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Nonparametric estimation of the interarrival distribution of a

renewal process

F. Comte∗, C. Duval†

Abstract

In this paper, we consider nonparametric density estimation for interarrival times density of
a renewal process. First, we assume continuous observation of the process and build a projection
estimator in the Laguerre basis. We study its mean integrated squared error (MISE) and
compute rates of convergence on Sobolev-Laguerre spaces when the length of the observation
interval gets large. Second, we consider a discrete time observation with sampling rate ∆.
A first strategy consists in neglecting the discretization error, and under suitable conditions
on ∆, an analogous MISE is obtained. Then, taking into account the structure of the data,
a deconvolution estimator is defined and studied. In that case, we work under a simplifying
”dead-zone” condition. The MISE corresponding to this strategy is given for fixed ∆ as well
as for small ∆. In the three cases, an automatic model selection procedure is described and
gives the best MISE, up to a logarithmic term. The results are illustrated through a simulation
study. July 27, 2016
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1 Introduction

1.1 Model and Observations

Let R be a renewal process defined as follows. Define (T0, T1, . . . , Tn, . . .) the jump times of R such
that (Di := Ti−Ti−1)i≥1 are i.i.d. with density τ with respect to the Lebesgue measure supported
on (0,∞). The first jump time T0 may have a different distribution τ0. The renewal process R is
a process that counts how many jumps occurred until a given time t, i.e.

Rt =

∞∑

i=0

1Ti≤t. (1)

These processes are used to describe the occurrences of random events: for instance in seismology
to modelize the occurrence of earthquakes (see e.g. Alvarez (2005) or Epifani et al. (2014)).

In this paper we are interested in estimating the density τ . We consider two different sampling
schemes: first, the complete observation setting, where R is continuously observed over [0, T ] and
second, an incomplete observation setting, where R is observed at a sampling rate ∆ over [0, T ],
where ∆ is either small or fixed. The continuous observation scheme, whose study reveals to be
more delicate than it may first appear, will be used as a reference point for the discrete sampling
scheme. Indeed, continuous time observations are more informative and a procedure based on
discrete observations can, at best, attains the same rates as an optimal procedure based on the
continuous observations.

Estimation of the interarrival distribution for renewal processes goes back to Vardi (1982) who
proposed a consistent algorithm, based on the maximization of the likelihood. It permits to esti-
mate this distribution from the observation of K independent trajectories (see also Vardi (1989)
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and the generalization of Soon and Woodroofe (1996), Guédon and Cocozza-Thivent (2003) and
Adekpedjou et al. (2010); we also refer to the review of Gill and Keiding (2010) and the references
therein). Assuming that only endpoints Rt, for a given time t > 0, are observed and assuming a
Gamma distributed interarrival distribution, Miller and Bhat (1997) proposed a parametric esti-
mator also based on maximum likelihood techniques. However, in the aforementioned literature,
the asymptotic properties of the estimators are not investigated, therefore, rates of convergence are
not derived.

1.2 Continuous observation scheme

Without loss of generality we set T0 = 0, or equivalently τ0(dx) = δ0(dx). Suppose that R is
continuously observed over [0, T ], namely we observe (Rt, t ∈ [0, T ]). From this, we extract the
observations (D1, . . . , DRT

) to estimate the density τ . The counting process RT is such that

RT∑

j=1

Dj ≤ T and

RT+1∑

j=1

Dj > T, (2)

therefore, we are not in the classical i.i.d. density estimation problem. This implies that RT

and Dj are dependent and that the quantity DRT+1 is not observed. In addition, the random
number RT of observations depends itself on the unknown density τ . Then, the statistics RT is
not ancillary. Moreover, due to this particularity, our dataset is subject to bias selection: there is a
strong representation of small elapsed times D and long interarrival times are observed less often.

These issues are clearly explained in Hoffmann and Olivier (2016) who consider a related model:
age dependent branching processes. Our framework can be formalized as a degenerate age depen-
dent branching process: we study a particle with random lifetime governed by the density τ and
at its death it gives rise to one other particle with a lifetime governed by the same density τ . The
difference with Hoffmann and Olivier (2016), is that in their work the underlying structure of the
model is a Bellmann-Harris process which has a tree representation whereas our tree contains only
one branch, a case they exclude. Therefore the solutions they propose to circumvent the latter
difficulties do not apply in our setting. In particular, they derive rates of convergence as functions
of the Malthus parameter, which needs to be nonzero to ensure consistency. But in the Poisson
process case (which is a particular renewal process) it is easy to see that this Malthus parameter is
null. Therefore, in the sequel we will employ different techniques to deal with these issues.

1.3 Discrete observation scheme

Suppose now that we observe the process R over [0, T ] at a sampling rate ∆, namely, we observe(
Ri∆, i = 1, . . . , ⌊T∆−1⌋

)
. This setting introduces three difficulties. Firstly, the increments Ri∆ −

R(i−1)∆ are not independent. Secondly, they are not identically distributed. Thirdly, from the

sample
(
Ri∆, i = 1, . . . , ⌊T∆−1⌋

)
it cannot be derived a single realization of the density of interest

τ .
The first difficulty is easily handled as the dependency structure in the sample is not severe

and can be treated without additional assumptions. The second problem can be circumvented
by imposing a particular value for T0 that ensures stationarity of the increments. More precisely,
assuming that

µ :=

∫ ∞

0

xτ(x)dx < ∞ (A1)

and that T0 has density τ0 defined by

τ0(x) =

∫∞

x τ(s)ds

µ
, x ≥ 0, (A2)

the renewal process R given by (1) is stationary (see e.g. Lindvall (1992) or Daley and Vere-
Jones (2003)). A careful study of the third difficulty leads us to conclude that we are facing
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a deconvolution problem where the distribution of the noise is, in general, unknown and even
depends on the unknown density τ . We consider two strategies. If ∆ is small enough, we show
that the noise can be neglected. Otherwise, we add a simplifying assumption that permits to make
explicit the distribution of the noise: we assume that there exists a positive number ∆ ≥ η > 0
such that τ(x) = 0, ∀x ∈ [0, η] (see the so-called dead-zone assumption described below). This
leads to a convolution model with noise distribution corresponding to a sum of two independent
uniform densities.

1.4 Main results and organization of the paper

In this paper, we propose nonparametric projection strategies for the estimation of τ , which are all
based on the Laguerre basis. It is natural for R+-supported densities to choose a R

+-supported or-
thonormal basis. Other compactly supported orthonormal basis, such as trigonometric or piecewise-
polynomial basis, may also be considered provided their support can be rigorously defined. But in
the discrete observation scheme, the choice of the Laguerre basis gets crucial. Indeed, deconvolution
in presence of uniform noise presents specific difficulties: in the Fourier setting, it is required to
divide by the characteristic function of the noise but in the present case, this Fourier transform is
periodically zero. Specific solutions are needed (see Hall and Meister (2007) and Meister (2008))
which reveal to be rather difficult to implement. On the contrary, it appears that deconvolution
in the Laguerre basis can be performed without restriction and is computationally easy. This tool
has been proposed by Comte et al. (2016) and Mabon (2015) and can be applied here.

The article is organized as follows. The continuous time observation scheme is studied in
Section 2, where we build a nonparametric projection estimator τ̂m of τ . An upper bound on
the mean integrated squared risk (MISE) is proved, from which, under additional assumptions,
we can derive rates of convergence on Sobolev-Laguerre spaces, for large T . Up to logarithmic
terms, these rates match the minimax rates, derived for density estimation from i.i.d. observations
by Belomestny et al. (2016). A model selection procedure is defined and proved to lead to an
automatic bias-variance compromise. The more realistic discrete time observation scheme with step
∆ is considered in Section 3. Under specific conditions on ∆, the previous procedure is extended.
Additional approximation terms appear in the MISE bound, which are taken into account in the
model selection procedure. Removing the condition on ∆, but under an additional dead-zone
assumption on the process, a Laguerre deconvolution procedure is proposed, studied and discussed.
An extensive simulation Section 4 allows to illustrate all those methods for different distributions τ
and when ∆ is varying. Part of the results are postponed in Supplementary Material. A concluding
Section 5 ends the paper and presents ideas for dealing with a completely general setting. Most of
the proofs are deferred to Section 6.

2 Continuous time observation scheme

In this section, we assume that the process R defined by (1) is continuously observed over [0, T ].
Thus, the jump times (Ti)i occurring in the interval are known. We recall that

Di = Ti − Ti−1, i = 1, 2, . . . with T0 = 0

are subject to constraint (2). First, we describe the projection space and then define and study the
first estimator.

2.1 The Laguerre basis

The following notations are used below. For t, v : R+ → R square integrable functions, we denote
the L

2 norm and the L
2 scalar product respectively by

‖t‖ =

(∫ ∞

0

t(x)2dx

)1/2

and 〈t, v〉 =
∫ ∞

0

t(x)v(x)dx.
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The Laguerre polynomials (Lk)k≥0 and the Laguerre functions (ϕk)k≥0 are given by

Lk(x) =

k∑

j=0

(−1)j
(
k
j

)
xj

j!
, ϕk(x) =

√
2Lk(2x)e

−x
1x≥0, k ≥ 0.

The collection (ϕk, k ≥ 0) constitutes an orthonormal basis of L2(R+) (that is 〈ϕj , ϕk〉 = δj,k where
δj,k is the Kronecker symbol) and is such that

|ϕk(x)| ≤
√
2, ∀x ∈ R

+, ∀k ≥ 0.

For t ∈ L
2(R+) and ∀x ∈ R

+, we can write that

t(x) =
∞∑

k=0

ak(t)ϕk(x), where ak(t) = 〈t, ϕk〉.

We define the m-dimensional space Sm = span(ϕ0, . . . , ϕm−1) and tm the orthonormal projection

of t on Sm, we have tm =
∑m−1

k=0 ak(t)ϕk.

2.2 Projection estimator and upper risk bound

We are in a density estimation problem where the target density is supported on [0,∞), we assume
that τ is square-integrable on R

+ and decompose it in the Laguerre basis

τ(x) =

∞∑

k=0

ak(τ)ϕk(x), x ∈ [0,∞),

where ak(τ) = 〈ϕk, τ〉. From this, we derive an estimator of τ based on the sample (D1, . . . , DRT
),

defined, for m ∈ N and x ∈ [0,∞), by

τ̂m(x) =

m−1∑

k=0

âkϕk(x), where âk =
1

RT

RT∑

i=1

ϕk(Di), 0 ≤ k ≤ m− 1. (3)

Clearly, τ̂m is in fact an estimator of τm, the orthogonal projection of τ on Sm. Since RT is not an
ancillary statistics, conditioning on the value of RT does not simplify the study of âk, in particular
it is not possible to study easily its bias nor its variance. We can bound the mean-square error of
the estimator as follows.

Proposition 1. Assume that τ ∈ L
2(R+). Then, for log2(T ) ≤ m ≤ T , the estimator τ̂m given by

(3) satisfies

E
[
‖τ̂m − τ‖2

]
≤ ‖τ − τm‖2 + 12mE

[
1RT≥1

RT

]
+C1 exp

(
−κ′

2
log2(T )

)
+C2T

√
E

[
1RT≥1

R4
T

]
,

where C1 and C2 are given in (18) and only depend on a universal constant κ′.

The bound given by Proposition 1 is a decomposition involving two main terms: a squared bias

term, ‖τ − τm‖2 and a variance term 12mE

[
1RT≥1/RT

]
. Conditions ensuring that the two final

terms are indeed negligible are given below.

2.3 Rates of convergence

To obtain explicit rates from Proposition 1, we need to know the order of quantities of the form
E[R−α

T ] for α ≥ 0. Suppose that (A1) and that the following hold: there exist positive constants v
and c such that

E[Dk
1 ] ≤

k!

