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1 Introduction

Model and Observations

Let R be a renewal process. More precisely, we denote by (T 0 , T 1 , . . . , T n , . . .) the jump times of R, such that (D i := T i -T i-1 ) i≥1 are i.i.d. with density τ with respect to the Lebesgue measure supported on [0, ∞). The first jump time T 0 may have a different distribution τ 0 . The renewal process R is a process that counts how many jumps occurred until a given time t, i.e.

R t = ∞ i=0 1 Ti≤t . (1) 
These processes are used to describe the occurrences of random events: for instance in seismology to modelize the occurrence of earthquakes (see e.g. [START_REF] Alvarez | Estimation in stationary Markov renewal processes, with application to earthquake forecasting in Turkey[END_REF] or [START_REF] Epifani | Bayesian estimation for a parametric Markov renewal model applied to seismic data[END_REF]).

In this paper we are interested in estimating the density τ . We will often assume that

µ := ∞ 0 xτ (x)dx < ∞. (A1)
We consider two different sampling schemes: first, the complete observation setting, where R is continuously observed over [0, T ] and second, an incomplete observation setting, where R is observed at a sampling rate ∆ over [0, T ], where ∆ is either small or fixed. The continuous observation scheme, whose study reveals to be more delicate than it may first appear, will be used as a reference point for the discrete sampling scheme. Indeed, continuous time observations are more informative 1 and a procedure based on discrete observations can, at best, attains the same rates as an optimal procedure based on the continuous observations. Estimation of the interarrival distribution for renewal processes goes back to [START_REF] Vardi | Nonparametric estimation in renewal processes[END_REF] who proposed a consistent algorithm, based on the maximization of the likelihood. It permits to estimate this distribution from the observation of K independent trajectories (see also [START_REF] Vardi | Multiplicative censoring, renewal processes, deconvolution and decreasing density: nonparametric estimation[END_REF] and the generalization of [START_REF] Soon | Nonparametric estimation and consistency for renewal processes[END_REF], [START_REF] Guédon | Nonparametric estimation of renewal processes from count data[END_REF] and [START_REF] Adekpedjou | Estimation and efficiency with recurrent event data under informative monitoring[END_REF]; we also refer to the review of [START_REF] Gill | Product-limit estimators of the gap time distribution of a renewal process under different sampling patterns[END_REF] and the references therein). Assuming that only endpoints R t , for a given time t > 0, are observed and assuming a Gamma distributed interarrival distribution, [START_REF] Miller | Estimation for renewal processes with unobservable gamma or Erlang interarrival times[END_REF] proposed a parametric estimator also based on maximum likelihood techniques. However, in the aforementioned literature, the asymptotic properties of the estimators are not investigated, therefore, rates of convergence are not derived.

Continuous observation scheme

Without loss of generality we set T 0 = 0, or equivalently τ 0 (dx) = δ 0 (dx). Suppose that R is continuously observed over [0, T ], namely we observe (R t , t ∈ [0, T ]). From this, we extract the observations (D 1 , . . . , D RT ) to estimate the density τ . The counting process R T is such that

T RT = RT j=1 D j ≤ T and T RT +1 = RT +1 j=1 D j > T, (2) 
therefore, we are not in the classical i.i.d. density estimation problem. This implies that R T and D j are dependent and that the quantity D RT +1 is not observed. In addition, the random number R T of observations depends itself on the unknown density τ . Then, the statistics R T is not ancillary. Moreover, due to this particularity, our dataset is subject to bias selection: there is a strong representation of small elapsed times D and long interarrival times are observed less often. These issues are clearly explained in [START_REF] Hoffmann | Nonparametric estimation of the division rate of an age dependent branching process[END_REF] who consider a related model: age dependent branching processes. Our framework can be formalized as a degenerate age dependent branching process: we study a particle with random lifetime governed by the density τ and at its death it gives rise to one other particle with a lifetime governed by the same density τ . The difference with [START_REF] Hoffmann | Nonparametric estimation of the division rate of an age dependent branching process[END_REF], is that in their work the underlying structure of the model is a Bellmann-Harris process which has a tree representation whereas our tree contains only one branch, a case they exclude. Therefore the solutions they propose to circumvent the latter difficulties do not apply in our setting. In particular, they derive rates of convergence as functions of the Malthus parameter, which needs to be nonzero to ensure consistency. But in the Poisson process case (which is a particular renewal process) it is easy to see that this Malthus parameter is null. Therefore, in the sequel we will employ different techniques to deal with these issues.

Discrete observation scheme

Suppose now that we observe the process R over [0, T ] at a sampling rate ∆, namely, we observe R i∆ , i = 1, . . . , ⌊T ∆ -1 ⌋ . This setting introduces three difficulties. Firstly, the increments R i∆ -R (i-1)∆ are not independent. Secondly, they are not identically distributed. Thirdly, from the sample R i∆ , i = 1, . . . , ⌊T ∆ -1 ⌋ it cannot be derived a single realization of the density of interest τ .

We consider two distinct strategies. First, under some rate constraints on ∆, we show that neglecting the discretization error leads to an estimator with properties similar to the one which has access to the whole trajectory. It also permits to bypass the aforementioned difficulties.

Otherwise, if we do not wish to impose a rate condition on ∆, these difficulties need to be handled. The first difficulty is easily overcome as the dependency structure in the sample is not severe and can be treated without additional assumptions. The second problem can be circumvented by imposing a particular value for T 0 that ensures stationarity of the increments. More precisely, assuming that (A1) holds and that T 0 has density τ 0 defined by

τ 0 (x) = ∞ x τ (s)ds µ , x ≥ 0, (A2)
the renewal process R given by ( 1) is stationary (see e.g. Lindvall (1992) or Daley and Vere-Jones ( 2003)). A careful study of the third difficulty leads us to conclude that we are facing a deconvolution problem where the distribution of the noise is, in general, unknown and even depends on the unknown density τ . But, we add a simplifying assumption that permits to make explicit the distribution of the noise: we assume that there exists a positive number ∆ ≥ η > 0 such that τ (x) = 0, ∀x ∈ [0, η] (see the so-called dead-zone assumption described below). This leads to a convolution model with noise distribution corresponding to a sum of two independent uniform densities.

Main results and organization of the paper

In this paper, we propose nonparametric projection strategies for the estimation of τ , which are all based on the Laguerre basis. It is natural for R + -supported densities to choose a R + -supported orthonormal basis. Other compactly supported orthonormal basis, such as trigonometric or piecewisepolynomial basis, may also be considered provided their support can be rigorously defined. But in the discrete observation scheme, the choice of the Laguerre basis gets crucial. Indeed, deconvolution in presence of uniform noise presents specific difficulties: in the Fourier setting, it is required to divide by the characteristic function of the noise but in the present case, this Fourier transform is periodically zero. Specific solutions are needed (see [START_REF] Hall | A ridge-parameter approach to deconvolution[END_REF] and [START_REF] Meister | Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions[END_REF]) which reveal to be rather difficult to implement. On the contrary, it appears that deconvolution in the Laguerre basis can be performed without restriction and is computationally easy. This tool has been proposed by Comte et al. (2016) and [START_REF] Mabon | Adaptive deconvolution on the nonnegative real line[END_REF] and can be applied here.

The article is organized as follows. The continuous time observation scheme is studied in Section 2, where we build a nonparametric projection estimator of τ . An upper bound on the mean integrated squared risk (MISE) is proved, from which, under additional assumptions, we can derive rates of convergence on Sobolev-Laguerre spaces, for large T . Up to logarithmic terms, these rates match the minimax rates, derived for density estimation from i.i.d. observations by [START_REF] Belomestny | Nonparametric Laguerre estimation in the multiplicative censoring model[END_REF]. A model selection procedure is defined and proved to lead to an automatic bias-variance compromise. The more realistic discrete time observation scheme with step ∆ is considered in Section 3. Under specific conditions on ∆, the previous procedure is extended. Additional approximation terms appear in the MISE bound, which are taken into account in the model selection procedure. Removing the condition on ∆, but under an additional dead-zone assumption on the process, a Laguerre deconvolution procedure is proposed, studied and discussed. An extensive simulation Section 4 allows to illustrate all those methods for different distributions τ and when ∆ is varying. Part of the results are postponed in the Appendix. A concluding Section 5 ends the paper and presents ideas for dealing with a completely general setting. Most of the proofs are deferred to Section 6.

Continuous time observation scheme

In this section, we assume that the process R defined by (1) is continuously observed over [0, T ]. Thus, the jump times (T i ) i occurring in the interval are known. We recall that [START_REF] Alvarez | Estimation in stationary Markov renewal processes, with application to earthquake forecasting in Turkey[END_REF]. First, we describe the projection space and then, we define and study the first estimator.

D i = T i -T i-1 , i = 1, 2, . . . with T 0 = 0 are subject to constraint

The Laguerre basis

The following notations are used below. For t, v : R + → R square integrable functions, we denote the L 2 norm and the L 2 scalar product respectively by

t = ∞ 0 t(x) 2 dx 1/2 and t, v = ∞ 0 t(x)v(x)dx.
The Laguerre polynomials (L k ) k≥0 and the Laguerre functions (ϕ k ) k≥0 are given by

L k (x) = k j=0 (-1) j k j x j j! , ϕ k (x) = √ 2L k (2x)e -x 1 x≥0 , k ≥ 0.
The collection (ϕ k , k ≥ 0) constitutes an orthonormal basis of L 2 (R + ) (that is ϕ j , ϕ k = δ j,k where δ j,k is the Kronecker symbol) and is such that

|ϕ k (x)| ≤ √ 2, ∀x ∈ R + , ∀k ≥ 0.
For t ∈ L 2 (R + ) and ∀x ∈ R + , we can write that

t(x) = ∞ k=0 a k (t)ϕ k (x), where a k (t) = t, ϕ k .
We define the m-dimensional space S m = span(ϕ 0 , . . . , ϕ m-1 ) and t m the orthonormal projection of t on S m , we have

t m = m-1 k=0 a k (t)ϕ k .

Projection estimator and upper risk bound

We are in a density estimation problem where the target density is supported on [0, ∞), we assume that τ is square-integrable on R + and decompose it in the Laguerre basis

τ (x) = ∞ k=0 a k (τ )ϕ k (x), x ∈ [0, ∞),
where a k (τ ) = ϕ k , τ . From this, we derive an estimator of τ based on the sample (D 1 , . . . , D RT ), defined, for m ∈ N and x ∈ [0, ∞), by

τ m (x) = m-1 k=0 a k ϕ k (x), where a k = 1 R T RT i=1 ϕ k (D i ), 0 ≤ k ≤ m -1, (3) 
where by convention 0/0 = 0. Clearly, τ m is in fact an estimator of τ m , the orthogonal projection of τ on S m . Since R T is not an ancillary statistics, conditioning on the value of R T does not simplify the study of a k , in particular it is not possible to study easily its bias or its variance. We can bound the mean-square error of the estimator as follows.

Theorem 2.1. Assume that τ ∈ L 2 (R + ). Then, for any integer m, the estimator τ m given by ( 3) satisfies

E τ m -τ 2 ≤ τ -τ m 2 + 8mE 1 RT ≥1 R T + C 1 τ 3 exp - κ ′ 4 √ 2 τ √ m + C 2 m E 1 RT ≥1 R 4 T ,
where C 1 and C 2 are given in [START_REF] Guédon | Nonparametric estimation of renewal processes from count data[END_REF] and only depend on a universal constant κ ′ .

The bound given by Theorem 2.1 is a decomposition involving two main terms: a squared bias term, ττ m 2 and a variance term 8mE 1 RT ≥1 /R T . Conditions ensuring that, for T ≤ m, the two final terms are indeed negligible are given in the next section.

