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Abstract 

 
This work presents an updated experimental and kinetic modeling study of n-heptane oxidation. In the experiments, 
ignition delay times of stoichiometric n-heptane/air mixtures have been measured in two different high-pressure 
shock tubes in the temperature range of 726–1412 K and at elevated pressures (15, 20 and 38 bar). Meanwhile, 
concentration versus time profiles of species have been measured in a jet-stirred reactor at atmospheric pressure, 
in the temperature range of 500–1100 K at φ = 0.25, 2.0 and 4.0. These experimental results are consistent with 
those from the literature at similar conditions and extend the current data base describing n-heptane oxidation. 
 
Based on our experimental observations and previous modeling work, a detailed kinetic model has been developed 
to describe n-heptane oxidation. This kinetic model has adopted reaction rate rules consistent with those recently 
developed for the pentane isomers and for n-hexane. The model has been validated against data sets from both the 
current work and the literature using ignition delay times, speciation profiles measured in a jet-stirred reactor and 
laminar flame speeds over a wide range of conditions. Good agreement is observed between the model predictions 
and the experimental data. The model has also been compared with several recently published kinetic models of 
n-heptane and shows an overall better performance. This model may contribute to the development of kinetic 
mechanisms of other fuels, as n-heptane is a widely used primary reference fuel. Since the sub-mechanisms of 
n-pentane, n-hexane and n-heptane have adopted consistent reaction rate rules, the model is more likely to 
accurately simulate the oxidation of mixtures of these fuels. In addition, the successful implementation of these rate 
rules have indicated the possibility of their application for the development of mechanisms for larger hydrocarbon 
fuels, which are of great significance for practical combustion devices. 
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1. Introduction 

 
The oxidation of n-heptane has been widely studied as it is a primary reference fuel (PRF) and is a representative 
normal alkane. It is also an important component of toluene reference fuel (TRF) and ethanol toluene reference fuel 
(ERF) [1], which has been used as a surrogate gasoline fuel for research of combustion processes in internal 
combustion engines [2]. Experiments have been performed which have focused on different properties of fuel 
oxidation over a wide range of conditions, such as ignition delay times in shock tubes [3-8] and rapid compression 
machines [9-12], species versus time and/or temperature profiles measured in jet-stirred reactors [13-17] and flow 
reactors [18-21], laminar flame speeds [22-26] and spatial distribution of species in flames [27-30]. Moreover, a 
series of experiments have been performed in engines [31-35] to study homogeneous charge compression ignition 
(HCCI), engine knock, exhaust gas recirculation (EGR), NOx emission control, etc. Since 1979 [4] efforts have been 
made to develop a kinetic model for n-heptane oxidation at both low temperature and high temperature to provide 
further insight into this process. In 1989, Westbrook et al. developed a detailed chemical kinetic mechanism to 
describe the oxidation of n-heptane and iso-octane [36]. This mechanism adopted both low- and high-temperature 
chemistry, and was validated through comparisons with experimental data from shock tube, turbulent flow reactor 
and jet-stirred reactors. Later, Chevalier developed a computational technique to automatically develop detailed 
kinetic mechanisms, which were used to study the influence of fuel, fuel mixtures and fuel additives on knock 
tendency [37]. Ranzi et al. proposed a semi-detailed kinetic model for n-heptane oxidation [38], while Côme used a 
computer package to develop the kinetic models for the oxidation of both n-heptane and iso-octane [39]. 
 
Curran et al. [40] carried out a comprehensive kinetic modeling study of n-heptane oxidation in a systematic way. 
The important reactions during the oxidation of n-heptane were categorized into 25 different reaction classes, 
including 10 reaction classes to describe high-temperature oxidation and 15 classes to describe the low-temperature 
regime. Although approximate treatments were assigned to some less important reactions such as the consumption 
of the heptene isomers, the overall performance of the mechanism was very good. This mechanism has been 
improved and further validated, with good performance over the pressure range of 3 to 50 atm, in the temperature 
range of 650 to 1200 K and at equivalence ratios of 0.3 to 2.0. More importantly, this model set a successful frame 
for the kinetic mechanism development of other larger n-alkanes [41]. A more recent study carried out by Mehl et 
al. [42] on the kinetic modeling of gasoline surrogate components and mixtures under engine conditions has further 
refined and adopted this mechanism. Moreover, this mechanism also forms the basis for the mechanism 
development in this work. 
 
There has been a continual interest among the research community in developing a better understanding of 
n-heptane oxidation both experimentally and theoretically. For example, Herbinet et al. performed an experimental 
study in a jet-stirred reactor [16]. In addition to traditional gas chromatography, the experiments also used 
synchrotron vacuum ultraviolet photoionization mass spectrometry as the diagnostic technique to identify the 
unstable species such as radicals, which is an example of the new experimental methods being applied to this kind 
of study. Herbinet et al. also generated a kinetic mechanism using the software EXGAS [43], which satisfactorily 
reproduced the mole fraction profiles of most of the species identified in the experiments. 
 
Meanwhile, new reaction pathways are being adopted into the kinetic model to better describe the oxidation process 
of n-heptane. Recently, Pelucchi et al. proposed an improved kinetic model for n-heptane [44], by emphasizing new 
reaction classes producing organic acids, diones and ketones in the low temperature regime. The mechanism was 
validated over a wide range of conditions including both low and high-temperature ranges. Good agreement was 
observed between simulations and experimental data from the literature for ignition delay time measurements 
[5,42,45], species profiles measurements taken in a jet-stirred reactor [14-16] and in a flow reactor [20], as well as 
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laminar flame speeds [26]. Meanwhile, the experimental database of n-heptane is being extended to cover a wider 
range of conditions. Seidel et al. performed an experimental and kinetic modeling study of a fuel-rich, premixed 
n-heptane flame at 40 mbar, and successfully identified over 80 species generated at this condition [30]. Based on 
previous work, a detailed kinetic model was developed. Reduced kinetic mechanisms are also being proposed, such 
as the work by Cai and Pitsch [46], who proposed an optimized chemical mechanism for gasoline surrogates which 
was validated under extensive conditions and it showed a very good performance compared to experimental ignition 
delay measurements. 
 
This current study is based on a continuity of effort in experimental and kinetic modeling studies of hydrocarbon 
fuels that we have published previously [47-58]. In this work, the ignition delay times of n-heptane in air are firstly 
measured in two different high-pressure shock tubes to provide more experimental ignition delay time data at 
elevated pressures. Moreover, the experimental conditions of n-heptane oxidation in a jet-stirred reactor have been 
extended to extremely rich (φ = 4.0) and very lean (φ = 0.25) conditions, while the other conditions remain 
consistent with those published previously. To reflect the improvements in the chemical kinetics and 
thermodynamics as well as their impact, a detailed kinetic model of n-heptane oxidation has been developed based 
on our previous work, including our updated base mechanism [47-50, 53,56-58], the sub-mechanisms of the pentane 
isomers [51,55] and n-hexane [54]. In the development of this mechanism, the new reaction classes and reaction 
rate rules with modifications, which have been successfully applied to the pentane isomers and n-hexane, have been 
adopted. The thermodynamic database has also been updated with recently published optimized group values [52]. 
The model has been validated using the experimental data sets obtained in this work, as well as those from the 
literature for ignition delay times, species profile measured in jet-stirred reactors and also for laminar flame speed 
measurements. Moreover, comparisons are made between the current model and those from recent publications. 
The significant reaction pathways for the oxidation of n-heptane are revealed by further analysis of the simulations. 
 