2
vck−2, ∀k ≥ 2. (A3)

Assumption (A3) is a standard preliminary for applying a Bernstein inequality. It is fulfilled by
Gaussian, sub-gaussian or bounded densities. Under (A3), we can establish the following result.
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Proposition 2. Assume that (A1) and (A3) hold. Let α > 0, then we have

E

[
1RT≥1

Rα
T

]
≤ C1T

−α, (4)

where C1 = (3µ)α + C̃1, and C̃1 is given in (22) hereafter if α ≥ 1/2 or in (23) if α ∈ (0, 12 ).
If in addition T is such that P(RT ≥ 1) ≥ a, a ∈ (0, 1), then it also holds that:

E

[
1RT≥1

Rα
T

]
≥ C2T

−α, (5)

where C2 = a(µ/2)α.

Proposition 2 states both upper (4) and lower (5) bounds to control quantities of the form
E[R−α

T ], for α > 0. Only the upper bound is used in the sequel to compute the rates of convergence
of τ̂m, but the lower bound ensures that the order in T of the upper bound is sharp.

For s ≥ 0, the Sobolev-Laguerre space with index s (see Bongioanni and Torrea (2009), Comte
and Genon-Catalot (2015)) is defined by:

W s =
{
f : (0,+∞) → R, f ∈ L

2((0,+∞)), |f |2s :=
∑

k≥0

ksa2k(f) < +∞
}
.

where ak(f) =
∫ +∞

0 f(u)ϕk(u)du. For s integer, the property |f |2s < +∞ can be linked with
regularity properties of the function f (existence of s-order derivative, but not only). We define
the ball W s(M) :

W s(M) =
{
f ∈ W s, |f |2s ≤ M

}
.

On this ball, we can handle the bias term ‖τ − τm‖2 and we obtain the following Corollary.

Corollary 1. Assume that (A1) and (A3) hold and that τ belongs to W s(M). Then, for T large
enough, choosing mopt = CT 1/(s+1), yields

E
[
‖τ̂mopt − τ‖2

]
≤ C(M, v, c)T−s/(s+1)

where C(M, v, c) is a constant depending on M, v, c but not on T .

Proof of Corollary 1. For τ ∈ W s(M), we have ‖τ − τm‖2 =
∑

j≥m a2j(τ) ≤ Dm−s. Moreover,
under (A3), we get by Inequality (4) of Proposition 2 that

12mE

[
1RT≥1

RT

]
≤ C

m

T

and for T > exp(2/κ′) that

C1 exp
(
−1

2
κ′ log2(T )

)
+C2T

√
E

[
1RT≥1

R4
T

]
≤ C3

T
,

for some constant C3. Therefore, E
[
‖τ̂m − τ‖2

]
≤ Dm−s + Cm/T + O(1/T ). Taking mopt =

CT 1/(s+1) gives the result of Corollary 1. ✷

The rate stated in Corollary 1 corresponds to the Sobolev-Laguerre upper bound for density
estimation from T i.i.d. observations drawn in the distribution τ . This rate is proved to be minimax
optimal, up to a logarithmic term, in Belomestny et al. (2016).
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2.4 Adaptive procedure

We propose a data driven way of selecting m. For this, we proceed by mimicking the bias-variance
compromise. Setting

MT = {⌊log2(T )⌋, ⌊log2(T )⌋+ 1, . . . , ⌊T ⌋},
we select

m̂ = arg min
m∈MT

(
−‖τ̂m‖2 + p̂en(m)

)
where p̂en(m) = κ

(
1 + 2 log(1 +RT )

) m

RT
.

Indeed, as ‖τ − τm‖2 = ‖τ‖2 − ‖τm‖2, the bias is estimated by −‖τ̂m‖2 up to the unknown but
unnecessary constant ‖τ‖2. On the other hand, the penalty corresponds to a random version of
the variance term increased by the logarithmic term log(1 + RT ). The quantity κ is a numerical
constant. In practice, κ is chosen by preliminary simulation experiments. For calibration strategies
(dimension jump and slope heuristics), the reader is referred to Baudry et al. (2012). We prove the
following result.

Theorem 1. Assume that τ ∈ L
2(R) and T ≥ e2. Then there exists a value κ0 such that for any

κ ≥ κ0, we have

E
[
‖τ̂m̂ − τ‖2

]
≤ c inf

m∈MT

{
‖τ − τm‖2 + E[p̂en(m)]

}
+ c”

(
E
1/2

[
T 2
1RT≥1

R4
T

]
+ E

1/2

[
T 4
1RT≥1

R6
T

])

where c is a numerical constant (c = 4 would suit) and c” = 8c′
√
3 with c′ defined in (31).

Compared to the result stated in Proposition 1, the inequality obtained in Theorem 1 implies
that the estimator τ̂m̂ automatically reaches the bias-variance compromise, up to the logarithmic
factor in the penalty and the multiplicative constant c. Under assumptions (A1) and (A3), the last
two additional terms are negligible, if T gets large.

Rates of convergence can be derived from Theorem 1 by applying inequality (4) of Proposition
2 together with the following Corollary.

Corollary 2. Assume that (A1) and (A3) hold. Then, the following holds

E

[
log(1 +RT )

RT
1RT≥1

]
≤

√
C1

T

(
C3 + log(T + 1)

)
,

where C1 is defined in Proposition 2 and C3 = log(2) + | log(µ1)|, with µ1 = E[D1 ∧ 1].

Indeed, under assumptions (A1) and (A3) and if τ belongs to W s(M), the MISE E[‖τ̂m̂ − τ‖2]
is automatically of order (T/ log(1 + T ))−s/(1+s), without requiring any information on τ nor s.
This is the best possible rate, up to a logarithmic factor.

3 Discrete time observation scheme

In this section, we assume that only discrete time observations with step ∆, (Ri∆)i∆∈[0,T ] are
available for estimating τ .

3.1 Observation scheme and assumptions

Information about τ is brought by the position of nonzero increments. But when only discrete time
observations of R over [0, T ] at sampling rate ∆ are available, this information is partial. Indeed,
let i0 ≥ 1 be such that Ri0∆ −R(i0−1)∆ 6= 0, this entails that at least one jump occurred between
(i0 − 1)∆ and i0∆. But,

• It is possible that more than one jump occurred between (i0 − 1)∆ and i0∆. However, if ∆
gets small enough, the probability of this event tends to 0.
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• It does not accurately determine a jump position Ti, but locates a jump time with an error
bounded by 2∆. We have no direct observations of random variables with density τ .

We consider
(D̂∆

i := T̂∆
i − T̂∆

i−1, i = 1, . . . , NT )

where NT =
∑⌊T∆−1⌋

i=1 1Ri∆ 6=R(i−1)∆
is the random number of observed nonzero increments and T̂∆

i

are estimators of the unobserved jump times defined with the following recursive formula

T̂∆
0 = min{k > 0, Rk∆ −R(k−1)∆ 6= 0} ×∆

T̂∆
i = min{k > 1

∆ T̂∆
k−1, Rk∆ −R(k−1)∆ 6= 0} ×∆, i ≥ 1.

To estimate τ , we drop the observation T̂∆
0 since it is related to the density τ0 and not τ . The

observation scheme is represented in Figure 1, where Ft = min{Tj − t, ∀j, Tj ≥ t} denotes the
forward time at time t, that is the elapsed time from t until the next jump. The following equality
holds: D̂∆

i+1 +∆ = DR
T̂∆
i

+1 + FT̂∆
i −∆ + (∆− FT̂∆

i+1−∆), ∀i ≥ 1, leading to

D̂∆
i+1 = DR

T̂∆
i

+1 + FT̂∆
i −∆ − FT̂∆

i+1−∆. (6)

̂
T

∆
i

̂
T

∆
i+1

TR
T̂
∆
i

TR
T̂
∆
i+1

TR
T̂
∆
i

+1

DR
T̂
∆
i

+1

∆

F
T̂

∆
i
−∆

∆− F ̂T∆
i+1

−∆

Figure 1: Discrete time observation scheme.

In both following strategies, we consider observations D̂∆
i as given in (6) and we denote by f∆

the density of the D̂∆
i ’s. In Section 3.2, we prove that D̂∆

i = D′
i+FT̂∆

i −∆−FT̂∆
i+1−∆, with (D′

i) i.i.d.

with density τ and study the impact of neglecting the term FT̂∆
i −∆ − FT̂∆

i+1−∆. In Section 3.3, we

take the complete structure into account but we add a “dead-zone” assumption (A4) given below,
that allows to compute the density of FT̂∆

i −∆ − FT̂∆
i+1−∆. We can then consider a deconvolution

strategy.

3.2 A first naive but general procedure

In this Section, we investigate a procedure which neglects the observation bias. For small ∆, this
corresponds to the approximation f∆ ≍ τ . Using again the decomposition of the density τ in the
Laguerre basis, we define an estimator of τ based on the sample (D̂∆

1 , . . . , D̂∆
NT

), by setting, for
m ∈ N and x ∈ [0,∞)

τ̌m(x) =

m−1∑

k=0

ǎkϕk(x), where ǎk =
1

NT

NT∑

i=1

ϕk(D̂
∆
i ), 0 ≤ k ≤ m− 1. (7)

Starting from (6), we can prove the following Lemma.
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Lemma 1. We have

D̂∆
i =DR

T̂∆
i

+1 +∆ξi, 1 ≤ i ≤ NT , (8)

where DR
T̂∆
i

+1 are i.i.d. with density τ and (ξi) are random variables taking values in [−1, 1].

Thanks to Lemma 1, we can bound the mean-squared error of the estimator as follows.

Proposition 3. Assume that τ ∈ L
2(R+). Then, for log2(T ) ≤ m ≤ T , the estimator τ̌m given by

(7) satisfies

E
[
‖τ̌m − τ‖2

]
≤ ‖τ − τm‖2 + 24mE

[
1NT≥1

NT

]
+ 2C1 exp

(
−1

2
κ′ log2(T )

)

+ 2C2T

√
E

[
1NT≥1

N4
T

]
+∆2m(4m2 − 1)

3
,

where C1 and C2 are given in (18) and only depend on a universal constant κ′.

The result of Proposition 3 completes the bound obtained in Proposition 1: RT is replaced by
NT and an additional error term of order ∆2m3, due to the model approximation appears in the
bound. It is small only if ∆ is small. Using the result stated in inequality (4) of Proposition 2, we
obtain the following Corollary, which gives a condition under which the rate corresponding to the
continuous time observation scheme is preserved.

Corollary 3. Assume that (A1) and (A3) hold, that τ belongs to W s(M) and that RT = NT a.s.
Then for T large enough and ∆ such that ∆2T 3 ≤ 1, choosing mopt = CT 1/(s+1), yields

E
[
‖τ̌mopt − τ‖2

]
≤ C(M, v, c)T−s/(s+1)

where C(M, v, c) is a constant depending on M, v, c but not on T .

Indeed, the additional term compared to Corollary 1 is ∆2m(4m2 − 1)/3 ≤ C∆2m3 ≤ ∆2mT 2.
Therefore, we have ∆2mT 2 ≤ m/T if ∆2T 3 ≤ 1.

Remark 1. Note that RT = NT a.s. is satisfied under Assumption (A4) below. In addition,
we emphasize that we can obtain Corollary 3 by replacing the assumption RT = NT a.s. by
the assumption ∀x ≥ 0, τ(x) ≤ β1 exp(−β2x

β3) where β1, β2, β3 are positive constants. Indeed,
under this condition, the result of Lemma 7.3 in Duval (2013b) allows to obtain inequality (4) of
Proposition 2 with RT replaced by NT .