Rates of convergence

To obtain explicit rates from Theorem 2.1, we need to know the order of quantities of the form E[1 RT ≥1 R -α T ] for α ≥ 0. Suppose that (A1) and that the following hold: there exist positive constants σ 2 and c such that

E[D k 1 ] ≤ k! 2 σ 2 c k-2 , ∀k ≥ 2. (A3)
Assumption (A3) is a standard preliminary for applying a Bernstein inequality. It is fulfilled by Gaussian, sub-gaussian, Gamma or bounded densities. Under (A3), we can establish the following result.

Proposition 2.1. Assume that (A1) and (A3) hold. Let α > 0, then we have

E 1 RT ≥1 R α T ≤ C 1 T -α , (4) 
where C 1 = (3µ) α + C 1 , and C 1 is given in [START_REF] Mabon | Adaptive deconvolution on the nonnegative real line[END_REF] hereafter if α ≥ 1/2 or in [START_REF] Massart | Concentration inequalities and model selection[END_REF] if α ∈ (0, 1 2 ). If in addition T is such that P(R T ≥ 1) ≥ a, a ∈ (0, 1), then it also holds that:

E 1 RT ≥1 R α T ≥ C 2 T -α , ( 5 
)
where C 2 = a(µ/2) α .

Proposition 2.1 states both upper (4) and lower (5) bounds in order to control quantities of the form E[1 RT ≥1 R -α T ], for α > 0. Only the upper bound is used in the sequel to compute the rates of convergence of τ m , but the lower bound ensures that the order in T of the upper bound is sharp.

For s ≥ 0, the Sobolev-Laguerre space with index s (see [START_REF] Bongioanni | What is a Sobolev space for the Laguerre function systems?[END_REF], Comte and Genon-Catalot (2015)) is defined by:

W s = f : (0, +∞) → R, f ∈ L 2 ((0, +∞)), |f | 2 s := k≥0 k s a 2 k (f ) < +∞ .
where a k (f ) = +∞ 0 f (u)ϕ k (u)du. For s integer, the property |f | 2 s < +∞ can be linked with regularity properties of the function f (existence of s-order derivative, but not only). We define the ball W s (M ) :

W s (M ) = f ∈ W s , |f | 2 s ≤ M .
On this ball, we can handle the bias term ττ m 2 and we obtain the following Corollary.

Corollary 2.1. Assume that (A1) and (A3) hold and that τ belongs to W s (M ). Then, for T large enough, choosing m opt = CT 1/(s+1) , yields

E τ mopt -τ 2 ≤ C(M, σ 2 , c)T -s/(s+1)
where C(M, σ 2 , c) is a constant depending on M, σ 2 , c but not on T .

Proof of Corollary 2.1. For τ ∈ W s (M ), we have ττ m 2 = j≥m a 2 j (τ ) ≤ M m -s . Moreover, under (A3), we get by Inequality (4) of Proposition 2.1 that

8mE 1 RT ≥1 /R T ≤ Cm/T.
The tradeoff between these terms implies the choice m opt = CT 1/(s+1) . Then we easily get that

C 1 τ 3 exp - κ ′ 4 √ 2 τ √ m opt + C 2 m opt E 1 RT ≥1 R 4 T ≤ C 3 T ,
for some constant C 3 . Therefore, E τ moptτ 2 ≤ M m -s opt + Cm opt /T + O(1/T ) and thus E τ moptτ 2 ≤ O(T s/(s+1) ), which is the result of Corollary 2.1. ✷

The rate stated in Corollary 2.1 corresponds to the Sobolev-Laguerre upper bound for density estimation from T i.i.d. observations drawn in the distribution τ . This rate is proved to be minimax optimal, up to a logarithmic term, in [START_REF] Belomestny | Nonparametric Laguerre estimation in the multiplicative censoring model[END_REF].

Adaptive procedure

We propose a data driven way of selecting m. For this, we proceed by mimicking the bias-variance compromise. Setting M T = {⌊log 2 (T )⌋, ⌊log 2 (T )⌋ + 1, . . . , ⌊T ⌋}, where ⌊x⌋ stands for the largest integer less than or equal to x, we select

m = arg min m∈MT -τ m 2 + pen(m) where pen(m) = κ 1 + 2 log(1 + R T ) m R T 1 RT ≥1 .
Indeed, as ττ m 2 = τ 2τ m 2 , the bias is estimated byτm 2 up to the unknown but unnecessary constant τ 2 . On the other hand, the penalty corresponds to a random version of the variance term increased by the logarithmic term log(1 + R T ). The quantity κ is a numerical constant. In practice, κ is chosen by preliminary simulation experiments. For calibration strategies (dimension jump and slope heuristics), the reader is referred to [START_REF] Baudry | Slope heuristics: overview and implementation[END_REF]. We prove the following result.

Theorem 2.2. Assume that τ ∈ L 2 (R + ) and T ≥ exp(6 τ ). Then there exists a value κ 0 such that for any κ ≥ κ 0 , we have

E τ m -τ 2 ≤ c inf m∈MT τ -τ m 2 + E[ pen(m)] + 16c ′ E 1/2 T 4 1 RT ≥1 R 6 
T where c is a numerical constant (c = 4 would suit) and c ′ is defined in (33).

Compared to the result stated in Theorem 2.1, the inequality obtained in Theorem 2.2 implies that the estimator τ m automatically reaches the bias-variance compromise, up to the logarithmic factor in the penalty and the multiplicative constant c. Under assumptions (A1) and (A3), the last two additional terms are negligible, if T gets large.

Rates of convergence can be derived from Theorem 2.2 by applying inequality (4) of Proposition 2.1 together with the following Corollary.

Corollary 2.2. Assume that (A1) and (A3) hold. Then, the following holds

E log(1 + R T ) R T 1 RT ≥1 ≤ √ C 1 T C 3 + log(T + 1) ,
where C 1 is defined in Proposition 2.1 and

C 3 = log(2) + | log(µ 1 )|, with µ 1 = E[D 1 ∧ 1].
Indeed, under assumptions (A1) and (A3) and if τ belongs to W s (M ), the MISE E[ τ mτ 2 ] is automatically of order (T / log(1 + T )) -s/(1+s) , without requiring any information on τ nor s. This is the best possible rate, up to a logarithmic factor.

Discrete time observation scheme

In this section, we assume that only discrete time observations with step ∆, (R i∆ ) i∆∈[0,T ] are available for estimating τ .

Observation scheme

Information about τ is brought by the position of nonzero increments. But when only discrete time observations of R over [0, T ] at sampling rate ∆ are available, this information is partial. Indeed, let i 0 ≥ 1 be such that R i0∆ -R (i0-1)∆ = 0, this entails that at least one jump occurred between (i 0 -1)∆ and i 0 ∆. But,

• It is possible that more than one jump occurred between (i 0 -1)∆ and i 0 ∆. However, if ∆ gets small enough, the probability of this event tends to 0.

• It does not accurately determine a jump position T i , but locates a jump time with an error bounded by 2∆. We have no direct observations of random variables with density τ .

Consider the estimators T ∆ i of the unobserved jump times defined recursively by

T ∆ 0 = min{k > 0, R k∆ -R (k-1)∆ = 0} × ∆ T ∆ i = min{k > 1 ∆ T ∆ i-1 , R k∆ -R (k-1)∆ = 0} × ∆, i ≥ 1.
To estimate τ , we use the observations

( D ∆ i := T ∆ i -T ∆ i-1 , i = 1, . . . , N T )
where

N T = ⌊T ∆ -1 ⌋ i=1
1 Ri∆ =R (i-1)∆ is the random number of observed nonzero increments. We drop the observation T ∆ 0 since it is related to the density τ 0 and not τ . Let i ≥ 0, Figure 1 illustrates how the observation D ∆ i+1 = T ∆ i+1 -T ∆ i is related to the other quantities at stake. Define F t = min{T jt, ∀j, T j ≥ t}, the forward time at time t: that is the elapsed time from t until the next jump. By definition of R and the forward times, the following equality holds:

T ∆ i T ∆ i+1 T R T ∆ i T R T ∆ i+1 T R T ∆ i +1 D R T ∆ i +1 ∆ F T ∆ i -∆ ∆ -F T ∆ i+1 -∆
D ∆ i+1 + ∆ = D R T ∆ i +1 + F T ∆ i -∆ + (∆ -F T ∆ i+1 -∆ ), leading to D ∆ i+1 = D R T ∆ i +1 + F T ∆ i -∆ -F T ∆ i+1 -∆ . (6) 
Equation [START_REF] Bongioanni | What is a Sobolev space for the Laguerre function systems?[END_REF] shows that the observable quantity

D ∆ i+1 is the sum of one realization of τ , D R T ∆ i +1
, plus an error term given by F T ∆ i -∆ -F T ∆ i+1 -∆ . Moreover, using the renewal property, which ensures that trajectories separated by jump times are independent, we derive that

D R T ∆ i +1 , F T ∆ i -∆ and F T ∆ i+1 -∆ are independent.
Therefore, we recover a deconvolution framework. However, for consecutive indices, the observations D ∆ i and D ∆ i+1 are dependent since they both depend on the variable F T ∆ i -∆ . An issue that is easily circumvented by considering separately odd and even indices.

In the following, we consider observations D ∆ i as given in ( 6) and we denote by f ∆ the density of the D ∆ i 's. In Section 3.2, we prove that

D ∆ i = D ′ i + F T ∆ i -∆ -F T ∆ i+1 -∆ , with (D ′ i ) i.i.d.
with density τ and study the impact of neglecting the term F T ∆ i -∆ -F T ∆ i+1 -∆ . In Section 3.3, we take the complete structure into account but we add a "dead-zone" assumption (A4) given below, that allows to compute the density of

F T ∆ i -∆ -F T ∆ i+1 -∆ .
We can then consider a deconvolution strategy.

A first naive but general procedure

In this Section, we investigate a procedure which neglects the observation bias. For small ∆, this corresponds to the approximation f ∆ ≍ τ . Using again the decomposition of the density τ in the Laguerre basis, we define an estimator of τ based on the sample ( D ∆ 1 , . . . , D ∆ NT ), by setting, for m ∈ N and x ∈ [0, ∞)

τm (x) = m-1 k=0 ǎk ϕ k (x), where ǎk = 1 N T NT i=1 ϕ k ( D ∆ i ), 0 ≤ k ≤ m -1. (7) 
Starting from ( 6), we can prove the following Lemma.

Lemma 3.1. We have Thanks to Lemma 3.1, we can bound the mean-squared error of the estimator as follows.

D ∆ i =D R T ∆ i +1 + ∆ξ i , 1 ≤ i ≤ N T , (8 
Proposition 3.1. Assume that τ ∈ L 2 (R + ). Then, for any integer m, the estimator τm given by ( 7) satisfies

E τm -τ 2 ≤ τ -τ m 2 + 16mE 1 NT ≥1 N T + 2C 1 τ 3 exp - κ ′ 4 √ 2 τ √ m + 2C 2 m E 1 NT ≥1 N 4 T + ∆ 2 m(4m 2 -1) 3 ,
where C 1 and C 2 are given in [START_REF] Guédon | Nonparametric estimation of renewal processes from count data[END_REF] and only depend on a universal constant κ ′ .

The result of Proposition 3.1 completes the bound obtained in Theorem 2.1: R T is replaced by N T and an additional error term of order ∆ 2 m 3 , due to the model approximation appears in the bound. It is small only if ∆ is small. Using the result stated in inequality (4) of Proposition 2.1, we obtain the following Corollary, which gives a condition under which the rate corresponding to the continuous time observation scheme is preserved.

Corollary 3.1. Assume that (A1) and (A3) hold, that τ belongs to W s (M ) and that R T = N T a.s. Then for T large enough and ∆ such that

∆ 2 T 3 ≤ 1, choosing m opt = CT 1/(s+1) , yields E τmopt -τ 2 ≤ C(M, σ 2 , c)T -s/(s+1)
where C(M, σ 2 , c) is a constant depending on M, σ 2 , c but not on T .

