SupplementaryMaterial:

Understanding the Reactivity of Unsaturated Alcohols: Experimental and Kinetic Modeling Study of the oxidation of 3-methyl-2-butenol and 3methyl-3-butenol

Ruben De Bruycker^a, Olivier Herbinet^b, Hans-Heinrich Carstensen^a, Frédérique Battin-Leclerc^b, Kevin M. Van Geem^a

^a Laboratory for Chemical Technology, Ghent University, Technologiepark 914, 9052 Gent, Belgium

^b Laboratoire Réactions et Génie des Procédés, CNRS, Universite de Lorraine, Nancy, France

Reaction families in Genesys

Table S 1k [bimolecular - $m^3 mol^{-1} s^{-1}$; unimolecular - s^{-1}] = A Tⁿ exp(-Ea/RT) where R = 8.314 10⁻³ kJ K⁻¹ mol⁻¹

Reaction family	Comment Kinetic pa		tic param	parameters		
			A	n	Ea	
Hydrogen abstraction						
Intermolecular		1	-			
by C• from C-H	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Group additivity			[1, 2]
		H abstr from C(=O)- H by CH ₃	2.5e-6	3.6	18.1	[3]
by H• from C-H			Group additivity			[4]
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H abstr from C(=O)- H	7.15e-1	2.4	6.6	[3]
by •OH from C-H		R_1 , R_2 , R_3 alkyl chains or H atoms	Rate rules for alkanes			[5, 6]
		$\begin{array}{c} R_1, R_2 \text{ H atoms} \\ R_3 \text{ C=C} \end{array}$	7.15e-1 2.4 6.6 [3] Rate rules for alkanes [5, 7.80e-1 2.3 -5.7 [7] 7.50e-2 2.4 -3.9 [7]	[7]		
	R_1 R_1	R ₁ H atom R ₂ alkyl chain R ₃ C=C	7.50e-2	2.4	-3.9	[7]
	$\begin{array}{c} \bullet OH + H \longrightarrow R_2 \implies H_2O + R_3 \qquad R_2 \qquad R_3 \qquad R_4 \qquad R_3 \qquad R_4 \qquad R_4 \qquad R_5 \qquad R_5 \qquad R_5 \qquad R_6 \qquad$	R_1 H atom R_2 OH R_3 alkyl chain	1.15e-2 2.6 -8.7	-8.7	[7]	
		$ \begin{array}{c} R_1 \ H \ atom \\ R_2 \ OH \\ R_3 \ C=C \end{array} $	2.55e-2	2.6	Ea [] 18.1 [] 6.6 ines -5.7 [] -3.9 [] -8.7 [] -13.3 [] anes	[7]
		H abstr from C(=O)-H	6.13e-2	2.7	-19.2	[3]
by HO ₂ • from C-H		R ₁ , R ₂ , R ₃ alkyl chains or H atoms	Rate rules for alkanes			[8]

		R_1 , R_2 or R_3 OH	1.23e-11	5.26	31.3	[9]		
		R_1 , R_2 or R_3 C=C	7.68e-2	4.4	56.7	[10]		
		H abstr from C(=O)-H	1.18e-10	4.9	15.4	[3]		
by O ₂ from C-H	$O_2 + H \xrightarrow[R_3]{R_1} R_2 \longrightarrow HO_2 + \underset{R_3}{\overset{R_1}{\longrightarrow}} R_2$		1.00e7	0.0	ΔH_r	[11, 12]		
Intramolecular			-					
by C• from C-H	$R_{2} \xrightarrow{R_{1}} H \xrightarrow{R_{3}} R_{4} \xrightarrow{R_{1}} R_{2} \xrightarrow{R_{3}} R_{4}$		Group additivity + rate rule A = function of # hindered rotors in TS Ea = ring strain in TS + activation energy analogous bimolecular reaction		[1, 2, 13]			
	O [•] OH Formation o analkyl radio	Formation of analkyl radical	Rate rules	[14]				
by R-O-O• from C-H	$\underset{R_2}{\overset{R_3}{\longrightarrow}} \underset{R_4}{\overset{R_3}{\longrightarrow}} \underset{R_2}{\overset{R_2}{\longrightarrow}} \underset{R_2}{\overset{R_3}{\longrightarrow}} \underset{R_4}{\overset{R_4}{\longrightarrow}} \underset{R_4}{\overset{R_4}{\overset{R_4}{\longrightarrow}} \underset{R_4}{\overset{R_4}{\overset{R_4}{\longrightarrow}} \underset{R_4}{\overset{R_4}{\longrightarrow}} \underset{R_4}{\overset{R_4}{\overset{R_4}{\longrightarrow}} \underset{R_4}{\overset{R_4}{\overset{R_4}{\overset{R_4}{\overset{R_4}{\overset{R_4}{\longrightarrow}} \underset{R_4}{\overset{R_4}{R_$	Formation of anallylic radical	2.24e6	1.29	59.6	[15]		
by R-O-O• from O-H	$R_1 \longrightarrow O^{\bullet} O^{\bullet} O^{\bullet}$ $R_1 \longrightarrow O^{\bullet} O^{\bullet}$ $R_2 \longrightarrow O^{\bullet} O^{\bullet}$	Analogy with 2- peroxy-2-methyl- propan-1-ol	2.91e12	-0.23	93.3	[16]		
β-scission/ radical addition								
Carbon-centered radicals								
•C-C-C \rightleftharpoons C=C + •C	R_{2} R_{2} R_{4} R_{7} R_{6}		Group additivity		[17]			

•C-C-H ⇄ C=C + •H	R_{2} R_{4} R_{2} R_{4} R_{1} R_{1} R_{3} R_{4} R_{4		Group additivity			[18]	
•C-C-OH ⇄ C=C+ •OH	$R_2 \xrightarrow{R_1} OH \xrightarrow{R_2} R_2 \xrightarrow{R_1} H \bullet OH$	Analogy with 2-hydroxy-ethyl to ethene plus OH	3.00e13	0.0	112.1	a	
•C-O-H ⇄ C=O+ •H	R_2 H H R_2 H R_2 H H R_2 H H R_2 H	Analogy with acetaldehyde plus H to 1-hydroxy- ethyl	1.10e8	0.0	44.7	a	
•C-O-OH ⇄ C=O+ •OH	R_2 $OH \implies R_2$ R_1 $H \to OH$		9.00e14	0.0	6.28		
•C-C-O-O-H ⇄ C=C+ HO ₂ •	$\begin{array}{c c} OH & R_3 \\ \hline \\ O & R_1 \\ \hline \\ O \\ R_2 \end{array} \xrightarrow{R_4} HO_2 \cdot + \begin{array}{c} R_1 \\ R_2 \\ R_2 \end{array} \xrightarrow{R_1} R_3 \end{array}$		Rate rules	[14]			
Oxygen-centered radicals							
•O-C-C ⇄ C=O+ •C		R ₁ alkyl Analogy with 2- oxy-propane	6.00e13	0.22	59.0	a	
	$R_1 \longrightarrow R_3 \longrightarrow R_1 + R_3$	R ₁ C=C Analogy with allyloxy	2.70e14	0.00	100.0	[19]	
•O-C-H ⇄ C=O+ •H	$H \xrightarrow[R_2]{R_1} 0^{\bullet} \xrightarrow[R_1]{} \bullet H + \begin{array}{c} R_1 \\ R_2 \\ R_2 \end{array} \xrightarrow[R_2]{} 0^{\bullet} \xrightarrow[R_2]$	R ₁ or R ₂ C=C. Analogy with allyloxy	1.17e10	1.00	77.6	[19]	
α-scission							

$C-C(=O)\bullet \rightleftharpoons C\bullet + CO$	$R_1 \rightarrow R_1 + CO$	Analogy with acetyl radical	3.30e12	0.62	72.4	a	
Concerted reactions							
•O-O-C-C-H \rightleftharpoons HO ₂ • + C=C	$\begin{array}{c} \bullet \\ \bullet $		Rate rules for alkanes			[14]	
Formation of cyclic ethers from hydoperoxyl-alkyl radicals	$R_1 \xrightarrow{P_1} R_3 \xrightarrow{R_1} R_2 \xrightarrow{P_1} R_3 + \cdot OH$		Rate rules for alkanes			[14]	
•O-O-C-OH ≓ HO ₂ • + C=O	$R_1 \longrightarrow HO_2 + R_2 OH \longrightarrow HO_2 + R_2 O$	Analogy with alpha-hydroxy- ethylperoxy	2.60e8	1.128	44.5	[20]	
Oxygen addition on carbon-centered radicals							
	R_1 R_1 O^{\bullet}	R ₁ , R ₂ , R ₃ alkyl chains or H atoms	Rate rules for alkanes			[14]	
$C \bullet + O_2 \rightleftarrows C - O - O \bullet$	R_3 R_2 $+ O_2 \implies R_3 \longrightarrow O$	R ₁ C=C	5.78e1	1.59	4.5	[21]	
	R ₂	R ₁ OH	4.05e7	-0.31	-1.4	[9]	
Recombination / scission							
С-О-О-Н ≓ СО• + •ОН	$R_1 \longrightarrow OH \implies R_1 \longrightarrow + OH$	Analogy with allylhydroperoxide	3.35e10	0.60	-8.8	[19]	
С• + HO₂• <i>द</i> С-О-О-Н	$R_1 + HO_2 \implies R_2 + HO_2 \implies R_1 + R_2 + R_$	Analogy with allylhydroperoxide	1.59e20	-1.50	179.3	[19]	

CBS-QB3 calculations

Model performance isoprenol oxidation and pyrolysis

Fig. S 1CO mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0} = 0.008$, $\phi = 0.5$ (blue), $\phi = 1.0$ (red) and $\phi = \infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 2 CH₄ mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S $3CO_2$ mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0} = 0.008$, $\phi = 0.5$ (blue), $\phi = 1.0$ (red) and $\phi = \infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S $4C_2H_4$ mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 5C₂H₂ mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S $6C_2H_6$ mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S $7C_3H_6$ mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 8Allene mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 9 Propyne mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 10CH₂O mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0} = 0.008$, $\phi = 0.5$ (blue), $\phi = 1.0$ (red) and $\phi = \infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 11 Oxiran mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0} = 0.008$, $\phi = 0.5$ (blue), $\phi = 1.0$ (red) and $\phi = \infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 12Acetaldehyde mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jetstirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0}=0.008$, $\varphi=0.5$ (blue), $\varphi=1.0$ (red) and $\varphi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 13Methanol mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 14Isobutene mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 151,3-butadiene mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jetstirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 162-butene mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0} = 0.008$, $\phi = 0.5$ (blue), $\phi = 1.0$ (red) and $\phi = \infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 171,2-butadiene mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jetstirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0}=0.008$, $\varphi=0.5$ (blue), $\varphi=1.0$ (red) and $\varphi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 18furan mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 19acrolein mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0} = 0.008$, $\phi = 0.5$ (blue), $\phi = 1.0$ (red) and $\phi = \infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 20Propanal mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 21Acetone mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0} = 0.008$, $\phi = 0.5$ (blue), $\phi = 1.0$ (red) and $\phi = \infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 22CPD mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 23Propenol mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 24Methacrolein mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jetstirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 252-methyl-propanal mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jetstirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0}=0.008$, $\varphi=0.5$ (blue), $\varphi=1.0$ (red) and $\varphi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 263-methyl-furan mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jetstirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 27butanone mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 28benzene mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0} = 0.008$, $\phi = 0.5$ (blue), $\phi = 1.0$ (red) and $\phi = \infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 29cyclohexadiene mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jetstirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 30isoprenol mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 312-methyl-1,5-hexadiene mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 322,5-dimethyl-1,5-hexadiene mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0}=0.008$, $\varphi=0.5$ (blue), $\varphi=1.0$ (red) and $\varphi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Model performance prenol oxidation and pyrolysis