2. Experimental methods 

 

2.1. PCFC shock tube 

 
The Physico-Chemical Fundamentals of Combustion (PCFC) shock tube at Aachen University has been designed 
similar to the high-pressure shock tube at NUIG. It has an inner diameter of 63.5 mm and an overall length of about 
7.5 m with a 3 m driver section. Due to physical space limitations the driver section is curved with a bending radius 
of 1 m. The diaphragm section can house up to two pre-scored aluminum diaphragms. All parts coming into contact 
with fuel/air mixtures are made of stainless steel (316Ti), except for the aluminum diaphragms. Shock velocities and 
pressure profiles are recorded in the measuring section close to the endwall of the driven section with up to 8 PCB 
113B22 pressure sensors. Signals are recorded using a digital oscilloscope with a sampling rate of 25 MHz. Fuel/air 
mixtures are prepared in a separate 40 L Teflon coated stainless steel mixing vessel. Partial pressures are used to 
prepare the desired gas mixtures. Static pressures are monitored with two STS ATM. 1st pressure sensors with 
measuring ranges of 500 mbar and 5 bar, respectively. The shock tube, manifold and mixing vessel can be electrically 
heated to 150 °C in order to avoid fuel condensation. In this study, initial temperatures of 40 °C are sufficient due to 
the relatively high vapor pressure of n-heptane. Temperatures are monitored with type T thermocouples due to their 
lower measuring uncertainty compared to conventional type K ones. High purity grade gases for reactive mixture 
preparation (N2 and O2) were provided from Praxair and Westfalia. Helium and compressed air were used as driver 
gases. The reflected shock conditions were calculated using the initial conditions of pressure and temperature and 
mixture composition and the measured shock velocity with an in-house code which is based on the shock and 
detonation toolbox [59] in Cantera [60]. An uncertainty analysis has been performed for the PCFC shock tube and is 
provided as Supplementary material. Maximum uncertainties in the reflected shock temperatures are estimated to 
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amount to 1.1% in the reflected shock temperature and 3.5% in the reflected shock pressure. Depending on the fuel 
reactivity this can induce uncertainties of up to 15% in the measured ignition delay time for the range studied. 
 
2.2. NUIG shock tube 

 
High-temperature (above 1000 K) ignition delay times for stoichiometric mixtures of n-heptane at compressed 
pressures of 15 bar in a 21% O2 : 79% N2 bath gas were measured in the National University of Ireland, Galway 
(NUIG) high-pressure shock tube [61], with an inner diameter of 63 mm. The methodology used to measure ignition 
delay times in this facility has recently been described in our work on n-hexane [54], and thus will not be described 
further here. Again, n-heptane was supplied by TCI UK in high purity (> 99.0%), while oxygen (99.5%) and nitrogen 
(99.95%) were supplied by BOC Ireland. 
 
2.3. Jet-stirred reactor 

 
The oxidation of n-heptane was studied in a jet-stirred reactor at LRGP in Nancy (France). This reactor can be 
considered to be perfectly stirred [62] and has frequently been used for numerous gas phase kinetic oxidation 
studies of hydrocarbons and oxygenated compounds [63]. Experiments were performed at a constant pressure of 
1.067 bar, at a residence time of 2 s, at temperatures ranging from 500 to 1100 K, and at four equivalent ratios of φ 
= 0.25, 1.0, 2.0 and 4.0. The fuel was diluted in helium resulting in an n-heptane concentration of 0.5%. The fuel was 
provided by Sigma-Aldrich (purity of 99%). Helium and oxygen were provided by Messer with purities of 99.99% 
and 99.999%, respectively. 
 
The reactor is made of fused silica, and consists of a fused silica sphere (volume = 95 cm3) into which diluted reactant 
enters through an injection cross located at its center. It is operated at constant temperature and pressure and it is 
preceded by an annular pre-heating zone in which the temperature of the gases is increased to the reactor 
temperature before entering it. The gas mixture residence time inside the annular pre-heater is very short compared 
to its residence time inside the reactor (a few percent). Both the spherical reactor and the annular pre-heating zone 
are heated using resistance wires coiled around their walls. The temperature is controlled using type K 
thermocouples. The reaction temperature was measured using another independent type K thermocouple which 
was located in a glass finger at the center of the reactor (which is actually the intra annular part of the preheater). 
The uncertainty in the temperature measurement is ± 5 K. 
 
A Coriolis flow controller is used to feed n-heptane, and two mass flow controllers are used to meter the helium and 
oxygen flow rates. The fuel is mixed with helium and evaporated in a heat exchanger. Oxygen is added at the reactor 
inlet. The accuracy in flow rates given by the manufacturer (Bronkhorst) is 0.5%. This results in a small uncertainty 
of 2.00 ± 0.01 s in the residence time. 
 
Product species are analyzed directly by gas chromatography using a heated transfer line between the reactor outlet 
and the chromatograph sampling. The temperature of the line is heated to 160 °C to avoid product condensation 
during transfer. Three gas chromatographs are used for the quantification of the different species. The first 
chromatograph, equipped with a Carbosphere packed column, a thermal conductivity detector (TCD) and a flame 
ionization detector (FID), is used for the quantification of O2, CO, CO2, methane, ethylene, acetylene and ethane. The 
second is fitted with a PlotQ capillary column, a methanizer, and an FID is used for the quantification of molecules 
from methane to reaction products containing up to 5 carbon atoms and 1 or 2 oxygen atoms maximum. The third is 
fitted with a HP-5 capillary column and an FID is used for the quantification of molecules which contain at least 5 
carbon atoms. Calibrations are performed by injecting standards where available or by using the effective carbon 
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number method when standards were unavailable. The maximum relative error in mole fractions is estimated to be 
± 5% for species which are calibrated using standards and ± 10% for species calibrated using the effective carbon 
number method [64,65]. The identification of reaction products is performed using a gas chromatograph equipped 
with a PlotQ or an HP-5 capillary column and coupled to a mass spectrometer (quadrupole). The mass spectra of all 
of the detected reaction products are included in the NIST 08 Mass Spectra Database [66]. For certain species, single-
photon-ionization mass spectrometry (SPI-MS) [67] is used for higher accuracy, as shown in the experimental data 
sets provided in the Supplementary material. 
 
3. Chemical kinetic mechanism 

 
The kinetic model used in this work consists of 1268 species and 5336 reactions. The sub-mechanism for C0–C4 fuels 
is taken from AramcoMech 2.0 [57,58]. This mechanism has been widely validated for a series of fuels including 
hydrogen, syngas [48], methane, methanol [56], formaldehyde, ethane, ethylene, acetylene, ethanol, acetaldehyde 
[47], dimethyl ether [53] and propene [49,50]. The sub-mechanisms for the three pentane isomers and for n-hexane 
have also been published recently [51,54,55]. On the basis of the above mechanisms, an n-heptane sub-mechanism 
has been developed in this work. Table 1 shows the nomination of some representative species in the n-heptane sub 
mechanism. 
 
Table 1: Nomination of some representative species in n-heptane sub mechanism. 

nC7H16 
 

Ċ7H15-1 
 

C7H14-1 
 

C7H15Ȯ2-2 

 

Ċ7H14OOH2-4 

 

C7H14O2-5 

 

C7H14OOH2-4Ȯ2 

 

Ċ7H13Q13-5 

 

C7KET1-3 

 

C7KET1-3O 
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Figure 1 shows the reaction pathways for n-heptane oxidation considered in this work, which are similar to those 
considered previously [40,51,54]. The reaction pathways of a fuel are strongly dependent on its structure, and 
significantly affect the reactivity of the fuel. Compared to smaller alkanes, n-pentane shows a higher reactivity at low 
temperatures because its structure contains more connected secondary carbons. H-atom abstraction is favored at 
secondary sites compared to primary ones, where secondary pentyl peroxyl radicals formed can isomerize via 
six-membered transition state (TS) rings into hydroperoxy pentyl radicals. Six-membered TS ring formations are 
faster than any other (5-, 7-, or 8-membered ones) which is mainly due to their lower ring-strain energies and 
formation of six-membered TS ring structures contributes considerably to the chain branching process at low 
temperatures, promoting fuel reactivity [51,54,55]. Similarly, n-hexane shows a higher reactivity compared to 
n-pentane because six-membered TS ring structures are available for all of the four connected secondary carbons, 
while the reactivity of n-heptane is even higher than that of n-hexane since the ratio of secondary carbon atoms to 
primary ones is even higher again. However, the reaction pathways that need to be considered for n-pentane, 
n-hexane and n-heptane are almost identical, as shown in Figure 1. Therefore consistent reaction rate rules can be 
applied to their sub-mechanisms. 
 