Indeed, the additional term compared to Corollary 2.1 is ∆ 2 m(4m 2 -1)/3 ≤ C∆ 2 m 3 ≤ ∆ 2 mT 2 , as m ≤ T . Therefore, we have ∆ 2 mT 2 ≤ m/T if ∆ 2 T 3 ≤ 1.
Remark 3.1. Note that R T = N T a.s. is satisfied under Assumption (A4) below. In addition, we emphasize that we can obtain Corollary 3.1 by replacing the assumption R T = N T a.s. by the assumption ∀x ≥ 0, τ (x) ≤ β 1 exp(-β 2 x β3 ) where β 1 , β 2 , β 3 are positive constants. Indeed, under this condition, the result of Lemma 7.3 in Duval (2013b) allows to obtain inequality (4) of Proposition 2.1 with R T replaced by N T .

For model selection, the procedure studied in Theorem 2.2 can be extended as follows. We define

m = arg min m∈MT -τm 2 + p en(m) p en(m) = κ1 1 + 2 log(1 + N T ) m N T 1 NT ≥1 + κ2 ∆ 2 m 3 ,
where M T is as previously. Then we can prove the following result Theorem 3.1. Assume that τ ∈ L 2 (R + ) and T ≥ e 6 τ . Then there exists a value κ0 such that for any κ1 , κ2 , κ1 ∨ κ2 ≥ κ0 , we have

E τ m -τ 2 ≤ č inf m∈MT τ -τ m 2 + E[ p en(m)] + č′′ E 1/2 T 4 1 NT ≥1 N 6
T where č and č′′ are numerical constants (č = 4 would suit).

If ∆ 2 T 3 ≤ 1, the remarks made after Theorem 2.2 still apply here (see also the numerical Section 4).

Case of a dead-zone

The dead-zone assumption

Our dead-zone assumption is the following:

∃η > 0, τ (x) = 0, ∀x ∈ [0, η] with ∆ < η. (A4)
In other words when a jump occurs, no jump can occur in the next η units of times. Then, for ∆ < η, we have P(R ∆ > 1|R ∆ = 0) = 0 and clearly N T = R T a.s. Moreover, the decomposition (6) becomes then

D ∆ i+1 = D i+1 + F T ∆ i -∆ -F T ∆ i+1 -∆ , i ≥ 1, (9) 
and we denote by g ∆ the density of F T ∆ i -∆ . The following key property holds. Lemma 3.2. Assume that (A1), (A2) and (A4) hold. Then,

D i , F T ∆ i -∆ and F T ∆ i+1 -∆ are inde- pendent and F T ∆ i -∆ and F T ∆ i+1 -∆ have common density g ∆ , equal to the uniform distribution on [0, ∆].
Therefore, the density f ∆ of the observations ( D ∆ i ) i≥1 as given in ( 9) can be written

f ∆ := τ * g ∆ * g ∆ (-.)(x) where g ∆ * g ∆ (-.)(x) = ∆ -|x| ∆ 2 1 [-∆,∆] (x), x ∈ R. ( 10 
)
Since we use Laguerre basis decomposition, we need the distribution of the error g ∆ * g ∆ (-.) to be supported on (0, ∞). This is why we transform the observations as follows

Y ∆ i := D ∆ i + ∆ d = D i + ∆(U i + V i ), 1 ≤ i ≤ R T , (11) 
where d = means equality in law and (U i ) and (V i ) are independent and i.i.d. with distribution U[0, 1]. The density of Y ∆ i follows from [START_REF] Comte | Nonparametric estimation in a multiplicative censoring model with symmetric noise[END_REF] and is f ∆ (. -∆).

Preliminary remark about Fourier deconvolution

Let us briefly discuss why it is not relevant to use here the classical Fourier strategy. Let F [h](u) = R e iux h(x)dx denote the Fourier transform of an integrable function h. Then, under assumption (A4), we get, for all u ∈ R

F [f ∆ ](u) = R e iux (τ * g ∆ * g ∆ (-.))(x)dx = F [τ ](u) F [g ∆ ](u) 2 = F [τ ](u) × sin( u∆ 2 2 u∆ 2 2 .
We can see that recovering F [τ ](u) (and then τ by Fourier inversion) would require to divide by a sinusoidal function which can be zero. The general Fourier deconvolution setting excludes such possibility (see e.g. [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF]). However, the case of oscillating Fourier transforms of the noise has been studied (see [START_REF] Hall | A ridge-parameter approach to deconvolution[END_REF] and [START_REF] Meister | Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions[END_REF]): it is worth stressing that it requires specific methods which do not seem easy to implement. Moreover, in these papers, if the use of cross-validation techniques are suggested to achieve adaptivity, from a theoretical viewpoint this question remains open. This is why the Laguerre basis appears as an adequate answer to our problem.

Laguerre deconvolution

We are in a density estimation problem where the target density is supported on [η, ∞), η > 0. However, the observations (Y ∆ j ), with density f ∆ (. -∆) are blurred realizations of τ , there is an additive noise supported on [0, 2∆]. We decompose the density f ∆ (. -∆) in the Laguerre basis

f ∆ (x -∆) = ∞ k=0 b k ϕ k (x), x ∈ [0, ∞), where b k = ϕ k , f ∆ (. -∆)
. Thus, we have estimators for the b k 's, for m ∈ N, defined as previously by

b k = 1 R T RT i=1 ϕ k (Y ∆ i ), 0 ≤ k ≤ m -1.
However, we are not interested in estimating f ∆ (.-∆) but τ . Using [START_REF] Daley | An introduction to the theory of point processes[END_REF], we have that

f ∆ = τ * g 2,∆
where g 2,∆ denotes the density of ∆(U 1 + V 1 ). Note that g 2,∆ = g ∆ * g ∆ where g ∆ denotes the density of ∆U 1 .

The Laguerre basis has already been used in deconvolution setting by Comte et al. (2016) and [START_REF] Mabon | Adaptive deconvolution on the nonnegative real line[END_REF] and allows to solve the estimation problem as follows. Denoting by b k , a k and g 2,k (∆) the coefficients of f ∆ (. -∆), τ and g 2,∆ in the Laguerre basis and plugging these expansions into the convolution, we obtain the following equation

∞ k=0 b k ϕ k (t) = ∞ k=0 ∞ j=0 a k g 2,j (∆) t 0 ϕ k (x)ϕ j (t -x)dx. ( 12 
)
The relation (see, e.g. 7.411.4 in Gradshtein and Ryzhik (1980))

t 0 ϕ k (x)ϕ j (t -x)dx = 2e -t t 0 L k (2x)L j (2(t -x))dx = 2 -1/2 [ϕ k+j (t) -ϕ k+j+1 (t)],
implies that equation ( 12) can be re-written

∞ k=0 b k ϕ k (t) = ∞ k=0 [ k ℓ=0 2 -1/2 (g 2,k-ℓ (∆) -g 2,k-ℓ-1 (∆))a ℓ ]ϕ k (t),
with convention g 2,-1 (∆) = 0. Equating coefficients for each of the functions, we obtain an infinite triangular system of linear equations. The triangular structure allows to increase progressively the dimension of the developments without changing the beginning. Finally, we relate the theoretical vector a m = (a k ) 0≤k≤m-1 of the first coefficients of decomposition of τ in the Laguerre basis with the vector b m = (b k ) 0≤k≤m-1 as follows

b m = [G m (∆)] 2 a m ,
where G m (∆) is known and is the lower triangular Toeplitz matrix with elements

[G m (∆)] i,j =      √ 2 -1 g 0 (∆) if i = j √ 2 -1 g i-j (∆) -g i-j-1 (∆) if j < i 0 otherwise where g k (∆) = ∆ 0 1 ∆ ϕ k (u)du. Note that [G 2,m (∆)] i,j =      √ 2 -1 g 2,0 (∆) if i = j √ 2 -1 g 2,i-j (∆) -g 2,i-j-1 (∆) if j < i 0 otherwise where g 2,k (∆) = g 2,∆ , ϕ k satisfies G 2,m (∆) = [G m (∆)] 2 . Also, we emphasize that det(G m (∆)) = 2 -m/2 g 0 (∆) m = [(1 -e -∆ )/∆] m > 0
for all ∆, which means that the matrix can be inverted. Then, we propose the following estimator of a m a

m := [G m (∆) 2 ] -1 b m .
This leads to the estimator of τ , for x ≥ 0,

τ m (x) = m-1 k=0 a k ϕ k (x). ( 13 
)

Upper risk bound and adaptive procedure

Denote by ρ(A) the spectral norm of a matrix A defined as ρ(A) = λ max (A T A), the square-root of the largest eigenvalue of the semi definite positive matrix A T A.

Proposition 3.2. Assume that (A1), (A2) and (A4) hold and that τ ∈ L 2 (R + ). Then, for any integer m and ∆ ≤ η, the estimator τ m given by ( 13) satisfies

E τ m -τ 2 ≤ τ -τ m 2 + ρ 2 G m (∆) -2 8mE 1 RT ≥1 R T + ρ 2 G m (∆) -2 C 1 τ 3 exp - κ ′ 4 √ 2 τ √ m + C 2 m E 1 RT ≥1 R 4 T ,
where C 1 and C 2 are given in [START_REF] Guédon | Nonparametric estimation of renewal processes from count data[END_REF] and only depend on a universal constant κ ′ .

Proposition 3.2 shows that the bias term is unchanged, but all other terms are multiplied by ρ 2 G m (∆) -2 , which is a classical price for solving the inverse problem. In accordance with this, consider the collection

M T = {m ∈ {⌊log 2 (T )⌋, ⌊log 2 (T )⌋ + 1, . . . , [T ]}, mρ 2 G m (∆) -2 ≤ T } and the selection device m = arg min m∈ MT (-τ m 2 + pen(m)), pen(m) = log(1 + R T ) m R T κ 1 + κ 2 ρ 2 G m (∆) -2 1 RT ≥1 .
We can prove Theorem 3.2. Assume that (A1), (A2) and (A4) hold and τ ∈ L 2 (R + ). Let T ≥ e 8 τ and ∆ ≤ η.

Then, there exists a value κ 0 , such that for any κ 1 , κ 2 , κ 1 ∨ κ 2 ≥ κ 0 , we have

E[ τ m -τ 2 ] ≤ c 1 inf m∈ MT τ -τ m 2 + E[ pen(m)] + c 2 E 1/2 T 6 1 RT ≥1 R 8 T ( 14 
)
where c 1 and c 2 are numerical constants (c 1 = 4 would suit).

The result of Theorem 3.2 shows that the procedure leads to the adequate squared-bias variance compromise. Under Assumption (A3), we get by Inequality (4) of Proposition 2.1 that the last term in ( 14) is of order 1/T and thus is negligible.

Some remarks

First, the following lemma shows that the matrix G m (∆) is easy to compute recursively from the Laguerre basis. Therefore, formula [START_REF] Van Es | A kernel type nonparametric density estimator for decompounding[END_REF] and ( 16), and consequently our estimator τ m , can be easily implemented.

Lemma 3.3. We have, for k ∈ N,

g k (∆) = 1 ∆ (-1) k √ 2 -Φ k (∆) , with Φ k (∆) = ∞ ∆ ϕ k (u)du. ( 15 
)
Moreover, ∀x ∈ R + , we have Φ 0 (x) = ϕ 0 (x) (initialization) and for j ≥ 1, j integer,

Φ j (x) = ϕ j (x) -ϕ j-1 (x) -Φ j-1 (x). ( 16 
)
Second, to compute the rate of convergence implied by Theorem 3.2, the knowledge of the spectral norm ρ 2 G m (∆) -2 is required. When ∆ tends to 0 it is straightforward to observe that for all k, lim ∆→0 g k (∆) = ϕ k (0) = √ 2. It follows that G m (∆) → Id m , when ∆ → 0, where Id m is the m × m identity matrix. More precisely, we can get the following development

G m (∆) -2 [G m (∆) -2 ] T = Id m + 2∆A + o(∆)
where A is the m × m matrix with all its coefficients equal to 1. This implies that ρ 2 G m (∆) -2 tends to 1 when ∆ tends to 0.