For model selection, the extension of the procedure studied in Theorem 1 is rather straightfor-
ward. We define

m̌ = arg min
m∈MT

(
−‖τ̌m‖2 + ˇpen(m)

)
ˇpen(m) =

(
κ̌1

(
1 + 2 log(1 +NT )

) m

NT
+ κ̌2∆

2m3

)
,

where MT is as previously. Then we can prove the following result

Theorem 2. Assume that τ ∈ L
2(R) and T ≥ e2. Then there exists a value κ̌0 such that for any

κ̌1 ∧ κ̌2 ≥ κ̌0, we have

E
[
‖τ̌m̌ − τ‖2

]
≤ č inf

m∈MT

{
‖τ − τm‖2 + E[ ˇpen(m)]

}
+ č′′

(
E
1/2

[
T 2
1NT≥1

N4
T

]
+ E

1/2

[
T 4
1NT≥1

N6
T

])

where č and č′′ are numerical constants (č = 4 would suit).

If ∆2T 3 ≤ 1, the remarks made after Theorem 1 still apply here (see also the numerical Section 4).
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3.3 Case of a dead-zone

3.3.1 The dead-zone assumption

Our dead-zone assumption is the following:

∃η > 0, τ(x) = 0, ∀x ∈ [0, η] with ∆ < η. (A4)

In other words when a jump occurs, no jump can occur in the next η units of times. Then, for
∆ < η, we have P(R∆ > 1|R∆ 6= 0) = 0 and clearly NT = RT a.s. Moreover, the decomposition
(6) becomes then

D̂∆
i+1 = Di+1 + FT̂∆

i −∆ − FT̂∆
i+1−∆, i ≥ 1, (9)

and we denote by g∆ the density of FT̂∆
i −∆. The following key property holds.

Lemma 2. Assume that (A1), (A2) and (A4) hold. Then, Di, FT̂∆
i −∆ and FT̂∆

i+1−∆ are inde-

pendent and FT̂∆
i −∆ and FT̂∆

i+1−∆ have common density g∆, equal to the uniform distribution on

[0,∆].

Therefore, the density f∆ of the observations (D̂∆
i )i≥1 as given in (9) can be written

f∆ := τ ∗ g∆ ∗ g∆(−.)(x) where g∆ ∗ g∆(−.)(x) =
∆− |x|
∆2

1[−∆,∆](x), x ∈ R. (10)

Since we use Laguerre basis decomposition, we need the distribution of the error g∆ ∗ g∆(−.) to
be supported on (0,∞). This is why we transform the observations as follows

Y ∆
i := D̂∆

i +∆
d
= Di +∆(Ui + Vi), 1 ≤ i ≤ RT , (11)

where
d
= means equality in law and (Ui) and (Vi) are independent and i.i.d. with distribution

U [0, 1]. The density of Y ∆
i follows from (10) and is f∆(.−∆).

3.3.2 Preliminary remark about Fourier deconvolution

Let us briefly discuss why it is not relevant to use here the classical Fourier strategy. Let F [h](u) =∫
R
eiuxh(x)dx denote the Fourier transform of an integrable function h. Then under assumption

(A4), we get, for all u ∈ R

F [f∆](u) =

∫

R

eiux(τ ∗ g∆ ∗ g∆(−.))(x)dx = F [τ ](u)
∣∣F [g∆](u)

∣∣2 = F [τ ](u) ×
(
sin(u∆2

))2
(
u∆
2

)2 .

We can see that recovering F [τ ](u) (and then τ by Fourier inversion) would require to divide by
a sinusoidal function which can be zero. The general Fourier deconvolution setting excludes such
possibility (see e.g. Fan (1991)). However, the case of oscillating Fourier transforms of the noise
has been studied (see Hall and Meister (2007) and Meister (2008)): it is worth stressing that it
requires specific methods which do not seem easy to implement. Moreover, in these papers, if the
use of cross-validation techniques are suggested to achieve adaptivity, from a theoretical viewpoint
this question remains open. This is why the Laguerre basis appears as an adequate answer to our
problem.

3.3.3 Laguerre deconvolution

We are in a density estimation problem where the target density is supported on (η,∞), η > 0.
However, the observations (Y ∆

j ), with density f∆(. −∆) are blurred realizations of τ , there is an
additive noise supported on [0, 2∆]. We decompose the density f∆(.−∆) in the Laguerre basis

f∆(x−∆) =

∞∑

k=0

bkϕk(x), x ∈ [0,∞),

9



where bk = 〈ϕk, f∆(.−∆)〉. Thus, we have estimators for the bk’s, for m ∈ N, defined as previously
by

b̃k =
1

RT

RT∑

i=1

ϕk(Y
∆
i ), 0 ≤ k ≤ m− 1.

However, we are not interested in estimating f∆(.−∆) but τ . Using (11), we have that f∆ = τ ∗g2,∆
where g2,∆ denotes the density of ∆(U1 + V1). Note that g2,∆ = g∆ ∗ g∆ where g∆ denotes the
density of ∆U1.

The Laguerre basis has already been used in deconvolution setting by Comte et al. (2016) and
Mabon (2015) and allows to solve the estimation problem as follows. Denoting by bk, ak and g2,k(∆)
the coefficients of f∆(. −∆), τ and g2,∆ in the Laguerre basis and plugging these expansions into
the convolution, we obtain the following equation

∞∑

k=0

bkϕk(t) =
∞∑

k=0

∞∑

j=0

akg2,j(∆)

∫ t

0

ϕk(x)ϕj(t− x)dx. (12)

The relation (see, e.g. 7.411.4 in Gradshtein and Ryzhik (1980))
∫ t

0

ϕk(x)ϕj(t− x)dx = 2e−t

∫ t

0

Lk(2x)Lj(2(t− x))dx = 2−1/2 [ϕk+j(t)− ϕk+j+1(t)],

implies that equation (12) can be re-written

∞∑

k=0

bkϕk(t) =
∞∑

k=0

[
k∑

ℓ=0

2−1/2 (g2,k−ℓ(∆)− g2,k−ℓ−1(∆))aℓ]ϕk(t),

with convention g2,−1(∆) = 0. Equating coefficients for each of the functions, we obtain an infinite
triangular system of linear equations. The triangular structure allows to increase progressively the
dimension of the developments without changing the beginning.

Finally, we relate the theoretical vector am = (ak)0≤k≤m−1 of the first coefficients of decompo-
sition of τ in the Laguerre basis with the vector bm = (bk)0≤k≤m−1 as follows

bm = [Gm(∆)]2am,

where Gm(∆) is known and is the lower triangular Toeplitz matrix with elements

[Gm(∆)]i,j =





√
2
−1

g0(∆) if i = j√
2
−1(

gi−j(∆)− gi−j−1(∆)
)

if j < i

0 otherwise

where gk(∆) =

∫ ∆

0

1

∆
ϕk(u)du.

Note that

[G2,m(∆)]i,j =





√
2
−1

g2,0(∆) if i = j√
2
−1(

g2,i−j(∆)− g2,i−j−1(∆)
)

if j < i

0 otherwise

where g2,k(∆) = 〈g2,∆, ϕk〉

satisfies G2,m(∆) = [Gm(∆)]2. Also, we emphasize that

det(Gm(∆)) =
√
2
−m

g0(∆)m = [(1− e−∆)/∆]m > 0

for all ∆, which means that the matrix can be inverted. Then, we propose the following estimator
of am

ãm := [Gm(∆)2]−1b̃m.

This leads to the estimator of τ

τ̃m(x) =

m−1∑

k=0

ãkϕk(x), ∀x ∈ [0,∞). (13)
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3.3.4 Upper risk bound and adaptive procedure

Denote by ρ(A) the spectral norm of a matrix A defined as ρ(A) =
√

λmax(ATA), the square-root
of the largest eigenvalue of the semi definite positive matrix ATA.

Proposition 4. Assume that (A1), (A2) and (A4) hold and that τ ∈ L
2(R+). Then, for log2(T ) ≤

m ≤ T and ∆ ≤ η, the estimator τ̃m given by (13) satisfies

E
[
‖τ̃m − τ‖2

]
≤‖τ − τm‖2 + ρ2

(
Gm(∆)−2

)
12mE

[
1RT≥1

RT

]

+ ρ2
(
Gm(∆)−2

)(
C1 exp

(
−1

2
κ′ log2(T )

)
+C2T

√
E

[
1RT≥1

R4
T

])
,

where C1 and C2 are given in (18) and only depend on a universal constant κ′.

Proposition 4 shows that the bias term is unchanged, but all other terms are multiplied by
ρ2
(
Gm(∆)−2

)
, which is a classical price for solving the inverse problem. In accordance with this,

consider the collection

M̃T = {m ∈ {⌊log2(T )⌋, ⌊log2(T )⌋+ 1, . . . , [T ]}, mρ2
(
Gm(∆)−2

)
≤ T }

and the selection device

m̃ = arg min
m∈M̃T

(−‖τ̃m‖2 + p̃en(m)), p̃en(m) = log(1 +RT )
m

RT

(
κ̃1 + κ̃2ρ

2
(
Gm(∆)−2

))
.

We can prove

Theorem 3. Assume that (A1), (A2) and (A4) hold and τ ∈ L
2(R). Let T ≥ e2.5 and ∆ ≤ η.

Then, there exists a value κ̃0 such that for any κ̃1 ∧ κ̃2 ≥ κ̃0, we have

E[‖τ̃m̃ − τ‖2] ≤ c1 inf
m∈M̃T

{
‖τ − τm‖2 + E[p̃en(m)]

}
+ c2

(
E
1/2

[
T 3
1RT≥1

R5
T

]
+ E

1/2

[
T 6
1RT≥1

R8
T

])

where c1 and c2 are numerical constants (c = 4 would suit).

3.3.5 Some remarks

First, the following lemma shows that the matrix Gm(∆) is easy to compute recursively from the
Laguerre basis. Therefore, formula (14) and (15), and consequently our estimator τ̃ , can be easily
implemented.

Lemma 3. We have, for k ∈ N,

gk(∆) =
1

∆

(
(−1)k

√
2− Φk(∆)

)
, with Φk(∆) =

∫ ∞

∆

ϕk(u)du. (14)

Moreover, ∀x ∈ R
+, we have Φ0(x) = ϕ0(x) (initialization) and for j ≥ 1, j integer,

Φj(x) = ϕj(x) − ϕj−1(x) − Φj−1(x). (15)

Second, to compute the rate of convergence implied by Theorem 3, the knowledge of the spectral
norm ρ2

(
Gm(∆)−2

)
is required. When ∆ tends to 0 it is straightforward to observe that for all

k, lim∆→0 gk(∆) = ϕk(0) =
√
2. It follows that Gm(∆) → Idm, when ∆ → 0, where Idm is the

m×m identity matrix. More precisely, we can get the following development

Gm(∆)−2[Gm(∆)−2]T = Idm + 2∆A+ o(∆)

where A is the m×m matrix with all its coefficients equal to 1. This implies that ρ2
(
Gm(∆)−2

)

tends to 1 when ∆ tends to 0.
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For fixed ∆ we propose a conjecture motivated by numerical experiments. We observe numer-
ically that ρ2

(
Gm(∆)−2

)
≍ m4. If this is true, the rate of the estimator is O(T−s/(s+5)), with a

logarithmic loss for the adaptive procedure. It is not clear if this rate is optimal. Indeed, in the
case of T i.i.d. observations of variables blurred with additive noise of known density, the result in
Mabon (2015) would give a variance term in the upper bound of order

1

T

{
[mρ2

(
Gm(∆)−2

)
] ∧ [‖f∆‖∞‖Gm(∆)−2‖2F ]

}

where ‖A‖2F = Tr(AAT ) denotes the Frobenius norm of the matrix A. In the cases where the
orders of the operator norm and the Frobenius norm are obtained, they turn out to be the same
(see Comte et al. (2016)). It implies that the variance order may be governed by ‖Gm(∆)−2‖2F /T
and may lead, in the case where ∆ is fixed, to a better rate than the one obtained in Theorem
3. Nevertheless, can note that the differences between the two terms, if any, vanishes when ∆
gets small, as mρ2(Im) = ‖Im‖2F = m. However, obtaining an upper bound for the variance term
involving ‖Gm(∆)−2‖2F /T is much more involved in this case than in the context considered in
Mabon (2015) due to the fact that our number of observations is random and is not ancillary.
Also it is difficult to compare the bound derived from Theorem 3, with the optimal rate derived in
Meister (2008) since the regularity assumptions on the target density τ are different.