Fig. S 33CO mole fractions as a function of temperature for prenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{prenol,0}=0.008$, $\varphi=0.5$ (blue), $\varphi=1.0$ (red) and $\varphi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 34 CH4 mole fractions as a function of temperature for prenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, F_V =4.06 10⁻⁵ m³ s⁻¹, $x_{prenol,0}$ =0.008, φ =0.5 (blue), φ =1.0 (red) and φ = ∞ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 35 CO₂mole fractions as a function of temperature for prenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, F_V =4.06 10⁻⁵ m³ s⁻¹, $x_{prenol,0}$ =0.008, φ =0.5 (blue), φ =1.0 (red) and φ = ∞ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 36 C₂H₄mole fractions as a function of temperature for prenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{prenol,0} = 0.008$, $\phi = 0.5$ (blue), $\phi = 1.0$ (red) and $\phi = \infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 37 C₂H₂mole fractions as a function of temperature for prenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, F_V =4.06 10⁻⁵ m³ s⁻¹, x_{prenol,0}=0.008, φ =0.5 (blue), φ =1.0 (red) and φ = ∞ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S $38C_2H_6$ mole fractions as a function of temperature for prenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{prenol,0}=0.008$, $\varphi=0.5$ (blue), $\varphi=1.0$ (red) and $\varphi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 39 C_3H_6 mole fractions as a function of temperature for prenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, F_V =4.06 10⁻⁵ m³ s⁻¹, $x_{prenol,0}$ =0.008, φ =0.5 (blue), φ =1.0 (red) and $\varphi = \infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 40 Allene mole fractions as a function of temperature for prenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, F_V =4.06 10⁻⁵ m³ s⁻¹, $x_{prenol,0}$ =0.008, φ =0.5 (blue), φ =1.0 (red) and φ = ∞ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 41 Propyne mole fractions as a function of temperature for prenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{prenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 42 Formaldehyde mole fractions as a function of temperature for prenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{prenol,0}=0.008$, $\varphi=0.5$ (blue), $\varphi=1.0$ (red) and $\varphi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 43 Acelaldehyde mole fractions as a function of temperature for prenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{prenol,0}=0.008$, $\varphi=0.5$ (blue), $\varphi=1.0$ (red) and $\varphi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 44 isobutene mole fractions as a function of temperature for prenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{prenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 45 2-butene mole fractions as a function of temperature for prenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{prenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 46 1,3-butadiene mole fractions as a function of temperature for prenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{prenol,0}=0.008$, $\varphi=0.5$ (blue), $\varphi=1.0$ (red) and $\varphi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 47furan mole fractions as a function of temperature for prenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, F_V =4.06 10⁻⁵ m³ s⁻¹, $x_{prenol,0}$ =0.008, φ =0.5 (blue), φ =1.0 (red) and φ = ∞ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 48 acrolein mole fractions as a function of temperature for prenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{prenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 49 Propanal mole fractions as a function of temperature for prenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{prenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 50 acetone mole fractions as a function of temperature for prenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{prenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 51 2-methyl-1-butene mole fractions as a function of temperature for prenol oxidation and pyrolysis in a jetstirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{prenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 52 2-methyl-1,3-butadiene mole fractions as a function of temperature for prenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{prenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 53 1,3-pentadiene mole fractions as a function of temperature for prenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{prenol,0}=0.008$, $\varphi=0.5$ (blue), $\varphi=1.0$ (red) and $\varphi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 54 1,3-cyclopentadiene mole fractions as a function of temperature for prenol oxidation and pyrolysis in a jetstirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{prenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 55 benzene mole fractions as a function of temperature for prenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{prenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 56 2-methyl-propanal mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jetstirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 57 methacrolein mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jetstirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 58 but-3-en-2-one mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jetstirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Fig. S 59 Prenal mole fractions as a function of temperature for isoprenol oxidation and pyrolysis in a jet-stirred reactor, P=0.107 MPa, $F_V = 4.06 \ 10^{-5} \ m^3 \ s^{-1}$, $x_{isoprenol,0}=0.008$, $\phi=0.5$ (blue), $\phi=1.0$ (red) and $\phi=\infty$ (black): symbols, experimental mole fraction profile; lines, mole fraction profiles calculated with CHEMKIN using the perfectly stirred reactor model and the developed kinetic model

Species and transition state information from CBS-QB3 calculations

The species and transition state are organized based on their appearance in Table 1of the main text. The radical site notated in the main text with a '•' is represented by 'J' in the following list. If a distinction is made between cis and trans transition states, rate coefficients for each isomer are calculated that the overall rate expression is the sum of both (assuming that both are approximately of equal importance, hence of similar energy).

1

/---OH

Isoprenol C=C(C)CCOH

Geo	metry [Ang	stroms]				
6	0.155731	-0.430050	0.091110		/	
6	0.058706	-0.022589	1.544733			
6	1.261951	0.290764	-0.679185			
1	0.347703	-1.506996	0.014733			
1	-0.790221	-0.234459	-0.419919			
6	-0.958812	0.712664	1.994835			
6	1.161796	-0.496446	2.459236			
1	-1.032288	1.006831	3.036596			
1	-1.756665	1.040182	1.336678			
1	2.139822	-0.117056	2.144482			
1	0.993294	-0.176908	3.489172			
1	1.231907	-1.590161	2.446238			
8	1.239108	-0.207855	-2.015239			
1	1.075772	1.373520	-0.654589			
1	2.238774	0.104881	-0.211728			
1	1.916142	0.253676	-2.517988			
Rota	ational Cons	tants [GHz]	=	1.599	1.840	7.131
Free	juencies [cm	n-1]				
44	.1188	97.7605	176.343	35		
19	7.0601	267.7102	341.693	38		
40	3.2608	466.2012	539.074	42		
72	2.3127	809.0395	847.832	23		
92	7.6755	978.8450	998.477	76		
102	20.1737	1050.8394	1076.12	60		
110	1.9467	1222.9518	1242.85	40		
129	1.1323	1318.5790	1341.41	92		
141	2.2537	1445.3906	1453.41	83		
148	30.1814	1491.0833	1500.98	36		
152	9.0244	1712.1541	2973.42	26		
300	1.3821	3013.5015	3022.87	38		
305	7.6560	3079.7671	3102.73	00		
312	5.8608	3205.2688	3839.94	19		

C2C=C

Geometry [Angstroms]

6	-0.008006	-0.152524	-0.004816
6	0.013390	0.015758	1.492959
6	1.377980	-0.006393	2.132903
6	-1.102088	0.173837	2.205392
1	0.450708	-1.104144	-0.297712

1	-1.024466	-0.126591	-0.401462			
1	0.572235	0.637816	-0.495184			
1	-1.075924	0.294135	3.283236			
1	-2.079633	0.188352	1.735185			
1	2.012689	0.790201	1.727486			
1	1.320447	0.119900	3.215458			
1	1.892084	-0.951895	1.924326			
Rota	ational Cons	tants [GHz]	=	4.620	8.368	9.153
Freq	uencies [cm	n-1]				
168	8.4944	208.1867	380.523	37		
439	9.1494	440.9440	704.999	92		
813	3.6941	918.5160	960.567	73		
983	3.8539	1021.5856	1083.26	53		
110	5.7559	1293.1761	1409.86	23		
141	3.5787	1442.2336	1472.38	76		
148	5.6305	1490.3470	1502.79	19		
171	9.0052	3005.9309	3011.68	87		
304	9.0374	3052.1636	3101.88	28		
310	3.6863	3126.4939	3205.43	85		

CH2O

Geo	metry [Angs	stroms]					
6	-0.000086	0.525856	0.000000				
1	0.938496	1.118323	0.000000				
8	-0.000025	-0.674081	0.000000				
1	-0.938728	1.118228	0.000000				
Rotational Constants [GHz] =			34.335	39.046	284.593		
Freq	Frequencies [cm-1]						
1202	2.1785	1270.1422	1539.11	78			
182	7.0549	2869.5789	2918.80	86			

Rxn1

TS C=C(C)CCOH => C2C=C+CH2O

Geometry [Angstroms]					
6	0.085237	0.013737	-0.037664		
6	0.013966	-0.020054	1.380127		
6	1.279875	-0.043237	2.191034		
6	-1.201526	-0.427453	1.947556		
6	-1.183523	-2.270278	1.387063		
8	-0.865659	-2.370561	0.141916		
1	-1.284743	-0.469308	3.029783		
1	-2.112122	-0.122972	1.441072		
1	1.046124	0.253178	-0.487820		
1	-0.762572	0.447267	-0.565194		
1	1.121359	-0.447994	3.192170		
1	2.058761	-0.627317	1.691536		
1	1.667035	0.976189	2.297441		
1	-0.493530	-2.686149	2.139894		
1	-2.238602	-2.428094	1.649495		
1	-0.195466	-1.221248	-0.171983		
Rotational Constants [GHz] =					

2.311 2.679 5.074

×

Frequencies [cm-1]				
-1137.5406	76.1114	136.2534		
176.0563	368.8711	405.0896		
453.6654	497.6875	574.5224		
596.7416	667.0401	824.2939		
892.7602	937.7783	988.9911		
1020.2337	1059.6075	1062.5592		
1077.6581	1085.0446	1214.9930		
1240.3469	1325.2452	1366.0004		
1403.5094	1417.3958	1430.0083		
1479.6650	1487.3527	1528.3698		
1556.2013	1573.3467	1649.5830		
2928.2368	2993.5930	3021.0835		
3071.4861	3090.8455	3107.3157		
3112.2393	3164.7395	3189.3174		

C=C(C)CCJOH

0.0	metry [Angs	stroms			
6	0.020979	0.050604	-0.028553		
6	-0.029061	0.016301	1.303084		
6	1.211289	-0.061390	2.155557		
6	-1.349343	0.050363	2.046316		
6	-1.652885	-1.237431	2.738653		
8	-2.640385	-1.149314	3.690611		
1	-1.329863	0.842596	2.806754		
1	-2.157590	0.317193	1.346429		
1	0.964538	0.022726	-0.563317		
1	-0.880472	0.113270	-0.629076		
1	1.175651	-0.933368	2.816408		
1	2.115888	-0.120157	1.547616		
1	1.289255	0.818875	2.804400		
1	-1.567213	-2.178946	2.198454		
1	2 924100	2 020762	4 002214		
1	-2.834190	-2.030/03	4.023314		
I Rota	-2.834190 ational Const	-2.030763 tants [GHz] :	4.023314	1.646	1.89
I Rota Frec	-2.834190 ational Const quencies [cm	-2.030765 tants [GHz] = -1]	4.023314	1.646	1.89
Rota Frec 72	-2.834190 ational Const quencies [cm 2.9856	-2.030763 tants [GHz] -1] 82.6046	4.023314 = 179.7092	1.646	1.89
Rota Frec 72 190	-2.834190 ational Const juencies [cm 2.9856 6.8562	-2.030763 tants [GHz] -1] 82.6046 345.9027	4.023314 = 179.7092 368.1214	1.646	1.89
1 Rota Frec 72 190 390	-2.834190 ational Const juencies [cm 2.9856 6.8562 6.1781	-2.030763 tants [GHz] -1] 82.6046 345.9027 462.0801	4.023314 = 179.7092 368.1214 538.2463	1.646	1.89
I Rota Frec 72 190 390 599	-2.834190 ational Const juencies [cm 2.9856 6.8562 6.1781 9.5846	-2.030763 tants [GHz] -1] 82.6046 345.9027 462.0801 724.9664	4.023314 = 179.7092 368.1214 538.2463 832.2096	1.646	1.89
1 Rota Frec 72 190 390 599 922	-2.834190 ational Const juencies [cm 2.9856 6.8562 6.1781 9.5846 5.2889	-2.030763 tants [GHz] -1] 82.6046 345.9027 462.0801 724.9664 936.1967	4.023314 = 179.7092 368.1214 538.2463 832.2096 979.2075	1.646	1.89
1 Rota Frec 72 190 390 599 922 102	-2.834190 ational Const juencies [cm 2.9856 6.8562 6.1781 9.5846 5.2889 29.0670	-2.030763 tants [GHz] -1] 82.6046 345.9027 462.0801 724.9664 936.1967 1042.2557	4.023314 = 179.7092 368.1214 538.2463 832.2096 979.2075 1068.0793	1.646	1.89
1 Rota Frec 72 190 390 599 922 102 117	-2.834190 ational Const juencies [cm 2.9856 6.8562 6.1781 9.5846 5.2889 29.0670 44.3070	-2.030763 tants [GHz] -1] 82.6046 345.9027 462.0801 724.9664 936.1967 1042.2557 1189.7303	4.023314 = 179.7092 368.1214 538.2463 832.2096 979.2075 1068.0793 1244.4667	1.646 3	1.89
1 Rota Frec 72 190 390 599 92: 102 117 129	-2.834190 ational Const juencies [cm 2.9856 6.8562 6.1781 9.5846 5.2889 29.0670 24.3070 22.2725	-2.030763 tants [GHz] -1] 82.6046 345.9027 462.0801 724.9664 936.1967 1042.2557 1189.7303 1338.7604	4.023314 = 179.7092 368.1214 538.2463 832.2096 979.2075 1068.0793 1244.4667 1408.3707	1.646 3 7	1.89
1 Rota Frec 72 190 390 599 92: 102 117 129 144	-2.834190 ational Const juencies [cm 2.9856 6.8562 6.1781 9.5846 5.2889 29.0670 24.3070 92.2725 60.5272	-2.030763 tants [GHz] -1] 82.6046 345.9027 462.0801 724.9664 936.1967 1042.2557 1189.7303 1338.7604 1444.6333	4.023314 = 179.7092 368.1214 538.2463 832.2096 979.2075 1068.0793 1244.4667 1408.3707 1470.3212	1.646 3 7 2	1.89
1 Rota Frec 72 190 390 599 922 102 117 129 144 147	-2.834190 ational Const juencies [cm 2.9856 6.8562 6.1781 9.5846 5.2889 29.0670 24.3070 22.2725 0.5272 29.8727	-2.030763 tants [GHz] -1] 82.6046 345.9027 462.0801 724.9664 936.1967 1042.2557 1189.7303 1338.7604 1444.6333 1497.3625	4.023314 = 179.7092 368.1214 538.2463 832.2096 979.2075 1068.0793 1244.4667 1408.3707 1470.3212 1714.3000	1.646 3 7 7 2	1.89
1 Rota Free 72 190 390 599 92: 102 117 129 144 147 294	-2.834190 ational Const juencies [cm 2.9856 6.8562 6.1781 9.5846 5.2889 9.0670 4.3070 92.2725 40.5272 9.8727 43.9617	-2.030763 tants [GHz] -1] 82.6046 345.9027 462.0801 724.9664 936.1967 1042.2557 1189.7303 1338.7604 1444.6333 1497.3625 3009.5586	4.023314 = 179.7092 368.1214 538.2463 832.2096 979.2075 1068.0793 1244.4667 1408.3707 1470.3212 1714.3000 3014.3174	1.646 3 7 7 2)	1.89
1 Rota Free 72 190 390 599 922 102 117 129 144 147 294 306	-2.834190 ational Const juencies [cm 2.9856 6.8562 6.1781 9.5846 5.2889 29.0670 4.3070 22.2725 40.5272 29.8727 3.9617 60.1548	-2.030763 tants [GHz] -1] 82.6046 345.9027 462.0801 724.9664 936.1967 1042.2557 1189.7303 1338.7604 1444.6333 1497.3625 3009.5586 3103.8784	4.023314 = 179.7092 368.1214 538.2463 832.2096 979.2075 1068.0793 1244.4667 1408.3707 1470.3212 1714.3000 3014.3174 3108.6260	1.646 3 7 2) 4)	1.89