For fixed ∆ we propose a conjecture motivated by numerical experiments. We observe numerically that ρ 2 G m (∆) -2 ≍ m 4 . If this is true, the rate of the estimator is O(T -s/(s+5) ), with a logarithmic loss for the adaptive procedure. It is not clear if this rate is optimal. Indeed, in the case of T i.i.d. observations of variables blurred with additive noise of known density, the result in [START_REF] Mabon | Adaptive deconvolution on the nonnegative real line[END_REF] would give a variance term in the upper bound of order

1 T [mρ 2 G m (∆) -2 ] ∧ [ f ∆ ∞ G m (∆) -2 2 F ]
where A 2 F = Tr(AA T ) denotes the Frobenius norm of the matrix A. In the cases where the orders of the operator norm and the Frobenius norm are obtained, they turn out to be the same (see Comte et al. (2016)). It implies that the variance order may be governed by G m (∆) -2 2 F /T and may lead, in the case where ∆ is fixed, to a better rate than the one obtained in Theorem 3.2. Nevertheless, the differences between the two terms, if any, vanishes when ∆ gets small, as mρ 2 (I m ) = I m 2 F = m. However, obtaining an upper bound for the variance term involving G m (∆) -2 2 F /T is much more involved in this case than in the context considered in Mabon (2015) due to the fact that our number of observations is random and is not ancillary. Also it is difficult to compare the bound derived from Theorem 3.2, with the optimal rate derived in [START_REF] Meister | Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions[END_REF] since the regularity assumptions on the target density τ are different.

Simulations

In this section, we illustrate the performances of the estimators, with data driven selection of the dimension, on simulated data. We consider the following different R + -supported densities τ

• a Gamma G(2, 1 2 ), • the absolute value of a Gaussian |N (1, 1 2 )|, • a dilated Beta 5 × B(6, 3),
• or a rescaled mixture of Gamma densities 0.4G(2, 1 2 ) + 0.6G(16, 1 4 ) × 8 5 . The last two densities are rescaled so that for all the examples the mass is mainly contained in the interval [0, 5]. To estimate the L 2 -risks, we compute 1000 trajectories for T = 500, 1000 and 5000. The dimension m is selected among all dimensions smaller than 50. All methods require the calibration of constants in penalties. After preliminary experiments, κ is taken equal to 0.13 for the estimator based on continuous observations (∆ = 0), κ1 = 0.13 and κ2 = 0.001 for the naive estimator, κ 1 = 0.25 and κ 2 = 0.0001 for the dead-zone estimator, which are based on discrete observations, whatever the value of nonzero ∆.

In the sequel, the different estimators are always computed on the same trajectory, even when the value of ∆ is varying. Moreover, together with the value of the L 2 -risk, we provide the quantity m, which is the average of dimensions m that have been adaptively selected by each procedure and the quantity R which is the average number of observations that have been used to estimate τ . Standard deviations associated with these means are given in parenthesis. Only one distribution is presented in this Section, the other tables for the other distributions can be found in the Appendix. We present illustrations of the methods in Figures 2 and3, which plot beams of 50 estimators computed with the three adaptive procedures, the one based on continuous observations of (R t ) as in Section 2 for T = 500, the ones based on discrete observations using the naive or the deconvolution method, for two different steps of observations (∆ = 0.3 and ∆ = 0.1 in Figure 2 and ∆ = 0.1 and ∆ = 0.01 in Figure 3). We work here under the dead-zone assumption (η = 1) to permit the comparison. As expected, the procedure based on continuous time observations is very good, and the best one, but the two other methods perform also very well, even if the naive method requires smaller steps of observation.

Continuous time procedure

Naive procedure Dead-zone procedure 2 ) + 0.6G(16, 1 4 ) × 8 5 , for T = 500. The estimator based on the continuous observation (first line), ∆ = 0.3 (second line) and for ∆ = 0.1 (third line), with the naive method (first column) and the dead-zone method (second column). True density τ in black and 50 estimated curves in green.

Comparison of the continuous time and the naive procedure. The results of Table 1 confirm the theoretical results established in the paper. As expected, we notice that the best estimator is the one which has access to the continuous time observations (∆ = 0). When ∆ gets too large, the naive procedure is biased and performs badly. However, its performances are better in practice than what the theory predicts: even when m 3 ∆ 2 is larger than one, the performances of the naive method are satisfactory. But when m 3 ∆ 2 becomes too large, the method fails. Finally we recover that the larger T , the smaller the loss. The performances of the procedures are only marginally influenced by the choice for the distribution τ (see Tables 3,[START_REF] Belomestny | Nonparametric Laguerre estimation in the multiplicative censoring model[END_REF] and 5 for the other distributions in the Appendix). Comparison of the continuous time and the dead-zone procedure. To apply the deadzone procedure, we shifted all four distributions of a factor η = 1. We computed L 2 ([η, ∞)) losses and compared the first and third estimators. Again, the results of Table 2 illustrate the theoretical properties established in the paper. The larger ∆, the more difficult the estimation problem is: the risks increase with ∆. But this procedure permits to consistently estimate τ even when ∆ does not go to 0, whereas the latest naive procedure failed to estimate τ in theses cases. The performance of the procedure is only marginally influenced by the choice for the distribution τ (see Tables 6,7 and 8 for the other distributions in the Appendix). Note that, for the same values of T , since the distributions have been shifted with a parameter 1, the effective number of observations R available for the estimation is smaller.

T ∆ = 0 ∆ = 0.01 ∆ = 0.1 ∆ = 0.3 500 m 3 ∆ 2 0.

Concluding remarks

In this paper we propose procedures to estimate the interarrival density of a renewal process. In the case where the process is continuously observed, our procedure is adaptive minimax and requires few assumptions on the target density. The main difficulty of the problem was to deal with the random number of observation that is non ancillary. If the process is discretely observed, the problem becomes much more involved, the observations are not independent nor identically distributed and the estimation problem is of deconvolution type. When ∆ goes rapidly to zero, we show that the estimation problem can be handled similarly to the estimation problem from continuous observation with preserved properties. Otherwise, we imposed additional simplifying assumptions (A1), (A2) to ensure stationarity of the increments and (A4) to manage the distribution of the noise. An adaptive procedure is proposed even though its optimality remains an open question. The numerical study confirms these theoretical considerations. 2 ) distribution under the dead-zone assumption (η = 1). L 2 : mean square errors, R: mean of the number of observations, m: mean of the selected dimensions. All standard deviations are given in parenthesis.

Continuous time procedure

Naive procedure

Dead-zone procedure In the remaining of this section, we discuss how assumptions (A2) and (A4) might be relaxed. Assumption (A2) is not necessary since it is established in Lindvall (1992) that under (A1) and for large enough T the process R has stationary increments. Then, by removing the first observations, the procedures of Section 3 would have the same properties. Indeed, in the numerical Section all simulated trajectories start from T 0 = 0 ((A2) is not satisfied) and the performances of the estimators are consistent with the theoretical results. However, from a theoretical viewpoint, removing assumption (A2) is not straightforward, elements on how one should proceed are given in [START_REF] Duval | Nonparametric estimation of a renewal reward process from discrete data[END_REF].

Removing assumption (A4) is difficult. In the general case, under (A1) and (A2), we may prove that the common density of the observations ( D ∆ j ) is

f ∆ (x) := ∞ r=1 τ * r ∆ 0 τ 0 * τ * r-1 (u) -τ 0 * τ * r (u)du ∆ 0 τ 0 (u)du * g ∆ * g ∆ (-.) (x), ∀x ∈ R, ( 17 
)
where * denotes the convolution product and g ∆ is the general density of F T ∆ i -∆ . The issue remains that ( 17) is a nonlinear transformation of τ where the transformation itself depends on the knowledge of τ 1 [0,∆] . Even if we knew τ 1 [0,∆] or had access to an estimator, inverting [START_REF] Gill | Product-limit estimators of the gap time distribution of a renewal process under different sampling patterns[END_REF] Finally, note that in both continuous and discrete observation schemes, our procedures can be immediately adapted to the case where one observes a renewal reward process X with marks having an unknown distribution that either admits a density with respect to the Lebesgue measure or is positive. Indeed, this last assumption ensures that almost surely if X t = X s , then R t = R s , for all (t, s), consequently all the jumps of R are detected. The estimation of the density of the marks from the discrete observation of X has been studied in Duval (2013b).

Proofs

Proof of Theorem 2.1

Recall that τ m denotes the orthonormal projection of τ on S m . By Pythagoras Theorem we have

τ m -τ 2 = τ -τ m 2 + m-1 k=0 ( a k -a k ) 2 .
Taking expectation and decomposing on the possible values of R T , we are left to control

E[( a k -a k ) 2 ] = E ∞ ℓ=0 1 RT =ℓ 1 ℓ ℓ i=1 (ϕ k (D i ) -ϕ k , τ ) 2 .
As we adopt the convention 1 0 0 i=1 = 0, the first sum starts at ℓ = 1. Consider the centered empirical process ν ℓ

(t) = 1 ℓ ℓ i=1 t(D i ) -t, τ , t ∈ L 2 (R + ). Then, we can show that sup t =1, t∈Sm ν ℓ (t) 2 = m-1 k=0 ν 2 ℓ (ϕ k ). ( 18 
)
Indeed, we have using the Cauchy Schwarz inequality that

sup t =1, t∈Sm ν ℓ (t) 2 = sup (a k (t))∈R m , m-1 k=0 a k (t) 2 =1 m-1 k=0 a k (t)ν ℓ (ϕ k ) 2 ≤ sup (a k (t))∈R m , m-1 k=0 a k (t) 2 =1 m-1 k=0 a k (t) 2 m-1 k=0 ν 2 ℓ (ϕ k ) = m-1 k=0 ν 2 ℓ (ϕ k ).
Moreover, if we consider the coefficients

a k (t) := ν ℓ (ϕ k ) m-1 k=0 ν 2 ℓ (ϕ k )
, k = 0, . . . , m -1 the former inequality is an equality and ( 18) is proved. It follows that

m-1 k=0 E[( a k -a k ) 2 ] = E ∞ ℓ=1 1 RT =ℓ sup t =1, t∈Sm ν 2 ℓ (t) ≤ E ∞ ℓ=1 1 RT =ℓ sup t =1, t∈Sm ν 2 ℓ (t) -2(1 + 2ε ℓ )H 2 ℓ ) + + E ∞ ℓ=1 1 RT =ℓ 2(1 + 2ε ℓ )H 2 ℓ ≤ ∞ ℓ=1 P(R T = ℓ) 1/2 E 1/2 sup t =1, t∈Sm ν 2 ℓ (t) -2(1 + 2ε ℓ )H 2 ℓ ) 2 + + E ∞ ℓ=1 1 RT =ℓ 2(1 + 2ε ℓ )H 2 ℓ ,
for any positive constants ε ℓ and H ℓ . We want to apply Lemma 6.2 (see the Appendix section) with F = {t ∈ S m , t = 1}, and a classical density argument. To apply Lemma 6.2 we compute b, v and

