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Nonparametric estimation of the interarrival distribution of a
renewal process

F. Comte! C. Duvalf

Abstract

In this paper, we consider nonparametric density estimation for interarrival times density of
arenewal process. First, we assume continuous observation of the process and build a projection
estimator in the Laguerre basis. We study its mean integrated squared error (MISE) and
compute rates of convergence on Sobolev-Laguerre spaces when the length of the observation
interval gets large. Second, we consider a discrete time observation with sampling rate A.
A first strategy consists in neglecting the discretization error, and under suitable conditions
on A, an analogous MISE is obtained. Then, taking into account the structure of the data,
a deconvolution estimator is defined and studied. In that case, we work under a simplifying
”dead-zone” condition. The MISE corresponding to this strategy is given for fixed A as well
as for small A. In the three cases, an automatic model selection procedure is described and
gives the best MISE, up to a logarithmic term. The results are illustrated through a simulation
study. July 27, 2016
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1 Introduction

1.1 Model and Observations

Let R be a renewal process defined as follows. Define (Tp,T1, ..., Ty, . ..) the jump times of R such
that (D; :=T; — T;_1)i>1 are i.i.d. with density 7 with respect to the Lebesgue measure supported
on (0,00). The first jump time Ty may have a different distribution 7. The renewal process R is
a process that counts how many jumps occurred until a given time t, i.e.

R = Z]ITigt- (1)
i=0

These processes are used to describe the occurrences of random events: for instance in seismology
to modelize the occurrence of earthquakes (see e.g. Alvarez (2005) or Epifani et al. (2014)).

In this paper we are interested in estimating the density 7. We consider two different sampling
schemes: first, the complete observation setting, where R is continuously observed over [0, 7] and
second, an incomplete observation setting, where R is observed at a sampling rate A over [0, 7],
where A is either small or fixed. The continuous observation scheme, whose study reveals to be
more delicate than it may first appear, will be used as a reference point for the discrete sampling
scheme. Indeed, continuous time observations are more informative and a procedure based on
discrete observations can, at best, attains the same rates as an optimal procedure based on the
continuous observations.

Estimation of the interarrival distribution for renewal processes goes back to Vardi (1982) who
proposed a consistent algorithm, based on the maximization of the likelihood. It permits to esti-
mate this distribution from the observation of K independent trajectories (see also Vardi (1989)
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and the generalization of Soon and Woodroofe (1996), Guédon and Cocozza-Thivent (2003) and
Adekpedjou et al. (2010); we also refer to the review of Gill and Keiding (2010) and the references
therein). Assuming that only endpoints Ry, for a given time ¢ > 0, are observed and assuming a
Gamma distributed interarrival distribution, Miller and Bhat (1997) proposed a parametric esti-
mator also based on maximum likelihood techniques. However, in the aforementioned literature,
the asymptotic properties of the estimators are not investigated, therefore, rates of convergence are
not derived.

1.2 Continuous observation scheme

Without loss of generality we set Ty = 0, or equivalently 7o(dx) = dp(dx). Suppose that R is
continuously observed over [0, 7], namely we observe (R, ¢t € [0,T]). From this, we extract the

observations (D1, ..., Dg,) to estimate the density 7. The counting process Rr is such that
Ry Rr+1
Y D;<T and > D;>T, (2)
j=1 j=1

therefore, we are not in the classical i.i.d. density estimation problem. This implies that Rp
and D; are dependent and that the quantity Dg,11 is not observed. In addition, the random
number Ry of observations depends itself on the unknown density 7. Then, the statistics Rp is
not ancillary. Moreover, due to this particularity, our dataset is subject to bias selection: there is a
strong representation of small elapsed times D and long interarrival times are observed less often.

These issues are clearly explained in Hoffmann and Olivier (2016) who consider a related model:
age dependent branching processes. Our framework can be formalized as a degenerate age depen-
dent branching process: we study a particle with random lifetime governed by the density 7 and
at its death it gives rise to one other particle with a lifetime governed by the same density 7. The
difference with Hoffmann and Olivier (2016), is that in their work the underlying structure of the
model is a Bellmann-Harris process which has a tree representation whereas our tree contains only
one branch, a case they exclude. Therefore the solutions they propose to circumvent the latter
difficulties do not apply in our setting. In particular, they derive rates of convergence as functions
of the Malthus parameter, which needs to be nonzero to ensure consistency. But in the Poisson
process case (which is a particular renewal process) it is easy to see that this Malthus parameter is
null. Therefore, in the sequel we will employ different techniques to deal with these issues.