 
Figure 1: Reaction pathways considered in the model development of this work. The reaction pathways induced by 

the alternative isomerization of peroxy hydroperoxyalkyl have been marked with open arrows. 
 
A series of reaction rate rules have been adopted in our previous work on the oxidation of the pentane isomers 
[51,55]. These rate rules were derived from recently published ab-initio calculations [68,73] and have been applied 
to the reaction classes in the low temperature regime. New reaction classes related to the alternative isomerization 
pathway of peroxy hydroperoxyl alkyl radicals [51] have also been added. The mechanisms for the three pentane 
isomers predict well ignition delay times with good agreement observed compared to the experimental data [55]. 
Many of the rate constants for the low temperature reaction classes (e.g. RȮ2 ⇌ Q˙OOH, etc.) for the pentane isomers 
are available from ab-initio calculations [68,71,72], but those for the hexane isomers and larger alkanes are rare. 
Therefore in the kinetic modeling study of n-hexane, the reaction rate rules were derived from those calculated for 
n-pentane but modifications were made within their uncertainty range, which have led to better agreement between 
the experimental and simulated results [54]. The refined rate rules have been used to generate the n-heptane 
mechanism used in this work to maintain consistency in the chemical kinetics. 
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The thermodynamic data of the species involved have been updated using the THERM software [74], which is based 
on the group additivity method proposed by Benson [75]. The group values used in the calculation have been 
optimized [52], and are consistent with those used for the pentane isomers and for n-hexane [51,54,55]. The kinetic 
mechanism, thermodynamic data, transport data, species glossary and group values for group additivity method are 
available as Supplementary material. In the future, this mechanism might be updated for better performance and 
released with comprehensive validations. Please visit our website http://c3.nuigalway.ie/ for more details. 
 
3.1. High temperature mechanism 

 
The most significant reaction classes in the high temperature regime of n-heptane oxidation are the unimolecular 
decomposition of the fuel and fuel derived radicals in addition to hydrogen abstraction from the fuel by the radical 
pool. To derive the rate constants for the unimolecular decomposition of n-heptane, firstly the high-pressure limit 
rate constants of the radical recombination are estimated; then the reverse rate constants are obtained using the 
CHEMRev software package [76] with their pressure dependence calculated using Quantum-Rice–Ramsperger–
Kassel/Modified Strong Collision (QRRK/MSC) theory, which has been proven to show good agreement with the 
more precise Rice–Ramsperger–Kassel–Marcus/Master Equation (RRKM/ME) approach for alkane decomposition 
[77]. The Lennard-Jones parameters for n-heptane are from Jasper and Miller [78], which are σ = 4.42 Å and ε = 213 
cm–1 in a bath gas of N2. The pressure dependent rate constants for the decomposition of the fuel-derived radicals: 
Ċ7H15-1, Ċ7H15-2 and Ċ7H15-3 are adopted from [79]. 
 
H-atom abstraction from the fuel by ȮH radicals is the most significant reaction class involving the fuel with the 
radical pool over a wide temperature range. The rate constants for these reactions have been adopted from the 
values reported by Sivaramakrishnan and Michael [80], who measured these reaction rates experimentally in a 
shock-tube using ȮH-radical electronic absorption and compared the results with literature data. H-atom abstraction 
by HȮ2 radicals contributes little to fuel consumption at low temperatures (600–750 K) but these reactions become 
more important at higher temperatures (750–1300 K) because the H2O2 molecule produced decomposes into two 
ȮH radicals, greatly promoting reactivity. The rate constants for H-atom abstraction from the fuel by HȮ2 radicals 
are adopted from [81]. Other reactions in the high temperature regime and their rate constants are mainly derived 
from the n-heptane mechanism proposed by Curran et al. [40]. 
 
3.2. Low temperature mechanism 

 
The low-temperature reaction pathways are illustrated in the upper part of Figure 1. In the low-temperature regime, 
the fuel derived radicals (Ṙ) add to molecular oxygen to form alkylperoxy radicals (RȮ2). Further isomerization of 
RȮ2 via ring transition states and internal hydrogen atom transfer leads to the formation of hydroperoxy-alkyl 
radicals (Q˙OOH). The most important competing reaction class is the concerted elimination forming C7 olefins and 
HȮ2 radicals, which becomes more competitive as the temperature increases. At low- and intermediate-
temperatures this concerted elimination reaction tends to reduce reactivity, because it consumes a reactive radical 
(usually ȮH) in the hydrogen abstraction reaction from the fuel, and produces an HȮ2 radical which is less reactive. 
Other consumption reactions of RȮ2 are bi-molecular reactions, but only play a minor role in the reaction flux. For 
the consumption of Q˙OOH radicals, the addition to molecular oxygen is a significant step, producing peroxy 
alkylhydroperoxide radicals (Ȯ2QOOH) as the precursor of ketohydroperoxides. ȮH radicals are produced from both 
the formation and decomposition of ketohydroperoxides, which makes this reaction sequence the major chain 
branching process at low temperatures. Meanwhile, the consumption of Q˙OOH radicals also has other channels. As 
the O–O bond in the hydroperoxy group is weak, the consumption of Q˙OOH radical can produce small molecule 
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products or cyclic ethers and release an ȮH radical, which contributes to the chain propagation process. The beta-
scissions of C–O bonds that produce olefins and HO2 radicals are only available for certain structures such as 
C7H14OOH1-2 and are thus less important. 
 
The equilibrium between RȮ2 and Q˙OOH radicals significantly influences fuel reactivity at low- and intermediate-
temperatures. The concerted elimination reaction of RȮ2 leads to chain propagation while the addition of Q˙OOH 
radicals to O2 ultimately contributes to chain branching. Other significant reaction classes that can affect this 
equilibrium include the addition of Ṙ to O2, the formation of cyclic ethers and the formation of ketohydroperoxides. 
The modified reaction rate rules for the above mentioned reaction classes are consistent with those proposed for 
n-hexane [54], as shown in Table 2. Detailed discussions of the comparison of rate rules and the refinements can be 
found elsewhere [51]. 
 
Table 2: Modifications to the reaction rate rules. 