H ℓ . If t ∈ S m such that t = 1 we have t ∞ ≤ √ 2 m-1 k=0 |a k (t)| ≤ √ 2m := b, by the Cauchy Schwarz inequality. Next, we note that sup t =1, t∈Sm E t(D 1 ) 2 ≤ sup t =1, t∈Sm t ∞ ∞ 0 |t(x)τ (x)|dx ≤ √ 2m τ := v.
Finally, using [START_REF] Gradshtein | Tables of integrals, series, and products[END_REF] and that ν ℓ is centered we get E sup t =1, t∈Sm ν ℓ (t) 2 ≤ 2m ℓ := H 2 ℓ . To summarize we have

H ℓ = 2m ℓ , v = √ 2m τ and b = √ 2m. ( 19 
)
It follows from Lemma 6.2 (see the Appendix section), with parameters [START_REF] Grimmett | Probability and random processes[END_REF] and

ε ℓ = 1 2 , that m-1 k=0 E[( a k -a k ) 2 ] ≤ ∞ ℓ=1 P(R T = ℓ) 1 2 6 √ 8m τ ℓκ ′ 2 exp - κ ′ √ m √ 2 τ + 36 2 √ 2m ℓκ ′ 4 exp - √ ℓκ ′ 2 1 2 + E ∞ ℓ=1 1 RT =ℓ 8m ℓ
where κ ′ is a universal constant. From the Cauchy Schwarz inequality and

√ a + b ≤ √ a + √ b, we get m-1 k=0 E[( a k -a k ) 2 ] ≤ ∞ ℓ=1 P(R T = ℓ) ∞ ℓ=1 6 √ 8 τ ℓκ ′ 2 m exp - κ ′ 2 √ 2 τ √ m + 6 ∞ ℓ=1 P(R T = ℓ) 2 √ 2m ℓκ ′ 4 ∞ ℓ=1 e - √ ℓκ ′ 2 1/2 + 8mE 1 RT ≥1 R T = C 1 τ 3 exp - κ ′ 4 √ 2 τ √ m + C 2 m E 1 RT ≥1 R 4 T + 8mE 1 RT ≥1 R T ,
where we set

C 1 = 2 7 √ 3 κ ′3 e 2 ∞ ℓ=1 1 ℓ 2 and C 2 = 48 (κ ′ ) 2 ∞ ℓ=1 e - √ ℓκ ′ 2 1/2 , ( 20 
)
note that we used that xe

-θ √ x ≤ 2 eθ 2 , for x, θ > 0, thus xe -2θ √ x ≤ 2 eθ 2 e -θ √
x . Gathering all the terms completes the proof. ✷

Proof of Proposition 2.1

Recall that T ℓ = ℓ j=1 D j . Using the definition of R T it is straightforward to establish the following

T RT R T 1 RT ≥1 ≤ T R T 1 RT ≥1 ≤ T RT +1 R T 1 RT ≥1 , ∀T > 0. ( 21 
)
We have the decomposition

E T RT R T α 1 RT ≥1 = E ∞ ℓ=1 T ℓ ℓ α 1 RT =ℓ .
Introduce the event

Ω ℓ = T ℓ ℓ -µ ≤ µ 2 .
First let α > 0, it is easy to get

E T RT R T α 1 RT ≥1 ≥ E ∞ ℓ=1 µ 2 α 1 RT =ℓ = µ 2 α P(R T ≥ 1) ≥ a µ 2 α . (22) 
Moreover, under (A3) we apply the Bernstein inequality (see Corollary 2.10 in Massart [START_REF] Massart | Concentration inequalities and model selection[END_REF]) to get

P Ω c ℓ ≤ 2 exp - ℓµ 2 8(σ 2 + c µ 2 ) . (23) 
We derive, using that ℓ+1 ℓ ≤ 2, ∀ℓ ≥ 1 and that α > 0,

E T RT +1 R T α 1 RT ≥1 ≤ 2 α E T RT +1 R T + 1 α ≤ E ∞ ℓ=1 (3µ) α 1 RT =ℓ + E ∞ ℓ=1 T ℓ ℓ α 1 RT =ℓ 1 Ω c ℓ ≤ (3µ) α + ∞ ℓ=1 E T ℓ ℓ 2α E 1 Ω c ℓ 1 RT =ℓ .
If α ≥ 1/2, x → x 2α is convex, together with (A3), [START_REF] Lindvall | Lectures on the coupling method[END_REF] and the Cauchy Schwarz inequality we obtain

E T RT +1 R T α 1 RT ≥1 ≤ (3µ) α + ⌈2α⌉!σ 2 c ⌈2α⌉-2 2 ∞ ℓ=1 (P( Ω c ℓ )P(R T = ℓ)) 1 4 ≤ (3µ) α + ⌈2α⌉!σ 2 c ⌈2α⌉-2 2 ∞ ℓ=1 2 1 4 exp - ℓµ 2 32(σ 2 + c µ 2 ) ≤ (3µ) α + ⌈2α⌉!σ 2 c ⌈2α⌉-2 √ 2 1 -e - µ 2 32(σ 2 +c µ 2 ) -1 . (24) 
Now if 0 < α < 1 2 , x → x 2α is concave, using the Jensen inequality and similar arguments as above, we get

E T RT +1 R T α 1 RT ≥1 ≤ (3µ) α + E D 1 ] α 1 -e - µ 2 32(σ 2 +c µ 2 ) -1 . (25) 
Finally, gathering equations ( 24) , ( 25) and ( 22) into [START_REF] Hall | A ridge-parameter approach to deconvolution[END_REF] and taking expectation provides the following under (A3) and for α > 0

C 2 T -α ≤ E 1 RT ≥1 R α T ≤ C 1 T -α ,
where C 2 is defined in [START_REF] Hoffmann | Nonparametric estimation of the division rate of an age dependent branching process[END_REF] and C 1 in (24) if α ≥ 1/2 or in [START_REF] Massart | Concentration inequalities and model selection[END_REF] if α ∈ (0, 1 2 ). This completes the proof. ✷ 6.3 Proof of Theorem 2.2

6.3.1 Proof of Theorem 2.2 First, observe that m = arg min m∈MT -τ m 2 + pen(m) = arg min m∈MT τ -τ m 2 + pen(m) Consider the contrast γ RT (t) = t 2 -(2/R T ) RT i=1 t(D i ). It is easily verified that, τ m = arg min t∈Sm γ T (t).
Moreover, we note that

γ RT (t) -γ RT (s) = t -τ 2 -s -τ 2 + 2 t -s, τ - 2 R T RT i=1 (t -s)(D i ). (26) 
Then, by definition of m, we have γ T ( τ m ) + pen( m) ≤ γ T (τ m ) + pen(m). This with [START_REF] Meister | Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions[END_REF] implies

τ m -τ 2 ≤ τ -τ m 2 + pen(m) + 2ν RT ( τ m -τ m ) -pen( m), (27) 
where

ν RT (t) = 1 R T RT i=1 t(D i ) -t, τ .
Using that ν RT is a linear form and the inequality 2xy

≤ 1 4 x 2 + 4y 2 we get 2ν RT ( τ m -τ m ) ≤ 1 4 τ m -τ m 2 + 4 sup t∈S m∨m , t =1 ν RT (t) 2 ≤ 1 2 τ m -τ 2 + 1 2 τ m -τ 2 + 4 sup t∈S m∨m , t =1 ν RT (t) 2 .
Plugging this in [START_REF] Miller | Estimation for renewal processes with unobservable gamma or Erlang interarrival times[END_REF] and gathering the terms, lead to

1 2 τ m -τ 2 ≤ 3 2 τ -τ m 2 + pen(m) + 4 sup t∈S m∨m , t =1 ν RT (t) 2 -pen( m).
We introduce the following Lemma (see the proof in Section 6.3.2): Lemma 6.1. Under the Assumptions of Theorem 2.2, let

p RT (m) = 2(1 + 2c log(1 + R T )) 2m R T 1 RT ≥1 . ( 28 
)
For c ≥ max(1/( √ 2κ ′ ), 2/(log(2)κ ′ ) 2 )
, where κ ′ is defined in Corollary 2 of Birgé and Massart [START_REF] Birgé | Minimum contrast estimators on sieves: exponential bounds and rates of convergence[END_REF], we have, for T ≥ e 6 τ ,

E sup t∈S m∨m , t =1 ν RT (t) 2 -p RT ( m ∨ m) + ≤ 2c ′ E 1/2 T 4 1 RT ≥1 R 6 
T with c ′ given in (33).

We have

1 2 τ m -τ 2 ≤ 3 2 τ -τ m 2 + 4 sup t∈S m∨m , t =1 ν RT (t) 2 -p RT (m ∨ m) + + pen(m) + 4p RT (m ∨ m) -pen( m)
where p RT is defined in [START_REF] Soon | Nonparametric estimation and consistency for renewal processes[END_REF]. Using that 4p RT (m ∨ m) ≤ 4p RT (m) + 4p RT ( m) and pen(m ′ ) = 4p RT (m ′ ), ∀m ′ , we get

1 2 τ m -τ 2 ≤ 3 2 τ -τ m 2 + 4 sup t∈S m∨m , t =1 ν RT (t) 2 -p RT (m ∨ m) + + 2 pen(m) (29) 
Taking expectation in ( 29) together with Lemma 6.1, we derive

∀m ∈ M T E[ τ m -τ 2 ] ≤ 3 τ -τ m 2 + 4E[ pen(m)] + 16c ′ E 1/2 T 4 1 RT ≥1 R 6 T .
This implies the result given in Theorem 2.2. ✷ 6.3.2 Proof of Lemma 6.1

First, we use that

E sup t∈Sm, t =1 ν RT (t) 2 -p RT (m) + = ∞ ℓ=0 E sup t∈Sm, t =1 ν ℓ (t) 2 -p ℓ (m) + 1 RT =ℓ ≤ ∞ ℓ=0 E sup t∈Sm, t =1 ν ℓ (t) 2 -p ℓ (m) 2 + P(R T = ℓ) 1 2 , (30) 
where

ν ℓ (t) = 1 ℓ ℓ j=1 t(D j ) -t, τ and p ℓ (m) = 2(1 + 2ε ℓ )H 2 ℓ
, with the convention ν 0 (t) = 0, ∀t and p 0 (m) = 0, ∀m, so that the previous sum starts at ℓ = 1. We bound the expectation in [START_REF] Vardi | Multiplicative censoring, renewal processes, deconvolution and decreasing density: nonparametric estimation[END_REF] applying Lemma 6.2 (see the Appendix section) as in the proof of Theorem 2.1 with b, v and H ℓ given by [START_REF] Grimmett | Probability and random processes[END_REF]. Now we take ε ℓ = c log(1 + ℓ). Denote by X = sup

t∈Sm, t =1 ν ℓ (t) 2 -2(1 + ε ℓ )H 2 ℓ + ,
we obtain

E X 2 ≤ 6 √ 8m τ ℓκ ′ 2 exp - κ ′ c √ 2 τ √ m log(1 + ℓ) + 36 2 √ 2m ℓκ ′ 4 exp - κ ′ cℓ log(1 + ℓ) √ 2 ≤ 2 4 3 τ 2 (κ ′ ) 2 m ℓ √ m/ τ +2 + 2 8 3 2 m 2 (κ ′ ) 4 ℓ 4 exp - √ ℓ , (31) 
for c ≥ (1/( √ 2κ ′ )) ∨ 2/(log(2)κ ′ ) 2
). Plugging (31) into [START_REF] Vardi | Multiplicative censoring, renewal processes, deconvolution and decreasing density: nonparametric estimation[END_REF], together with the inequality

√ a + b ≤ √ a + √ b and using that ℓ 4 exp(- √ ℓ) ≤ c 0 = (8/e) 8 , leads to E sup t∈Sm, t =1 ν RT (t) 2 -p(m) + ≤ √ 2 4 3m τ κ ′ ∞ ℓ=1 P(R T = ℓ) ℓ 2+ √ m/ τ + 2 4 3m √ c 0 (κ ′ ) 2 ∞ ℓ=1 P(R T = ℓ) ℓ 8 1/2 . ≤ 4 √ 3m τ κ ′ ∞ ℓ=1 1 ℓ 2 E 1 RT ≥1 (R T ) √ m/ τ + 2 4 3m √ c 0 (κ ′ ) 2 ∞ ℓ=1 1 ℓ 2 E 1 RT ≥1 R 6 T , (32) 
where the last inequality follows from the Cauchy Schwarz inequality. To conclude, we write that