1.3 Discrete observation scheme

Suppose now that we observe the process R over [0,7] at a sampling rate A, namely, we observe
(Rm, i=1,..., LTA_lj). This setting introduces three difficulties. Firstly, the increments R;a —
R(;i_1)a are not independent. Secondly, they are not identically distributed. Thirdly, from the
sample (Rm, 1=1,..., LTA_lj) it cannot be derived a single realization of the density of interest
T.

The first difficulty is easily handled as the dependency structure in the sample is not severe
and can be treated without additional assumptions. The second problem can be circumvented
by imposing a particular value for T that ensures stationarity of the increments. More precisely,
assuming that

= / a7 (z)dr < oo (A1)
0
and that Ty has density 7y defined by
o d
m(e) = 2Ty, (A2)

the renewal process R given by (1) is stationary (see e.g. Lindvall (1992) or Daley and Vere-
Jones (2003)). A careful study of the third difficulty leads us to conclude that we are facing



a deconvolution problem where the distribution of the noise is, in general, unknown and even
depends on the unknown density 7. We consider two strategies. If A is small enough, we show
that the noise can be neglected. Otherwise, we add a simplifying assumption that permits to make
explicit the distribution of the noise: we assume that there exists a positive number A > n > 0
such that 7(x) = 0, Vo € [0,n] (see the so-called dead-zone assumption described below). This
leads to a convolution model with noise distribution corresponding to a sum of two independent
uniform densities.

1.4 Main results and organization of the paper

In this paper, we propose nonparametric projection strategies for the estimation of 7, which are all
based on the Laguerre basis. It is natural for RT-supported densities to choose a RT-supported or-
thonormal basis. Other compactly supported orthonormal basis, such as trigonometric or piecewise-
polynomial basis, may also be considered provided their support can be rigorously defined. But in
the discrete observation scheme, the choice of the Laguerre basis gets crucial. Indeed, deconvolution
in presence of uniform noise presents specific difficulties: in the Fourier setting, it is required to
divide by the characteristic function of the noise but in the present case, this Fourier transform is
periodically zero. Specific solutions are needed (see Hall and Meister (2007) and Meister (2008))
which reveal to be rather difficult to implement. On the contrary, it appears that deconvolution
in the Laguerre basis can be performed without restriction and is computationally easy. This tool
has been proposed by Comte et al. (2016) and Mabon (2015) and can be applied here.

The article is organized as follows. The continuous time observation scheme is studied in
Section 2, where we build a nonparametric projection estimator 7, of 7. An upper bound on
the mean integrated squared risk (MISE) is proved, from which, under additional assumptions,
we can derive rates of convergence on Sobolev-Laguerre spaces, for large 7. Up to logarithmic
terms, these rates match the minimax rates, derived for density estimation from i.i.d. observations
by Belomestny et al. (2016). A model selection procedure is defined and proved to lead to an
automatic bias-variance compromise. The more realistic discrete time observation scheme with step
A is considered in Section 3. Under specific conditions on A, the previous procedure is extended.
Additional approximation terms appear in the MISE bound, which are taken into account in the
model selection procedure. Removing the condition on A, but under an additional dead-zone
assumption on the process, a Laguerre deconvolution procedure is proposed, studied and discussed.
An extensive simulation Section 4 allows to illustrate all those methods for different distributions 7
and when A is varying. Part of the results are postponed in Supplementary Material. A concluding
Section 5 ends the paper and presents ideas for dealing with a completely general setting. Most of
the proofs are deferred to Section 6.

2 Continuous time observation scheme

In this section, we assume that the process R defined by (1) is continuously observed over [0, T].
Thus, the jump times (7;); occurring in the interval are known. We recall that

DiZTi—Ti_l,izl,Z...With TQZO

are subject to constraint (2). First, we describe the projection space and then define and study the
first estimator.

2.1 The Laguerre basis

The following notations are used below. For ¢,v : RT — R square integrable functions, we denote
the L2 norm and the L2 scalar product respectively by

|t|_</ooot(x)2dx)1/2 and (t,v>—/ooot(:1:)v(:1:)d:1:.



The Laguerre polynomials (Ly)x>0 and the Laguerre functions (¢x)r>0 are given by

- ik 27 .
Li(z) = jgo(—l) (j) T op(r) = V2L (22)e 1450, k>0.

The collection (g, k > 0) constitutes an orthonormal basis of L?(RT) (that is (¢}, ¢x) = 6, where
d;.% is the Kronecker symbol) and is such that

lok(x)| < V2, Vo eR*, Vk>0.