Reaction Rate 
rules 

Details Example 

RȮ2 ⇌  QW OOH Table 6 
in 

[68] 

A × 0.5 for those using nearest analogy, which were not calculated: 

5 member ring, O2 on secondary, 
abstraction on primary 

C7H15Ȯ2-2 ⇌ Ċ7H14OOH2-1 

7 member ring, O2 on secondary, 
abstraction on secondary 

C7H15Ȯ2-2 ⇌ Ċ7H14OOH2-5 

8 member ring, O2 on secondary, 
abstraction on primary 

C7H15Ȯ2-2 ⇌ Ċ7H14OOH2-6 

Cyclic ether 
formation 

Table 3 
in [72] 

All A factors × 0.5 

Ea+1 kcal for:  

CY/C4O, OOH on primary, radical on 
secondary 

Ċ7H14OOH1-4 <=> C7H14O1-4+ȮH    

CY/C3O, OOH on secondary, radical 
on secondary 

Ċ7H14OOH2-4 <=> C7H14O2-4+ȮH    

Ea-1 kcal for:  

CY/C4O, OOH on secondary, radical 
on secondary 

Ċ7H14OOH2-5 <=> C7H14O2-5+ȮH    

Concerted HȮ2 
elimination 

Table 4 
of [71] 

A × 1.5 for: 

O2 on primary, H on secondary C7H15Ȯ2-1 <=> C7H14-1 + HȮ2 

O2 on secondary, H on primary C7H15Ȯ2-2 <=> C7H14-1 + HȮ2 

O2 on S11, H on S11.                                  
(P1-S10-S11-S11-S10-P1) 

C7H15Ȯ2-3 <=> C7H14-3 + HȮ2 

Second addition to 
O2 

Table IV 
of [69] 

A × 0.5 from the first addition to O2 Ċ7H14OOH1-2+O2<=>C7H14OOH1-2Ȯ2 

 
The red open arrows in Figure 1 denote the reaction classes induced by the alternative isomerization pathways of 
Ȯ2QOOH radicals. These reaction classes have been proposed in our previous work [51,54], with their reaction rate 
constants taken by analogy with those possible for RȮ2 radicals. Although the adoption of alternative isomerization 
pathways has proven to have a limited effect upon model predictions for n-hexane [54], these reaction classes have 
been included for n-heptane to reflect the complexity of the low temperature chemistry, which become more 
important for the oxidation of branched alkanes [51]. 
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4. Results and discussion 

 

4.1. High pressure shock tube data 

 
The ignition delay times for the oxidation of stoichiometric n-heptane/air mixtures at different pressures have been 
measured in the PCFC high pressure shock tube, see solid symbols in Figure 2, over the temperature range of 688–
1412 K, which includes the low, intermediate and high temperature regimes. The new data sets are consistent with 
those reported in previous work [82,83] which are depicted as half-filled symbols and open symbols respectively, 
showing a significant pressure effect reflected by the decrease in ignition delay times and the shifting of the negative 
temperature coefficient (NTC) region towards higher temperatures [5] at higher pressures. Furthermore, simulation 
results using the kinetic mechanism presented in this study are shown. Shock tube ignition delay times are simulated 
using the constant volume closed homogenous batch reactor code in CHEMKIN PRO [84]. It is assumed that the 
changes in conditions induced by facility effects in the region near the endwall can be treated as an isentropic 
compression/expansion by an effective volume change as in the RCM. These CHEMKIN PRO input files and the 
experimental data are available as Supplementary material. In the following descriptions, the ignition event in the 
simulation is defined as the maximum pressure rise unless the experimental data sets taken from literatures define 
the ignition delay differently. 
 

 
Figure 2: Experimental (symbols) and modeling results (lines) for n-heptane ignition delay times at multiple 

conditions (in air, φ = 1.0). Half-filled symbols are experimental data from [82], while solid symbols are 
experimental data measured in this work. Open symbols are experimental data from [83]. Solid and dashed lines 

are predictions with and without the modifications in the rate rules, respectively. 
 
It is important to note that the different data sets have been obtained in different facilities. This is a critical aspect 
regarding the level of confidence of the experimental results. By considering results taken at the same conditions but 
from different facilities, a higher level of confidence can be attributed to the experimental results. This has motivated 
a repeat of experiments in this study at conditions that have been reported previously. 
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Another aspect of this investigation is the treatment of facility effects. The conditions such as pressure and 
temperature behind the reflected shock are ideally constant. However, in the real process both the pressure and 
temperature behind the reflected shock increase with time due to boundary layer effects inside the shock tube and 
the non-ideal opening of diaphragms. This leads to pressure and temperature gradients influencing the ignition 
process. As a result, the measured ignition delay times may be shorter than those assuming ideal conditions. More 
detailed discussion on these shock tube facility effects can be found in [85]. In general, these effects become stronger 
with smaller inner diameter tubes and longer measuring times. In Figure 2 the results of shock tubes with inner 
diameters of 50 mm [83], 63.5 mm (this study) and 140 mm [82] are shown. In [82] an average pressure gradient of 
p/p0 = 3%/ms is given for the 140 mm tube. The PCFC tube has an average pressure gradient of 8%/ms due to the 
smaller inner diameter. This pressure gradient has been determined from non-reactive measurements (Figure 3). 
Pressure gradients of the 50 mm tube have previously been reported to amount to around 10%/ms [85]. 
 

 
Figure 3: An example non-reactive pressure trace. 

 
At high pressures, where ignition delay times are well below 1 ms, these different pressure gradients hardly have an 
effect on ignition delay times and in this case the simulations can be performed assuming a truly constant volume 
reactor. For longer measuring times above 1 ms, facility effects are taken into account by assuming a volume change 
reflecting the experimentally observed constant increase in pressure as appropriate, depending on the shock tube 
as discussed above. Comparing the experimental results with the kinetic simulation including a proper treatment of 
the facility induced increase in pressure and temperature, it becomes obvious that the mechanism is able to predict 
the measured ignition delay times within 15%, which is within the experimental uncertainty. 
 
It can be seen in Figure 2 that the model predicts well the measured ignition delay times when the facility effect is 
considered (solid lines). The previous and current results appear inconsistent in ignition delay times at 38 bar, 
because both the current experiments and simulations were not performed at precisely 38 bar as in [82] (see the 
experimental data in the Supplementary material). Therefore the inconsistency is caused by the pressure effect. By 
using the specific experimental temperatures and pressures in our simulations, the model can successfully 
reproduce both the current and the previous experimental results. It is worth noting that the simulations using 
varying volume traces obtained from the experimentally measured non-reactive pressure profiles are very similar 
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to those assuming an average constant increase in pressure of 8%/ms, which is consistent with the average pressure 
gradient of 7–8%/ms assumed for the PCFC shock tube. The dashed lines in Figure 2 represent the simulations with 
the current mechanism using unmodified rate rules, which tend to under-predict ignition delay times over the entire 
temperature range. This trend is similar to those observed in the kinetic and modeling study of n-hexane [54]. 
 
As an additional input to the ignition delay times at higher temperature, Figure 4 shows the ignition delay times 
measured in the high-pressure shock tube at NUIG for n-heptane oxidation at φ = 1.0 and 15 bar in the temperature 
range 1058–1298 K. The agreement between the experimental (points) and modeling results (solid line) are good, 
which further validates the high temperature n-heptane chemistry. The dashed line shows model simulations with 
unmodified rate rules. The slight difference between the predictions indicates that those modifications have only a 
minor effect in this temperature regime. 

 

 
Figure 4: Experimental (symbols) and modeling results (lines) for ignition delay times of stoichiometric 

n-heptane/air mixture at 15 bar. Solid and dashed lines are predictions with and without the modifications in the 
rate rules, respectively. 

 
The mechanism has also been validated using shock tube ignition delay time data from the literature. Campbell et al. 
[86] used a shock tube to measure ignition delay times for n-heptane oxidation in the temperature range 651–823 K 
and at pressures between 6.1 and 7.4 atm at φ = 0.75 in 15% O2/5%CO2/Ar and in 15% O2/Ar mixtures. Both 
first-stage (cool flame) and second-stage (total) ignition delay times were measured, providing critically needed 
targets for further validation of kinetic models. Figure 5 shows the experimental and modeling results for that study 
[86] which used the LLNL mechanism [42], and the predictions using the current model as well as several other 
models [16,30,46]. It can be seen that the current mechanism generally shows a better performance in predicting 
both the first and the second stage ignition delay times. 
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Figure 5: Experimental (symbols) [86] and modeling results (lines) for n-heptane/15%O2/5%CO2/Ar mixture 

ignition delay times at multiple conditions. Solid lines are predictions using current mechanism and dashed lines 
are predictions using mechanisms from (a) [42], (b) [16], (c) [30], (d) [46]. 