E sup t∈S m∨m , t =1 ν RT (t) 2 -p RT ( m ∨ m) + ≤ m ′ ∈MT E sup t∈S m ′ ∨m , t =1 ν RT (t) 2 -p RT (m ∨ m ′ ) + ≤ c ′ m ′ ∈MT   √ m ∨ m ′ E 1 RT ≥1 (R T ) ( √ m ′ ∨ √ m)/ τ + m ′ ∨ m E 1 RT ≥1 R 6 T   , 20 for c ′ a constant, c ′ ≥ max(C 1 , C 2 )
, where C 1 and C 2 can be derived from (32)

C 1 = 4 √ 3 τ κ ′ ∞ ℓ=1 1 ℓ 2 , C 2 = 2 4 3 √ c 0 (κ ′ ) 2 ∞ ℓ=1 1 ℓ 2 .
(33)

Consequently, using that log 2 (T ) ≤ m ≤ T together with the Cauchy Schwarz inequality, we get

E sup t∈S m∨m , t =1 ν RT (t) 2 -p RT (m) + ≤ c ′   T T m=⌊log 2 (T )⌋ E 1 RT ≥1 R √ m/ τ T + T 2 E 1 RT ≥1 R 6 T   .
(34) Now, for T ≥ exp(6 τ ), we have √ m/ τ ≥ log(T )/ τ ≥ 6 and

E 1 RT ≥1 R √ m T ≤ E 1 RT ≥1 R 6 T . (35) 
Therefore, plugging (35) in equation ( 34) implies the result of Lemma 6.1. ✷

Proof of Corollary 2.2

It follows from the Cauchy Schwarz inequality that

E log(1 + R T ) R T 1 RT ≥1 ≤ E 1 RT ≥1 R 2 T E log(1 + R T ) 2 .
The function x → log(1 + x) 2 is concave for xe ≥ 1. Then, decomposing on the events {R T ≤ 1} and {R T ≥ 2} and applying the Jensen inequality leads to,

E log(1 + R T ) 2 ≤ log(2) 2 + log(1 + E[R T ]) 2 ≤ log(2) + log(1 + E[R T ]).
Next, using the inequality (see [START_REF] Grimmett | Probability and random processes[END_REF] p. 420)

E[R T ] ≤ T µ 1 + 1 -µ 1 µ 1
where

µ 1 = E[D 1 ∧ 1] > 0, leads to E log(1 + R T ) ≤ log T + 1 µ 1 .
Finally, Inequality (4) of Proposition 2.1 with α = 2 gives

E log(1 + R T ) R T 1 RT ≥1 ≤ √ C 2 T C 3 + log(T + 1) ,
where C 1 is defined in Proposition 2.1 and C 3 = log(2) + | log(µ 1 )|. This completes the proof. ✷ 6.5 Proof of Lemma 3.1

From (6), we derive that for i ≥ 1,

D ∆ i+1 = D R T ∆ i +1 + ∆ξ i where we set ξ i := 1 ∆ F T ∆ i -∆ -F T ∆ i+1 -∆
. By the definition of forward times and the variables ( T ∆ i ), it is straightforward to get that |ξ i | ≤ 1. We are left to prove that (D R T ∆ i +1 ) are i.i.d. with density τ . The independence is due to the renewal property, we prove the density is τ . Let h : R + → R be a bounded measurable function, decomposing on the values of T ∆ i , we find that

E h(D R T ∆ i +1 ) = ⌊T ∆ -1 ⌋ j=1 E h(D Rj∆+1 ) T ∆ i = j∆ P( T ∆ i = j∆).
It is sufficient to show that: for all k ≤ j the variables D Rj∆+1 and (R k∆ -R (k-1)∆ ) are independent (36) and that D Rj∆+1 has density τ.

Indeed, if (36) and (37) hold true, the independence between D Rj∆+1 and (R k∆ -R (k-1)∆ ) k≤j ensures that D Rj∆+1 is independent of the event { T ∆ i = j∆}. This leads to

E h(D R T ∆ i +1 ) = ⌊T ∆ -1 ⌋ j=1 E h(D Rj∆+1 ) P( T ∆ i = j∆) = ⌊T ∆ -1 ⌋ j=1 ∞ 0 h(y)τ (y)dyP( T ∆ i = j∆) = E h(D 1 ) .
Therefore, this implies that D R T ∆ i +1 has density τ . Now, we prove (36) and (37). Let h 1 : R + → R and h 2 : N → R be bounded measurable functions, and k ≤ j. We have

E h 1 (D Rj∆+1 )h 2 (R k∆ -R (k-1)∆ ) = ∞ ℓ1=0 ℓ1 ℓ2=0 ℓ2 ℓ3=0 h 2 (ℓ 3 )E h 1 (D ℓ1+1 ) R j∆ = ℓ 1 , R k∆ = ℓ 2 , R k∆ -R (k-1)∆ = ℓ 3 × P R j∆ = ℓ 1 , R k∆ = ℓ 2 , R k∆ -R (k-1)∆ = ℓ 3 .
As k ≤ j, we have R k∆ -R (k-1)∆ ≤ R k∆ ≤ R j∆ a.s. and the renewal property ensures that D ℓ1+1 is independent of the event

{R j∆ = ℓ 1 , R k∆ = ℓ 2 , R k∆ -R (k-1)∆ = ℓ 3 }, 0 ≤ ℓ 3 ≤ ℓ 2 ≤ ℓ 1 , it follows that E h 1 (D Rj∆+1 )h 2 (R k∆ -R (k-1)∆ ) = E h 1 (D 1 ) ∞ ℓ3=0 h 2 (ℓ 3 ) ∞ ℓ1=ℓ3 ℓ1 ℓ2=ℓ3 P R j∆ = ℓ 1 , R k∆ = ℓ 2 , R k∆ -R (k-1)∆ = ℓ 3 = E h 1 (D 1 ) ∞ ℓ3=0 h 2 (ℓ 3 )P R j∆ ≥ R k∆ , R k∆ ≥ R k∆ -R (k-1)∆ , R k∆ -R (k-1)∆ = ℓ 3 = E h 1 (D 1 ) ∞ ℓ3=0 h 2 (ℓ 3 )P R k∆ -R (k-1)∆ = ℓ 3 = E h 1 (D 1 ) E h 2 (R k∆ -R (k-1)∆ )
where in last line, we use that k ≤ j, implying that R k∆ -R (k-1)∆ ≤ R k∆ ≤ R j∆ a.s. The equality implies both (36) and (37). The proof of Lemma 3.1 is now complete. ✷

Proof of Proposition 3.1

As in the proof of Theorem 2.1 we have τm -

τ 2 = τ -τ m 2 + m-1 k=0 (ǎ k -a k ) 2 .
Having an expansion of the coefficients ǎk based on relation [START_REF] Comte | Adaptive Laguerre density estimation for mixed Poisson models[END_REF] 

leads to ǎk = 1 N T NT i=1 ϕ k ( D ∆ i ) = 1 N T NT i=1 ϕ k D R T ∆ i +1 + ∆ξ i = a k + ∆ N T NT i=1 ϕ ′ k ( ξ i ),
for some random variables ξ j and where

a k := 1 N T NT i=1 ϕ k D R T ∆ i +1 .
It follows that

m-1 k=0 (ǎ k -a k ) 2 ≤ 2 m-1 k=0 ( a k -a k ) 2 + 2∆ 2 m-1 k=0 1 N T NT i=1 |ϕ ′ k ( ξ i )| 2 .
Using that ϕ k ∞ ≤ √ 2, ∀k and the relation (see Lemma 5.2 in Comte and Dion (2016))

ϕ ′ k = -ϕ k -2 k-1 ℓ=0 ϕ ℓ (38) we get ϕ ′ k ∞ ≤ √ 2(1 + 2k). This leads to m-1 k=0 (ǎ k -a k ) 2 ≤ 2 m-1 k=0 ( a k -a k ) 2 + 2∆ 2 m-1 k=0 2(1 + 2k) 2 = 2 m-1 k=0 ( a k -a k ) 2 + ∆ 2 m(4m 2 -1) 3 .
Taking expectation and thanks to Lemma 3.1 the first term can be treated similarly as in the proof of Theorem 2.1 replacing R T with N T . We derive Proposition 3.1. ✷

Proof of Theorem 3.1

The proof of Theorem where ř es

T (t) = 1 N T NT i=1 (t( D ∆ i ) -t(D i )).
It follows from the proof of Proposition 3.1 that sup

t∈S m∨m, t =1 [ ř es T (t)] 2 ≤ 4 3 m 3 ∆ 2 .
Then, let p NT (m) defined in [START_REF] Soon | Nonparametric estimation and consistency for renewal processes[END_REF] and pNT (m) = (8/3)∆ 2 m 3 . We get and we apply Lemma 6.1, which yields

1 2 τ m -τ 2 ≤ 3 2 τ -τ m 2 + p en(m) + 8 sup t∈S m∨m , t =1 ν NT (t) 2 -p NT (m ∨ m) + +8 sup t∈S m∨m , t =1 [ ř es T (t)] 2 -pNT (m ∨ m) + + 8p NT (m ∨ m) +8p NT (m ∨ m) -p en( m) ≤ 3 2 τ -τ m 2 + pen(m) + 8 sup t∈S m∨m , t =1 ν NT (t) 2 -p NT (m ∨ m) + +8p NT (m ∨ m) + 8p NT (m ∨ m) -p en( m).
E[ τ m -τ 2 ] ≤3 τ -τ m 2 + 4E[ p en(m)] + 16c ′ E 1/2 T 4 1 NT ≥1 N 6 T .
This ends the proof of Theorem 3.1. ✷ 6.8 Proof of Lemma 3.2

From (6), and under (A4) we have for i ≥ 1, R T ∆ i = i a.s. and thus

D ∆ i+1 = D i+1 +F T ∆ i -∆ -F T ∆ i+1 -∆
, where the three variables are independent by the renewal property. Under (A2) and for fixed time t > 0, the density of F t does not depend on t and is given by τ 0 defined in (A2) (see e.g. formula (4.2.6) in Daley and Vere-Jones ( 2003)). Let h : R + → R be a bounded measurable function, we have

E h(F T ∆ i -∆ ) = ⌊T ∆ -1 ⌋ j=1 E h(F j∆-∆ ) T ∆ i = j∆ P( T ∆ i = j∆).
Moreover, for all x ≥ 0 we have

P F j∆-∆ ≤ x T ∆ i = j∆ = P F j∆-∆ ≤ x ∃i 0 , T i0 ∈ ((j -1)∆, j∆] = P F j∆-∆ ≤ x F j∆-∆ ≤ ∆ = x∧∆ 0 (1 - y 0 τ (z)dz)dy ∆ 0 (1 - y 0 τ (z)dz)dy = x ∧ ∆ ∆ ,
where we used the dead-zone assumption (A4) to derive the last equality. Consequently, the variable

F j∆-∆ T ∆ i = j∆ has uniform distribution over [0, ∆]. Then, E h(F T ∆ i -∆ ) = ⌊T ∆ -1 ⌋ j=1 ∆ 0 1 ∆ h(y)dyP( T ∆ i = j∆) = ∆ 0 1 ∆ h(y)dy,
which completes the proof. ✷

Proof of Proposition 3.2

To avoid cumbersomeness we work in the sequel as if the observations (

D ∆ i , 1 ≤ i ≤ R T ) were independent. Strictly, we should consider separately ( D ∆ 2i , 2 ≤ 2i ≤ R T ) and ( D ∆ 2i+1 , 1 ≤ 2i + 1 ≤ R T )
, which are independent. But it is always possible in the sequel to split the sample, even if it means increasing slightly the constants.