7.306

Rxn9 TS H+C=C(C)CCOH => H2+C=C(C)CCJOH

Geometry [Angstroms]

6	-0.016517	0.035602	0.008676	
6	-0.002052	0.005575	1.342640	
6	1.308700	0.007052	2.106636	
6	1.660201	1.347392	2.730231	
8	0.841999	1.629522	3.830256	
6	-1.265848	-0.028863	2.162207	
1	1.282941	-0.739015	2.909348	
1	2.126487	-0.267415	1.434175	
1	-0.947089	0.044897	-0.548852	
1	0.900323	0.046163	-0.571771	
1	-1.294776	0.805946	2.866908	
1	-2.154542	0.004224	1.529023	
1	-1.306183	-0.943707	2.764894	
1	2.830926	1.250424	3.104512	
1	1.682025	2.160490	1.993357	
1	0.998533	2.536631	4.111127	
1	3.874426	1.141460	3.416032	
Rota	ational Cons	tants [GHz]	= 1	1.819
Freq	uencies [cm	n-1]		
-82	3.7136	51.9530	123.9881	
190	5.0791	196.5110	281.9335	
340	0.6296	347.1141	378.1954	
423	3.7589	447.3453	570.3415	
724	4.8404	803.2413	885.8864	
92	1.3110	943.0761	999.1075	
103	6.2770	1063.1970	1093.1907	
112	1.9939	1190.7153	1241.1187	
128	5.4913	1301.6486	1346.7985	
135	4.0668	1400.8756	1412.7375	
144	3.7656	1446.5317	1468.8071	
148	1.0535	1501.0791	1705.8245	
301	0.2029	3017.2278	3026.6782	
307	3.7847	3075.5068	3108.9211	
312	4.8962	3203.9858	3830.7339	

t-C=C(C)CJCOH or t-C2JC=CCOH

Geometry [Angstroms]				
6	-0.000317	0.001936	0.002997	
6	-0.002188	-0.000911	1.386675	
6	1.324700	0.006545	2.124497	
6	-1.208536	-0.018394	2.092039	
6	-1.381564	-0.034714	3.574928	
8	-2.391818	0.884499	4.008155	
1	-2.135852	-0.032805	1.524592	
1	0.922874	0.014962	-0.562927	
1	-0.928614	-0.010222	-0.556316	
1	1.453493	-0.896447	2.727796	
1	2.157999	0.059596	1.422499	
1	1.403630	0.862543	2.800937	

2.292

5.350

1	-1.740922	-1.014825	3.911217			
1	-0.433093	0.153837	4.093140			
1	-2.156733	1.749171	3.655350			
Rota	ational Cons	tants [GHz] =	=	1.618	1.921	7.231
Free	uencies [cm	n-1]				
57	.5540	139.9527	142.514	6		
230	5.6491	358.2362	376.561	0		
46	5.3723	492.4262	516.602	29		
56	5.3114	746.7213	798.160)7		
83′	7.4494	923.4803	996.297	76		
102	0.7852	1034.0576	1056.37	59		
113	9.9290	1195.6840	1270.70	84		
134	9.2839	1378.9615	1407.33	09		
141	9.7638	1463.7841	1487.76	14		
150	0.0011	1503.5507	1518.16	05		
299	8.6238	3025.7053	3031.43	43		
308	0.6018	3109.2231	3135.97	58		
314	2.7141	3230.6775	3813.62	99		

c-C=C(C)CJCOH or c-C2JC=CCOH

Geo	metry [Ang	stroms]	
6	0.003418	-0.010095	0.001055
6	0.004533	-0.000366	1 384973
6	1 166746	0.002087	2 161077
6	2.580232	-0.021227	1 676736
8	3 411032	0.881580	2 414883
6	-1.328138	-0.020751	2.114572
1	1.066485	0.007016	3.243665
1	-0.927519	-0.006019	-0.552334
1	0.916078	-0.020817	-0.580040
1	-1.295432	0.594715	3.016660
1	-2.135342	0.348989	1.479425
1	-1.586285	-1.039262	2.421305
1	3.025876	-1.008608	1.843793
1	2.644472	0.182135	0.601158
1	3.015302	1.756103	2.338808
Rota	ational Cons	tants [GHz]	= 1.58
Frec	uencies [cm	n-1]	
45	.9276	57.5740	136.4569
24	1.3355	354.6352	379.4326
45	8.2051	489.8037	514.1468
55	5.1449	730.4854	790.7422
850	6.2278	928.3252	1001.8546
102	26.1534	1053.5623	1058.8320
112	21.0474	1194.5865	1257.4919
134	1.7927	1355.2186	1406.2581
141	2.1947	1478.0868	1492.9022
149	4.0288	1496.6945	1533.7914
300	4.6233	3028.2878	3034.8657
308	3.8259	3106.0012	3140.3774
314	9.3054	3236.4514	3815.9084

80 1.852 7.595

Rxn10 (cis) TS H+c-C=C(C)CCOH => H2+c-C=C(C)CJCOH

Geometry [Angstroms]

6	-0.000816	0.119627	0.015775	
6	0.005133	0.012170	1.350666	
6	1.245706	0.048174	2.170462	
6	2.548284	0.449163	1.515917	
8	3.546645	0.455654	2.532022	
6	-1.267988	-0.200203	2.131309	
1	1.108258	0.601962	3.103952	
1	1.420358	-1.088020	2.593352	
1	-0.927775	0.072738	-0.544841	
1	0.903963	0.263195	-0.562604	
1	-1.426469	0.609933	2.851352	
1	-2.138652	-0.252352	1.475659	
1	-1.215964	-1.130523	2.708315	
1	2.803630	-0.256513	0.713672	
1	2.437229	1.446708	1.064048	
1	4.391617	0.655909	2.120166	
1	1.593948	-2.108276	2.956336	
Rota	ational Cons	tants [GHz]	= 1.503	
Free	juencies [cm	n-1]		
-83	2.5806	78.9009	119.2387	
179	9.3549	189.1961	247.2498	
29	7.6072	341.8155	364.5472	
434	4.1057	503.4662	509.6005	
69	3.4592	846.3409	876.2566	
91	8.0674	978.2810	1008.2308	
103	3.7837	1059.5908	1079.2913	
109	7.0568	1170.4377	1241.3351	
128	31.0201	1328.2679	1352.4003	
139	8.9282	1412.4813	1424.0000	
144	7.1707	1475.6506	1483.4563	
149	7.3044	1511.3463	1685.5758	
299	5.7205	3014.0569	3053.5400	
306	60.0647	3067.1494	3106.8135	

Rxn10 (trans) TS H+t-C=C(C)CCOH => H2+t-C=C(C)CJCOH

3820.3494

3219.4890

Geometry [Angstroms]					
6	0.001781	0.004859	0.003035		
6	0.000108	0.002722	1.342011		
6	1.283227	-0.007438	2.135115		
6	-1.247411	0.037930	2.155787		
6	-2.594115	-0.136572	1.470942		
8	-3.665967	-0.136122	2.406158		
1	-1.185303	-0.617609	3.030255		
1	-1.292538	1.128856	2.677836		
1	0.932001	-0.015488	-0.553905		
1	-0.909368	0.018227	-0.582464		
1	1.336578	-0.889283	2.782681		

3139.4604

1.781

7.057

1	2.158819	-0.006317	1.483944			
1	1.341303	0.869807	2.789490			
1	-2.739535	0.634647	0.703215			
1	-2.634227	-1.108796	0.971855			
1	-3.698361	0.734611	2.815517			
1	-1.449825	2.148263	3.161147			
Rota	ational Cons	tants [GHz] :	=	1.492	1.760	7.045
Free	uencies [cm	n-1]				
-83	2.5806	78.9009	119.238	37		
179	9.3549	189.1961	247.249	98		
29′	7.6072	341.8155	364.547	72		
434	4.1057	503.4662	509.600)5		
69.	3.4592	846.3409	876.256	56		
918	8.0674	978.2810	1008.23	08		
103	3.7837	1059.5908	1079.29	13		
109	7.0568	1170.4377	1241.33	51		
128	1.0201	1328.2679	1352.40	03		
139	8.9282	1412.4813	1424.00	00		
144	7.1707	1475.6506	1483.45	63		
149	7.3044	1511.3463	1685.57	58		
299	5.7205	3014.0569	3053.54	00		
306	0.0647	3067.1494	3106.81	35		
313	9.4604	3219.4890	3820.34	94		

C=C(CJ)CCOH

Geo	metry [Angs	stroms]		
6	-0.065373	-0.174412	0.017339	
6	0.068459	-0.045629	1.392773	
6	1.314746	-0.012172	2.002663	
6	-1.180509	0.023521	2.255381	
6	-1.653778	-1.359344	2.697065	
8	-2.821531	-1.178787	3.494136	
1	-0.993525	0.622741	3.150434	
1	-1.995642	0.505234	1.708881	
1	0.804014	-0.256446	-0.624620	
1	-1.039213	-0.186030	-0.457023	
1	1.416146	0.102625	3.075071	
1	2.225472	-0.089361	1.420178	
1	-1.866742	-1.974998	1.811606	
1	-0.855488	-1.856470	3.266292	
1	-3.127237	-2.045130	3.777253	
Rota	ational Cons	tants [GHz]	=	1.658
Free	juencies [cm	ı-1]		
46	5.5519	104.3099	190.4382	
265.6180		349.0249	410.3537	
471.0588		542.2573	555.3006	
590.8330		772.2262	804.0503	
81	6.1638	893.1970	978.121	3
1015.1238		1045.7444	1056.3256	
1061.8882		1211.4232	1242.7898	
1308.3221		1322.3635	1356.0909	
1384.6128		1452.9115	1487.7354	
1501.1820		1528.0485	1529.189	95

H₂C OH

1.877 7.645

2969.8284	2999.7661	3045.1868
3087.5117	3132.8982	3140.3921
3228.2668	3230.4014	3839.9685

Rxn11 TS H+C=C(C)CCOH => H2+C=C(CJ)CCOH

		_				
Geo	metry [Ang	stroms]				
6	0.042408	-0.046598	0.016541			
6	-0.014398	0.004736	1.355197			
6	1.220295	0.027369	2.173295			
6	-1.338348	0.020429	2.087520			
6	-1.608258	-1.244111	2.901074			
8	-2.881953	-1.077039	3.520310			
1	-1.372920	0.872425	2.776774			
1	-2.159317	0.147598	1.377884			
1	0.989615	-0.056617	-0.512071			
1	-0.857382	-0.069260	-0.588063			
1	1.467298	-1.103014	2.615694			
1	2.124348	0.268811	1.614926			
1	1.147786	0.619531	3.087465			
1	-1.600767	-2.116902	2.233203			
1	-0.823393	-1.391171	3.654922			
1	-3.067421	-1.865311	4.038379			
1	1.767145	-2.048285	3.021523			
Rota	ational Cons	tants [GHz]	=	1.566	1.819	6.358
Free	uencies [cm	n-1]				
-116	52.4744	69.0698	99.330	8		
15	6.9161	187.9647	271.342	28		
30	8.4507	343.2193	408.219) 3		
46	6.6709	558.4828	590.339) 7		
70	6.1461	813.7107	860.182	20		
92	2.1877	984.2633	1012.22	06		
102	2.0245	1042.3258	1067.14	17		
109	9.7559	1224.1909	1243.71	15		
128	30.9579	1303.9214	1319.67	16		
133	6.7922	1338.4858	1393.78	19		
144	4.6893	1459.5770	1471.79	88		
149	7.8110	1529.0931	1671.40	08		
297	6.5298	3007.3767	3024.10	89		
306	5.7146	3082.7737	3130.21	29		
313	9.5950	3213.3022	3840.28	81		