For t € L?(R*) and Vz € R*, we can write that
t(z) =Y ak(t)pr(x), where ax(t) = (£, ox).
k=0

We define the m-dimensional space S, = span(yo, ..., ¥m—1) and t,, the orthonormal projection
m—1
of t on Sy, we have t,, = ;" ar(t)pr.

2.2 Projection estimator and upper risk bound

We are in a density estimation problem where the target density is supported on [0, 00), we assume
that 7 is square-integrable on R* and decompose it in the Laguerre basis

() = ax(T)er(x), x€[0,00),
k=0

where ai(7) = (pg, 7). From this, we derive an estimator of 7 based on the sample (D1,..., Dg,),
defined, for m € N and « € [0, 00), by

m—1 Ro
R 1
Tm(x) = aper(x), where ai = i g or(D;), 0<k<m-—1 (3)
k=0 Tz

Clearly, 7,, is in fact an estimator of 7,,, the orthogonal projection of 7 on .S,,. Since Rp is not an
ancillary statistics, conditioning on the value of Rt does not simplify the study of @y, in particular
it is not possible to study easily its bias nor its variance. We can bound the mean-square error of
the estimator as follows.

Proposition 1. Assume that 7 € L2(R1). Then, for log?(T) < m < T, the estimator 7, given by
(3) satisfies

1 ! 1
E[[lfm = 7I12] < IIr = 7ll? + 12mE[ 2] + Crexp (=5 1og*(T)) + CoT | [E[ 2221,
Ry 2 R}

where Cy and Cq are given in (18) and only depend on a universal constant .

The bound given by Proposition 1 is a decomposition involving two main terms: a squared bias
term, |7 — 7,,||? and a variance term 12mE {]lRTZl/RT]. Conditions ensuring that the two final

terms are indeed negligible are given below.

2.3 Rates of convergence

To obtain explicit rates from Proposition 1, we need to know the order of quantities of the form
E[R;“] for o > 0. Suppose that (Al) and that the following hold: there exist positive constants v
and c such that

|
E[DY] < %vcH, VEk > 2. (A3)

Assumption (A3) is a standard preliminary for applying a Bernstein inequality. It is fulfilled by
Gaussian, sub-gaussian or bounded densities. Under (A3), we can establish the following result.



Proposition 2. Assume that (A1) and (A3) hold. Let o > 0, then we have

E[ﬂ%?} < e (4)

where €, = (3p)® + Cy, and Cy is given in (22) hereafter if « > 1/2 or in (23) if o € (0, 3)-
If in addition T is such that P(Rp > 1) > a, a € (0,1), then it also holds that:

E[ﬂ%?} > ¢,T°, (5)

where €4 = a(pu/2)*.

Proposition 2 states both upper (4) and lower (5) bounds to control quantities of the form
E[R;*], for & > 0. Only the upper bound is used in the sequel to compute the rates of convergence
of T,,,, but the lower bound ensures that the order in T of the upper bound is sharp.

For s > 0, the Sobolev-Laguerre space with index s (see Bongioanni and Torrea (2009), Comte
and Genon-Catalot (2015)) is defined by:

W* = {1 :(0,+50) = R, f € L*((0,+00)), |2 == ;ksai(f) < +oc}.

where ag(f) = 0+°O f(u)pr(u)du. For s integer, the property |f|? < +oco can be linked with

regularity properties of the function f (existence of s-order derivative, but not only). We define
the ball W*(M) :
We(M) = {f e W [fl; < M}.

On this ball, we can handle the bias term ||7 — 7,,||* and we obtain the following Corollary.

Corollary 1. Assume that (A1) and (A3) hold and that T belongs to W*(M). Then, for T large
enough, choosing Mepy = CTY G+ | yields

(% — 7I1Y) < C(M,v, )T~/
where C(M, v, ¢) is a constant depending on M, v, c but not on T.
Proof of Corollary 1. For 7 € W*(M), we have |7 — 7,,,||* = > ism a3(r) < Dm™*. Moreover,
under (A3), we get by Inequality (4) of Proposition 2 that B

12mIE[—]lRTZI} m

<C—
Rr - T

and for T' > exp(2/k’) that

Ciexp (—5,4 log (T)) + CoT E[ RT% } < -
for some constant Cs. Therefore, E[||7n, — 7[|?] < Dm™* + Cm/T + O(1/T). Taking mepy =
CT 1) gives the result of Corollary 1. O

The rate stated in Corollary 1 corresponds to the Sobolev-Laguerre upper bound for density
estimation from 7" i.i.d. observations drawn in the distribution 7. This rate is proved to be minimax
optimal, up to a logarithmic term, in Belomestny et al. (2016).