 
Shen et al. [45] measured ignition delay times for several n-alkane/air mixtures in a heated shock tube. The 
experimental results for n-heptane, which were measured at φ = 0.25, 0.5 and 1.0 at multiple pressures are shown 
in Figure 6. These results show the varying reactivity of n-heptane depending on temperature, pressure and 
equivalence ratio, which have been well captured by the current model. Here the maximum in excited OH radical 
concentration is defined as the ignition delay event, which is consistent with that reported in [45]. Some 
discrepancies can be seen at conditions such as φ = 0.5 at 13 atm. However, the relevant experimental data is not 
completely consistent with those under similar conditions shown in Figure 7. Therefore these discrepancies can be 
partly attributed to the uncertainties of some specific data points from the literature. Ciezki and Adomeit 
investigated the ignition delay times for n-heptane/air mixtures in a high pressure shock tube for equivalence ratios 
of 0.5 to 3.0, at pressures between 3.2 and 42 bar in the temperature range of 660–1350 K [5]. These experimental 
data have been the benchmark for validating n-heptane oxidation mechanisms [16,17,30,40,42,44] for many years. 
Figure 7 shows a comparison of the experimental results reported by Ciezki and Adomeit and the predictions using 
the current mechanism, which indicates that it captures well the trend of the reactivity with the varying equivalence 
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ratio, pressure and temperature ranges. The comparison of the predictions using the current mechanism and several 
other recently published ones [16,30,42,44,46] are shown in Figure 8(a), (b), (c), (d) and (e) respectively. 
 

 
Figure 6: Experimental (symbols) [45] and modeling results (lines) for n-heptane/air mixture ignition delay times 

at multiple conditions. 
 

 
Figure 7: Experimental (symbols) [5] and modeling results (lines) for n-heptane/air mixture ignition delay times at 

multiple conditions. 
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Figure 8: Comparisons of the predicted ignition delay times at multiple conditions using the current mechanism 
and several other ones proposed recently. Experimental data (symbols) are from [5]. Solid lines are predictions 

using current mechanism. Dashed lines are predictions using mechanisms from: (a) [42], (b) [16], (c) [44], (d) [30], 
(e) [46]. 

 
A brute force sensitivity analysis was performed using CHEMKIN PRO [84] at φ = 1.0, p = 20 bar, T = 720 K, and at 
820 K and 1000 K respectively to determine the reactions that are most significant for the ignition process, Figure 9.  
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Figure 9: Sensitivity analysis on the ignition delay time of n-heptane at T = 720 K, 820 K and 1000 K, P = 20 bar. 

Negative sensitivity coefficients indicate decreases in ignition delay times. 
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In the analysis, the rate constants of each reaction were increased and decreased by a factor of two (�� and ��), and 
the simulations were performed using two mechanisms adopting these changes to obtain the ignition delay times 
(�� and ��). The sensitivity coefficient (�) is then defined as follows: 
 

� =
��(
�/

)

��(��/�
)
=

��(
�/
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From the definition above, it can be concluded that a reaction with a positive sensitivity coefficient inhibits reactivity 
while that with a negative sensitivity coefficient promotes reactivity. 
 
At low temperatures, the consumption of the fuel is mainly initiated by H-atom abstraction from the fuel by ȮH 
radicals, followed by propagation via addition to O2 → isomerization to Q˙OOH → addition to O2, and the branching 

process via the formation and decomposition of ketohydroperoxides which produce ȮH radicals, promoting 

reactivity. Therefore at low temperatures, the reactivity is dominated by chain branching from the fuel, depicted in 

Figure 9(a). Hydrogen and other small species chemistry is only of minor importance. The most significant reactions 

promoting reactivity are those leading to the formation and decomposition of ketohydroperoxides. However, the 

formation of ketohydroperoxides via the isomerizations of Ȯ2QOOH radicals is not sensitive, because at low 

temperatures this reaction class dominates the consumption of Ȯ2QOOH radicals, while other consumption 

pathways such as the beta-scissions of Q˙OOH radicals cannot compete with their addition to molecular oxygen, even 

when their A factors are reduced by a factor of two. The newly adopted alternative isomerization reactions of 

Ȯ2QOOH radicals only show minor contributions as discussed in a previous work [54]. 

 

n-Heptane composes only primary and secondary carbon atoms. H-atom abstraction from fuel by the radical pool 

mainly occurs at secondary carbon sites because the C–H bonds are weaker compared to those on primary carbons. 

For the same reason, the hydrogen atoms on secondary carbons are favored for the internal H-atom 

transfer/abstraction process in the isomerization of RȮ2 to Q˙OOH radicals. Meanwhile, the isomerization of RȮ2 to 

Q˙OOH radicals prefers six-membered ring transition states since they have the lowest ring strain energies. These 

preferences of relevant reaction classes are also reflected in Fig 9(a). For example, the most sensitive reaction 

promoting reactivity is the addition of Ċ7H14OOH2-4 radicals to O2. These are produced through the sequence of 

hydrogen abstraction from a secondary carbon → addition to O2 → isomerization via a six-membered transition state 

ring and internal abstraction of a secondary H-atom. The decomposition of the relevant ketohydroperoxide, 

C7KET24, also significantly promotes reactivity. Similarly, the additions of Ċ7H14OOH3-5 radicals to O2 also 

contribute significantly to reactivity, with certain differences caused by the branching ratios of hydrogen abstraction 

reactions from the fuel. On the other hand, the concerted (olefin + HȮ2 radical) elimination reactions are the most 

inhibiting at low temperatures. Although HȮ2 radicals can abstract hydrogen atoms from the fuel, these reactions 

are considerably endothermic and contribute little to fuel consumption at low temperatures. In addition, H-atom 

abstraction from the fuel by HȮ2 radicals produces H2O2 which only decomposes easily into ȮH radicals at higher 

temperatures (∼850 K). As has been discussed above, the equilibrium between RȮ2 and Q˙OOH radicals significantly 

influences fuel reactivity at low temperatures. This is consistent with Figure 9(a) since the concerted elimination 

reactions of RȮ2 play a key role in reducing reactivity, while the addition of Q˙OOH to O2 greatly increases it. The 

predicted reactivity of n-heptane (Figure 2) and n-hexane [54] become lower when modified reaction rate rules are 

used, which can be mainly attributed to the enhanced concerted elimination reactions in the modification [54]. 

 

Figure 9(b) shows the results of the sensitivity analysis performed in the NTC region at 820 K. With an increase in 

temperature, there is an increased competition between chain branching and chain propagation/termination 

reactions. Under these conditions, the addition of Q˙OOH radicals to O2 and the concerted elimination reactions of 

RȮ2 radicals continue to be important promoting and inhibiting reaction classes, respectively. However, the 
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chemistry of small molecules starts to become important. The most important reaction promoting reactivity is the 
decomposition of H2O2, while the most inhibiting reaction is the chain termination reaction HȮ2 + HȮ2 = H2O2 + O2. 
This is because in this reaction two HȮ2 radicals are consumed to produce just one H2O2 molecule leading to the 
formation of two reactive ȮH radicals, whereas if one HȮ2 radical reacts with any stable species two radicals and two 
H2O2 molecules will be produced leading to the formation of four reactive ȮH radicals. Moreover, even though the 
decomposition of H2O2 into ȮH radicals promotes reactivity, this reaction is endothermic and only becomes 
significant at higher temperatures. At 820 K, HȮ2 radicals can also be converted into more reactive ȮH radicals via 
reaction with ĊH3 and CH3Ȯ2 radicals, promoting reactivity as shown in Figure 9(b), or inhibit reactivity through the 
chain-termination reaction producing H2O2 and O2. However, the temperature can increase to temperatures above 
900 K after the first stage ignition, making the decomposition of H2O2 much easier and promoting reactivity. The 
sensitivity coefficients shown in Figure 9(b) reflect the influences of different reactions integrated over the entire 
ignition process. It indicates that the production and consumption reactions of HȮ2 radicals play a significant role in 
the NTC region, and are sensitive to the increase in temperature leading to ignition. 
 