Prenol CC(C)=CCOH

Geometry [Angstroms]					
6	-0.002685	0.002717	0.001000		
6	-0.003898	0.000060	1.509463		
6	1.370721	-0.004807	2.131921		
6	-1.101806	0.015443	2.276263		
6	-2.540043	0.007644	1.849719		
8	-3.277517	-1.035412	2.498216		
1	-0.973408	0.016548	3.357396		

—он

S 72
1	0.593555	-0.833053	-0.382425		
1	-0.999497	-0.062706	-0.433680		
1	0.466305	0.918014	-0.378489		
1	1.945901	0.874282	1.818183		
1	1.322714	-0.009069	3.222197		
1	1.942568	-0.882773	1.809022		
1	-3.032546	0.932893	2.164037		
1	-2.645053	-0.061902	0.760823		
1	-2.816026	-1.860433	2.315725		
Rota	tional Const	tants [GHz]	=	1.580	1.851
Freq	uencies [cm	-1]			
69.	.1736	139.5620	152.477	6	
205	.9689	269.7759	360.6302	2	
369	.2916	433.0363	501.1512	2	
512	.9534	786.9810	868.410	7	
956	5.3680	963.6875	1015.452	24	
1028	8.4303	1054.1108	1101.949	3	
113	1.0146	1189.6023	1240.219	0	
133′	7.0114	1381.6655	1410.542	28	
1419	9.0396	1423.3737	1473.418	s9	
1484	4.7673	1492.9370	1495.610	8	
1509	9.1342	1729.7607	3006.141	4	
3009	9.7981	3015.7830	3047.847	'9	
3052	2.5449	3053.7900	3102.951	9	
3120	0.8381	3122.3040	3817.596	i9	

Rxn12 TS H+CC(C)=CCOH => H2+CC(C)=CCJOH

Geo	metry [Angs	troms]				
6	-0.008956	0.025142	-0.002177			
6	-0.002580	-0.002096	1.505160			
6	1.100457	-0.022114	2.263067			
6	2.521551	-0.039879	1.814733			
8	3.284929	0.766293	2.701185			
6	-1.371053	-0.017659	2.138545			
1	0.992746	-0.052842	3.344708			
1	-0.634340	0.847494	-0.367273			
1	0.984391	0.135984	-0.436527			
1	-0.444981	-0.898609	-0.400439			
1	-1.946365	-0.890929	1.808666			
1	-1.313718	-0.039003	3.228054			
1	-1.947529	0.866378	1.841791			
1	2.905931	-1.107092	1.850860			
1	2.639527	0.283789	0.773442			
1	4.213215	0.666733	2.469184			
1	3.601245	-2.436911	1.853660			
Rota	ational Const	tants [GHz]	=	1.512	1.753	6.353
Freq	uencies [cm	-1]				
-212	2.5800	60.2673	129.100)4		
142	2.0272	162.3706	190.561	3		
212	2.3524	277.4211	312.513	38		
359	9.0831	435.6603	488.320)5		
515	5.3175	799.7411	855.618	38		

6.823

S 73

960.6371	988.3128	1013.9152
1048.2000	1063.4613	1102.0195
1122.4301	1209.0138	1237.1227
1275.0880	1356.0585	1410.7764
1420.2162	1445.2738	1462.9572
1473.8990	1486.7144	1492.8582
1497.1589	1727.7181	2374.5461
3005.8955	3008.7439	3014.9656
3047.5195	3053.0830	3104.4746
3117.2847	3137.7871	3830.9521

Rxn13 (cis) TS H+C2C=CCOH => H2+c-C2JC=CCOH aka H+CC(C)=CCOH => H2+c-C=C(C)CJCOH

Geo	metry [Angs	stroms]			
6	0.035494	0.093807	0.038238		
6	0.031490	0.081819	1.517867		
6	1.398256	0.103215	2.158495		
6	-1.080746	0.015574	2.274175		
6	-2.509149	-0.056683	1.823074		
8	-3.191820	-1.163572	2.421834		
1	-0.965735	-0.005938	3.356018		
1	0.394136	-1.021133	-0.363285		
1	-0.924563	0.249848	-0.447803		
1	0.800139	0.740890	-0.395261		
1	1.944782	1.013684	1.888960		
1	1.336270	0.050493	3.246537		
1	2.001302	-0.742252	1.807193		
1	-3.057329	0.826773	2.164521		
1	-2.594933	-0.092086	0.731209		
1	-2.694932	-1.957446	2.197946		
1	0 703645	-1 972977	-0 759278		
1	0.705015	1.77 = 2777	0.10/210		
Rota	ational Cons	tants [GHz]	=	1.558	1.803
Rota Freq	ational Const uencies [cm	tants [GHz]	=	1.558	1.803
Rota Freq -114	ational Cons Juencies [cm 1.3152	tants [GHz] -1] 62.6317	= 114.2660	1.558 6	1.803
Rota Freq -114 150	ational Const uencies [cm 1.3152 0.6073	tants [GHz] -1] 62.6317 193.0325	= 114.2660 263.0024	1.558 6 4	1.803
Rota Freq -114 150 277	ational Const uencies [cm 1.3152 0.6073 7.5575	tants [GHz] -1] 62.6317 193.0325 370.5097	= 114.2660 263.0024 373.217	1.558 6 4 1	1.803
Rota Freq -114 150 277 455	ational Cons juencies [cm 1.3152 0.6073 7.5575 5.7042	tants [GHz] -1] 62.6317 193.0325 370.5097 497.3857	= 114.2660 263.0024 373.217 544.0728	1.558 6 4 1 8	1.803
Rota Freq -114 150 277 455 563	ational Cons juencies [cm 1.3152 0.6073 7.5575 5.7042 3.0683	tants [GHz] -1] 62.6317 193.0325 370.5097 497.3857 796.9488	= 114.2660 263.0024 373.217 544.0728 870.8780	1.558 5 4 1 8 5	1.803
Rota Freq -114 150 277 455 563 960	ational Const puencies [cm 1.3152 0.6073 7.5575 5.7042 3.0683 0.1698	tants [GHz] -1] 62.6317 193.0325 370.5097 497.3857 796.9488 979.3404	= 114.2660 263.0024 373.217 544.0728 870.8780 1021.686	1.558 5 4 1 8 5 6 6	1.803
Rota Freq -114 150 277 455 563 960 103	ational Const puencies [cm 1.3152 0.6073 7.5575 5.7042 3.0683 0.1698 1.0479	tants [GHz] -1] 62.6317 193.0325 370.5097 497.3857 796.9488 979.3404 1056.9825	= 114.2660 263.0024 373.217 544.0728 870.8786 1021.686 1094.215	1.558 6 4 1 8 6 6 6 6	1.803
Rota Freq -114 150 277 455 563 960 103 113	ational Const Juencies [cm 1.3152 0.6073 7.5575 5.7042 3.0683 0.1698 1.0479 0.5520	tants [GHz] -1] 62.6317 193.0325 370.5097 497.3857 796.9488 979.3404 1056.9825 1190.6766	= 114.2660 263.0024 373.217 544.0728 870.8780 1021.6860 1094.215 1245.467	1.558 6 4 1 8 6 6 6 6 7	1.803
Rota Frec -114 150 277 455 565 960 103 113 128	ational Cons juencies [cm 1.3152 0.6073 7.5575 5.7042 3.0683 0.1698 1.0479 0.5520 8.5734	tants [GHz] -1] 62.6317 193.0325 370.5097 497.3857 796.9488 979.3404 1056.9825 1190.6766 1327.3810	= 114.2660 263.0024 373.217 544.0728 870.8780 1021.6860 1094.215 1245.467 1340.214	1.558 6 4 1 8 6 6 6 6 6 7 7 2	1.803
Rota Freq -114 150 277 455 563 960 103 113 128 136	ational Cons juencies [cm 1.3152 0.6073 7.5575 5.7042 3.0683 0.1698 1.0479 0.5520 8.5734 9.0354	tants [GHz] -1] 62.6317 193.0325 370.5097 497.3857 796.9488 979.3404 1056.9825 1190.6766 1327.3810 1395.1384	= 114.2660 263.0024 373.217 544.0728 870.8780 1021.6860 1094.215 1245.467 1340.214 1414.820	1.558 6 4 1 8 5 6 6 6 6 7 2 99	1.803
Rota Freq -114 150 277 453 563 960 103 113 128 136 142	ational Const puencies [cm 1.3152 0.6073 7.5575 5.7042 3.0683 0.1698 1.0479 0.5520 8.5734 9.0354 1.4115	tants [GHz] -1] 62.6317 193.0325 370.5097 497.3857 796.9488 979.3404 1056.9825 1190.6766 1327.3810 1395.1384 1472.6342	= 114.2660 263.0024 373.217 544.0728 870.8780 1021.6860 1094.215 1245.467 1340.214 1414.8200 1484.525	1.558 5 4 1 8 5 5 6 6 6 7 2 9 9 4	1.803
Rota Freq -114 150 277 453 563 960 103 113 128 136 142 149	ational Const Juencies [cm 1.3152 0.6073 7.5575 5.7042 3.0683 0.1698 1.0479 0.5520 8.5734 9.0354 1.4115 9.7841	tants [GHz] -1] 62.6317 193.0325 370.5097 497.3857 796.9488 979.3404 1056.9825 1190.6766 1327.3810 1395.1384 1472.6342 1506.0529	= 114.2660 263.0024 373.217 544.0728 870.8780 1021.686 1094.215 1245.467 1340.214 1414.820 1484.525 1687.468	1.558 6 4 1 8 6 6 6 6 7 2 9 9 4 4 1	1.803
Rota Freq -114 150 277 455 563 960 103 113 128 136 142 149 301	ational Cons juencies [cm 1.3152 0.6073 7.5575 5.7042 3.0683 0.1698 1.0479 0.5520 8.5734 9.0354 1.4115 5.7841 1.3721	tants [GHz] -1] 62.6317 193.0325 370.5097 497.3857 796.9488 979.3404 1056.9825 1190.6766 1327.3810 1395.1384 1472.6342 1506.0529 3014.2437	= 114.2660 263.0024 373.217 544.0728 870.8780 1021.686 1094.215 1245.467 1340.214 1414.820 1484.525 1687.468 3054.742	1.558 6 4 1 8 6 6 6 6 7 7 2 9 9 4 4 1 2	1.803
Rota Freq -114 150 277 455 563 960 103 113 128 136 142 149 301 305	ational Cons Juencies [cm 1.3152 0.6073 7.5575 5.7042 3.0683 0.1698 1.0479 0.5520 8.5734 9.0354 1.4115 5.7841 1.3721 5.7896	tants [GHz] -1] 62.6317 193.0325 370.5097 497.3857 796.9488 979.3404 1056.9825 1190.6766 1327.3810 1395.1384 1472.6342 1506.0529 3014.2437 3075.6726	= 114.2660 263.0024 373.217 544.0728 870.8780 1021.686 1094.215 1245.467 1340.214 1414.820 1484.525 1687.468 3054.742 3106.982	1.558 6 4 1 8 6 6 6 6 6 6 6 7 2 2 9 9 4 4 1 1 2 2 7	1.803

Rxn13 (trans) TS H+C2C=CCOH => H2+t-C2JC=CCOH aka H+CC(C)=CCOH => H2+t-C=C(C)CJCOH