2.4 Adaptive procedure

We propose a data driven way of selecting m. For this, we proceed by mimicking the bias-variance
compromise. Setting

Mz = {[log*(T)], [log*(T)| + 1., [T},

we select
i = arg min (~|[Fu|> +pen(m)) where pen(m) = k(1 + 2log(1 + Rr)) RﬁT.
Indeed, as |7 — 7|/ = ||7]|> — ||7m||?, the bias is estimated by —||%,]|> up to the unknown but

unnecessary constant ||7||?. On the other hand, the penalty corresponds to a random version of
the variance term increased by the logarithmic term log(1l + Rp). The quantity  is a numerical
constant. In practice, k is chosen by preliminary simulation experiments. For calibration strategies
(dimension jump and slope heuristics), the reader is referred to Baudry et al. (2012). We prove the
following result.

Theorem 1. Assume that 7 € L?(R) and T > €®. Then there exists a value ko such that for any
K > Ko, we have

~ 2 ~ 2 | mieas o (12 [T*LRe>1 12 [T Ry 1
E(|7% — 717] Scmg}\f/l {7 = mll® + E[pen(m)]} + ¢” [ E —gi +E —R5
T T T

where ¢ is a numerical constant (¢ = 4 would suit) and ¢ = 8¢'\/3 with ¢ defined in (31).

Compared to the result stated in Proposition 1, the inequality obtained in Theorem 1 implies
that the estimator 75 automatically reaches the bias-variance compromise, up to the logarithmic
factor in the penalty and the multiplicative constant c. Under assumptions (A1) and (A3), the last
two additional terms are negligible, if T" gets large.

Rates of convergence can be derived from Theorem 1 by applying inequality (4) of Proposition
2 together with the following Corollary.

Corollary 2. Assume that (A1) and (A3) hold. Then, the following holds

E log(1+ Rr)

NG
Trpst| < Y= (€5 + log(T + 1)),
Ry T

where €1 is defined in Proposition 2 and €3 = log(2) + | log(u1)|, with p1 = E[Dy A 1].

Indeed, under assumptions (A1) and (A3) and if 7 belongs to W*(M), the MISE E[||7,5, — 7||?]
is automatically of order (T'/log(1 + T))~*/(1*9) without requiring any information on 7 nor s.
This is the best possible rate, up to a logarithmic factor.

3 Discrete time observation scheme

In this section, we assume that only discrete time observations with step A, (R;a)iacjo,r] are
available for estimating 7.

3.1 Observation scheme and assumptions

Information about 7 is brought by the position of nonzero increments. But when only discrete time
observations of R over [0,7T] at sampling rate A are available, this information is partial. Indeed,
let ig > 1 be such that Rj,a — Rj,—1)a # 0, this entails that at least one jump occurred between
(io — 1)A and Z()A But,

e It is possible that more than one jump occurred between (ip — 1)A and igA. However, if A
gets small enough, the probability of this event tends to 0.



e [t does not accurately determine a jump position T3, but locates a jump time with an error
bounded by 2A. We have no direct observations of random variables with density 7.

We consider R N N
(D2 =T~ -T2, i=1,...,Nr)

-1 ~
where Np = ng Iq Ria#R(i_1)a 18 the random number of observed nonzero increments and TZ-A
are estimators of the unobserved jump times defined with the following recursive formula

~

TOA = min{k >0, Rgka — R(kfl)A 75 0} x A

ﬁA:min{k> %j—\}ﬁl, RkA—R(k,l)A#O}XA, 1> 1.
To estimate 7, we drop the observation fOA since it is related to the density 7y and not 7. The
observation scheme is represented in Figure 1, where F; = min{T; — t,Vj,T; > t} denotes the

forward time at time ¢, that is the elapsed time from ¢ until the next jump. The following equality
holds: DZ-A_H + A= DR@AH + FiA—A + (A - Fiﬁl—ﬁ)’ Vi > 1, leading to

nA
Dijr = Drzatr+ Fpa_n — FiﬁlfA- (6)
Tr.
Tr.. TA
TiA TRTAJrl o
J 1
Ff,A*A l DRfA'H l A- Ffz%l*A
A
A T

(3

Figure 1: Discrete time observation scheme.

In both following strategies, we consider observations ﬁf as given in (6) and we denote by fa
the density of the D’s. In Section 3.2, we prove that D = Di+Fza ,—Fza 5, with (D)) i.i.d.

TA
141 .
A+ In Section 3.3, we

with density 7 and study the impact of neglecting the term Fpa _ — Fpa
3 i+1
take the complete structure into account but we add a “dead-zone” assumption (A4) given below,
that allows to compute the density of Fra _, — Fpa _5- We can then consider a deconvolution
7 141

strategy.

