images look globally similar. The details on the left of rows 2 and 3 reveal the presence of staircasing in both cases, but this artifact is significantly attenuated in the case of STV. Looking at the second row, we see that the TV d image cannot be interpolated in a satisfying way, since both bicubic and Shannon interpolation methods yield images with undesirables oscillations (ringing) localized near objects contours. This is not the case with the STV image, that can be interpolated without creating artifacts with both bicubic and Shannon interpolations (row 3).

Fig. 6

 6 Fig. 6 Motion deblurring with discrete TV and Shannon TV. A degraded (blurry and noisy) image (a) is synthesized by convolving the reference image (b) with a real-data motion blur kernel and then adding a white Gaussian noise with zeromean and standard deviation σ = 2. The degraded image (a) is then processed by solving the corresponding TV d and STV 3 regularized inverse problems (Equation (52)). As in Fig.4, the regularization parameter λ is set in such a way that the amount of estimated noise (here the quantity Aũ -u 0 2 , where ũ is the restored image) is the same for both methods. The resulting images (c) and (d) are quite similar, but the magnified views (f) and (g) (magnification of factor 4 with Shannon interpolation) clearly shows that they strongly differ in terms of interpolability: as in the denoising case, the interpolated TV d image exhibit strong ringing artifacts, whereas the interpolated STV image does not.

  Fig.7Out-of-focus deblurring using Huber TV and Huber STV. This experiment is similar to Fig.6, except that we here used a fluorescence microscopy image of actin filaments and microtubules in interphase cells (source cellimagelibrary.org, cil number 240, first channel), a synthetic out-of-focus blur kernel defined by the indicator of a disk with radius 7 pixels, and we replaced the TV d and STV 3 regularizers by their Huber versions (α = 5). The conclusions are identical.

Fig. 9

 9 Fig.8Image zooming with spectrum extrapolation. An input image (1st column) is synthesized by setting to 0 the high frequency components (that is, outside a square ω 0 ) of a reference image (4th column). Spectrum extrapolation is then realized using either the discrete TV (2nd column) or the STV (3rd column). For each image of the first row, the spectrum (Fourier modulus, in log scale) is displayed below on the second row. As we can observe, the constrained TV minimization framework (59) is efficient for spectrum extrapolation: both discretizations manage to reconstruct part of the missing high frequencies and remove the ringing patterns observed in the input image. However, STV is to be preferred to discrete TV as it manages to avoid the aliasing artifacts of the latter (red arrows), and delivers nicely interpolable images.