4 Simulations

In this section, we illustrate the performances of the estimators, with data driven selection of the
dimension, on simulated data. We consider the following different R+-supported densities τ

• a Gamma G(2, 1
2 ),

• the absolute value of a Gaussian |N (1, 1
2 )|,

• a dilated Beta 5× B(6, 3),

• or a rescales mixture of Gamma densities
(
0.4G(2, 12 ) + 0.6G(16, 14 )

)
× 8

5 .

The last two densities are rescaled so that for all the examples the mass is mainly contained in
the interval [0, 5]. To estimate the L

2-risks, we compute 1000 trajectories for T = 500, 1000 and
5000. The dimension m is selected among all dimensions smaller than 50. All methods require the
calibration of constants in penalties. After preliminary experiments, κ is taken equal to 0.13 for
the estimator based on continuous observations (∆ = 0), κ̌1 = 0.13 and κ̌2 = 0.001 for the naive
estimator, κ̃1 = 0.25 and κ̃2 = 0.0001 for the dead-zone estimator, which are based on discrete
observations, whatever the value of nonzero ∆.

In the sequel, the different estimators are always computed on the same trajectory, even when the
value of ∆ is varying. Moreover, together with the value of the L2-risk, we provide the quantity m,
which is the average of dimensions m̂ that have been adaptively selected by each procedure and the
quantity R which is the average number of observation that have been used to estimate τ . Standard
deviations associated with these means are given in parenthesis. Only one distribution is presented
in this Section, the other tables for the other distributions can be found in the Supplementary
Material. We present illustrations of the methods in Figures 2 and 3, which plot beams of 50
estimators computed with the three adaptive procedures, the one based on continuous observations
of (Rt) as in Section 2 for T = 500, the ones based on discrete observations using the naive or the
deconvolution method, for two different steps of observations (∆ = 0.3 and ∆ = 0.1 in Figure 2
and ∆ = 0.1 and ∆ = 0.01 in Figure 3). We work here under the dead-zone assumption (η = 1)
to permit the comparison. As expected, the procedure based on continuous time observations is
very good, and the best one, but the two other methods perform also very well, even if the naive
method requires smaller steps of observation.
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Figure 2: Estimation of τ , a shifted (η = 1) mixture of Gamma densities
(

0.4G(2, 1

2
) + 0.6G(16, 1

4
)
)

× 8

5
,

for T = 500. The estimator based on the continuous observation (first line), ∆ = 0.3 (second line) and for
∆ = 0.1 (third line), with the naive method (first column) and the dead-zone method (second column).
True density τ in black and 50 estimated curves in green.

Comparison of the continuous time and the naive procedure. The results of Table 1
confirm the theoretical results established in the paper. As expected, we notice that the best
estimator is the one which has access to the continuous time observations (∆ = 0). When ∆ gets
too large, the naive procedure is biased and performs badly. However, its performances are better
in practice than what the theory predicts: even when m3∆2 is larger than one, the performances
of the naive method are satisfactory. But when m3∆2 becomes too large, the method fails. Finally
we recover that the larger T , the smaller the loss. The performances of the procedures are only
marginally influenced by the choice for the distribution τ (see Tables 3, 4 and 5 for the other
distributions in the Supplementary Material).

Comparison of the continuous time and the dead-zone procedure. To apply the dead-
zone procedure, we shifted all four distributions of a factor η = 1. We computed L

2([η,∞)) losses
and compared the first and third estimators. Again, the results of Table 2 illustrate the theoretical
properties established in the paper. The larger ∆, the more difficult the estimation problem is: the
risks increase with ∆. But this procedure permits to consistently estimate τ even when ∆ does not
go to 0, whereas the latest naive procedure failed to estimate τ in theses cases. The performance of
the procedure is only marginally influenced by the choice for the distribution τ (see Tables 6, 7 and
8 for the other distributions in the Supplementary Material). Note that, for the same values of T ,
since the distributions have been shifted with a parameter 1, the effective number of observations
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T ∆ = 0 ∆ = 0.01 ∆ = 0.1 ∆ = 0.3

500

m3∆2 0.01 1.31 12.80

L2
2.42 · 10−3 2.44 · 10−3 2.43 · 10−3 7.82 · 10−3

(1.90 · 10−3) (1.90 · 10−3) (1.95 · 10−3) (2.83 · 10−3)

R 498.55 (15.92) 497.52 (15.91) 494.54 (15.83) 474.85 (14.65)

m 4.98 (0.67) 4.96 (0.67) 5.07 (0.70) 5.22 (0.55)

1000

m3∆2 0.01 1.54 13.79

L2
1.22 · 10−3 1.22 · 10−3 1.33 · 10−3 6.97 · 10−3

(0.91 · 10−3) (0.92 · 10−3) (1.33 · 10−3) (1.74 · 10−3)

R 998.00 (22.13) 996.92 (22.14) 990.93 (22.01) 992.30 (20.33)

m 5.31 (0.60) 5.31 (0.60) 5.36 (0.61) 5.35 (0.49)

5000

m3∆2 0.02 2.20 17.55

L2
0.27 · 10−3 0.27 · 10−3 0.42 · 10−3 6.00 · 10−3

(0.20 · 10−3) (0.20 · 10−3) (0.26 · 10−3) (0.92 · 10−3)

R 4998.0 (50.60) 4996.6 (50.60) 4967.0 (50.20) 4772.4 (46.30)

m 6.08 (0.43) 6.07 (0.43) 6.04 (0.33) 5.80 (0.40)

Table 1: Simulation results for τ following a G(2, 1
2 ) distribution. L2 : mean square errors, R: mean

of the number of observations, m: mean of the selected dimensions. All standard deviations are
given in parenthesis.

R available for the estimation is smaller.

T ∆ = 0 ∆ = 0.01 ∆ = 0.1 ∆ = 0.5 ∆ = 0.75

500
L2

11.24 · 10−3 16.67 · 10−3 16.77 · 10−3 24.55 · 10−3 38.56 · 10−3

(1.91 · 10−3) (1.90 · 10−3) (1.87 · 10−3) (1.57 · 10−3) (·10−3)

R 248.34 (5.63) 247.34 (5.63) 247.34 (5.63) 247.34 (5.63) 247.09 (5.63)

m 10.27 (1.84) 8.65 (1.68) 8.62 (1.65) 7.33 (1.53) 5.45 (1.72)

1000
L2

8.40 · 10−3 12.58 · 10−3 12.67 · 10−3 17.22 · 10−3 21.64 · 10−3

(2.77 · 10−3) (3.31 · 10−3) (3.30 · 10−3) (4.27 · 10−3) (6.03 · 10−3)

R 498.53 (8.00) 497.53 (8.00) 497.53 (8.00) 497.53 (8.00) 497.41 (8.01)

m 12.77 (3.20) 10.00 (2.33) 9.92 (2.27) 8.33 (0.47) 7.65 (0.65)

5000
L2

3.45 · 10−3 4.65 · 10−3 4.78 · 10−3 12.66 · 10−3 21.79 · 10−3

(1.08 · 10−3) (1.20 · 10−3) (1.11 · 10−3) (0.94 · 10−3) (203.45 · 10−3)

R 2498.90 (17.80) 2497.90 (17.80) 2497.90 (17.80) 2497.90 (17.80) 2497.7 (17.80)

m 22.19 (4.44) 18.61 (4.00) 17.91 (3.39) 9.04 (0.45) 8.72 (1.39)

Table 2: Simulation results for τ following a G(2, 1
2 ) distribution under the dead-zone assumption

(η = 1). L2 : mean square errors, R: mean of the number of observations, m: mean of the selected
dimensions. All standard deviations are given in parenthesis.

5 Concluding remarks

In this paper we propose procedures to estimate the interarrival density of a renewal process. In
the case where the process is continuously observed, our procedure is adaptive minimax and re-
quires little assumptions on the target density. The main difficulty of the problem was to deal
with the random number of observation that is non ancillary. If the process is discretely observed,
the problem becomes much more involved, the observations are not independent nor identically
distributed and the estimation problem is of deconvolution type. When ∆ goes rapidly to zero,
we show that the estimation problem can be handled similarly to the estimation problem from
continuous observation, with preserved properties under some constraints. Otherwise, we imposed
additional simplifying assumptions (A1), (A2) to ensure stationarity of the increments and (A4) to
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Continuous time procedure
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Figure 3: Estimation of τ , following a shifted (η = 1) Beta distribution 5 × B(6, 3), for T = 500. The
estimator based on the continuous observation (first line), ∆ = 0.1 (second line) and for ∆ = 0.01 (third
line), with the naive method (first column) and the dead-zone method (second column). True density τ in
black and 50 estimated curves in green.

manage the distribution of the noise. An adaptive procedure is proposed even though its optimality
remains an open question. The numerical study confirms these theoretical considerations.

In the remaining of this section, we discuss how assumptions (A2) and (A4) might be relaxed.
Assumption (A2) is not necessary since it is established in Lindvall (1992) that under (A1)

and for large enough T the process R has stationary increments. Then, by removing the first
observations, the procedures of Section 3 would have the same properties. Indeed, in the numerical
Section all simulated trajectories start from T0 = 0 ((A2) is not satisfied) and the performances of
the estimators are consistent with the theoretical results. However, from a theoretical viewpoint,
removing assumption (A2) is not straightforward, elements on how one should proceed are given
in Duval (2013b).

Removing assumption (A4) is difficult. In the general case, under (A1) and (A2), we may prove

that the common density of the observations (D̂∆
j ) is

f∆(x) :=
( ∞∑

r=1

τ∗r
∫∆

0 τ0 ∗ τ∗r−1(u)− τ0 ∗ τ∗r(u)du∫∆

0 τ0(u)du

)
∗ g∆ ∗ g∆(−.) (x), ∀x ∈ R, (16)

where ∗ denotes the convolution product and g∆ is the general density of FT̂∆
i −∆. The issue re-

mains that (16) is a nonlinear transformation of τ where the transformation itself depends on the

15



knowledge of τ1[0,∆]. Even if we knew τ1[0,∆] or had access to an estimator, inverting (16) is a
difficult problem similar to decompounding (see e.g. van Es et al. (2007), Duval (2013a,2013b) or
Comte et al. (2014)). The dead-zone case only partially solves the estimation problem for renewal
processes. But, it illustrates that in deconvolution problem, when the Fourier transform of the noise
has isolated zero, if Fourier methods become technically difficult, the Laguerre procedure remains
easy to implement.

Finally, note that in both continuous and discrete observation schemes, our procedures can be
immediately adapted to the case where one observes a renewal reward processX with marks having
an unknown distribution that either admits a density with respect to the Lebesgue measure or is
positive. Indeed, this last assumption ensures that almost surely if Xt 6= Xs, then Rt 6= Rs, for
all (t, s), consequently all the jumps of R are detected. The estimation of the density of the marks
from the discrete observation of X has been studied in Duval (2013b).

6 Proofs

6.1 Proof of Proposition 1

Recall that τm denotes the orthonormal projection of τ on Sm. First, by Pythagoras Theorem we
have

‖τ̂m − τ‖2 = ‖τ − τm‖2 +
m−1∑

k=0

(âk − ak)
2.

Taking expectation and decomposing on the possible values of RT , we are left to control

E[(âk − ak)
2] = E

[ ∞∑

ℓ=0

1RT=ℓ

(1
ℓ

ℓ∑

i=1

(ϕk(Di)− 〈ϕk, τ〉)
)2]

.