3.2 A first naive but general procedure

In this Section, we investigate a procedure which neglects the observation bias. For small A, this
corresponds to the approximation fa =< 7. Using again the decomposition of the density 7 in the
Laguerre basis, we define an estimator of 7 based on the sample (D9, ..., D]AVT), by setting, for
m € N and z € [0,00)

—

m— Nt

1 .

Tm(z) = ) awpr(z), where ay = Ny > en(DP), 0<k<m-—1. (7)
k=0 i=1

Starting from (6), we can prove the following Lemma.



Lemma 1. We have
BiA:DRfAJrl—FA&, 1<i< Nrp, (8)
where Dp_,+1 are i.i.d. with density T and (§;) are random variables taking values in [—1,1].

Thanks to Lemma 1, we can bound the mean-squared error of the estimator as follows.

Proposition 3. Assume that 7 € L2(R1). Then, for log?(T) < m < T, the estimator 7, given by
(7) satisfies

Iy, >1

1
E[l#m = 7II] <7 — 7> + 24mE[ ] +2Cy exp (—511’ 1og2(T))

1 4m? — 1
+2C,T, [E| ]]\]\;421}+A2m( = ),
T

where Cy and Cq are given in (18) and only depend on a universal constant .

The result of Proposition 3 completes the bound obtained in Proposition 1: Ry is replaced by
Np and an additional error term of order A2m?2, due to the model approximation appears in the
bound. It is small only if A is small. Using the result stated in inequality (4) of Proposition 2, we
obtain the following Corollary, which gives a condition under which the rate corresponding to the
continuous time observation scheme is preserved.

Corollary 3. Assume that (A1) and (A3) hold, that T belongs to W*(M) and that Ry = Np a.s.
Then for T large enough and A such that A*T3 < 1, choosing mops = CTY D) | yields

E ([l — 7] < COM, 0,07 —5/+D

where C(M, v, ¢) is a constant depending on M, v, c but not on T.

Indeed, the additional term compared to Corollary 1 is A?m(4m? —1)/3 < CA?m? < A?’mT?2.
Therefore, we have A?2mT? < m/T if A2T3 < 1.

Remark 1. Note that Ry = Nr a.s. is satisfied under Assumption (A4) below. In addition,
we emphasize that we can obtain Corollary 3 by replacing the assumption Ry = Np a.s. by
the assumption Vo > 0,7(z) < B exp(—B22%) where 31, B2, 33 are positive constants. Indeed,
under this condition, the result of Lemma 7.3 in Duval (2013b) allows to obtain inequality (4) of
Proposition 2 with Ry replaced by Nrp.

For model selection, the extension of the procedure studied in Theorem 1 is rather straightfor-
ward. We define

m = arg min (—|%y|®> + pén(m)) pén(m) = (/%1(1 + 2log(1 + NT))E + I%QAQmB) ,
meMr NT

where M is as previously. Then we can prove the following result
Theorem 2. Assume that 7 € L2(R) and T > e?. Then there exists a value ko such that for any

k1 A ko > Ko, we have

721 T4
- 2 .. 2 < - 1/2 Np>1 1/2 Np>1
E[HTm—T” } Scmler}\fAT{HT—TmH —l—IE[pen(m)]}—i—c// (IE / [T%T} +EY [T%T})

where ¢ and &" are numerical constants (¢ = 4 would suit).

If A2T3 < 1, the remarks made after Theorem 1 still apply here (see also the numerical Section 4).



3.3 Case of a dead-zone
3.3.1 The dead-zone assumption

Our dead-zone assumption is the following:
I >0, 7(x)=0, Vzel0,n with A<n. (A4)

In other words when a jump occurs, no jump can occur in the next 1 units of times. Then, for
A < 7, we have P(Ra > 1|Ra # 0) = 0 and clearly Ny = Ry a.s. Moreover, the decomposition
(6) becomes then

ﬁiAﬂ = Dip1+ Fpa_x — Fﬁ.ﬁﬁw i>1, )

and we denote by ga the density of Fiza_ . The following key property holds.

Lemma 2. Assume that (Al), (A2) and (A4) hold. Then, D;, Fza , and Fza _, are inde-
2 i+1
pendent and Fza 5 and Fga 5 have common density ga, equal to the uniform distribution on
2 i+1
[0, A].