First as τ m is in S m , by Pythagoras Theorem we have

τ m -τ 2 = τ -τ m 2 + τ m -τ m 2 = τ -τ m 2 + G m (∆) -2 ( b m -b m ) 2 2,m ≤ τ -τ m 2 + ρ 2 G m (∆) -2 m-1 k=0 ( b k -b k ) 2 ,
where . 2,m denotes the ℓ 2 euclidean norm of a vector of size m. Taking expectation and decomposing on the possible values of R T , we are left to control

E[( b k -b k ) 2 ] = E ∞ ℓ=0 1 RT =ℓ 1 ℓ ℓ i=1 (ϕ k (Y ∆ i ) -ϕ k , f ∆ (. -∆) ) 2 .
We recover the same term as in the proof of Theorem 2.1, the same computations based on Lemma 6.2 lead to

m-1 k=0 E[( b k -b k ) 2 ] ≤ 8mE 1 RT ≥1 R T + C 1 τ 3 exp - κ ′ 4 √ 2 τ √ m + C 2 m E 1 RT ≥1 R 4 T .
where C 1 and C 2 are given in [START_REF] Guédon | Nonparametric estimation of renewal processes from count data[END_REF]. ✷ 6.10 Proof of Theorem 3.2

Let m max denote the maximum dimension m in M T . Consider the vectors t = (a 0 (t), . . . , a mmax-1 (t)) T in R mmax , which are one-to-one related with functions t of S mmax by t = mmax-1 j=0

a j (t)ϕ j . Vectors and functions spaces are denoted in the same way. If t is in S m for m ≤ m max we have a m (t) = . . . = a mmax-1 (t) = 0. Let [t] m be the m-dimensional vector with coordinates (a 0 (t), . . . , a m-1 (t)) T . We also denote by u, v R m the vector scalar product in R m . Therefore, for t ∈ S m , thanks to the triangular form of G m (∆) -2 , we have

t, G mmax (∆) -2 b mmax R mmax = [t] m , G m (∆) -2 b m R m .
Following the lines of the proof of Theorem 1 in Comte et al. (2016), and noticing that

τ m = arg min tm∈Sm γ T (t), γ T (t) = t m 2 R mmax -2 t m , G mmax (∆) -2 b mmax R mmax and m = arg min m∈ MT {γ n ( τ m ) + pen(m)} we obtain 1 2 τ m -τ 2 ≤ 3 2 τ -τ m 2 + pen(m) + 4 sup t∈S m∨ m [ ν T (t)] 2 -pen( m) where ν T (t) = t, G mmax (∆) -2 ( b mmax -b mmax ) R mmax . Now, define p RT (m, m ′ ) = ρ 2 (G m∨m ′ (∆) -2
)p RT (m, m ′ ) with p RT defined in [START_REF] Soon | Nonparametric estimation and consistency for renewal processes[END_REF]. Writing that

E sup t∈S m∨ m [ ν RT (t)] 2 -p RT (m, m)] + ≤ m ′ ∈ MT E sup t∈S m∨m ′ [ ν RT (t)] 2 -p RT (m, m ′ )] + and E sup t∈S m∨m ′ [ ν RT (t)] 2 -p RT (m, m ′ )] + ≤ ρ 2 (G m∨m ′ (∆) -2 )E sup t∈S m∨m ′ [ν RT (t)] 2 -p RT (m, m ′ )]
+ we get the result. Indeed ρ 2 (G m∨m ′ (∆) -2 ) ≤ T in M T and the powers of R T in the residual terms can be increased at the expense of slightly larger constants. ✷ 6.11 Proof of Lemma 3.3

Recall that g k (∆) = 1 ∆ ∆ 0 ϕ j (x)dx and that Φ(x) = +∞ x ϕ j (u)du, we get g k (∆) = 1 ∆ (Φ k (0) - Φ k (∆)). Straightforward computations give +∞ 0 ϕ k (x)dx = √ 2 k j=0 k j (-1) j j! +∞ 0 (2x) j e -x dx = √ 2 k j=0 k j (-2) j = √ 2(-1) k , and (15) 
follows. For ( 16), we start from formula (38), yielding

ϕ j (x) = Φ j (x) + 2 j-1 k=0 Φ k (x).
This formula implies [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problems[END_REF] as 

ϕ j+1 = Φ j+1 + 2 j k=0 Φ k = Φ j+1 + Φ j + Φ j + 2 j-1 k=0 Φ k =ϕj . ✷ Appendix A.
E sup t∈F , t =1 ν ℓ (t) 2 -2(1 + 2ε ℓ )H 2 ℓ 2 + ≤ 6 2v ℓκ ′ 2 exp - κ ′ ℓε ℓ H 2 ℓ v + 36 2b ℓκ ′ 4 exp - ℓκ ′ ε ℓ H 2 ℓ √ 2b 
where ν ℓ (t) = 1 ℓ ℓ j=1 t(D j )t, τ , with the convention ν 0 (t) = 0, ∀t ∈ F .

Proof of Lemma 6.2

The result is established using the Talagrand inequality and that for any positive random variable

X we have E[X 2 ] = 2 ∞ 0 tP(X ≥ t)dt. Denote by X = sup t∈Sm, t =1 ν ℓ (t) 2 -2(1 + ε ℓ )H 2 ℓ + , it
follows that

E X 2 = 2 ∞ 0 tP sup t∈Sm, t =1 ν ℓ (t) 2 ≥ 2(1 + 2ε ℓ )H 2 ℓ + t dt = 2 ∞ 0 tP sup t∈Sm, t =1 ν ℓ (t) ≥ 2(1 + 2ε ℓ )H 2 ℓ + t dt ≤ 2 ∞ 0 tP sup t∈Sm, t =1 ν ℓ (t) ≥ (1 + ε ℓ )H ℓ + ε ℓ H 2 ℓ + t 2 dt.
We apply the Talagrand inequality (see e.g. Corollary 2 in Birgé and Massart [START_REF] Birgé | Minimum contrast estimators on sieves: exponential bounds and rates of convergence[END_REF]) with η

= ( √ 1 + ε ℓ -1) ∧ 1 and λ ℓ = ε ℓ H 2 ℓ + t/2. We obtain, for κ ′ a universal constant, E X 2 ≤ 6 ∞ 0 t exp -ℓκ ′ ε ℓ H 2 ℓ + t/2 v ∧ ε ℓ H 2 ℓ + t/2 b dt ≤ 6 ∞ 0 t exp -ℓκ ′ ε ℓ H 2 ℓ + t/2 v dt + 6 ∞ 0 t exp -ℓκ ′ ε ℓ H 2 ℓ + t/2 b dt.
Next, we use that

ε ℓ H 2 ℓ + t/2 ≥ √ ε ℓ H ℓ + t/2 / √ 2 to derive E X 2 ≤ 6 exp - κ ′ ℓε ℓ H 2 ℓ v ∞ 0 t exp κ ′ ℓ 2v t dt + 6 exp - ℓκ ′ √ 2b ε ℓ H 2 ℓ ∞ 0 t exp -κ ′ ℓ √ t 2b dt = 6 2v ℓκ ′ 2 exp - κ ′ ℓε ℓ H 2 ℓ v + 36 2b κ ′ ℓ 4 exp - ℓκ ′ √ 2b ε ℓ H 2 ℓ .
Which is the desired result. ✷

B. Additional Numerical results

We present hereafter the numerical results corresponding to the distributions presented in Section 4. Tables 3-5 correspond to the comparison of the continuous time and the naive procedures and Tables 6-8 to the comparison of the continuous time and the dead-zone procedures. In all the tables, the lines L 2 correspond to the value of mean square errors, m to the mean of the selected dimensions. All standard deviations are given in parenthesis.

T ∆ = 0 ∆ = 0.01 ∆ = 0. The mean of the number of observations is around 460 for T = 500, 930 for T = 1000, 4600 for T = 5000 in Table 3; around 147 for T = 500, 297 for T = 1000, 1497 for T = 5000 in Table 4; around 281 for T = 565, 297 for T = 1000, 2840 for T = 5000 in Table 5; 241 for T = 500, 485 for T = 1000, 2436 for T = 5000 in Table 6; around 112 for T = 500, 228 for T = 1000, 1151 for T = 5000 in Table 7; around 179 for T = 500, 361 for T = 1000, 1816 for T = 5000 in Table 8.

Figure 1 :

 1 Figure 1: Discrete time observation scheme.

  ) where D R T ∆ i +1 are i.i.d. with density τ and (ξ i ) are random variables taking values in [-1, 1].

Figure 2 :

 2 Figure 2: Estimation of τ , a shifted (η = 1) mixture of Gamma densities 0.4G(2, 1

Figure 3 :

 3 Figure 3: Estimation of τ , following a shifted (η = 1) Beta distribution 5 × B(6, 3), for T = 500. The estimator based on the continuous observation (first line), ∆ = 0.1 (second line) and for ∆ = 0.01 (third line), with the naive method (first column) and the dead-zone method (second column). True density τ in black and 50 estimated curves in green.

  Now we choose p en(m) = 8p NT (m) + 8p T,2 (m) so that 8p NT (m ∨ m) + 8p NT (m ∨ m)p en( m) ≤ p en(m)

1 2 ) 30 • 3 ( 4 .

 23034 | under the dead-zone assumption (η = 1). 10 -3 16.25 • 10 -3 16.30 • 10 -3 22.49 • 10 -3 45.01 • 10 -41 • 10 -3 ) (6.49 • 10 -3 ) (6.54 • 10 -3 ) (12.18 • 10 -3 ) (14.

Table 1 :

 1 Simulation results for τ following a G(2, 1 2 ) distribution. L 2 : mean square errors, R: mean of the number of observations, m: mean of the selected dimensions. All standard deviations are given in parenthesis.