We adopt the convention 1
0

∑0
i=1 = 0, then the first sum starts at ℓ = 1. Consider the contrast

νℓ(t) =
1
ℓ

∑ℓ
i=0

(
t(Di)− 〈t, τ〉

)
, t ∈ ℓ2(R+). Then, we can show that

sup
‖t‖=1, t∈Sm

(
νℓ(t)

)2
=

m−1∑

k=0

ν2ℓ (ϕk). (17)

Indeed, we have using the Cauchy Schwarz inequality that

sup
‖t‖=1, t∈Sm

(
νℓ(t)

)2
= sup

(ak(t))∈Rm,
∑m−1

k=0 ak(t)2=1

(
νℓ

(m−1∑

k=0

ak(t)ϕk

))2

= sup
(ak(t))∈Rm,

∑m−1
k=0 ak(t)2=1

(m−1∑

k=0

ak(t)νℓ(ϕk)
)2

≤ sup
(ak(t))∈Rm,

∑m−1
k=0 ak(t)2=1

(m−1∑

k=0

ak(t)
2
)(m−1∑

k=0

ν2ℓ (ϕk)
)
=
(m−1∑

k=0

ν2ℓ (ϕk)
)

Moreover, if we consider the coefficients

ak(t) :
νℓ(ϕk)√∑m−1
k=0 ν2ℓ (ϕk)

, k = 0, . . . ,m− 1
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the former inequality is an equality and (17) is proven. It follows that

m−1∑

k=0

E[(âk − ak)
2] = E

[ ∞∑

ℓ=1

1RT=ℓ sup
‖t‖=1, t∈Sm

ν2ℓ (t)
]

≤ E

[ ∞∑

ℓ=1

1RT=ℓ

(
sup

‖t‖=1, t∈Sm

ν2ℓ (t)− 2(1 + 2εℓ)H
2
ℓ )
)
+

]

+ E

[ ∞∑

ℓ=1

1RT=ℓ2(1 + 2εℓ)H
2
ℓ

]

≤
∞∑

ℓ=1

P(RT = ℓ)1/2E1/2
[(

sup
‖t‖=1, t∈Sm

ν2ℓ (t)− 2(1 + 2εℓ)H
2
ℓ )
)2
+

]

+ E

[ ∞∑

ℓ=1

1RT=ℓ2(1 + 2εℓ)H
2
ℓ

]
,

for some positive constants εℓ and Hℓ, where Hℓ is such that

E
[

sup
‖t‖=1, t∈Sm

∣∣νℓ(t)
∣∣] ≤ Hℓ and E

[
sup

‖t‖=1, t∈Sm

t(D1)
2
]
≤ 2.

Note that, if t ∈ Sm such that ‖t‖ = 1 we have ‖t‖∞ =
√
2
∑m−1

k=0 |ak(t)| ≤
√
2m, by the Cauchy

schwarz inequality. Then, we can set Hℓ =
√

2m
ℓ . It follows from Lemma 5 (see the Appendix

section), applied with F = Sm, v = 2, b =
√
2m and εℓ = 1, that

m−1∑

k=0

E[(âk − ak)
2] ≤

∞∑

ℓ=1

P(RT = ℓ)1/2
(
6
( 4

ℓκ′

)2
exp

(
−κ′m

)
+ 36

(2
√
2m

ℓκ′

)4
exp

(
−

√
ℓκ′

√
2

))1/2

+ E

[ ∞∑

ℓ=1

1RT=ℓ
12m

ℓ

]

where κ′ is a universal constant. From the Cauchy Schwarz inequality and
√
a+ b ≤ √

a+
√
b, we

get

m−1∑

k=0

E[(âk − ak)
2] ≤

√√√√
∞∑

ℓ=1

P(RT = ℓ)

√√√√
∞∑

ℓ=1

6
( 4

ℓκ′

)2
exp

(
−1

2
κ′m

)

+ 6

√√√√
∞∑

ℓ=1

P(RT = ℓ)
(2

√
2m

ℓκ′

)4( ∞∑

ℓ=1

e
−

√
ℓκ′
√

2

)1/2
+ 12mE

[
1RT≥1

RT

]

= C1 exp
(
−1

2
κ′m

)
+C2m

√
E

[
1RT≥1

R4
T

]
+ 12mE

[
1RT≥1

RT

]
,

where we set

C1 =
4
√
6

κ′

√√√√
∞∑

ℓ=1

1

ℓ2
and C2 =

48

(κ′)2

( ∞∑

ℓ=1

e
−

√
ℓκ′
√

2

)1/2
. (18)

Moreover, using that T ≥ m ≥ log2(T ), we obtain

m−1∑

k=0

E[(âk − ak)
2] ≤ 12mE

[
1RT≥1

RT

]
+C1 exp

(
−1

2
κ′ log2(T )

)
+C2T

√
E

[
1RT≥1

R4
T

]
.

Gathering all the terms completes the proof. ✷
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6.2 Proof of Proposition 2

Using the definition of RT it is straightforward to establish the following

SRT

RT
1RT≥1 ≤ T

RT
1RT≥1 ≤ SRT+1

RT
1RT≥1, ∀T > 0. (19)

We have the decomposition

E

[(SRT

RT

)α
1RT≥1

]
= E

[ ∞∑

ℓ=1

(Sℓ

ℓ

)α
1RT=ℓ

]
.

Introduce the event

Ω̃ℓ =
{∣∣∣Sℓ

ℓ
− µ

∣∣∣ ≤ µ

2

}
.

First let α > 0, it is easy to get

E

[(SRT

RT

)α
1RT≥1

]
≥ E

[ ∞∑

ℓ=1

(µ
2

)α
1RT=ℓ

]
=
(µ
2

)α
P(RT ≥ 1) ≥ a

(µ
2

)α
. (20)

Moreover, under (A3) we apply the Bernstein inequality (see Corollary 2.10 in Massart [25]) to get

P
(
Ω̃c

ℓ

)
≤ 2 exp

(
− ℓµ2

8(v + cµ2 )

)
. (21)

We derive, using that ℓ+1
ℓ ≤ 2, ∀ℓ ≥ 1 and that α > 0,

E

[(SRT+1

RT

)α
1RT≥1

]
≤ 2αE

[( SRT+1

RT + 1

)α]
≤ E

[ ∞∑

ℓ=1

(3µ)α1RT=ℓ

]
+ E

[ ∞∑

ℓ=1

(Sℓ

ℓ

)α
1RT=ℓ1Ω̃c

ℓ

]

≤ (3µ)α +

∞∑

ℓ=1

√
E

[(Sℓ

ℓ

)2α]
E

[
1Ω̃c

ℓ

1RT=ℓ

]
.

If α ≥ 1/2, x → x2α is convex, together with (A3), (21) and the Cauchy Schwarz inequality we
obtain

E

[(SRT+1

RT

)α
1RT≥1

]
≤ (3µ)α +

√
⌈2α⌉!vc⌈2α⌉−2

2

∞∑

ℓ=1

(P(Ω̃c
ℓ)P(RT = ℓ))

1
4

≤ (3µ)α +

√
⌈2α⌉!vc⌈2α⌉−2

2

∞∑

ℓ=1

2
1
4 exp

(
− ℓµ2

32(v + cµ2 )

)

≤ (3µ)α +

√
⌈2α⌉!vc⌈2α⌉−2

√
2

(
1− e

− µ2

32(v+c
µ
2
)

)−1

. (22)

Now if 0 < α < 1
2 , x → x2α is concave, using the Jensen inequality and similar arguments as above,

we get

E

[(SRT+1

RT

)α
1RT≥1

]
≤ (3µ)α + E

[
D1]

α
(
1− e

− µ2

32(v+c
µ
2
)

)−1

. (23)

Finally, gathering equations (22) , (23) and (20) into (19) and taking expectation provides the
following under (A3) and for α > 0

C2T
−α ≤ E

[11RT≥1

Rα
T

]
≤ C1T

−α,

where C2 is defined in (20) and C1 in (22) if α ≥ 1/2 or in (23) if α ∈ (0, 1
2 ). This completes the

proof. ✷
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6.3 Proof of Corollary 2

It follows from the Cauchy Schwarz inequality that

E

[ log(1 +RT )

RT
1RT≥1

]
≤
√
E

[
1RT≥1

R2
T

]√
E
[(

log(1 +RT )
)2]

.

The function x →
(
log(1 + x)

)2
is concave for xe− 1. Then, decomposing on the events {RT ≤ 1}

and {RT ≥ 2} and applying the Jensen inequality leads to,
√
E
[(

log(1 +RT )
)2] ≤

√(
log(2)

)2
+
(
log(1 + E[RT ])

)2 ≤ log(2) + log(1 + E[RT ]).

Next, using the inequality (see Grimmett and Stirzaker (2001) p. 420)

E[RT ] ≤
T

µ1
+

1− µ1

µ1

where µ1 = E[D1 ∧ 1] > 0. This leads to,

E
[
log(1 +RT )

]
≤
∣∣∣ log

(T + 1

µ1

)∣∣∣.

Finally, Inequality (4) of Proposition 2 with α = 2 gives

E

[ log(1 +RT )

RT
1RT≥1

]
≤

√
C2

T

(
C3 + log(T + 1)

)
,

where C1 is defined in Proposition 2 and C3 = log(2) + | log(µ1)|. This completes the proof. ✷

6.4 Proof of Theorem 1

6.4.1 Proof of Theorem 1

First, observe that

m̂ = arg min
m∈MT

(
−‖τ̂m‖2 + p̂en(m)

)
= arg min

m∈MT

(
‖τ − τ̂m‖2 + p̂en(m)

)

Consider the contrast γT (t) = ‖t‖2−(2/RT )

RT∑

i=1

t(Di). It is easily verified that, τ̂m = argmint∈Sm
γT (t).

Moreover, we note that

γn(t)− γn(s) = ‖t− f‖2 − ‖s− f‖2 + 2〈t− s, τ〉 − 2

RT

RT∑

i=1

(t− s)(Di). (24)

Then, by definition of m̂, we have γT (τ̂m̂) + p̂en(m̂) ≤ γT (τm) + p̂en(m). This with (24) implies

‖τ̂m̂ − τ‖2 ≤ ‖τ − τm‖2 + p̂en(m) + 2νT (τ̂m̂ − τm)− p̂en(m̂), (25)

where

νT (t) =
1

RT

RT∑

i=1

(
t(Di)− 〈t, τ〉

)
.

Using that νT is a linear form and the inequality 2xy ≤ 1
4x

2 + 4y2 we get

2νT (τ̂m̂ − τm) ≤ 1

4
‖τ̂m̂ − τm‖2 + 4 sup

t∈Sm̂∨m,‖t‖=1

νT (t)
2

≤ 1

4
‖τ̂m̂ − τ‖2 + 1

4
‖τm − τ‖2 + 4 sup

t∈Sm̂∨m,‖t‖=1

νT (t)
2.
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Plugging this in (25) and gathering the terms, lead to

1

2
‖τ̂m̂ − τ‖2 ≤ 3

2
‖τ − τm‖2 + p̂en(m) + 4 sup

t∈Sm̂∨m,‖t‖=1

νT (t)
2 − p̂en(m̂).

We introduce the following Lemma (see the proof in Section 6.4.2):

Lemma 4. Under the Assumptions of Theorem 1, let

pT (m) = 2(1 + 2c log(1 +RT ))
2m

RT
. (26)

For c ≥ max(1/κ′, 2/(log(2)(κ′)2), where κ′ is defined in Corollary 2 of Birgé and Massart [5], we
have, for T ≥ e2,

E

[(
sup

t∈Sm̂∨m,‖t‖=1

νT (t)
2 − pT (m̂ ∨m)

)

+

]
≤ c′

(√
3E1/2

[
T 2
1RT≥1

R4
T

]
+ E

1/2

[
T 4
1RT≥1

R6
T

])

with c′ given in (31).