~

Therefore, the density fa of the observations (D?);>1 as given in (9) can be written

A—|z
fa i =7xga*ga(—.)(x) where ga*ga(—.)(z)= T"ﬂ[—A,A] (z), zeR. (10

Since we use Laguerre basis decomposition, we need the distribution of the error ga * ga(—.) to
be supported on (0,00). This is why we transform the observations as follows

YA :=DA24+ AL D+ AU +Vi), 1<i<Ry, (11)

where £ means equality in law and (U;) and (V;) are independent and i.i.d. with distribution
U[0,1]. The density of Y follows from (10) and is fa(. — A).

3.3.2 Preliminary remark about Fourier deconvolution

Let us briefly discuss why it is not relevant to use here the classical Fourier strategy. Let F[h](u) =
Jg €"“h(x)dz denote the Fourier transform of an integrable function h. Then under assumption
(A4), we get, for all u € R

o B B 2 (sin(*2))”
Flfalw) = | e"(rs g x ga(=))(@)de = Flrl(w)| Floal )| = Frl(w) x (2)”

We can see that recovering F[7](u) (and then 7 by Fourier inversion) would require to divide by
a sinusoidal function which can be zero. The general Fourier deconvolution setting excludes such
possibility (see e.g. Fan (1991)). However, the case of oscillating Fourier transforms of the noise
has been studied (see Hall and Meister (2007) and Meister (2008)): it is worth stressing that it
requires specific methods which do not seem easy to implement. Moreover, in these papers, if the
use of cross-validation techniques are suggested to achieve adaptivity, from a theoretical viewpoint
this question remains open. This is why the Laguerre basis appears as an adequate answer to our
problem.

3.3.3 Laguerre deconvolution

We are in a density estimation problem where the target density is supported on (n,c0), n > 0.
However, the observations (YjA), with density fa(. — A) are blurred realizations of 7, there is an
additive noise supported on [0,2A]. We decompose the density fa(. — A) in the Laguerre basis

fa(w=2A) = bipr(x), = €0,00),
k=0



where by, = (@i, fa(.—A)). Thus, we have estimators for the by’s, for m € N, defined as previously
by

_ 1 &z
b = — YA, 0<k<m-—1.
k RT;%(Z% <k<m

However, we are not interested in estimating fa(.—A) but 7. Using (11), we have that fa = 7%g2 A
where g2 A denotes the density of A(Uy + V7). Note that ga o = ga * ga where ga denotes the
density of AU;.

The Laguerre basis has already been used in deconvolution setting by Comte et al. (2016) and
Mabon (2015) and allows to solve the estimation problem as follows. Denoting by by, ax and ga x(A)
the coefficients of fa(. — A), 7 and gz A in the Laguerre basis and plugging these expansions into
the convolution, we obtain the following equation

PIUTIUED ) SUTAIINY NG R (12)
k=0 0

k=0 j=0

The relation (see, e.g. 7.411.4 in Gradshtein and Ryzhik (1980))

/0 ok (2)p;(t — x)dr = 26_t/0 Li(22) L (2(t — x))da = 272 [y () — @rpjpr (B)],

implies that equation (12) can be re-written

0o ook
Z brepi(t) = Z[Z 272 (g2 k—e(A) = g2k—e-1(A))acler(t),
k=0

k=0 £=0

with convention g2 _1(A) = 0. Equating coefficients for each of the functions, we obtain an infinite
triangular system of linear equations. The triangular structure allows to increase progressively the
dimension of the developments without changing the beginning.

Finally, we relate the theoretical vector a,, = (ax)o<k<m—1 of the first coefficients of decompo-
sition of 7 in the Laguerre basis with the vector by, = (br)o<k<m—1 as follows

b, = [Gm(A)]Qam,

where G,,,(A) is known and is the lower triangular Toeplitz matrix with elements

V2 g0(A) ifi=j A
—1
(G (A)]ij =qV2 (9i—j(A) — gimj—1(A)) if j <i  where gr(A) = ; Zcpk(u)du.
0 otherwise
Note that
\/5719210(A) lf 7 :]
(Go,m(A)]i; = \/571(92,1‘—]‘(A) —g2,i—j—1(A)) ifj<i  where g2(A) = (92,4, ¥k)
0 otherwise

satisfies G (A) = [G,,,(A)]?. Also, we emphasize that
det(Gm(A)) = V2 "go(A)™ = [(1—e2)/A]" >0

for all A, which means that the matrix can be inverted. Then, we propose the following estimator
of a,, -
A, =[G (A)?] b,

This leads to the estimator of 7

m—1
Tm(z) = Z arpr(z), Va €[0,00). (13)
k=0

10



3.3.4 Upper risk bound and adaptive procedure

Denote by p(A) the spectral norm of a matrix A defined as p(A) = y/Amax (AT A), the square-root
of the largest eigenvalue of the semi definite positive matrix ATA.