The relatively large sensitivity coefficient of H-atom abstraction from primary carbon atoms indicates the branching 
ratio of this reaction class is also important in controlling reactivity. As discussed above, H-atom abstraction occurs 
preferentially from secondary carbon atoms. However, the concerted elimination reaction that inhibits reactivity 
also favors secondary alkylperoxy radicals, since there are more hydrogen atoms on beta carbons. On the other hand, 
primary alkylperoxy radicals, C7H15-1Ȯ2, only have two hydrogen atoms on the beta carbon leading to the concerted 
elimination reaction, and therefore there is less competition from this reaction class in the sequent chain branching 
process. Besides H2/O2 and C1 chemistry, the reactions of other small molecules also become sensitive. For example, 
the concerted elimination of n-propyl peroxide radical (nC3H7Ȯ2) inhibits reactivity. These small molecule radicals 
are mainly produced from the β-scission of fuel-derived radicals or from low-temperature products of the chain 
branching process. 
 
The chemistry of small molecule species is even more important in the high-temperature regime, as shown in Figure 
9(c). As the temperature increases, the decomposition of H2O2 is further enhanced and becomes the dominant 
reaction promoting reactivity. Correspondingly, H-atom abstraction from fuel by HȮ2 radicals, which converts HȮ2 
radicals into H2O2, greatly promotes reactivity. On the other hand, the duplicated chain terminating reactions of HȮ2 
radicals are the most inhibiting reactions, as discussed above. The unimolecular decomposition of the fuel and 
β-scission of the fuel-derived radicals show positive or negative sensitivity coefficients depending on the reactivity 
of the different smaller hydrocarbon species produced. The low-temperature chain branching reactions are not 
observed to be sensitive in Figure 9(c) due to the high temperature conditions. A series of reactions between small 
molecule hydrocarbon radicals and HȮ2 radicals are shown in Figure 9(c). In general, those converting HȮ2 into ȮH 
radicals directly or indirectly promote reactivity, while those converting HȮ2 into O2 inhibit reactivity. 
 
4.2. Jet stirred reactor 

 
The jet-stirred reactor experiments were performed at 1.06 bar, at a residence time of 2 s and at equivalence ratios 
of 0.25, 2.0 and 4.0 in order to extend the relevant experimental database to very lean (φ = 0.25) and very rich (φ = 
4.0) conditions. Detailed compositions of the mixtures are listed in Table 3, with over 40 species being identified. 
The intermediates include C1–C2 alcohols, C1–C4 aldehydes, C1–C4 alkanes, C2–C7 alkenes, small molecular dienes and 
alkynes, C7 cyclic ethers, as well as other oxygenated species such as acids and unsaturated aldehydes, which can be 
produced from the low-temperature oxidation process. The simulation has been performed using the perfectly-
stirred reactor module within CHEMKIN PRO [84] employing the transient solver, with an end-time of 20 s. Figures 



18 
 

10, 11 and 12 present the model versus experimental results at equivalence ratios of 0.25, 2.0 and 4.0, respectively. 
The experimental data sets are available in the supplementary material. 
 
Table 3: The detailed composition of the reactant mixtures in jet-stirred reactor experiments. 

φ Inlet concentration (%) 

 n-heptane O2 He 

4.00 0.50 1.38 98.13 

2.00 0.50 2.75 96.75 

0.25 0.50 22.00 77.50 

 

 
Figure 10: Experimental (symbols) and modeling results (lines) for n-heptane oxidation in jet-stirred reactor at 

1.06 bar with residence time = 2 s, φ = 4.0, 0.5% fuel diluted by helium. Solid and dashed lines are predictions with 
and without the modifications in the rate rules, respectively. 
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Figure 11: Experimental (symbols) and modeling results (lines) for n-heptane oxidation in jet-stirred reactor at 

1.06 bar with residence time = 2 s, φ = 2.0, 0.5% fuel diluted by helium. Solid and dashed lines are predictions with 
and without the modifications in the rate rules, respectively. 

 
The NTC behavior of n-heptane under different conditions is reflected in the experimental results. In general, the 
experimental trends are well captured by the model, except for the under-prediction in reactivity at φ = 0.25 at a 
temperature of approximately 750 K, indicating that the current mechanism can capture the overall chemical 
behavior of n-heptane under most conditions studied in the present work. Good agreement is observed between the 
experimental results and the predictions for major intermediates, with the deviations in the peak concentrations 
being mostly within a factor of two of the experiments. However, the deviations for oxygenated species at low 
temperatures, such as those shown in Figures 10(j), 11(b) and 11(f), suggest that the consumption pathway of the 
low-temperature chemistry products can be further refined. In the current mechanism, the Korcek mechanism [87] 
which produces acids from ketohydroperoxides has also been considered, with the rate constants adopted from 
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Pelucchi et al. [44]. However, the effects of adopting this reaction class are very slight, as the concentrations of the 
acids are under-predicted at all conditions studied in this work, especially for the leanest mixture. This might be due 
to the fast decomposition of ketohydroperoxides in the current model which requires further investigation of the 
detailed reaction pathways that consume ketohydroperoxides. The dashed lines present the simulations using the 
mechanism with unmodified rate rules. It can be see that the new modifications have only a slight effect upon the 
predicted mole fraction profiles of major species. The dashed lines are overlapping with the solid lines for many 
cases. 
 

 
Figure 12: Experimental (symbols) and modeling results (lines) for n-heptane oxidation in jet-stirred reactor at 
1.06 bar with residence time = 2 s, φ = 0.25, 0.5% fuel diluted by helium. Solid and dashed lines are predictions 

with and without the modifications in the rate rules, respectively. 
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It is worth noting that two important classes of intermediates are reasonably well predicted by the model, that is, 
heptenes and C7 cyclic ethers. As shown in Figure 10, 11 and 12(m), the heptene isomers are largely produced from 
the concerted elimination reactions of RȮ2 radicals, to which ignition delay times are sensitive, showing different 
effects depending on the temperature range, as discussed earlier. The overall agreement between the model and 
experimental results of 1-, 2- and 3-heptene are better predicted using the modified rate rules adopted here, yet the 
branching ratio may need to be further refined. Another possible reason for the deviations, especially those at 
intermediate temperatures, may be attributable to the consumption pathways of these alkenes. The experimental 
and simulated mole fraction profiles of five different C7 cyclic ethers are shown in Figures 10, 11 and 12(n)–(o). 
These species are produced from the chain propagating reactions of Q˙OOH radicals forming cyclic ethers and ȮH 
radicals. Although this reaction class is not seen to be sensitive according to our analysis presented above, its 
significance for the consumption of RȮ2 radicals cannot be neglected, as will be shown in the rate of production 
analysis below. Using the modified rate rules adopted here, in general the predicted mole fraction profiles agree 
better with the experimental results. Even at φ = 0.25, where the performance of the model is not as good as at the 
other equivalence ratios, the predicted peak concentration of cyclic ethers match the magnitude of the measured 
values. 
 
Figures 13 and 14 present the validation of the model against experimental data from previous studies [16,17] in 
the same jet-stirred reactor. The experimental conditions are similar having a fuel concentration of 0.5% using 
helium as the diluent gas. The pressure was 1.06 bar with the residence time of 2 s. The equivalence ratios were 1.0 
and 3.0, respectively. The agreement of the predicted mole fraction profiles with the measured ones is good for the 
major species.  