We have

1

2
‖τ̂m̂ − τ‖2 ≤3

2
‖τ − τm‖2 + 4

(
sup

t∈Sm̂∨m,‖t‖=1

νT (t)
2 − pT (m ∨ m̂)

)
+

+ p̂en(m) + 4pT (m ∨ m̂)− p̂en(m̂)

where pT is defined in (26). Using that 4pT (m ∨ m̂) ≤ 4pT (m) + 4pT (m̂) and p̂en(m′) = 4pT (m
′),

∀ m′, we get

1

2
‖τ̂m̂ − τ‖2 ≤3

2
‖τ − τm‖2 + 4

(
sup

t∈Sm̂∨m,‖t‖=1

νT (t)
2 − pT (m ∨ m̂)

)
+
+ 2p̂en(m) (27)

Taking expectation in (27) together with Lemma 4, we derive ∀m ∈ MT

E[‖τ̂m̂ − τ‖2] ≤ 3‖τ − τm‖2 + 4E[p̂en(m)] + 8c′
(√

3E1/2

[
T 2
1RT≥1

R4
T

]
+ E

1/2

[
T 4
1RT≥1

R6
T

])
.

This implies the result given in Theorem 1. ✷

6.4.2 Proof of Lemma 4

First, we use that

E

[(
sup

t∈Sm,‖t‖=1

νT (t)
2−pT (m)

)

+

]
=

∞∑

ℓ=0

E

[(
sup

t∈Sm,‖t‖=1

νℓ(t)
2 − pℓ(m)

)

+

1RT=ℓ

]

≤
∞∑

ℓ=0

(
E

[(
sup

t∈Sm,‖t‖=1

νℓ(t)
2 − pℓ(m)

)2
+

]
P(1RT=ℓ)

) 1
2

, (28)

where νℓ(t) =
1
ℓ

∑ℓ
j=1

(
t(Dj) − 〈t, τ〉

)
and pℓ(m) = 2(1 + 2εℓ)H

2
ℓ , with the convention ν0(t) = 0,

∀t and p0(m) = 0, ∀m, so that the previous sum starts at ℓ = 1. We bound the expectation
in (28) using Lemma 5 hereafter (see the Appendix section), with b =

√
2m, v = 2, F = Sm,

εℓ = c log(1 + ℓ) and H2
ℓ = 2m

ℓ . Denote by X =
(

sup
t∈Sm,‖t‖=1

νℓ(t)
2 − 2(1 + εℓ)H

2
ℓ

)
+
, we obtain

E
[
X2
]
≤ 6
( 4

ℓκ′

)2
exp

(
− κ′c log(1 + ℓ)m

)
+ 36

(2
√
2m

ℓκ′

)4
exp

(
− κ′

√
cℓ log(1 + ℓ)√

2

)

≤ 253

(κ′)2
1

ℓm+2
+

2932m2

(κ′)4ℓ4
exp

(
−
√
ℓ
)
, (29)
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for c ≥ (1/κ′) ∨ 2/(log 2(κ′)2). Injecting (29) into (28), together with the inequality
√
a+ b ≤√

a+
√
b and using that ℓ4 exp(−

√
ℓ) ≤ c0 = (8/e)8, leads to

E

[(
sup

t∈Sm,‖t‖=1

νT (t)
2 − p(m)

)
+

]

≤
√
253

κ′

∞∑

ℓ=1

√
P(RT = ℓ)

ℓ2+m
+

29/23m
√
c0

(κ′)2

∞∑

ℓ=1

(
P(RT = ℓ)

ℓ8

)1/2
.

≤
√
253

κ′

√√√√
∞∑

ℓ=1

1

ℓ2

√
E

[
1RT≥1

(RT )m

]
+

29/23m
√
c0

(κ′)2

√√√√
∞∑

ℓ=1

1

ℓ2

√√√√E

[
1RT≥1

R6
T

]
, (30)

where the last inequality follows from the Cauchy Schwarz inequality. To conclude, we write that

E

[(
sup

t∈Sm̂∨m,‖t‖=1

νT (t)
2 − pT (m̂ ∨m)

)

+

]

≤
∑

m′∈MT

E

[(
sup

t∈Sm′∨m,‖t‖=1

νT (t)
2 − pT (m ∨m′)

)

+

]

≤ c′
∑

m′∈MT



√
E

[
1RT≥1

(RT )m
′∨m

]
+m′ ∨m

√√√√E

[
1RT≥1

R6
T

]
 ,

for c′ a constant, c′ ≥ max(C1, C2), where C1 and C2 can be derived from (30)

C1 =

√
253

κ′

√√√√
∞∑

ℓ=1

1

ℓ2
, C2 =

29/23
√
c0

(κ′)2

√√√√
∞∑

ℓ=1

1

ℓ2
. (31)

Consequently, using that log2(T ) ≤ m ≤ T together with the Cauchy Schwarz inequality

E

[(
sup

t∈Sm̂∨m,‖t‖=1

νT (t)
2 − pT (m)

)

+

]
≤ C



√√√√T

T∑

m′=⌊log2(T )⌋

E

[
1RT≥1

Rm′

T

]
+ T 2

√√√√E

[
1RT≥1

R6
T

]
 . (32)

Now, for T ≥ e2, we have log2(T ) ≥ 4 and

T∑

m′=⌊log2(T )⌋

E

[
1RT≥1

Rm′

T

]
≤

T∑

m′=4

E

[
1RT=1

Rm′

T

]
+

T∑

m′=4

E

[
1RT≥2

Rm′

T

]

We have

E

[
1RT=1

Rm′

T

]
= P

(
RT = 1

)
≤ P

( 1

RT
≥ 1
)
≤ E

[
1RT≥1

R4
T

]

and

T∑

m′=4

E

[
1RT≥2

Rm′

T

]
≤ E

[
1

R4
T

1

1− 1/RT
1RT≥2

]
≤ 2E

[
1RT≥1

R4
T

]
.

Thus we obtain
T∑

m′=⌊log2(T )⌋

E

[
1RT≥1

Rm′

T

]
≤ 3TE

[
1RT≥1

R4
T

]
. (33)

Therefore, plugging (33) in equation (32) implies the result of Lemma 4. ✷
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6.5 Proof of Lemma 1

From (6), we derive that for i ≥ 1, D̂∆
i+1 = DR

T̂∆
i

+1+∆ξi where we set ξi :=
1
∆

(
FT̂∆

i −∆−FT̂∆
i+1−∆

)
.

By the definition of forward time and the variables (T̂∆
i ), it is straightforward to get that |ξi| ≤ 1.

We are left to prove that (DR
T̂∆
i

+1) are i.i.d. with density τ . The independence is due to the

renewal property. Let h : R+ → R be a bounded measurable function, decomposing on the values

of T̂∆
i , we find that

E
[
h(DR

T̂∆
i

+1)
]
=

⌊T∆−1⌋∑

j=1

E
[
h(DRj∆+1)

∣∣T̂∆
i = j∆

]
P(T̂∆

i = j∆).

To finish the proof it is sufficient to show that for all k ≤ j the variablesDRj∆+1 and (Rk∆−R(k−1)∆)
are independent and that DRj∆+1 has density τ . Indeed, in that case the independence between

DRj∆+1 and (Rk∆ − R(k−1)∆)k≤j ensures that DRj∆+1 is independent of the event {T̂∆
i = j∆}.

This leads to

E
[
h(DR

T̂∆
i

+1)
]
=

⌊T∆−1⌋∑

j=1

E
[
h(DRj∆+1)

]
P(T̂∆

i = j∆)

=

⌊T∆−1⌋∑

j=1

∫ ∞

0

h(y)τ(y)dyP(T̂∆
i = j∆) = E

[
h(D1)

]
.

Let h1 : R+ → R and h2 : N → R be bounded measurable functions, and k ≤ j. We have

E
[
h1(DRj∆+1)h2(Rk∆ −R(k−1)∆)

]

=
∞∑

ℓ1=0

ℓ1∑

ℓ2=0

ℓ2∑

ℓ3=0

h2(ℓ3)E
[
h1(Dℓ1+1)

∣∣Rj∆ = ℓ1, Rk∆ = ℓ2, Rk∆ −R(k−1)∆ = ℓ3
]

× P
(
Rj∆ = ℓ1, Rk∆ = ℓ2, Rk∆ −R(k−1)∆ = ℓ3

)
.

As k ≤ j, we have Rk∆ −R(k−1)∆ ≤ Rk∆ ≤ Rj∆ a.s. and the renewal property ensures that Dℓ1+1

is independent of the event {Rj∆ = ℓ1, Rk∆ = ℓ2, Rk∆−R(k−1)∆ = ℓ3}, 0 ≤ ℓ3 ≤ ℓ2 ≤ ℓ1, it follows
that

E
[
h1(DRj∆+1)h2(Rk∆ −R(k−1)∆)

]

= E
[
h1(D1)

] ∞∑

ℓ3=0

h2(ℓ3)

∞∑

ℓ1=ℓ3

ℓ1∑

ℓ2=ℓ3

P
(
Rj∆ = ℓ1, Rk∆ = ℓ2, Rk∆ −R(k−1)∆ = ℓ3

)

= E
[
h1(D1)

] ∞∑

ℓ3=0

h2(ℓ3)P
(
Rj∆ ≥ Rk∆, Rk∆ ≥ Rk∆ −R(k−1)∆, Rk∆ −R(k−1)∆ = ℓ3

)

= E
[
h1(D1)

] ∞∑

ℓ3=0

h2(ℓ3)P
(
Rk∆ −R(k−1)∆ = ℓ3

)
= E

[
h1(D1)

]
E
[
h2(Rk∆ −R(k−1)∆)

]

at last line we used that k ≤ j, implying that Rk∆ −R(k−1)∆ ≤ Rk∆ ≤ Rj∆ a.s. The proof is now
complete. ✷

6.6 Proof of Proposition 3

As in the proof of Proposition 1 we have

‖τ̌m − τ‖2 = ‖τ − τm‖2 +
m−1∑

k=0

(ǎk − ak)
2.

22



Having an expansion of the coefficients ǎk based on relation (8) leads to

ǎk =
1

NT

NT∑

i=1

ϕk(D̂
∆
i ) =

1

NT

NT∑

i=1

ϕk

(
DR

T̂∆
i

+1 +∆ξi
)
= ãk +

∆

NT

NT∑

i=1

ϕ′
k(ξ̃i),

for some random variables ξ̃j and where

ãk :=
1

NT

NT∑

i=1

ϕk

(
DR

T̂∆
i

+1

)
.

It follows that

m−1∑

k=0

(ǎk − ak)
2 ≤ 2

m−1∑

k=0

(ãk − ak)
2 + 2∆2

m−1∑

k=0

( 1

NT

NT∑

i=1

|ϕ′
k(ξ̃i)|

)2
.

Using that ‖ϕk‖∞ ≤
√
2, ∀k and the relation (see Lemma 5.2 in Comte and Dion (2016))

ϕ′
k = −ϕk − 2

k−1∑

ℓ=0

ϕℓ (34)

we get ‖ϕ′
k‖∞ ≤

√
2(1 + 2k). This leads to

m−1∑

k=0

(ǎk − ak)
2 ≤ 2

m−1∑

k=0

(ãk − ak)
2 + 2∆2

m−1∑

k=0

2(1 + 2k)2

= 2
m−1∑

k=0

(ãk − ak)
2 +∆2m(4m2 − 1)

3
.

Taking expectation and thanks to Lemma 1 the first term can be treated similarly as in the proof
of Proposition 1 replacing RT with NT . We derive Proposition 3. ✷

6.7 Proof of Theorem 2

The proof of Theorem 2 follows the line of the proof of Theorem 1 with νT (t) replaced by ν̌T (t)
where

ν̌T (t) =
1

NT

NT∑

i=1

(t(D̂∆
i )− 〈τ, t〉).