				01	1.31	12.80
		L 2	2.42 • 10 -3 (1.90 • 10 -3 )	2.44 • 10 -3 (1.90 • 10 -3 )	2.43 • 10 -3 (1.95 • 10 -3 )	7.82 • 10 -3 (2.83 • 10 -3 )
		R	498.55 (15.92) 497.52 (15.91) 494.54 (15.83) 474.85 (14.65)
		m	4.98 (0.67)	4.96 (0.67)	5.07 (0.70)	5.22 (0.55)
		m 3 ∆ 2		0.01	1.54	13.79
	1000	L 2	1.22 • 10 -3 (0.91 • 10 -3 )	1.22 • 10 -3 (0.92 • 10 -3 )	1.33 • 10 -3 (1.33 • 10 -3 )	6.97 • 10 -3 (1.74 • 10 -3 )
		R	998.00 (22.13) 996.92 (22.14) 990.93 (22.01) 992.30 (20.33)
		m	5.31 (0.60)	5.31 (0.60)	5.36 (0.61)	5.35 (0.49)
		m 3 ∆ 2		0.02	2.20	17.55
	5000	L 2	0.27 • 10 -3 (0.20 • 10 -3 )	0.27 • 10 -3 (0.20 • 10 -3 )	0.42 • 10 -3 (0.26 • 10 -3 )	6.00 • 10 -3 (0.92 • 10 -3 )
		R	4998.0 (50.60) 4996.6 (50.60) 4967.0 (50.20) 4772.4 (46.30)
		m	6.08 (0.43)	6.07 (0.43)	6.04 (0.33)	5.80 (0.40)

Table 2 :

 2 Simulation results for τ following a G(2, 1

			(1.91 • 10 -3 )	16.67 • 10 -3 (1.90 • 10 -3 )	16.77 • 10 -3 (1.87 • 10 -3 )	24.55 • 10 -3 (1.57 • 10 -3 )	38.56 • 10 -3 (•10 -3 )
		R	248.34 (5.63)	247.34 (5.63)	247.34 (5.63)	247.34 (5.63)	247.09 (5.63)
		m	10.27 (1.84)	8.65 (1.68)	8.62 (1.65)	7.33 (1.53)	5.45 (1.72)
	1000	L 2 R	8.40 • 10 -3 (2.77 • 10 -3 ) 498.53 (8.00)	12.58 • 10 -3 (3.31 • 10 -3 ) 497.53 (8.00)	12.67 • 10 -3 (3.30 • 10 -3 ) 497.53 (8.00)	17.22 • 10 -3 (4.27 • 10 -3 ) 497.53 (8.00)	21.64 • 10 -3 (6.03 • 10 -3 ) 497.41 (8.01)
		m	12.77 (3.20)	10.00 (2.33)	9.92 (2.27)	8.33 (0.47)	7.65 (0.65)
	5000	L 2 R 2498.90 (17.80) 2497.90 (17.80) 2497.90 (17.80) 2497.90 (17.80) 2497.7 (17.80) 3.45 • 10 -3 4.65 • 10 -3 4.78 • 10 -3 12.66 • 10 -3 21.79 • 10 -3 (1.08 • 10 -3 ) (1.20 • 10 -3 ) (1.11 • 10 -3 ) (0.94 • 10 -3 ) (203.45 • 10 -3 )
		m	22.19 (4.44)	18.61 (4.00)	17.91 (3.39)	9.04 (0.45)	8.72 (1.39)

  is a difficult problem similar to decompounding (see e.g. van Es et al. (2007), Duval (2013a,2013b) or Comte et al. (2014)). The dead-zone case only partially solves the estimation problem for renewal processes. But, it illustrates that in deconvolution problem, when the Fourier transform of the noise has isolated zero, if Fourier methods become technically difficult, the Laguerre procedure remains easy to implement.

  3.1 follows the line of the proof of Theorem 2.2 with ν RT (t) replaced by

	νNT (t) where			
	νNT (t) =	1 N T	NT i=1	(t( D ∆ i ) -τ, t ).
	We have			
	sup t∈S m∨m, t =1 [ν NT (t)] 2 ≤ 2	t∈S m∨m, t =1 sup [ν NT (t)] 2 + 2	t∈S m∨m , t =1 sup [ ř es T (t)] 2

  Talagrand inequalityThe result established below follows from the Talagrand concentration inequality given in Corollary 2 of Birgé and Massart[START_REF] Birgé | Minimum contrast estimators on sieves: exponential bounds and rates of convergence[END_REF]. Lemma 6.2. Let D 1 , . . . , D ℓ be ℓ i.i.d. random variables and F a countable family of functions that are uniformly bounded by some constant b. Let v = sup t∈F E[t(D 1 ) 2 ] and H ℓ be such that E sup t∈F ν ℓ (t) ≤ H ℓ . There exists a universal constant κ ′ such that, for any positive ε ℓ , we have

  10 -3 3.82 • 10 -3 10.87 • 10 -3 28.90 • 10 -3 (2.83 • 10 -3 ) (3.05 • 10 -3 ) (4.12 • 10 -3 ) (2.69 • 10 -3 ) 10 -3 2.15 • 10 -3 8.41 • 10 -3 28.71 • 10 -3 (1.06 • 10 -3 ) (1.12 • 10 -3 ) (3.10 • 10 -3 ) (1.65 • 10 -3 ) 10 -3 7.23 • 10 -3 28.50 • 10 -3 (0.37 • 10 -3 ) (0.37 • 10 -3 ) (0.79 • 10 -3 ) (0.78 • 10 -3 )

				1	∆ = 0.3
		m 3 ∆ 2	0.02	1.21	5.06
	500	L 2 3.64 • m 6.05 (1.12)	5.91 (1.22)	4.94 (2.35)	3.83 (0.52)
		m 3 ∆ 2	0.03	3.72	5.93
	1000	L 2 2.06 • m 6.65 (0.89)	6.66 (1.13)	7.19 (2.65)	4.04 (0.30)
		m 3 ∆ 2	0.09	14.58	5.87
	5000	L 2 0.68 • m 0.75 • 10 -3 8.63 (1.96) 9.76 (1.94)	11.34 (0.63)	4.02 (0.17)

Table 3 :

 3 Results for τ following a |N (1, 1 2 )|. 10 -3 13.82 • 10 -3 14.18 • 10 -3 16.27 • 10 -3 (3.96 • 10 -3 ) (3.86 • 10 -3 ) (3.66 • 10 -3 ) (5.00 • 10 -3 ) 10 -3 8.61 • 10 -3 9.63 • 10 -3 14.50 • 10 -3 (3.47 • 10 -3 ) (3.47 • 10 -3 ) (4.00 • 10 -3 ) (1.41 • 10 -3 ) 10 -3 13.81 • 10 -3 (0.78 • 10 -3 ) (0.76 • 10 -3 ) (1.62 • 10 -3 ) (1.60 • 10 -3 ) m 15.96 (1.72)15.86 (1.66) 12.43 (1.81) 8.12 (0.59)

	T		∆ = 0	∆ = 0.01	∆ = 0.1	∆ = 0.3
		m 3 ∆ 2		0.06	6.19	42.89
	500	L 2 13.68 • m 8.75 (1.33)	8.70 (1.29)	8.52 (1.17)	7.81 (0.68)
		m 3 ∆ 2		0.12	10.25	46.67
	1000	L 2 8.59 • m 10.62 (1.35) 10.60 (1.34) 10.08 (1.39)	8.03 (0.32)
		m 3 ∆ 2		0.40	19.21	48.18
	5000	L 2	3.23 • 10 -3	3.27 • 10 -3	5.46 •

Table 4 :

 4 Results for τ following a 5 × B(6, 3). 2 7.43 • 10 -3 7.47 • 10 -3 7.35 • 10 -3 10.42 • 10 -3 (2.67 • 10 -3 ) (2.67 • 10 -3 ) (2.60 • 10 -3 ) (3.36 • 10 -3 ) 10 -3 5.31 • 10 -3 5.82 • 10 -3 9.12 • 10 -3 (2.02 • 10 -3 ) (2.00 • 10 -3 ) (1.53 • 10 -3 ) (1.94 • 10 -3 ) (0.59 • 10 -3 ) (0.57 • 10 -3 ) (0.76 • 10 -3 ) (0.74 • 10 -3 ) m 12.30 (2.11) 12.19 (2.06) 10.56 (0.68) 7.00 (0.03)

	T		∆ = 0	∆ = 0.01	∆ = 0.1	∆ = 0.3
		m 3 ∆ 2		0.04	3.74	31.16
	500					
		m	7.43 (1.14)	7.41 1.20)	7.21 (0.69)	7.02 (0.19)
		m 3 ∆ 2		0.06	4.46	31.08
	1000	L 2 5.30 • m 8.49 (1.83)	8.47 (1.83)	7.64 (1.25)	7.02 (0.12)
		m 3 ∆ 2		0.18	11.76	30.88
	5000	L 2	1.48 • 10 -3	1.50 • 10 -3	2.28 • 10 -3	8.07 • 10 -3

L

Table 5 :

 5 Simulation results for τ following a 0.4G(2, 1 2 ) + 0.6G(16, 1 4 ) × 8 5 distribution. 10 -3 7.30 • 10 -3 7.43 • 10 -3 10.13 • 10 -3 14.63 • 10 -3 (3.48 • 10 -3 ) (7.30 • 10 -3 ) (7.43 • 10 -3 ) (5.35 • 10 -3 ) (10.57 • 10 -3 ) 10 -3 5.02 • 10 -3 5.02 • 10 -3 5.69 • 10 -3 7.49 • 10 -3 (2.28 • 10 -3 ) (1.38 • 10 -3 ) (1.34 • 10 -3 ) (2.36 • 10 -3 ) (3.11 • 10 -3 ) 10 -3 4.12 • 10 -3 4.13 • 10 -3 4.50 • 10 -3 4.94 • 10 -3 (0.94 • 10 -3 ) (0.61 • 10 -3 ) (0.60 • 10 -3 ) (0.48 • 10 -3 ) (0.35 • 10 -3 )

	T	∆ = 0	∆ = 0.01	∆ = 0.1	∆ = 0.5	∆ = 0.75
	500	L 2 5.89 • m 7.90 (0.68)	6.51 (1.03)	6.48 (1.05)	5.74 (1.30)	4.91 (1.15)
	1000	L 2 4.96 • m 8.18 (0.39)	7.07 (0.30)	7.07 (0.28)	6.86 (0.49)	6.40 (0.66)
	5000	L 2 4.99 • m 8.98 (0.16)	7.95 (0.21)	7.94 (0.23)	7.41 (0.49)	7.02 (0.15)

Table 6 :

 6 Simulation results for τ following a |N (1,

  14 • 10 -3 ) 10 -3 11.60 • 10 -3 11.66 • 10 -3 15.36 • 10 -3 23.90 • 10 -3(3.27 • 10 -3 ) (6.08 • 10 -3 ) (6.09 • 10 -3 ) (3.58 • 10 -3 ) (6.90 • 10 -3 ) (0.67 • 10 -3 ) (0.76 • 10 -3 ) (0.78 • 10 -3 ) (1.20 • 10 -3 ) (1.46 • 10 -3 ) m 17.30 (1.87) 15.33 (1.13) 15.25 (1.05) 10.99 (0.13) 8 (0)

		m	9.56 (1.24)	7.86 (0.74)	7.85 (0.75)	6.77 (1.10)	5.29 (0.45)
	1000	L 2 5.74 • m 11.67 (1.37)	9.41 (1.52)	9.39 (1.52)	7.98 (0.22)	6.00 (0.33)
		L 2	1.91 • 10 -3	2.19 • 10 -3	2.21 • 10 -3	6.43 • 10 -3	14.93 • 10 -3
	5000					

Table 7 :

 7 Simulation results for τ following a 5 × B(6, 3) under the dead-zone assumption (η = 1). 14.76 • 10 -3 40.03 • 10 -3 40.91 • 10 -3 78.24 • 10 -3 84.35 • 10 -3 (11.64 • 10 -3 ) (29.77 • 10 -3 ) (29.87 • 10 -3 ) (18.51 • 10 -3 ) (8.94 • 10 -3 ) m 13.01 (3.23) 8.36 (4.34) 8.22 (4.35) 2.90 (2.26) 2.11 (0.41) 1000 L 2 5.63 • 10 -3 10.19 • 10 -3 10.53 • 10 -3 31.61 • 10 -3 77.02 • 10 -3 (3.34 • 10 -3 ) (7.75 • 10 -3 ) (7.98 • 10 -3 ) (14.48 • 10 -3 ) (14.03 • 10 -3 ) m 16.46 (1.22) 14.41 (2.15) 14.30 (2.21) 9.23 (2.14) 2.67 (1.02)

	T		∆ = 0	∆ = 0.01	∆ = 0.1	∆ = 0.5	∆ = 0.75
		L 2					
	500						
	5000	L 2 m	2.85 • 10 -3 (0.68 • 10 -3 ) 17.82 (1.06)	3.84 • 10 -3 (1.11 • 10 -3 ) 16.49 (0.57)	3.88 • 10 -3 (1.11 • 10 -3 ) 16.45 (0.53)	15.24 • 10 -3 (2.91 • 10 -3 ) 11.02 (0.52)	29.53 • 10 -3 (4.19 • 10 -3 ) 9.88 (0.36)

Table 8 :

 8 Simulation results for τ following a 0.4G(2, 1 2 ) + 0.6G(16, 1 4 ) × 8 5 under the dead-zone assumption (η = 1).