 
Figure 13: Experimental (symbols) [16] and modeling results (lines) for n-heptane oxidation in jet-stirred reactor 

at 1.06 bar with residence time = 2 s, φ = 1.0, 0.5% fuel diluted by helium. 
 
Figures 13(d) and (f) shows the mole fraction profiles of cyclic ethers and the heptene isomers. The cyclic ethers are 
well-predicted, while the heptenes are over-predicted within a factor of two. Similar trends are seen in Figure 14(d) 
for the φ = 3.0 condition, as the concentrations of the two cyclic ethers are well predicted, while the agreement for 
1- and 2-heptene shown in Figure 14(f), are better than those at the stoichiometric condition. However, certain 
deviations are observed at low temperatures for oxygenated species at φ = 3.0, such as acetaldehyde and propanal 
shown in Figures 14(c) and (e). Figure 15 shows the validations at higher pressures, which uses the experimental 
data from Dagaut et al. [14]. The model can in general reproduce well the species mole fraction profiles. The 
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predicted mole fraction profiles of the heptane isomers agree better with the experimental results as shown in Figure 
15(f) compared to those at 1.06 bar, while certain deviations between the experimental and modeling results can be 
observed for some smaller alkenes such as ethylene and propene as shown in Figures 15(b) and (c). These 
observations indicate that the consumption pathways for the primary oxidation products of n-heptane may need 
further refinement, possibly by firstly considering their pressure dependence. 
 

 
Figure 14: Experimental (symbols) [17] and modeling results (lines) for n-heptane oxidation in jet-stirred reactor 

at 1.06 bar with residence time = 2 s, φ = 3.0, 0.5% fuel diluted by helium. 
 

 
Figure 15: Experimental (symbols) [14] and modeling results (lines) for n-heptane oxidation in jet-stirred reactor 

at 10 bar with residence time = 1 s, φ = 1.0, 0.1% fuel diluted by nitrogen. 
 
Simulations have also been performed using the mechanisms proposed by Mehl et al. [42], Herbinet et al. [16], 
Pelucchi et al. [44] Seidel et al. [30] and Cai et al. [46] and compared with those of the current mechanism. The 
experimental data sets are taken from [16]. Comparisons are shown in Figure 16, with each row comparing the 
simulated results using the current mechanism compared to the target mechanism, which indicates that the current 
mechanism has an overall better performance. Rate of production analyses have been performed for n-heptane 
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oxidation in the jet-stirred reactor using helium diluted at 0.5% fuel, at a residence time of 2 s, at φ = 1, and at T = 
650, 850 and 1000 K in order to reflect the significant reaction pathways over the entire temperature range. Based 
on the results at the three different temperatures, a reaction pathway diagram has been generated following two 
principles and is shown in Figure 17.  
 

 
Figure 16: Comparisons of experimental results (symbols) [16] and predictions using the current mechanism and 

several other ones proposed recently. Solid lines are predictions using current mechanism. Dashed lines are 
predictions using mechanisms from: Row (a) [42], Row (b) [16], Row (c) [44], Row (d) [30], Row (e) [46]. 

 
Considering the neatness of the diagram, the first principle is that, the reaction pathways with contributions of less 
than 10% at all three temperatures are not shown. Some of the remaining pathways may have very low contributions 
at either low or high temperatures due to their dependence on temperature; e.g. the addition of fuel derived radicals 
to oxygen. Therefore the second principle is that, if a reaction pathway has a contribution of less than 6%, the 
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contributions of the sequent reaction pathways of its product are not shown. The arrows denote reaction pathways, 
with their contributions under different temperatures indicated using different fonts: red italic denotes T = 650 K, 
black bold denotes T = 850 K and blue underlined denotes T = 1000 K. 
 

 
Figure 17: Reaction flux for n-hexane oxidation in jet stirred reactor at P = 1.06 bar with 0.5% fuel in helium, τ = 2 
s. The contributions of the reactions are marked. Red italic, black bold and blue underlined numbers are at φ = 1.0, 
T = 650 K, 850 K and 1000 K, respectively. Numbers with red frames and red backgrounds are at φ = 0.25 and φ = 

4.0 at T = 650 K. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article). 
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At all three temperatures, fuel consumption occurs mainly via H-atom abstraction by the radical pool, with a slight 
change in the branching ratios leading to different fuel derived radicals (Ṙ). An analysis of the branching ratio for 
abstraction by different radicals indicates that the contribution of H-atom abstraction by ȮH radicals to fuel 
consumption is 95.8% at 650 K, 78.1% at 850 K and 43.5% at 1000 K, while that by Ḣ atoms is 3.1% at 650 K, 9.1% 
at 850 K and 52.7% at 1000 K. This reflects the inhibited chain propagating process due to increasing temperature, 
as well as the enhanced β-scission of fuel derived radicals which readily produce Ḣ atoms in the sequent 
dehydrogenation reactions. This overall trend can also be observed from the change in flux distribution with 
increasing temperature. Unlike those of ȮH radicals and Ḣ atoms, the contributions to fuel consumption of H-atom 
abstraction by HȮ2 radical is 0.7% at 650 K, 9.1% at 850 K and 2.2% at 1000 K. This trend is consistent with the 
discussions on sensitivity analysis for ignition delay time in that H-atom abstraction from the fuel by HȮ2 radicals 
plays an important role at intermediate temperatures (∼850–1300 K). The production of Ṙ radicals is depicted in 
the upper left part of Figure 17, and the consumption is shown in the order of 1-, 2-, 3- and 4-heptyl vertically. In 
general, the chain propagation and chain branching processes in the consumption of each fuel radical are depicted 
from left to right in Figure 17; the left edge shows the reaction classes such as the β-scission and isomerization 
reactions of alkyl radicals, followed by chain propagation reactions including the addition of alkyl radicals to O2, 
concerted elimination of RȮ2 radicals producing an HȮ2 radical and an olefin, which competes with the isomerization 
of RȮ2 into Q˙OOH radicals. In the middle part of Figure 17, the multiple consumption channels of Q˙OOH are shown, 
including Q˙OOH radical addition to O2, the formation of cyclic ethers and also the β-scission reactions producing 
smaller molecule products. On the right edge, the chain branching step is reached via the formation of 
ketohydroperoxide species and bi-hydroperoxy alkyl radicals. The formation and decomposition of the former 
produce two ȮH radicals in total, while the decomposition of the latter also releases two ȮH radicals. The further 
decomposition pathways of these species are not depicted here in order to reduce the size of the figure. Alternative 
isomerization reactions are more important for Ȯ2QOOH radicals where the hydroperoxy groups are on primary 
carbon atoms. This is because the C–H bonds are stronger and are not favored by the internal H-atom transfer 
process. Although for n-heptane, the alternative isomerization reaction leads to chain branching which can also be 
reached via the formation of ketohydroperoxides, this additional pathway may be important for branched alkanes 
when the formation of ketohydroperoxides is not possible [51]. 
 