We have
sup

t∈Sm̌∨m,‖t‖=1

[ν̌T (t)]
2 ≤ 2 sup

t∈Sm̌∨m,‖t‖=1

[νT (t)]
2 + 2 sup

t∈Sm̌∨m,‖t‖=1

[ ˇresT (t)]
2

where

ˇresT (t) =
1

NT

NT∑

i=1

(t(D̂∆
i )− t(Di)).

It follows from the proof of Proposition 3 that

sup
t∈Sm̌∨m,‖t‖=1

[ ˇresT (t)]
2 ≤ 4

3
m3∆2.
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Then, let pT (m) defined in (26) and p̌T (m) = (8/3)∆2m3. We get

1

2
‖τ̌m̌ − τ‖2 ≤ 3

2
‖τ − τm‖2 + ˇpen(m) + 8

(
sup

t∈Sm̂∨m,‖t‖=1

νT (t)
2 − pT (m ∨ m̂)

)
+

+8
(

sup
t∈Sm̌∨m,‖t‖=1

[ ˇresT (t)]
2 − p̌T (m ∨ m̂)

)
+
+ 8pT (m ∨ m̌)

+8p̌T (m ∨ m̌)− ˇpen(m̌)

≤ 3

2
‖τ − τm‖2 + pen(m) + 8

(
sup

t∈Sm̂∨m,‖t‖=1

νT (t)
2 − pT (m ∨ m̂)

)
+

+8pT (m ∨ m̌) + 8p̌T (m ∨ m̌)− ˇpen(m̌).

Now we choose ˇpen(m) = 8pT (m) + 8p̌T,2(m) so that

8pT (m ∨ m̌) + 8p̌T (m ∨ m̌)− ˇpen(m̌) ≤ ˇpen(m)

and we apply Lemma 4, which yields

E[‖τ̌m̌ − τ‖2] ≤ 3‖τ − τm‖2 + 4E[ ˇpen(m)] + 16c′
(√

3E1/2

[
T 2
1NT≥1

N4
T

]
+ E

1/2

[
T 4
1NT≥1

N6
T

])
.

This ends the proof of Theorem 2. ✷

6.8 Proof of Lemma 2

From (6), and under (A4) we have for i ≥ 1, RT̂∆
i

= i a.s. and thus D̂∆
i+1 = Di+1+FT̂∆

i −∆−FT̂∆
i+1−∆,

where the three variables are independent by the renewal property. Under (A2) and for fixed time
t > 0 the density of Ft does not depend on t and is given by τ0 defined in (A2) (see e.g. formula
(4.2.6) in Daley and Vere-Jones (2003)). Let h : R+ → R be a bounded measurable function, we
have

E
[
h(FT̂∆

i −∆)
]
=

⌊T∆−1⌋∑

j=1

E
[
h(Fj∆−∆)

∣∣T̂∆
i = j∆

]
P(T̂∆

i = j∆).

Moreover, for all x ≥ 0 we have

P
(
Fj∆−∆ ≤ x

∣∣T̂∆
i = j∆

)
= P

(
Fj∆−∆ ≤ x

∣∣∃i0, Ti0 ∈ ((j − 1)∆, j∆]
)

= P
(
Fj∆−∆ ≤ x

∣∣Fj∆−∆ ≤ ∆
)

=

∫ x∧∆

0 (1−
∫ y

0 τ(z)dz)dy
∫∆

0 (1−
∫ y

0 τ(z)dz)dy
=

x ∧∆

∆
,

where we used the dead-zone assumption (A4) to derive the last equality. The variable Fj∆−∆

∣∣T̂∆
i =

j∆ has uniform distribution over [0,∆], then,

E
[
h(FT̂∆

i −∆)
]
=

⌊T∆−1⌋∑

j=1

∫ ∆

0

1

∆
h(y)dyP(T̂∆

i = j∆) =

∫ ∆

0

1

∆
h(y)dy,

which completes the proof. ✷

6.9 Proof of Proposition 4

To avoid cumbersomeness we work in the sequel as if the observations (D̂∆
i , 1 ≤ i ≤ RT ) were

independent. Strictly, we should consider separately (D̂∆
2i, 2 ≤ 2i ≤ RT ) and (D̂∆

2i+1, 1 ≤ 2i+1 ≤
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RT ), which are independent. But it is always possible in the sequel to split the sample, even if it
means increasing slightly the constants.

First as τ̃m is in Sm, by Pythagoras Theorem we have

‖τ̃m − τ‖2 = ‖τ − τm‖2 + ‖τ̃m − τm‖2 = ‖τ − τm‖2 +
∥∥Gm(∆)−2(b̃m − bm)

∥∥2
2,m

≤ ‖τ − τm‖2 + ρ2
(
Gm(∆)−2

)m−1∑

k=0

(̃bk − bk)
2

where ‖.‖2,m denotes the ℓ2 euclidean norm of a vector of size m. Taking expectation and decom-
posing on the possible values of RT , we are left to control

E[(̂bk − bk)
2] = E

[ ∞∑

ℓ=0

1RT=ℓ

(1
ℓ

ℓ∑

i=1

(ϕk(Y
∆
i )− 〈ϕk, f∆(.−∆)〉)

)2]
.

We recover the same term as in the proof of Proposition 1, the same computations based on Lemma
5, and using that T ≥ m ≥ log2(T ) lead to

m−1∑

k=0

E[(̂bk − bk)
2] ≤ 12mE

[
1RT≥1

RT

]
+C1 exp

(
−1

2
κ′ log2(T )

)
+C2T

√
E

[
1RT≥1

R4
T

]
.

where C1 and C2 are given in (18). ✷

6.10 Proof of Theorem 3

Let mmax denote the maximum dimension m in M̃T . Consider the vectors

t = (a0(t), . . . , ammax−1(t))
T

in R
mmax , which are one-to-one related with functions t of Smmax by t =

∑mmax−1

j=0 aj(t)ϕj . Vectors
and functions spaces are denoted in the same way. If t is in Sm for m ≤ mmax we have am(t) =
. . . = ammax−1(t) = 0. Let [t]m be the m-dimensional vector with coordinates (a0(t), . . . , am−1(t))

T .
We also denote by 〈u,v〉Rm the vector scalar product in R

m. Therefore, for t ∈ Sm, thanks to the
triangular form of Gm(∆)−2, we have

〈t,Gmmax(∆)−2b̃mmax〉Rmmax = 〈[t]m,Gm(∆)−2b̃m〉Rm .

Following the lines of the proof of Theorem 1 in Comte et al. (2016), and noticing that

τ̃m = arg min
tm∈Sm

γ̃T (t), γ̃T (t) = ‖tm‖2
Rmmax − 2〈tm,Gmmax(∆)−2b̃mmax〉Rmmax

and
m̃ = arg min

m∈M̃T

{γn(τ̃m) + p̃en(m)}

we obtain
1

2
‖τ̃m̃ − τ‖2 ≤ 3

2
‖τ − τm‖2 + p̃en(m) + 4 sup

t∈Sm∨m̃

[ν̃T (t)]
2 − p̃en(m̃)

where
ν̃T (t) = 〈t,Gmmax(∆)−2(b̃mmax − bmmax)〉Rmmax .

Now, define p̃T (m,m′) = ρ2(Gm∨m′(∆)−2)pT (m,m′) with pT defined in (26). Writing that

E

[(
sup

t∈Sm∨m̃

[ν̃T (t)]
2 − p̃T (m, m̃)]

)
+

]
≤

∑

m′∈M̃T

E

[(
sup

t∈Sm∨m′

[ν̃T (t)]
2 − p̃T (m,m′)]

)
+

]
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and

E

[(
sup

t∈Sm∨m′

[ν̃T (t)]
2 − p̃T (m,m′)]

)
+

]
≤ ρ2(Gm∨m′(∆)−2)E

[(
sup

t∈Sm∨m′

[νT (t)]
2 − pT (m,m′)]

)
+

]

we get the result. Indeed ρ2(Gm∨m′(∆)−2) ≤ T in M̃T and the powers of RT in the residual terms
can be increased at the expense of slightly larger constants. ✷

6.11 Proof of Lemma 3

Recall that gk(∆) = 1
∆

∫∆

0 ϕj(x)dx and that Φ(x) =
∫ +∞

x ϕj(u)du, we get gk(∆) = 1
∆(Φk(0) −

Φk(∆)). Straightforward computations give

∫ +∞

0

ϕk(x)dx =
√
2

k∑

j=0

(
k

j

)
(−1)j

j!

∫ +∞

0

(2x)je−xdx =
√
2

k∑

j=0

(
k

j

)
(−2)j =

√
2(−1)k,

and (14) follows. For (15), we start from formula (34), yielding

ϕj(x) = Φj(x) + 2

j−1∑

k=0

Φk(x).

This formula implies (15) as

ϕj+1 = Φj+1 + 2

j∑

k=0

Φk = Φj+1 +Φj +Φj + 2

j−1∑

k=0

Φk

︸ ︷︷ ︸
=ϕj

.

✷

Appendix

A Talagrand inequality

The result established below follows from the Talagrand concentration inequality given in Corollary
2 of Birgé and Massart [5].

Lemma 5. Let D1, . . . , Dℓ be ℓ i.i.d. random variables and F a countable family of functions that
are uniformly bounded by some constant b. Let v = supt∈F E[t(D1)

2]. There exists a universal
constant κ′ such that, for any positive εℓ, we have

E

[(
sup

t∈F ,‖t‖=1

νℓ(t)
2−2(1+2εℓ)H

2
ℓ

)2
+

]
≤ 6
( 2v

ℓκ′

)2
exp

(
−κ′ℓεℓH

2
ℓ

v

)
+36

( 2b

ℓκ′

)4
exp

(
− ℓκ′

√
εℓH2

ℓ√
2b

)

where νℓ(t) =
1
ℓ

∑ℓ
j=1

(
t(Dj)− 〈t, τ〉

)
, with the convention ν0(t) = 0, ∀t ∈ F .

Proof of Lemma 5

The result is established using the Talagrand inequality and that for any positive random variable

X we have E[X2] = 2
∫∞

0
tP(X ≥ t)dt. Denote by X =

(
sup

t∈Sm,‖t‖=1

νℓ(t)
2 − 2(1 + εℓ)H

2
ℓ

)
+
, it

26



follows that

E
[
X2
]
= 2

∫ ∞

0

tP
(

sup
t∈Sm,‖t‖=1

νℓ(t)
2 ≥ 2(1 + 2εℓ)H

2
ℓ + t

)
dt

= 2

∫ ∞

0

tP
(

sup
t∈Sm,‖t‖=1

∣∣νℓ(t)
∣∣ ≥

√
2(1 + 2εℓ)H2

ℓ + t
)
dt

≤ 2

∫ ∞

0

tP
(

sup
t∈Sm,‖t‖=1

∣∣νℓ(t)
∣∣ ≥

√
(1 + εℓ)Hℓ +

√
εℓH2

ℓ +
t

2

)
dt.

We apply the Talagrand inequality (see e.g. Corollary 2 in Birgé and Massart [5]) with η =
(
√
1 + εℓ − 1) ∧ 1 and λℓ =

√
εℓH2

ℓ + t/2. We obtain, for κ′ a universal constant,

E
[
X2
]
≤ 6

∫ ∞

0

t exp
(
− ℓκ′

{εℓH2
ℓ + t/2

v
∧
√
εℓH2

ℓ + t/2

b

})
dt

≤ 6

∫ ∞

0

t exp
(
− ℓκ′ εℓH

2
ℓ + t/2

v

)
dt+ 6

∫ ∞

0

t exp
(
− ℓκ′

√
εℓH2

ℓ + t/2

b

)
dt.