Geon	netry [Angs	stroms]				ſ
6	0.005163	-0.004805	0.000886			
6	0.003524	-0.005376	1.479995			
6	1.116923	-0.002410	2.237936			
6	2.546313	0.047980	1.789401			
8	3.282357	1.058691	2.486010			
6	-1.362440	-0.075658	2.119092			
1	1.003486	-0.020677	3.320060			
1	-0.206254	-1.154997	-0.399264			
1	-0.829651	0.542332	-0.440907			
1	0.945257	0.259875	-0.478940			
1	-1.891341	-0.981757	1.801290			
1	-1.299708	-0.083167	3.208383			
1	-1.982618	0.774591	1.814459			
1	3.051774	-0.889562	2.041099			
1	2.632296	0.179117	0.704270			
1	2.824008	1.893021	2.341858			
1	-0.390896	-2.135732	-0.807405			
Rotat	tional Cons	tants [GHz]	=	1.521	1.788	6.257
Frequ	uencies [cm	n-1]				
-1145	5.0885	66.2875	108.936	58		
154	.7348	193.3356	264.833	37		
276	.0446	364.5743	372.991	10		
470	.3051	496.5683	532.519	98		
564	.2199	800.1082	869.158	36		
959	.8280	980.9665	1019.94	58		
1031	1.3856	1055.4670	1091.10	89		
1130).3292	1191.1219	1241.66	37		
1288	8.6967	1329.2642	1341.36	58		
1370						
).6785	1396.7314	1414.52	65		
1420).6785).2582	1396.7314 1471.3662	1414.52 1484.42	65 94		
1420 1495).6785).2582 5.2407	1396.7314 1471.3662 1504.1740	1414.52 1484.42 1685.67	65 94 86		
1420 1495 3009).6785).2582 5.2407 9.6326	1396.7314 1471.3662 1504.1740 3011.5518	1414.52 1484.42 1685.67 3052.73	65 94 86 17		
1420 1495 3009 3055	0.6785 0.2582 5.2407 9.6326 5.7778	1396.7314 1471.3662 1504.1740 3011.5518 3070.8398	1414.52 1484.42 1685.67 3052.73 3106.59	65 94 86 17 13		

Rxn14

TS CH3+C=C(C)CCOH => CH4+C=C(C)CCJOH

Geometry [Angstroms]			
6	0.035054	-0.030605	-0.028140
6	0.017065	-0.007653	1.306077
6	1.279912	0.015309	2.127662
6	-1.294471	-0.008253	2.069359
6	-1.644532	-1.338850	2.711514
8	-0.826443	-1.596919	3.824771
1	-1.270861	0.750234	2.861234
1	-2.110360	0.256874	1.390320
1	0.966891	-0.043070	-0.583677
1	-0.880550	-0.033778	-0.610765

1	1.301224	-0.822065	2.829470	
1	2.169640	-0.020875	1.495878	
1	1.325061	0.927392	2.734372	
1	-2.857916	-1.244361	3.103500	
1	-1.650344	-2.166018	1.989805	
1	-0.994659	-2.494294	4.128294	
6	-4.238117	-1.119471	3.561652	
1	-4.457863	-2.081041	4.019395	
1	-4.202909	-0.291324	4.264608	
1	-4.812109	-0.916791	2.661090	
Rota	tional Cons	tants [GHz] =	= 1.034	
Freq	uencies [cm	n-1]		
-144	7.1787	26.5918	40.4756	
75	.9311	92.8286	172.0178	
200).6977	231.7686	320.6583	
335	5.3832	418.2033	429.1901	
470	0.0835	522.2327	542.9154	
624	4.5928	728.3443	814.4816	
885	5.9209	916.5557	948.6713	
996	5.3028	1039.0723	1064.9526	
110	1.8362	1110.3318	1117.3096	
119	1.8947	1284.0490	1311.5653	
132	1.8289	1375.7365	1412.2146	
141	6.7021	1427.3918	1444.8717	
145	3.7968	1465.1982	1469.7417	
148	0.6077	1501.0293	1704.8669	
300	3.1492	3015.3586	3020.0520	
305	6.4956	3068.4575	3073.8015	
310	8.1587	3123.4712	3188.8071	
319	4.1772	3202.0913	3833.3757	

Rxn15 (cis) TS CH3+C=C(C)CCOH => CH4+c-C=C(C)CJCOH

Geometry [Angstroms]			
6	0.012671	0.108866	0.015879
6	0.002914	0.002356	1.353387
6	1.288594	-0.109135	2.137535
6	-1.237390	0.018335	2.166080
6	-2.576301	-0.213279	1.486997
8	-3.653147	-0.209564	2.420085
1	-1.156623	-0.604689	3.061707
1	-1.329336	1.169654	2.676268
1	0.945020	0.109615	-0.537816
1	-0.894805	0.190926	-0.569791
1	1.325701	-1.052472	2.693184
1	2.163386	-0.060418	1.486798
1	1.366775	0.695644	2.877039
1	-2.743905	0.529327	0.695312
1	-2.595240	-1.200396	1.015734
1	-3.694438	0.667436	2.813597
6	-1.551778	2.526985	3.261773
1	-0.541783	2.923852	3.299461
1	-2.199508	3.017961	2.540332

`
 de la contra de la

1.252 3.903

1	-1.999991	2.337948	4.233183		
Rota	ational Cons	tants [GHz] =	=	1.186	1.518
Freq	uencies [cm	n-1]			
-138	7.4681	52.4990	53.1672		
84	.2558	117.9812	157.1059)	
174	4.6032	191.7132	313.8273	;	
35	7.4158	412.6235	438.9449)	
460	5.4753	520.4772	531.3643	;	
588	8.7755	708.8685	879.0230)	
883	3.6291	901.8085	976.9924	Ļ	
101	0.5614	1034.2632	1059.774	7	
108	3.0890	1091.1787	1116.442	7	
119	6.2343	1250.0995	1329.930	8	
136	1.5741	1400.4993	1406.239	5	
141	1.7177	1425.1750	1436.316	7	
143	8.7737	1447.4794	1482.826	0	
149	6.5573	1510.3207	1668.936	3	
298	8.8679	3014.2119	3054.290	8	
305	9.2090	3061.6575	3064.016	4	
310	4.4607	3138.4883	3200.292	5	
320	5.4563	3218.1614	3829.895	0	

Rxn15 (trans) TS CH3+C=C(C)CCOH => CH4+t-C=C(C)CJCOH

Geometry [Angstroms]

6	-0.007631	0.006680	0.000430		
6	0.006045	-0.004287	2.751007		
6	1.485863	0.002762	3.103500		
8	1.734971	0.095171	4.507747		
6	-0.832424	1.118689	3.243801		
6	-0.219549	2.497033	3.244725		
6	-2.098076	0.913347	3.636864		
1	-0.458190	-0.973850	2.957374		
1	-0.004075	0.029231	1.486544		
1	-2.731412	1.730334	3.964571		
1	-2.535821	-0.079486	3.643913		
1	0.155909	2.764594	2.250473		
1	-0.945945	3.252570	3.548166		
1	0.628935	2.535317	3.933919		
1	1.963045	-0.891469	2.680001		
1	1.984768	0.871569	2.668793		
1	1.219415	-0.591218	4.943596		
1	0.716034	0.766909	-0.278947		
1	0.280772	-1.010933	-0.246149		
1	-1.041987	0.256280	-0.216210		
Rota	tional Const	ants [GHz]	=	1.303	1.929
Freq	uencies [cm	-1]			
-140	4.2079	28.7730	65.7001		
84	.4571	100.2164	131.418	7	
212	2.8106	251.5082	303.540	3	
359	9.6564	406.4609	441.293	6	
460).8418	530.5118	548.459	5	
629	9.1119	722.8731	779.737	5	

2.092

900.2161	937.3021	950.4903
1001.6168	1031.1779	1064.0181
1071.2107	1083.4899	1109.3397
1199.5969	1302.1849	1311.7627
1359.8198	1387.4705	1404.5262
1408.4235	1425.2156	1430.0240
1431.3904	1451.4874	1485.4106
1499.3420	1517.6295	1668.9624
2990.3113	3017.4880	3047.3274
3064.4031	3072.0657	3081.5359
3108.1365	3126.6013	3205.7205
3207.9790	3208.9619	3819.8491

Rxn16

TS CH3+C=C(C)CCOH => CH4+C=C(CJ)CCOH

Geometry	[Angstroms]
----------	-------------

6	0.027739	0.072579	0.004949			
6	0.017371	0.012086	1.346385			
6	1.310397	-0.027968	2.133282			
6	1.575352	1.233694	2.951961			
8	2.811956	1.039460	3.636143			
6	-1.248066	0.010864	2.110190			
1	1.297240	-0.876309	2.827656			
1	2.157479	-0.177351	1.459392			
1	-0.892500	0.095319	-0.569268			
1	0.956113	0.089252	-0.554974			
1	-1.550512	1.185473	2.486988			
1	-2.121160	-0.275984	1.524033			
1	-1.207897	-0.538031	3.052815			
1	1.624996	2.101908	2.279746			
1	0.758077	1.405029	3.665200			
1	2.997850	1.831849	4.147661			
6	-2.021422	2.513269	2.905786			
1	-1.429922	3.177473	2.282260			
1	-3.081898	2.494765	2.671929			
1	-1.792099	2.555538	3.966760			
Rota	tional Cons	tants [GHz]	=	1.073	1.533	2.456
Freq	uencies [cm	n-1]				
-150	3.4293	37.5180	56.519	6		
67	.4033	100.7492	106.632	29		
197	7.6121	269.6524	339.151	9		
361	1.7858	400.6934	445.388	30		
490).9932	509.7430	630.239	95		
695	5.6303	713.4717	815.351	16		
868	3.8272	906.1958	984.983	35		
102	2.9601	1023.8509	1056.14	82		
107	7.8604	1097.0618	1115.47	07		
122	4.4868	1242.3851	1301.53	45		
131	9.9495	1340.0717	1393.70	87		
140	4.8423	1431.3748	1435.54	91		
144	3.1523	1455.9092	1473.01	75		
149	8.0376	1528.4709	1659.80	90		
297	4.9902	3006.9685	3024.02	54		

3062.5547	3063.0332	3081.3584
3128.1431	3133.8079	3203.6675
3205.4841	3210.7996	3840.1335

Rxn17 (cis) TS CH3+CC(C)=CCOH => CH4+c-C=C(C)CJCOH

Geo	metry [Angs	stroms]	
6	0.000805	0.024895	-0.006655
6	-0.020118	0.036775	1.468893
6	1.079825	-0.007167	2.248243
6	2.515604	-0.011164	1.819605
8	3.279247	0.980341	2.516802
6	-1.395950	0.032177	2.093703
1	0.948217	-0.021253	3.328358
1	-0.200036	-1.159210	-0.418342
1	-0.827556	0.569035	-0.463907
1	0.947840	0.290335	-0.473176
1	-1.967551	-0.845317	1.770259
1	-1.345846	0.021375	3.183792
1	-1.969039	0.913071	1.783641
1	2.988663	-0.962320	2.083804
1	2.617955	0.109513	0.734445
1	2.837569	1.824274	2.376342
6	-0.401154	-2.510159	-0.960318
1	0.184054	-3.123657	-0.281455
1	-1.475385	-2.658586	-0.899151
1	-0.008406	-2.443530	-1.970770
Rota	ational Cons	tants [GHz]	= 0.9
Free	juencies [cm	n-1]	
-148	82.8964	22.5035	41.1333
59	.7657	102.7945	147.7469
18′	7.4684	264.9830	350.7019
36	8.0638	371.6489	423.7422
470	0.9473	498.9883	512.2453
614	4.1380	697.7364	805.2258
864	4.9082	958.5068	988.9225
102	5.9373	1036.5433	1058.3600
108	5.6481	1119.4987	1134.6866
119	2.3422	1244.5490	1337.7056
137	6.4615	1393.5741	1397.7899
141	3.2679	1419.5033	1431.5593
143	4.1813	1472.4482	1484.4814
149	5.5121	1505.5765	1675.1353
300	6.7053	3011.3669	3048.5935
305	5.0977	3063.6836	3067.8320
310	4.1631	3127.8901	3142.3242
320	5.1548	3206.4744	3817.0010

973 1.212 3.082

Rxn17 (trans) TS CH3+CC(C)=CCOH => CH4+t-C=C(C)CJCOH

Sough .