Proposition 4. Assume that (A1), (A2) and (A4) hold and that T € L2(RT). Then, for log®(T) <
m < T and A <, the estimator T,, given by (13) satisfies

B[ = 7] <7 = 1l + 57(Gon(8) ) 120mE [ 2222

+ p? (Gm(A)*Q) <01 exp (_%,{/ 10g2(T)) n CQT\/IWQ;I}),

where Cy and Cq are given in (18) and only depend on a universal constant .

Proposition 4 shows that the bias term is unchanged, but all other terms are multiplied by
p? (Gm (A)’Q), which is a classical price for solving the inverse problem. In accordance with this,
consider the collection

/\A/l/T ={me {LlogQ(T)J, Llogz(T)J +1,....[T]}, mp? (Gm(A)*Q) <T}
and the selection device

= arg i (<[l + pE(m)),  pen(m) = log(1 + Re) - (Rr + Fap® (Gon(8) ).
meMr

We can prove

Theorem 3. Assume that (A1), (A2) and (A4) hold and 7 € L2(R). Let T > €25 and A < 1.
Then, there exists a value Ko such that for any K1 N\ Ko > Ko, we have

_ N T3 Ry >1 T gy>1
E[|7m — 7)I°] < ¢1  inf {HT — T + E[pen(m)]} + ¢ (E1/2 [7;_ } +EY? [7;— })
meMrp RT RT

where ¢1 and co are numerical constants (¢ = 4 would suit).

3.3.5 Some remarks

First, the following lemma shows that the matrix G,,(A) is easy to compute recursively from the
Laguerre basis. Therefore, formula (14) and (15), and consequently our estimator 7, can be easily
implemented.

Lemma 3. We have, for k € N,

@) = S (V2= 0a)). vith 04(8) = [ puluydn (14)

Moreover, Yz € RT, we have ®o(x) = o(x) (initialization) and for j > 1, j integer,

(7)) = pj() — pj—1(z) — ®j-1(z). (15)

Second, to compute the rate of convergence implied by Theorem 3, the knowledge of the spectral
norm p? (G, (A)7?) is required. When A tends to 0 it is straightforward to observe that for all

E, lima 0 gr(A) = @r(0) = /2. Tt follows that G,,(A) — Id,,, when A — 0, where Id,, is the
m X m identity matrix. More precisely, we can get the following development

G (A) G (A) AT = Id,, +2AA + 0(A)

where A is the m x m matrix with all its coefficients equal to 1. This implies that p?(G,(A)~2)
tends to 1 when A tends to 0.

11



For fixed A we propose a conjecture motivated by numerical experiments. We observe numer-
ically that p?(G,(A)~2) < m*. If this is true, the rate of the estimator is O(7~*/(**5)), with a
logarithmic loss for the adaptive procedure. It is not clear if this rate is optimal. Indeed, in the
case of T"i.i.d. observations of variables blurred with additive noise of known density, the result in
Mabon (2015) would give a variance term in the upper bound of order

L 102 (G (A) ) A [ e[ Gon ()2 21}

T

where ||A||%Z = Tr(AAT) denotes the Frobenius norm of the matrix A. In the cases where the
orders of the operator norm and the Frobenius norm are obtained, they turn out to be the same
(see Comte et al. (2016)). It implies that the variance order may be governed by |G, (A)~2||%/T
and may lead, in the case where A is fixed, to a better rate than the one obtained in Theorem
3. Nevertheless, can note that the differences between the two terms, if any, vanishes when A
gets small, as mp*(1,,) = ||I;n]|% = m. However, obtaining an upper bound for the variance term
involving ||G,,(A)~72||%/T is much more involved in this case than in the context considered in
Mabon (2015) due to the fact that our number of observations is random and is not ancillary.
Also it is difficult to compare the bound derived from Theorem 3, with the optimal rate derived in
Meister (2008) since the regularity assumptions on the target density 7 are different.

4 Simulations

In this section, we illustrate the performances of the estimators, with data driven selection of the
dimension, on simulated data. We consider the following different R*-supported densities 7

e a Gamma G(2, 1),

e the absolute value of a Gaussian |N(1, 3)],

e a dilated Beta 5 x B(6, 3),

e or a rescales mixture of Gamma densities (0.4G(2,1) +0.6G(16, 1)) x £.