Next, we use that
√
εℓH2

ℓ + t/2 ≥
(√

εℓHℓ +
√
t/2
)
/
√
2 to derive

E
[
X2
]
≤ 6 exp

(
−κ′ℓεℓH

2
ℓ

v

)∫ ∞

0

t exp
(κ′ℓ

2v
t
)
dt

+ 6 exp
(
− ℓκ′

√
2b

√
εℓH2

ℓ

)∫ ∞

0

t exp
(
− κ′ ℓ

√
t

2b

)
dt

= 6
( 2v

ℓκ′

)2
exp

(
−κ′ℓεℓH

2
ℓ

v

)
+ 36

( 2b

κ′ℓ

)4
exp

(
− ℓκ′

√
2b

√
εℓH2

ℓ

)
.

Which is the desired result. ✷
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Supplementary Material

We present hereafter the numerical results corresponding to the distributions presented in Section
4. Tables 3-5 correspond to the comparison of the continuous time and the naive procedures and
Tables 6-8 to the comparison of the continuous time and the dead-zone procedures.

T ∆ = 0 ∆ = 0.01 ∆ = 0.1 ∆ = 0.3

500

m3∆2 0.02 1.21 5.06

L2
3.64 · 10−3 3.82 · 10−3 10.87 · 10−3 28.90 · 10−3

(2.83 · 10−3) (3.05 · 10−3) (4.12 · 10−3) (2.69 · 10−3)

R 474.63(13.00) 472.62 (12.95) 463.63 (12.48) 443.30 (11.40)

m 6.05 (1.12) 5.91 (1.22) 4.94 (2.35) 3.83 (0.52)

1000

m3∆2 0.03 3.72 5.93

L2
2.06 · 10−3 2.15 · 10−3 8.41 · 10−3 28.71 · 10−3

(1.06 · 10−3) (1.12 · 10−3) (3.10 · 10−3) (1.65 · 10−3)

R 951.76 (18.24) 948.77 (18.17) 930.94 (17.27) 890.23 (15.33)

m 6.65 (0.89) 6.66 (1.13) 7.19 (2.65) 4.04 (0.30)

5000

m3∆2 0.09 14.58 5.87

L2
0.75 · 10−3 0.68 · 10−3 7.23 · 10−3 28.50 · 10−3

(0.37 · 10−3) (0.37 · 10−3) (0.79 · 10−3) (0.78 · 10−3)

R 4757.30 (40.50) 4746.40 (40.50) 4657.20 (38.70) 4455.40 (35.50)

m 8.63 (1.96) 9.76 (1.94) 11.34 (0.63) 4.02 (0.17)

Table 3: Simulation results for τ following a |N (1, 1
2 )| distribution. L2 : mean square errors, R:

mean of the number of observations, m: mean of the selected dimensions. All standard deviations
are given in parenthesis.

T ∆ = 0 ∆ = 0.01 ∆ = 0.1 ∆ = 0.3

500

m3∆2 0.06 6.19 42.89

L2
13.68 · 10−3 13.82 · 10−3 14.18 · 10−3 16.27 · 10−3

(3.96 · 10−3) (3.86 · 10−3) (3.66 · 10−3) (5.00 · 10−3)

R 148.58 (2.78) 147.59 (2.79) 147.59 (2.79) 147.53 (2.80)

m 8.75 (1.33) 8.70 (1.29) 8.52 (1.17) 7.81 (0.68)

1000

m3∆2 0.12 10.25 46.67

L2
8.59 · 10−3 8.61 · 10−3 9.63 · 10−3 14.50 · 10−3

(3.47 · 10−3) (3.47 · 10−3) (4.00 · 10−3) (1.41 · 10−3)

R 298.53 (3.84) 297.52 (3.84) 297.52 (3.84) 297.48 (3.84)

m 10.62 (1.35) 10.60 (1.34) 10.08 (1.39) 8.03 (0.32)

5000

m3∆2 0.40 19.21 48.18

L2
3.23 · 10−3 3.27 · 10−3 5.46 · 10−3 13.81 · 10−3

(0.78 · 10−3) (0.76 · 10−3) (1.62 · 10−3) (1.60 · 10−3)

R 1498.80 (8.60) 1497.90 (8.60) 1487.90 (8.60) 1497.80 (8.60)

m 15.96 (1.72) 15.86 (1.66) 12.43 (1.81) 8.12 (0.59)

Table 4: Simulation results for τ following a 5 × B(6, 3) distribution. L2 : mean square errors, R:
mean of the number of observations, m: mean of the selected dimensions. All standard deviations
are given in parenthesis.
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T ∆ = 0 ∆ = 0.01 ∆ = 0.1 ∆ = 0.3

500

m3∆2 0.04 3.74 31.16

L2
7.43 · 10−3 7.47 · 10−3 7.35 · 10−3 10.42 · 10−3

(2.67 · 10−3) (2.67 · 10−3) (2.60 · 10−3) (3.36 · 10−3)

R 283.97 (10.12) 282.95 (10.11) 281.30 (9.99) 271.70 (9.40)

m 7.43 (1.14) 7.41 1.20) 7.21 (0.69) 7.02 (0.19)

1000

m3∆2 0.06 4.46 31.08

L2
5.30 · 10−3 5.31 · 10−3 5.82 · 10−3 9.12 · 10−3

(2.02 · 10−3) (2.00 · 10−3) (1.53 · 10−3) (1.94 · 10−3)

R 570.34 (14.54) 569.30 (14.55) 565.94 (14.38) 547.05 (13.52)

m 8.49 (1.83) 8.47 (1.83) 7.64 (1.25) 7.02 (0.12)

5000

m3∆2 0.18 11.76 30.88

L2
1.48 · 10−3 1.50 · 10−3 2.28 · 10−3 8.07 · 10−3

(0.59 · 10−3) (0.57 · 10−3) (0.76 · 10−3) (0.74 · 10−3)

R 2856.40 (33.90) 2852.20 (33.90) 2838.60 (33.80) 2744.20 (31.50)

m 12.30 (2.11) 12.19 (2.06) 10.56 (0.68) 7.00 (0.03)

Table 5: Simulation results for τ following a
(
0.4G(2, 12 )+ 0.6G(16, 14 )

)
× 8

5 distribution. L2 : mean

square errors, R: mean of the number of observations, m: mean of the selected dimensions. All
standard deviations are given in parenthesis.

T ∆ = 0 ∆ = 0.01 ∆ = 0.1 ∆ = 0.5 ∆ = 0.75

500
L2

5.89 · 10−3 7.30 · 10−3 7.43 · 10−3 10.13 · 10−3 14.63 · 10−3

(3.48 · 10−3) (7.30 · 10−3) (7.43 · 10−3) (5.35 · 10−3) (10.57 · 10−3)

R 242.61 (4.84) 242.61 (4.84) 241.61 (4.84) 241.61 (4.84) 241.37 (4.83)

m 7.90 (0.68) 6.51 (1.03) 6.48 (1.05) 5.74 (1.30) 4.91 (1.15)

1000
L2

4.96 · 10−3 5.02 · 10−3 5.02 · 10−3 5.69 · 10−3 7.49 · 10−3

(2.28 · 10−3) (1.38 · 10−3) (1.34 · 10−3) (2.36 · 10−3) (3.11 · 10−3)

R 486.29 (7.06) 485.29 (7.06) 485.29 (7.06) 485.29 (7.06) 485.17 (7.05)

m 8.18 (0.39) 7.07 (0.30) 7.07 (0.28) 6.86 (0.49) 6.40 (0.66)

5000
L2

4.99 · 10−3 4.12 · 10−3 4.13 · 10−3 4.50 · 10−3 4.94 · 10−3

(0.94 · 10−3) (0.61 · 10−3) (0.60 · 10−3) (0.48 · 10−3) (0.35 · 10−3)

R 2437.00 (15.10) 2436.00 (15.10) 2436.00 (15.10) 2436;00 (15.10) 2435.70 (15.20)

m 8.98 (0.16) 7.95 (0.21) 7.94 (0.23) 7.41 (0.49) 7.02 (0.15)

Table 6: Simulation results for τ following a |N (1, 1
2 )| under the dead-zone assumption (η = 1). L2

: mean square errors, R: mean of the number of observations, m: mean of the selected dimensions.
All standard deviations are given in parenthesis.
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T ∆ = 0 ∆ = 0.01 ∆ = 0.1 ∆ = 0.5 ∆ = 0.75

500
L2

9.30 · 10−3 16.25 · 10−3 16.30 · 10−3 22.49 · 10−3 45.01 · 10−3

(4.41 · 10−3) (6.49 · 10−3) (6.54 · 10−3) (12.18 · 10−3) (14.14 · 10−3)

R 113.84 (1.90) 112.84 (1.90) 112.84 (1.90) 112.84 (1.90) 112.73 (1.91)

m 9.56 (1.24) 7.86 (0.74) 7.85 (0.75) 6.77 (1.10) 5.29 (0.45)

1000
L2

5.74 · 10−3 11.60 · 10−3 11.66 · 10−3 15.36 · 10−3 23.90 · 10−3

(3.27 · 10−3) (6.08 · 10−3) (6.09 · 10−3) (3.58 · 10−3) (6.90 · 10−3)

R 229.26 (2.58) 228.26 (2.59) 228.26 (2.59) 228.26 (2.59) 228.21 (2.58)

m 11.67 (1.37) 9.41 (1.52) 9.39 (1.52) 7.98 (0.22) 6.00 (0.33)

5000
L2

1.91 · 10−3 2.19 · 10−3 2.21 · 10−3 6.43 · 10−3 14.93 · 10−3

(0.67 · 10−3) (0.76 · 10−3) (0.78 · 10−3) (1.20 · 10−3) (1.46 · 10−3)

R 1152.10 (5.80) 1151.10 (5.80) 1151.10 (5.80) 1151.10 (5.80) 1151.10 (5.80)

m 17.30 (1.87) 15.33 (1.13) 15.25 (1.05) 10.99 (0.13) 8 (0)

Table 7: Simulation results for τ following a 5×B(6, 3) under the dead-zone assumption (η = 1). L2

: mean square errors, R: mean of the number of observations, m: mean of the selected dimensions.
All standard deviations are given in parenthesis.

T ∆ = 0 ∆ = 0.01 ∆ = 0.1 ∆ = 0.5 ∆ = 0.75

500
L2

14.76 · 10−3 40.03 · 10−3 40.91 · 10−3 78.24 · 10−3 84.35 · 10−3

(11.64 · 10−3) (29.77 · 10−3) (29.87 · 10−3) (18.51 · 10−3) (8.94 · 10−3)

R 180.33 (5.26) 179.33 (5.26) 179.33 (5.26) 179.33 (5.26) 179.16 (5.27)

m 13.01 (3.23) 8.36 (4.34) 8.22 (4.35) 2.90 (2.26) 2.11 (0.41)

1000
L2

5.63 · 10−3 10.19 · 10−3 10.53 · 10−3 31.61 · 10−3 77.02 · 10−3

(3.34 · 10−3) (7.75 · 10−3) (7.98 · 10−3) (14.48 · 10−3) (14.03 · 10−3)

R 362.37 (7.54) 361.37 (7.54) 361.37 (7.54) 361.37 (7.54) 361.27 (7.54)

m 16.46 (1.22) 14.41 (2.15) 14.30 (2.21) 9.23 (2.14) 2.67 (1.02)

5000
L2

2.85 · 10−3 3.84 · 10−3 3.88 · 10−3 15.24 · 10−3 29.53 · 10−3

(0.68 · 10−3) (1.11 · 10−3) (1.11 · 10−3) (2.91 · 10−3) (4.19 · 10−3)

R 1817.00 (17.10) 1816.00 (17.10) 1816.00 (17.10) 1816.00 (17.10) 1815.80 (17.10)

m 17.82 (1.06) 16.49 (0.57) 16.45 (0.53) 11.02 (0.52) 9.88 (0.36)

Table 8: Simulation results for τ following a
(
0.4G(2, 12 ) + 0.6G(16, 14 )

)
× 8

5 under the dead-zone

assumption (η = 1). L2 : mean square errors, R: mean of the number of observations, m: mean of
the selected dimensions. All standard deviations are given in parenthesis.
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