1.123 3.283

Geometry	[Angstroms]
----------	-------------

6	-0.004475	-0.010259	0.026239	
1	-0.113246	0.022202	1.106614	
1	1.022350	-0.063792	-0.323876	
1	-0.634344	0.688972	-0.516232	
1	-0.568967	-1.310196	-0.353682	
6	-1.003310	-2.445059	-0.728682	
1	-0.449730	-3.125807	-0.078690	
1	-0.665574	-2.521158	-1.762037	
6	-2.469611	-2.487023	-0.555863	
6	-2.939041	-2.672047	0.867879	
1	-2.636474	-3.655514	1.244153	
1	-4.019470	-2.592025	0.981395	
1	-2.471050	-1.928553	1.522227	
6	-3.288588	-2.332509	-1.615975	
1	-2.834982	-2.207129	-2.597584	
6	-4.786454	-2.292316	-1.642424	
1	-5.217308	-2.355673	-0.636587	
1	-5.178956	-3.137511	-2.216441	
8	-5.271334	-1.131661	-2.329830	
1	-4.870572	-0.366343	-1.904658	
Rota	tional Cons	tants [GHz] :	= 0.99	0
Freq	uencies [cm	n-1]		
-148	8.6895	23.7167	44.9724	
72	.1193	83.5369	131.8750	
174	1.5983	266.9833	349.3227	
368	3.3662	370.6437	435.1843	
445	5.0168	494.3732	536.4490	
599	9.7086	699.3083	802.1062	
874	1.9753	957.8187	982.5848	
102	2.7860	1035.3337	1057.7474	
108	6.1691	1120.8802	1139.1029	
119	2.4774	1248.0637	1337.4811	
137	8.6589	1394.9694	1397.6125	
141	6.3207	1420.8801	1432.6194	
143	5.2114	1469.4392	1487.8995	
148	9.5479	1508.6150	1678.2538	
301	0.6975	3019.0874	3051.1501	
305	0.0526	2060 9406	2062 0202	
	8.9536	3000.8490	5002.9592	
312	8.9536 2.1511	3123.6421	3134.7512	

Rxn18

TS CH3+CC(C)=CCOH_CH4+CC(C)=CCJOH

Geo	metry [Angs	troms]	
6	-0.010855	-0.086706	0.031913
6	0.007130	0.020547	1.535147
6	1.123645	0.127568	2.273110
6	2.522149	0.116064	1.805694
8	3.334596	0.846397	2.701530
6	-1.350540	-0.009830	2.188702

1 1.030603	0.184947	3.355275	
1 -0.699794	0.649449	-0.397814	
1 0.969515	0.062592	-0.420940	
1 -0.374587	-1.072866	-0.281065	
1 -1.883915	-0.937340	1.946674	
1 -1.279788	0.067573	3.275042	
1 -1.978081	0.813240	1.826167	
1 2.929381	-1.050492	1.802059	
1 2.654020	0.438491	0.765736	
1 4.251285	0.731631	2.433009	
6 3.567884	-2.463110	1.850773	
1 2.786350	-3.080111	1.418607	
1 4.472807	-2.377805	1.256001	
1 3.722896	-2.589721	2.917831	
Rotational Cons	stants [GHz]	= 1.02	83
Frequencies [cn	n-1]		
-1145.4313	38.1919	41.2162	
63.7522	129.6104	140.6004	
180.0505	207.2368	258.6426	
308.7158	351.1411	418.3337	
462.6835	484.6169	509.6861	
530.3090	593.4530	821.5462	
862.2053	962.2918	1006.7633	
1012.1708	1060.9304	1073.9053	
1098.5706	1111.3396	1131.0496	
1208.3885	1274.8335	1314.0054	
1360.9114	1410.3419	1418.8630	
1420.4836	1423.9360	1454.7880	
1463.7566	1473.2467	1486.6216	
1491.8850	1497.9318	1710.9514	
3001.6553	3006.2002	3011.1052	
3041.3220	3048.1069	3064.3447	
3102.0190	3113.2285	3135.6418	
3206.2876	3212.6785	3829.7590	

Rxn22 (cis) TS HO2+C2C=CCOH => H2O2+c-CC(C)=CCJOH

Geometry [Angstroms]

300	meny [mgs	uomsj	
6	-0.024153	0.065091	0.000023
1	-0.039766	0.024843	1.247722
1	1.056059	-0.033040	-0.189057
8	-0.508692	1.333246	-0.312834
1	-0.181943	1.936199	0.373872
8	-0.003614	0.485870	2.512246
8	0.326851	1.845502	2.345919
1	1.275404	1.865919	2.542161
6	-0.772825	-1.087237	-0.504873
1	-0.169934	-1.992425	-0.539285
6	-2.071427	-1.203572	-0.861293
6	-2.600168	-2.531713	-1.337190
1	-1.830745	-3.305650	-1.345789
1	-3.011278	-2.444574	-2.349915
1	-3.423571	-2.870881	-0.697384

1.227 3.072

6	-3.086269	-0.093978	-0.831028			
1	-3.450703	0.110959	-1.845366			
1	-3.959528	-0.407612	-0.247009			
1	-2.685648	0.825287	-0.416736			
Rota	tional Cons	tants [GHz]	=	0.815	0.851	3.676
Freq	uencies [cm	n-1]				
-123	4.7256	33.4602	62.679	7		
92	.9078	110.3208	172.360)8		
190).6429	245.5167	271.424	49		
305	5.5137	356.0374	393.792	26		
436	5.0243	477.4000	581.037	76		
600).2036	702.5616	798.799	9 0		
843	3.1559	959.4883	976.320)5		
999	9.2780	1005.1023	1012.91	54		
108	8.0970	1098.2722	1187.92	25		
122	6.3903	1300.8931	1340.06	90		
135	8.7679	1378.5599	1409.28	89		
141	8.1233	1429.6617	1472.33	61		
147	7.3136	1493.2821	1498.78	87		
157	2.1884	1665.4935	2966.81	91		
300	4.1455	3010.4160	3043.85	35		
304	8.8245	3102.5276	3127.34	03		
317	4.7878	3686.9937	3721.43	75		

Rxn22 (trans) TS HO2+C2C=CCOH => H2O2+t-CC(C)=CCJOH

X	2.	
'X	Y	-0-1
	1	

Geo	metry [Angs	troms]	
6	-0.134778	0.097122	-0.025471
6	-0.019453	0.050868	1.474703
6	1.147747	-0.060096	2.141187
6	2.488289	-0.183545	1.569791
8	3.486541	0.181228	2.471757
6	-1.325446	0.122196	2.218887
8	3.420116	-2.511534	1.136988
8	4.752951	-2.078374	1.286989
1	1.129864	-0.115246	3.226502
1	0.829134	0.141493	-0.531783
1	-0.663437	-0.789946	-0.393924
1	-0.726372	0.964713	-0.338676
1	-1.987289	-0.701758	1.925813
1	-1.181442	0.076538	3.299368
1	-1.859858	1.049579	1.980831
1	2.719177	-1.388896	1.327531
1	2.622476	0.259692	0.573116
1	4.294113	-0.287043	2.209813
1	5.060392	-1.999763	0.371644
Rota	ational Const	tants [GHz]	= 0
Free	quencies [cm	-1]	
-126	52.9999	43.3089	66.2281
86	5.8729	116.1027	170.7544
19	5.3581	200.4452	271.6172
29	5.7166	355.5277	419.5837
45	8.5129	468.9524	518.4820

0.746 0.814 3.467

572.4368	609.1164	824.3916
859.5575	961.4686	984.2647
1002.3051	1007.9543	1056.8921
1095.2601	1109.9731	1144.1136
1216.5005	1290.6855	1327.6182
1356.1130	1360.2328	1410.1736
1419.0295	1424.2773	1470.9980
1483.1971	1490.0292	1492.8735
1560.2354	1681.2645	2986.0044
3004.9731	3014.2256	3045.5945
3053.3386	3107.5388	3119.2578
3147.3611	3704.1230	3721.9021

C=C(C)C=C

C=(C(C)C=C				U .	
Geo	metry [Ang	stroms]			\sim	
6	-0.000028	0.000084	0.000040			
1	-0.002707	0.000342	1.094796			
1	1.047434	0.002647	-0.318265			
1	-0.457899	-0.929122	-0.341765			
6	-0.735498	1.198756	-0.544613			
6	-1.805780	1.062633	-1.340946			
6	-0.259797	2.540325	-0.188221			
1	-2.332435	1.927005	-1.731022			
1	-2.185484	0.087906	-1.625255			
6	0.788149	2.824115	0.591616			
1	-0.832283	3.362291	-0.612348			
1	1.067793	3.849652	0.801584			
1	1.400297	2.053036	1.045314			
Rota	ational Cons	tants [GHz]	=	2.850	4.168	8.537
Freq	uencies [cm	n-1]				
159	9.8516	200.3661	280.219	93		
409	9.0172	427.9214	537.058	87		
643	3.8355	786.1387	791.076	58		
922	2.0821	933.4094	959.765	51		
101	0.8891	1028.3893	1070.31	27		
108	8.4780	1325.5746	1328.32	58		
141	1.0972	1429.7859	1458.87	08		
148	2.9919	1503.0266	1659.37	24		
169	8.7388	3022.3003	3069.66	16		
310	9.9868	3128.9170	3134.04	71		
314	3.9062	3215.2292	3222.39	38		

Rxn31 (cis)

TS c-C=C(C)CJCOH => C=C(C)C=C+OH

Geometry [Angstroms] @ UQCISD-FC\6-31G(d) 0.029378 0.036668 0.009547 6 6 0.037283 0.010137 1.351354 6 1.300883 0.128667 2.113788 2.339147 0.928075 1.755583 6 8 3.357851 -0.354701 0.295226 6 -1.218331 -0.159329 2.174309 1.391123 -0.484527 3.014284 1

1	0.954299	0.106634	-0.557619			
1	-0.899891	-0.032240	-0.553463			
1	-2.100943	-0.262688	1.533423			
1	-1.149568	-1.052923	2.810774			
1	-1.370695	0.700981	2.839876			
1	2.236964	1.654830	0.955493			
1	2.929212	-1.190865	0.580998			
1	3.226048	1.007237	2.377322			
Rota	tional Cons.	tants [GHz]	=	1.673	1.998	6.152
Freq	uencies [cm	n-1] @ UQC	ISD-FC\6	-31G(d)		
-323	3.0577	73.5137	124.722	25		
177	7.9684	192.1577	204.902	22		
282	2.3913	395.0139	436.767	75		
555	5.6780	696.8066	700.679	96		
798	3.5319	821.0638	937.193	37		
956	5.0150	989.1354	1002.24	10		
104	3.6943	1090.5936	1125.20	86		
130	3.2581	1330.0590	1457.01	75		
148	2.5591	1493.3809	1530.03	06		
154	5.9164	1641.1469	1739.13	57		
305	6.3911	3117.8601	3151.74	00		
316	1.0869	3180.9905	3204.75	49		
327	1.2244	3293.6365	3664.48	14		

Rxn31 (trans) TS t-C=C(C)CJCOH => C=C(C)C=C+OH

Geometry [Angstroms] @ UQCISD-FC\6-31G(d)

	- J L - 8		~		- /	
6	0.022072	0.135337	0.092898			•
6	-0.028746	0.034969	1.432476			
6	1.216553	-0.010442	2.284058			
6	-1.334237	-0.011330	2.109581			
6	-1.510584	-0.132854	3.449069			
8	-1.129927	1.986094	4.056404			
1	-2.212821	0.100066	1.470343			
1	-0.882352	0.175226	-0.512494			
1	0.967480	0.176527	-0.444145			
1	2.114470	0.103826	1.667334			
1	1.190920	0.792276	3.031308			
1	1.291012	-0.963835	2.824200			
1	-2.508133	-0.189270	3.875375			
1	-1.393169	2.374735	3.193807			
1	-0.688252	-0.341473	4.125238			
Rota	tional Const	tants [GHz]	=	1.877	2.076	5.100
Freq	uencies [cm	-1] @ UQC	ISD-FC\6-	-31G(d)		
-274	4.1259	76.0016	95.548	1		
184	4.5604	232.6282	239.502	29		
292	2.4149	427.2358	444.040)6		
538	8.5678	663.9436	667.613	34		
786	5.8163	809.7228	923.729) 0		
931	.5377	985.1123	1002.42	85		
103	6.1259	1101.3770	1114.47	68		
133	4.0709	1364.3702	1452.51	86		
147	0.0251	1499.8521	1530.56	30		

1558.4108	1640.6559	1714.8140
3065.4114	3133.9507	3158.9751
3168.7593	3176.0601	3210.0288
3257.0847	3295.6533	3665.1511

c-CC(C)=CC=O

Geometry [Angstroms] 0.002914 -0.002165 0.003644 6 -0.001770 -0.008115 6 1.508183 6 1.171665 0.003181 -0.671340 6 -1.353259 -0.002734 -0.642417 6 1.375477 0.009437 -2.129611 1 2.095812 0.003026 -0.098343 1 -0.535284 -0.888252 1.884693 1.005648 -0.007586 1.926355 1 1 -0.539069 0.866718 1.891610 -1.922879 0.871590 -0.305905 1 -1.291653 0.001943 -1.726107 1 -1.918601 -0.882627 -0.313281 1 1 2.449976 0.013079 -2.416873 0.527333 0.010910 -2.999293 8 Rotational Constants [GHz] = 1.817 2.351 Frequencies [cm-1] 83.2772 113.3168 168.0311 242.1650 242.1786 375.2135 395.8217 486.5647 731.4472 833.9577 849.4372 955.0478 993.6698 1003.0093 1037.5189 1107.0259 1116.7750 1228.4399 1377.2880 1408.8529 1413.2703 1474.5212 1442.7145 1468.4056 1486.7332 1506.8606 1663.9999 1771.2211 2867.7417 3010.4285 3017.1609 3051.4685 3059.9746 3111.3999 3136.8274 3169.9500

t-CC(C)=CC=O

Geo	metry [Angs	troms]	
6	0.016661	-0.002129	-0.000090
6	-0.002063	-0.008224	1.504627
6	1.187160	0.003007	-0.666997
6	-1.346180	-0.002412	-0.641320
6	1.367580	0.009269	-2.121612
1	2.120894	0.002708	-0.111218
1	-0.536288	-0.888870	1.879272
1	1.003545	-0.007901	1.926282
1	-0.539807	0.867235	1.886330
1	-1.915285	0.872533	-0.308325
1	-1.322962	0.002136	-1.728912
1	-1.911490	-0.882538	-0.315590
1	0.448240	0.009888	-2.741570