Fig. 10

 10 Fig.10Image "Shannonization". The input image (left column) is slightly aliased, as indicated by the periodic continuation patterns (see red arrows) that appear in its Fourier spectrum (3rd row). Processing this image with the "Image Shannonizer" (62) results in a visually similar image (middle column) that seems aliasing-free (the patterns are not visible any more on the 3rd row). In comparison, a generic frequency attenuation process (on the right column, with a Gaussian attenuation map) produces a large amount of blur while being less efficient in terms of aliasing removal.
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 22 M N (α,β)∈ Ω n ∇ n,x u(α, β) ( p x (α, β)) * u(α, β) 2iπε M (α)ε N (β) α M p x (α, β) * . It follows that ∇ n,x u, p x R Ωn = S 1 + S 2 + S 3 + S 4 ,where for all k ∈ {1, 2, 3, 4}, we have setS k = 1 M N (α,β)∈ Ω k -u(α, β) 2iπε M (α)ε N (β) α M p x (α, β) s 1 =±1,s2=±1 s 1 p x (s 1 α, s 2 β). Finally, we can write S 1 + S 2 + S 3 + S 4 as a sum over Ω, indeed,∇ n,x u, p x R Ω = S 1 + S 2 + S 3 + S 4 = 1 M N (α,β)∈ Ω -u(α, β) 2iπ α M h p x (α, β) * ,and using again the Parseval identity, we get (75). With a similar approach, one can check that∀(α, β) ∈ Ω, div n,y (p y )(α, β) = 2iπ β N h p y (α, β) ,where h p y is defined in Proposition 8. Consequently, for any (α, β) ∈ Ω, we havediv n (p)(α, β) = 2iπ α M h p x (α, β) + β N h p y (α, β) ,which ends the proof of Proposition 8.
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 1211 Let M = 2m + 1 be an odd positive integer. The functions F and G defined by,∀x ∈ R, F (xx) = F (x) -F (x -1) ,are both in T M and G satisfies Proof F is in T M by construction, and so is G as the difference of two elements of T M . Writing ω = π M , we can notice that F (0) = 1 and∀x ∈ (0, M ), F (x) = e 2iω(-m)x M • e 2iωx = sin (πx) M sin (ωx) , so that F (k) = 0 for all integers k ∈ [1, M -1]. Consequently, G(0) = 1, G(1) = -1 and G(k) = 0 for all integers k ∈ [2, M -1], thus M -1 k=0 |G(k)| = |G(0)| + |G(1)| = 2 ,yielding the first announced result of the Lemma. Now, remark that the sign changes of G in (0, 2m+1) occur at integer points 2, 3, . . . 2m and in 1 2 (by symmetry). Thus, we have (x) dx ,since for all x ∈ [0, M ], we have G(x) = F (x) -F (x -1) and (because M is odd) F (x) = F (M -x). It follows that (x) dx -2 , since |F | ≤ 1 everywhere.Consequently, by isolating the index α = 0 in the definition of F , we get J≥ 2 J + 1 Mk = -e 2iωα • 1 -e 2iωα(2m)1 + e 2iωα = e iπα i sin(2ωmα) cos(ωα) = i sin(2ωmα -πα) cos(ωα) = -i tan(ωα) , Equation (76) finally leads to

2 )STV 1 (

 21 Using the lower bound g(t) ≥ 2 π tan t for t ∈ (0, π the inequality announced in Lemma 1 follows.Now, let us prove the Theorem 3 by building a discrete image u such that STV 1 (u) is fixed but STV ∞ (u) increases with the image size. We consider the function H defined by∀x ∈ R, H(x) = x 0 G(t) dt ,where G ∈ T M is the real-valued M -periodic trigonometric polynomial defined in Lemma 1 (M = 2m + 1). Since the integral of G over one period is zero ( M 0 G(t) dt = 0), H is also an element of T M . Consequently, the bivariate trigonometric polynomial defined by∀(x, y) ∈ R 2 , U (x, y) = 1 M H(x) ,beongs to T M ⊗ T M , and since M is odd it is exactly the Shannon interpolate of the discrete image defined by∀(k, l) ∈ I M × I M , u(k, l) = U (k, l).(77)In particular, by definition of STV 1 and STV ∞ , we haveSTV 1 (u) = (k,l)∈Ω |∇U (k, l)| ,and STV ∞ (u) =[0,M ] 2|∇U (x, y)| dxdy .From Lemma 1, we have on the one hand,

p 2 2 , 1 n 2

 212 H α (z) = δ |•|≤1 (z) + α 2 |z| 2 for any z ∈ R 2 , since we have f 1 = z → δ |•|≤1 (z) and f 2 = z → α 2 |z| 2 . It follows that for any p ∈ R Ω n × R Ω n , we have H α (p) = (x,y)∈Ω n H α (p(x, y)) = δ • ∞,2 ≤1 (p) + α 2 (79)and the supremum (78) is a maximum for the same reason as in the proof of Proposition 9. Finally, writing HSTV α,n (u) = H α (∇ n u) = 1 n 2 H α (∇ n u) using (78) and (79) leads to the announced result.

A Proof of Proposition 1

Let us consider, for x ∈ R \ Z,

Writing x = N t π , we obtain