At 650 K, the chain branching process dominates, with the production of ketohydroperoxides and bi-hydroperoxyl 
alkyl radicals at the right end of Figure 17. The β-scission pathway of each fuel derived radical can be neglected. The 
concerted elimination reactions of RȮ2 have lesser contributions compared to those of the isomerization into Q˙OOH 
radicals. However, ignition delay time predictions are very sensitive to these concerted elimination reactions where 
an increase in their rate reduces reactivity, as shown in Figure 9. On the other hand, the flux leading to cyclic ethers 
is quite high. For each RȮ2 radical, the 1,4 H-atom transfer channel is favored over the other isomerization pathways, 
and the sequent formation of five membered ring cyclic ethers dominates the consumption of the corresponding 
Q˙OOH radicals. However, the reactivity of the system is in-sensitive to the formation of cyclic ethers because these 
chain propagation reactions produce ȮH radicals which are much more reactive than the HȮ2 radicals produced from 
the concerted elimination reactions of RȮ2 radicals at low temperatures. As the temperature increases to 850 K, the 
chain propagation pathways become more dominant and there is little flux to chain branching and Q˙OOH radical 
addition to O2. An obvious feature in the reaction pathways is that the concerted elimination reactions largely 
consume RȮ2 radicals, especially secondary RȮ2 radicals since there are more hydrogen atoms on the beta carbons. 
Meanwhile, the formation of cyclic ethers is also enhanced. As has been discussed previously, the production of 1-
heptyl radicals promotes reactivity, with this class of reaction showing a relatively large sensitivity coefficient at 
intermediate temperatures. This may be partly explained by the consumption channels of different fuel radicals 
shown in Figure 17. While the concerted elimination reaction dominates the consumption of 2-, 3- and 4-heptyl 
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radicals, the isomerization reactions contribute about 69% in total to the consumption of 1-heptyl radicals. 
Therefore the production of 1-heptyl radicals, compared to the other heptyl radicals, increases the chain branching 
process, and thus promotes reactivity. At the higher temperature condition of 1000 K, the only important 
consumption pathways for alkyl radicals are β-scissions, simultaneously producing smaller hydrocarbon radicals 
and olefins. Therefore the chemistry of these smaller hydrocarbon species becomes important in controlling the 
reactivity of the system. The addition of alkyl radicals to molecular oxygen has only a minor contribution to the 
overall flux of the system. 
 
Rate of production analyses have also been performed at φ = 0.25 and φ = 4.0 at T = 650 K to determine the influence 
of equivalence ratio upon the oxidation of n-heptane through the reaction pathways shown in Figure 17. The 
contributions have been marked with numbers in red frames and numbers with red backgrounds for φ = 0.25 and 
φ = 4.0 at T = 650 K, respectively. As shown by the experimental conditions in Table 3, the concentration of the fuel 
remains constant, while that of oxygen varies with increasing equivalence ratio. As a result, the reactions involving 
oxygen are enhanced at φ = 0.25 and inhibited at φ = 4.0. This is reflected in Figure 17 in that the additions of Ṙ and 
Q˙OOH radicals to molecular oxygen, especially the latter, have higher contributions at the fuel-lean condition. For 
example, the addition of C7H14OOH4-2 radicals to oxygen account for 89.2%, 67.2% and 35.5% to its consumption at 
φ = 0.25, 1.0, and 4.0, respectively, shown at the bottom of Figure 17. For the consumption of Q˙OOH radicals, the 
lower contribution of the addition to O2 with an increase in equivalence ratio leads directly to the higher contribution 
of cyclic ether formation. Meanwhile, the equilibrium between RȮ2 and Q˙OOH radicals is also affected. As the 
consumption of Q˙OOH radicals is actually inhibited by the lack of O2 at the fuel-rich condition, the isomerization of 
Q˙OOH radicals back to RȮ2 radicals and the consumption of RȮ2 radicals via other reaction pathways are promoted. 
Figure 17 shows that the production of 3-heptene from C7H15-4Ȯ2 radical contribute 15.3%, 32.9% and 45.7% to its 
consumption at φ = 0.25, 1.0, and 4.0, respectively. According to the results and discussions of the sensitivity analysis 
shown in Figure 9, these changes lead to a lower reactivity at fuel-rich conditions, which is consistent with the fuel 
consumption values shown in Figure 10, Figure 11 and Figure 12(b). On the other hand, the branching ratios in the 
production of different fuel derived radicals are very similar at all of the three equivalence ratios. This is because 
H-atom abstraction from the fuel occurs mainly via ȮH radicals, with only minor contributions from the other 
radicals, but varies with equivalence ratio. Similarly, the branching ratios of different consumption channels of 
Ȯ2QOOH radicals are also highly consistent despite of the varying equivalence ratio, since they are mainly consumed 
via isomerization and sequent decomposition. 
 
4.3. Laminar flame speed predictions 

 
The current mechanism has been validated using the laminar flame speed data reported in [24-26]. The comparisons 
are shown in Figures 18, 19 and 20. The simulation used the premix code in CHEMKIN PRO [84]. Considering the 
high temperature condition in the flame, the current mechanism has been reduced by removing most of the reactions 
involving low-temperature species. This reduced mechanism, or the high temperature version of the current 
mechanism, is also available as Supplementary material and at the C3 website: http://c3.nuigalway.ie/. 
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Figure 18: Experimental (symbols) [26] and modeling results (lines) for the laminar flame speed of n-heptane in 

air at 1 atm and different initial temperatures. 
 

 
Figure 19: Experimental (symbols) [25] and modeling results (lines) for the laminar flame speed of n-heptane in 

air at 1 atm and different initial temperatures. 
 

Dirrenberger et al. measured adiabatic laminar burning velocities of n-heptane at 1 atm using a flat flame adiabatic 
burner [26]. The heat flux method was used to determine burning velocities at conditions for which the net heat loss 
of the flame is zero. Figure 18 shows the experimental data sets reported for n-heptane flame speeds, which were 
measured at 298 K, 358 K and 398 K [26]. The model predicts well the flame speeds except for the under-prediction 
at fuel-rich conditions, which is similar to the deviations between the experimental and modeling results presented 
in the original paper [26]. Sileghem et al. measured the laminar burning velocities of n-heptane using the heat flux 
method for a flat flame adiabatic burner at atmospheric pressure and at multiple initial temperatures from 298 K to 
358 K [25]. Good agreement can be seen between the experimental data and the simulations using the current model 
for all data sets at initial temperature from 298 K to 358 K (Figure 19). Only slight under-predictions can be seen at 
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the initial temperature of 358 K. The deviations are mostly within the reported uncertainty range (± 1.4 cm/s for 
equivalence ratio = 1.3 and ± 1 cm/s for the other equivalence ratios). 
 

 
Figure 20: Experimental (symbols) [24] and modeling results (lines) for the laminar flame speed of n-heptane in 

air at initial temperature of 353 K and different pressures. 
 
The current mechanism has been further validated against flame speed data at elevated pressures. Kelly et al. 
performed an experimental study on laminar flame speeds and Markstein lengths studies for C5–C8 n-alkane 
mixtures in air at pressures of up to 10 atm [24]. Figure 20 shows the measured n-heptane flame speeds at an initial 
temperature of 353 K and at pressures of 1, 2, 5, and 10 atm, respectively. The predicted flame speeds agree well 
with the experimental results at all pressures, with slight under-predictions at 5 atm which are within the reported 
uncertainty range of ± 2 cm/s. This indicates that the pressure dependence of the high temperature chemistry is 
reasonable in the current mechanism. 
 
5. Conclusions 

 
In this work, the oxidation of n-heptane has been firstly investigated experimentally. A detailed chemical kinetic 
model has been developed to numerically describe these experimental observations. Good agreement is observed 
between the model predictions and measured ignition delay times. In general, the model also satisfactorily captures 
the trend in the mole fraction profiles of most species measured in a jet-stirred reactor over a very wide range of 
equivalence ratios (0.25, 2.0 and 4.0). A good performance of the current mechanism is also indicated via further 
validations and comparisons to several recently published n-heptane mechanisms. The reaction rate rules used in 
this mechanism are consistent with those used for the pentane isomers [51,55] and n-hexane [54] sub-mechanisms. 
Therefore good consistency in kinetic can be expected, which is important regarding simulations for fuel mixtures. 
The reaction rate rules have been shown to lead to reasonably good predictions and may thus be used in the 
development of mechanisms of larger alkanes. 
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