8	2.457672	0.013680	-2.655402		
Rota	ational Cons	tants [GHz]	=	1.592	1.94
Free	quencies [cm	n-1]			
11'	7.2768	130.3355	185.8472	2	
222	2.9414	232.6464	367.2280)	
470	0.5475	477.4172	535.9862	2	
84′	7.5639	866.2675	956.3340)	
100	6.1034	1021.9833	1062.2509	9	
110	02.6460	1141.9362	1215.1062	2	
134	1.2762	1409.5958	1415.0789	9	
143	3.0081	1470.7183	1482.7563	3	
148	9.5219	1492.4940	1692.8730	0	
175	8.5513	2898.4189	3012.5752	2	
302	2.2473	3056.0779	3062.7104	4	
311	5.2695	3139.9353	3150.7830	0	

Rxn33 (cis)

TS CC(C)=CCJOH => c-CC(C)=CC=O+H

Geon	netry [Angs	stroms]	
6	0.036584	-0.007135	-0.019053
6	-0.012085	0.006822	1.483962
6	1.231160	0.008763	-0.658473
6	-1.299784	-0.039646	-0.703201
6	1.494946	-0.001417	-2.088718
1	2.130807	0.037902	-0.048342
1	-0.550382	-0.871639	1.858192
1	0.982344	0.020492	1.932031
1	-0.566668	0.882831	1.839968
1	-1.919817	0.790080	-0.343852
1	-1.211520	0.014027	-1.783619
1	-1.832105	-0.959498	-0.432539
1	2.568505	-0.016982	-2.350971
8	0.658373	-0.015232	-3.003921
1	0.313427	-1.405140	-3.772853
Rotat	ional Cons	tants [GHz]	= 1.761
Frequ	encies [cm	ı-1]	
-1055	5.6949	74.5718	106.3125
113.	5507	167.8923	241.9655
258.	8773	372.2068	395.4566
485.	8950	496.7398	729.2581
839.	6325	846.0785	957.2410
997.	0938	1003.3203	1011.8020
1102	.6395	1120.7715	1230.2917
1378	.7035	1406.6552	1413.6199
1426	.8636	1467.3044	1473.4956
1485	.9210	1504.1072	1590.1923
1675	.7863	2940.3872	3008.5647
3015	.0342	3048.9204	3055.9609
3110	.4988	3136.3040	3171.4612

2.257 6.937

S 86

14 7.941

Rxn33 (trans) TS CC(C)=CCJOH => t-CC(C)=CC=O+H

Geo	metry [Angs	stroms]			
6	0.011911	0.008053	0.006127		
6	-0.008236	-0.016216	1.509531		
6	1.187875	0.030665	-0.661423		
6	-1.346485	-0.001757	-0.641553		
6	1.369247	0.030777	-2.098506		
1	2.117928	0.027485	-0.099533		
1	-0.528847	-0.909392	1.874530		
1	0.996726	-0.005493	1.932765		
1	-0.560039	0.845927	1.901932		
1	-1.934792	0.853584	-0.291054		
1	-1.317166	0.029617	-1.728794		
1	-1.897871	-0.900344	-0.342432		
1	0.472766	0.078429	-2.737871		
8	2.489564	-0.002417	-2.625804		
1	2045100	1 2001 50	0 100077		
1	3.045100	1.299150	-3.423377		
I Rota	3.045100 ational Cons	1.299150 tants [GHz]	-3.423377 = 1	.529	1.84
I Rota Freq	3.045100 tional Cons uencies [cm	1.299150 tants [GHz] 1-1]	-3.423377	1.529	1.84
Rota Freq -106	3.045100 ational Cons uencies [cm 1.4971	1.299150 tants [GHz] 104.9615	-3.423377 = 1 116.6559	1.529	1.84
I Rota Freq -106 133	3.045100 ational Cons juencies [cm 1.4971 3.0586	1.299150 tants [GHz] h-1] 104.9615 177.7832	-3.423377 = 116.6559 219.1968	.529	1.84
I Rota Freq -106 133 243	3.045100 ational Cons juencies [cm 1.4971 3.0586 3.6553	1.299150 tants [GHz] 104.9615 177.7832 364.0088	-3.423377 = 116.6559 219.1968 453.4223	1.529	1.84
I Rota Freq -106 133 243 475	3.045100 titional Cons uencies [cm 1.4971 3.0586 3.6553 5.5626	1.299150 tants [GHz] 1-1] 104.9615 177.7832 364.0088 512.5404	-3.423377 = 116.6559 219.1968 453.4223 536.0450	1.529	1.84
I Rota Freq -106 133 243 475 846	3.045100 titional Cons juencies [cm 1.4971 3.0586 3.6553 5.5626 5.7097	1.299150 tants [GHz] 104.9615 177.7832 364.0088 512.5404 874.4831	-3.423377 = 116.6559 219.1968 453.4223 536.0450 957.6596	1.529	1.84
I Rota Freq -106 133 243 475 846 982	3.045100 titional Cons juencies [cm 1.4971 3.0586 3.6553 5.5626 5.7097 2.9819	1.299150 tants [GHz] 104.9615 177.7832 364.0088 512.5404 874.4831 1008.7309	-3.423377 = 116.6559 219.1968 453.4223 536.0450 957.6596 1066.1711	1.529	1.84
I Rota Freq -106 133 243 475 846 982 109	3.045100 titional Cons juencies [cm 1.4971 3.0586 3.6553 5.5626 5.7097 2.9819 8.1840	1.299150 tants [GHz] 104.9615 177.7832 364.0088 512.5404 874.4831 1008.7309 1157.0479	$\begin{array}{r} -3.423377\\ = & 1\\ 116.6559\\ 219.1968\\ 453.4223\\ 536.0450\\ 957.6596\\ 1066.1711\\ 1217.4359\end{array}$	1.529	1.84
I Rota Freq -106 133 243 475 846 982 109 134	3.045100 titional Cons juencies [cm 3.0586 3.0586 3.6553 5.5626 5.7097 2.9819 8.1840 2.8398	1.299150 tants [GHz] 104.9615 177.7832 364.0088 512.5404 874.4831 1008.7309 1157.0479 1406.2208	-3.423377 = 116.6559 219.1968 453.4223 536.0450 957.6596 1066.1711 1217.4359 1410.2616	1.529	1.84
1 Rota Freq -106 133 243 475 846 982 109 134 142	3.045100 titional Cons uencies [cm 1.4971 3.0586 3.6553 5.5626 5.7097 2.9819 8.1840 2.8398 3.3777	1.299150 tants [GHz] 104.9615 177.7832 364.0088 512.5404 874.4831 1008.7309 1157.0479 1406.2208 1469.7069	$\begin{array}{r} -3.423377\\ = & 1\\ 116.6559\\ 219.1968\\ 453.4223\\ 536.0450\\ 957.6596\\ 1066.1711\\ 1217.4359\\ 1410.2616\\ 1481.6998 \end{array}$	1.529	1.84
1 Rota Freq -106 133 243 475 846 982 109 134 142 148	3.045100 titional Cons juencies [cm 1.4971 3.0586 3.6553 5.5626 5.7097 2.9819 8.1840 2.8398 3.3777 7.9645	1.299150 tants [GHz] 104.9615 177.7832 364.0088 512.5404 874.4831 1008.7309 1157.0479 1406.2208 1469.7069 1491.1118	-3.423377 = 116.6559 219.1968 453.4223 536.0450 957.6596 1066.1711 1217.4359 1410.2616 1481.6998 1611.2811	1.529	1.84
1 Rota Freq -106 133 243 475 846 982 109 134 142 148 166	3.045100 titional Cons juencies [cm 1.4971 3.0586 3.6553 5.5626 5.7097 2.9819 8.1840 2.8398 3.3777 7.9645 7.4026	1.299150 tants [GHz] 104.9615 177.7832 364.0088 512.5404 874.4831 1008.7309 1157.0479 1406.2208 1469.7069 1491.1118 2969.4480	-3.423377 = 116.6559 219.1968 453.4223 536.0450 957.6596 1066.1711 1217.4359 1410.2616 1481.6998 1611.2811 3009.6953	1.529	1.84
1 Rota Freq -106 133 243 475 846 982 109 134 142 148 166 301	3.045100 titional Cons juencies [cm 1.4971 3.0586 3.6553 5.5626 5.7097 2.9819 8.1840 2.8398 3.3777 7.9645 7.4026 9.7942	1.299150 tants [GHz] 104.9615 177.7832 364.0088 512.5404 874.4831 1008.7309 1157.0479 1406.2208 1469.7069 1491.1118 2969.4480 3051.8721	-3.423377 = 116.6559 219.1968 453.4223 536.0450 957.6596 1066.1711 1217.4359 1410.2616 1481.6998 1611.2811 3009.6953 3059.2107	1.529	1.84

Rxn34

TS CC(C)=CCJOH => C=C(C)CJCOH

Geometry [Ang	stroms]			-
-1783.2719	127.2646	156.4852		
193.8014	305.2725	394.1734		
408.4386	438.3267	522.1052		
560.0742	633.1541	827.2442		
876.7899	928.1936	964.8164		
986.6165	1032.2192	1049.9836		
1101.7760	1132.3596	1206.2129		
1241.2953	1315.5890	1392.0754		
1409.7472	1426.8165	1441.0721		
1477.5972	1485.5046	1639.2054		
1703.4283	3011.7617	3058.2595		
3059.6448	3081.4395	3091.7405		
3128.3064	3142.6667	3804.5623		
Rotational Cons	stants [GHz] =	1.762	2.041	7.657
Frequencies [cn	n-1]			

. ک**رک**

841 7.730

S 87

6	0.002407	-0.000101	0.000664
6	-0.000470	-0.004295	1.499329
6	1.235678	0.000629	-0.529256
6	-1.281755	-0.012465	-0.775464
6	2.327715	-0.016332	0.489182
1	1.442675	0.009299	-1.596499
1	-0.344150	-0.917616	1.986375
1	1.447011	0.028789	1.497636
1	-0.381285	0.892861	1.990481
1	-1.909293	0.842306	-0.499939
1	-1.104644	0.018994	-1.853322
1	-1.864272	-0.912324	-0.548753
1	2.877590	-0.951693	0.609376
8	3.259565	1.020768	0.445913
1	2.788373	1.828410	0.211493

C2CJC(OH)COH

Geo	metry [Angs	stroms]				
6	0.258031	-0.249291	0.223321			
6	-0.099112	0.446002	1.496540		/ (ЭН
6	1.630075	-0.082688	-0.341920			
6	-0.659827	-1.305772	-0.313384			
1	-1.171257	0.392189	1.707213			
1	0.424599	0.020616	2.369151			
1	0.185186	1.505124	1.463840			
1	1.697631	-0.520108	-1.337856			
1	1.903538	0.977630	-0.407218			
1	2.399669	-0.555440	0.291935			
1	-1.702716	-1.006822	-0.115005			
8	-0.463583	-1.465000	-1.714942			
6	-0.451417	-2.666332	0.370929			
8	-1.345424	-3.584769	-0.270933			
1	0.591545	-2.977695	0.234471			
1	-0.669045	-2.590220	1.443583			
1	-0.899245	-2.297082	-1.939947			
1	-1.072622	-4.481411	-0.058595			
Rota	ational Cons	tants [GHz]	=	1.402	1.661	4.030
Free	luencies [cm	n-1]				
49	.3953	84.9284	114.796	52		
134	4.4374	162.8078	255.521	.6		
284	4.5584	297.5390	328.217	'9		
42	1.9480	493.3085	508.454	4		
55	1.3571	795.6683	887.508	36		
949	9.6274	975.3082	986.459)1		
100	8.8839	1043.0105	1048.68	64		
110	2.1254	1197.6046	1234.16	74		
126	5.0769	1284.5778	1325.54	50		
136	0.4406	1396.4033	1410.91	17		
142	5.6385	1439.2953	1470.46	89		
147	3.9312	1487.0171	1499.05	96		
150	5.2936	2933.6519	2936.69	78		
294	1.6189	2993.5312	3011.89	97		
0.01	7 1716	20/0 2670	3072 67	00		

∖ /─ОН

C2C=COH

C2(L=COH					он
Geo	metry [Ang	stroms])/	
6	0.011077	-0.018435	-0.042501		/	
6	-0.007181	-0.158173	1.457443			
6	1.170939	-0.055190	-0.706225			
6	-1.329531	0.158873	-0.707055			
8	1.377687	0.053967	-2.053260			
1	2.116327	-0.184510	-0.191657			
1	-0.604065	-1.023844	1.770180			
1	0.999068	-0.282543	1.863996			
1	-0.454688	0.722425	1.934676			
1	-1.839000	1.054013	-0.331545			
1	-1.274741	0.257778	-1.795720			
1	-1.987768	-0.692439	-0.497639			
1	0.530664	0.168078	-2.497360			
Rota	ational Cons	tants [GHz]	=	2.651	3.729	8.236
Free	juencies [cm	n-1]				
77	.3932	194.3130	279.463	30		
28	6.7536	338.2336	365.710)5		
48	8.7004	575.7484	803.569	99		
88	5.7677	974.2265	1014.83	79		
104	1.0736	1096.8408	1173.52	75		
120	1.8408	1313.1622	1405.23	54		
141	6.7430	1428.8317	1468.69	07		
148	35.4146	1496.3425	1504.07	24		
174	3.7111	2996.9009	3003.61	77		
303	4.1382	3046.2441	3064.61	28		
309	1.1633	3182.3616	3818.37	99		

CH2OH

Geo	metry [Angs	troms]				
6	0.071889	0.120362	0.048723			
1	-0.030680	-0.005885	1.116927			
1	1.019016	-0.067945	-0.445944			
8	-0.770960	1.064386	-0.468638			
1	-0.582479	1.175272	-1.405401			
Rotational Constants [GHz] =			26.113	29.864	192.561	
Freq	Frequencies [cm-1]					
44]	1.1690	587.2377	1061.80	90		
120	7.2646	1367.2296	1487.78	06		
311	1.3669	3255.5083	3840.80	74		

Rxn43 TS C2CJC(OH)COH => C2C=COH+CH2OH

Geometry [Angstroms]				
6	-0.121940	-0.077167	0.034485	
6	0.046310	-0.023678	1.524062	

6	1.295088	0.159937	2.070347			
6	2.347913	-1.821193	2.159023			
8	2.881907	-1.832837	3.444267			
6	-1.157557	-0.295274	2.374973			
8	1.415869	0.456656	3.413968			
1	0.812770	0.132883	-0.491776			
1	-0.480220	-1.061968	-0.296792			
1	-0.867847	0.651583	-0.308317			
1	-0.918588	-0.214060	3.434918			
1	-1.965285	0.413345	2.152435			
1	-1.567252	-1.297500	2.181889			
1	2.089385	0.547900	1.434191			
1	1.587122	-2.571080	1.956303			
1	3.133698	-1.722542	1.417656			
1	2.249539	0.069991	3.719310			
1	2.212588	-2.170642	4.048412			
Rota	tional Cons	tants [GHz]	=	1.330	1.510	3.699
Freq	uencies [cm	ı-1]				
-49	1.9630	62.5040	106.710)6		
115	5.6556	143.5377	182.648	37		
233	3.5205	278.9000	283.554	17		
338	3.8100	388.1857	436.145	57		
537	7.7986	580.8569	616.834	19		
799	9.5107	873.9691	953.215	53		
969	9.5306	995.9578	1038.59	34		
107	7.6941	1079.9216	1112.76	68		
115	8.0525	1229.9700	1341.92	93		
136	1.9945	1378.8031	1404.54	15		
141	6.4983	1471.7097	1479.28	89		
148	3.3486	1489.0077	1493.23	51		
157	2.4746	2976.2786	2982.66	36		
301	5.9009	3019.6340	3080.71	53		

3829.2920

CC(C)=CC(OOJ)OH

3201.6973

Geometry [Angstroms]				
6	-0.064156	-0.030786	-0.028438	
6	0.017532	0.049471	1.473546	
6	0.993567	-0.429235	-0.744884	
6	-1.391399	0.378438	-0.611688	
6	1.066688	-0.535888	-2.222029	
1	1.923642	-0.684892	-0.247260	
1	-0.184233	1.069979	1.817770	
1	-0.739820	-0.593288	1.936314	
1	0.998166	-0.250890	1.844879	
1	-2.202906	-0.197446	-0.153975	
1	-1.588561	1.432425	-0.387280	
1	-1.450289	0.256719	-1.692498	
8	1.467870	0.850106	-2.754263	
8	2.023101	-1.444641	-2.599681	
1	0.105012	-0.697081	-2.719371	
1	2.161583	-1.315490	-3.550298	

8	1.896978	0.745474	-3.988512		
Rota	tional Cons.	tants [GHz]	=	0.962	1.0
Freq	uencies [cm	n-1]			
32	.1010	79.0981	109.626	5	
128	3.5335	186.3923	215.721	8	
307	7.5567	357.3730	386.078	5	
458	8.9609	476.8784	508.040	3	
509	9.0415	659.6394	702.363	5	
841	.3404	871.5357	961.566	6	
100	7.4074	1045.3696	1104.362	28	
111	5.2285	1159.5734	1189.800)5	
121	4.7469	1283.6250	1328.760)5	
135	7.2858	1412.4062	1422.056	50	
147	1.8196	1473.3661	1487.059	94	
149	2.4800	1498.4061	1733.279	3	
301	3.6880	3022.0137	3037.935	3	
305	8.1250	3064.2693	3111.652	26	
312	5.8113	3162.1089	3729.840)1	

Rxn48

TS CC(C)=CC(OH)OOJ => CC(C)=CCHO+HO2

Geo	metry [Angs	stroms]			
6	0.012772	0.000806	-0.014425		
6	-0.004844	-0.039507	1.488366		
6	1.350835	-0.002411	2.138592		
6	-1.176638	-0.091175	2.154431		
6	-1.347408	-0.148025	3.590254		
8	-2.504368	-0.419197	4.088263		
8	-1.448694	1.846814	4.229108		
8	-2.527308	1.758075	4.919240		
1	-2.109471	-0.098394	1.598600		
1	0.520780	0.905111	-0.368710		
1	0.575458	-0.849594	-0.416413		
1	-0.992469	-0.018427	-0.436625		
1	1.978993	-0.811420	1.750172		
1	1.857459	0.935377	1.884725		
1	1.321662	-0.081522	3.223567		
1	-0.467560	-0.270455	4.225683		
1	-2.769501	0.505230	4.680159		
Rota	ational Cons	tants [GHz]	=	0.925	0.982
Free	juencies [cm	-1]			
-633	3.8458	56.2452	72.810	1	
11	1.0562	136.7485	169.6417		
222	2.9082	276.5411	355.4767		
450	0.4925	481.4202	497.030)7	
499	9.6849	611.0162	798.498	34	
849.8149		879.4098	958.8356		
979.9663		1004.7710	1068.1799		
109	9.4039	1101.2852	1164.18	70	
122	3.3960	1309.6941	1342.03	00	
138	32.2034	1411.0496	1420.3528		
146	59.0549	1480.6738	1487.00	44	
1490.5291		1555.2930	1689.20	25	

3.864

1886.9437	3012.2512	3022.1260
3055.4712	3063.1575	3074.1658
3114.9185	3137.2900	3158.3381

References

[1] M. K. Sabbe, A. Vandeputte, M.-F. Reyniers, M. Waroquier, G. B. Marin, Modeling the influence of resonance stabilization on the kinetics of hydrogen abstractions, PCCP 12 (2010) 1278-1298

[2] P. D. Paraskevas, M. K. Sabbe, M.-F. Reyniers, N. G. Papayannakos, G. B. Marin, Kinetic Modeling of α -Hydrogen Abstractions from Unsaturated and Saturated Oxygenate Compounds by Carbon-Centered Radicals, ChemPhysChem 15 (2014) 1849-1866

[3] J. Mendes, C.-W. Zhou, H. J. Curran, Theoretical Chemical Kinetic Study of the H-Atom Abstraction Reactions from Aldehydes and Acids by H Atoms and OH, HO2, and CH3 Radicals, J. Phys. Chem. A 118 (2014) 12089-12104

[4] P. D. Paraskevas, M. K. Sabbe, M.-F. Reyniers, N. G. Papayannakos, G. B. Marin, Kinetic Modeling of α -Hydrogen Abstractions from Unsaturated and Saturated Oxygenate Compounds by Hydrogen Atoms, J. Phys. Chem. A 118 (2014) 9296-9309

[5] R. Sivaramakrishnan, J. V. Michael, Rate Constants for OH with Selected Large Alkanes: Shock-Tube Measurements and an Improved Group Scheme, J. Phys. Chem. A 113 (2009) 5047-5060

[6] J. Badra, A. Elwardany, A. Farooq, Shock tube measurements of the rate constants for seven large alkanes + OH, P. Combust. Inst. 35 (2015) 189-196

[7] P. D. Paraskevas, M. K. Sabbe, M.-F. Reyniers, N. G. Papayannakos, G. B. Marin, Group Additive Kinetics for Hydrogen Transfer Between Oxygenates, J. Phys. Chem. A (2015)

[8] J. Aguilera-Iparraguirre, H. J. Curran, W. Klopper, J. M. Simmie, Accurate Benchmark Calculation of the Reaction Barrier Height for Hydrogen Abstraction by the Hydroperoxyl Radical from Methane. Implications for CnH2n+2 where $n = 2 \rightarrow 4$, J. Phys. Chem. A 112 (2008) 7047-7054

[9] G. Mittal, S. M. Burke, V. A. Davies, B. Parajuli, W. K. Metcalfe, H. J. Curran, Autoignition of ethanol in a rapid compression machine, Combust. Flame 161 (2014) 1164-1171

[10] J. Zádor, S. J. Klippenstein, J. A. Miller, Pressure-Dependent OH Yields in Alkene + HO2 Reactions: A Theoretical Study, J. Phys. Chem. A 115 (2011) 10218-10225

[11] H. J. Curran, P. Gaffuri, W. J. Pitz, C. K. Westbrook, A comprehensive modeling study of nheptane oxidation, Combust. Flame 114 (1998) 149-177

[12] H. J. Curran, P. Gaffuri, W. J. Pitz, C. K. Westbrook, A comprehensive modeling study of isooctane oxidation, Combust. Flame 129 (2002) 253-280

[13] K. Wang, S. M. Villano, A. M. Dean, Reactivity–Structure-Based Rate Estimation Rules for Alkyl Radical H Atom Shift and Alkenyl Radical Cycloaddition Reactions, J. Phys. Chem. A 119 (2015) 7205-7221

[14] J. Bugler, K. P. Somers, E. J. Silke, H. J. Curran, Revisiting the Kinetics and Thermodynamics of the Low-Temperature Oxidation Pathways of Alkanes: A Case Study of the Three Pentane Isomers, J. Phys. Chem. A 119 (2015) 7510-7527

[15] F. Zhang, T. S. Dibble, Effects of Olefin Group and Its Position on the Kinetics for Intramolecular H-Shift and HO2 Elimination of Alkenyl Peroxy Radicals, J. Phys. Chem. A 115 (2011) 655-663

[16] H. Sun, J. W. Bozzelli, C. K. Law, Thermochemical and Kinetic Analysis on the Reactions of O2 with Products from OH Addition to Isobutene, 2-Hydroxy-1,1-dimethylethyl, and 2-Hydroxy-2-methylpropyl Radicals: HO2 Formation from Oxidation of Neopentane, Part II, J. Phys. Chem. A 111 (2007) 4974-4986

[17] M. K. Sabbe, M.-F. Reyniers, V. Van Speybroeck, M. Waroquier, G. B. Marin, Carboncentered radical addition and beta-scission reactions: Modeling of activation energies and preexponential factors, ChemPhysChem 9 (2008) 124-140

[18] M. K. Sabbe, M.-F. Reyniers, M. Waroquier, G. B. Marin, Hydrogen Radical Additions to Unsaturated Hydrocarbons and the Reverse beta-Scission Reactions: Modeling of Activation Energies and Pre-Exponential Factors, ChemPhysChem 11 (2010) 195-210

[19] C. F. Goldsmith, S. J. Klippenstein, W. H. Green, Theoretical rate coefficients for allyl + HO2 and allyloxy decomposition, P. Combust. Inst. 33 (2011) 273-282

[20] G. da Silva, J. W. Bozzelli, L. Liang, J. T. Farrell, Ethanol Oxidation: Kinetics of the α -Hydroxyethyl Radical + O2 Reaction, J. Phys. Chem. A 113 (2009) 8923-8933

[21] J. Lee, J. W. Bozzelli, Thermochemical and kinetic analysis of the allyl radical with O2 reaction system, P. Combust. Inst. 30 (2005) 1015-1022