The last two densities are rescaled so that for all the examples the mass is mainly contained in
the interval [0,5]. To estimate the L2-risks, we compute 1000 trajectories for T = 500, 1000 and
5000. The dimension m is selected among all dimensions smaller than 50. All methods require the
calibration of constants in penalties. After preliminary experiments, x is taken equal to 0.13 for
the estimator based on continuous observations (A = 0), &1 = 0.13 and &2 = 0.001 for the naive
estimator, k1 = 0.25 and ko = 0.0001 for the dead-zone estimator, which are based on discrete
observations, whatever the value of nonzero A.

In the sequel, the different estimators are always computed on the same trajectory, even when the
value of A is varying. Moreover, together with the value of the L2-risk, we provide the quantity 7,
which is the average of dimensions m that have been adaptively selected by each procedure and the
quantity R which is the average number of observation that have been used to estimate 7. Standard
deviations associated with these means are given in parenthesis. Only one distribution is presented
in this Section, the other tables for the other distributions can be found in the Supplementary
Material. We present illustrations of the methods in Figures 2 and 3, which plot beams of 50
estimators computed with the three adaptive procedures, the one based on continuous observations
of (R:) as in Section 2 for 7' = 500, the ones based on discrete observations using the naive or the
deconvolution method, for two different steps of observations (A = 0.3 and A = 0.1 in Figure 2
and A = 0.1 and A = 0.01 in Figure 3). We work here under the dead-zone assumption (n = 1)
to permit the comparison. As expected, the procedure based on continuous time observations is
very good, and the best one, but the two other methods perform also very well, even if the naive
method requires smaller steps of observation.

12



Continuous time procedure

Naive procedure Dead-zone procedure

Figure 2:  Estimation of 7, a shifted (7 = 1) mixture of Gamma densities (0.4G(2, 3) +0.6G(16, 1)) x £,
for T' = 500. The estimator based on the continuous observation (first line), A = 0.3 (second line) and for
A = 0.1 (third line), with the naive method (first column) and the dead-zone method (second column).

True density 7 in black and 50 estimated curves in green.

Comparison of the continuous time and the naive procedure. The results of Table 1
confirm the theoretical results established in the paper. As expected, we notice that the best
estimator is the one which has access to the continuous time observations (A = 0). When A gets
too large, the naive procedure is biased and performs badly. However, its performances are better
in practice than what the theory predicts: even when m3AZ? is larger than one, the performances
of the naive method are satisfactory. But when m3A? becomes too large, the method fails. Finally
we recover that the larger T', the smaller the loss. The performances of the procedures are only
marginally influenced by the choice for the distribution 7 (see Tables 3, 4 and 5 for the other
distributions in the Supplementary Material).

Comparison of the continuous time and the dead-zone procedure. To apply the dead-
zone procedure, we shifted all four distributions of a factor n = 1. We computed LL?([n, 00)) losses
and compared the first and third estimators. Again, the results of Table 2 illustrate the theoretical
properties established in the paper. The larger A, the more difficult the estimation problem is: the
risks increase with A. But this procedure permits to consistently estimate 7 even when A does not
2o to 0, whereas the latest naive procedure failed to estimate 7 in theses cases. The performance of
the procedure is only marginally influenced by the choice for the distribution 7 (see Tables 6, 7 and
8 for the other distributions in the Supplementary Material). Note that, for the same values of T,
since the distributions have been shifted with a parameter 1, the effective number of observations

13



T A=0 A =0.01 A=0.1 A=0.3
me A2 0.01 1.31 12.80
L 2.42-1073 2.44-1073 2.43-1073 7.82-1073
500 2 (1.90 -107%) (1.90 - 107%) (1.95-107%) (2.83-107%)
R 498.55 (15.92) 497.52 (15.91) 494.54 (15.83) 474.85 (14.65)
m 4.98 (0.67) 4.96 (0.67) 5.07 (0.70) 5.22 (0.55)
mo A2 0.01 1.54 13.79
L 1.22-1073 1.22-1073 1.33-1073 6.97-1073
1000 2 (0.91-107%) (0.92-107%) (1.33-107%) (1.74-107%)
R 998.00 (22.13) 996.92 (22.14)  990.93 (22.01)  992.30 (20.33)
m 5.31 (0.60) 5.31 (0.60) 5.36 (0.61) 5.35 (0.49)
m2 A2 0.02 2.20 17.55
L 0.27-1073 0.27-1073 0.42-1073 6.00-1073
5000 2 (0.20-107%) (0.20 -107%) (0.26-107%) (0.92-107%)
R 4998.0 (50.60)  4996.6 (50.60)  4967.0 (50.20) 4772.4 (46.30)
m 6.08 (0.43) 6.07 (0.43) 6.04 (0.33) 5.80 (0.40)

Table 1: Simulation results for 7 following a G(2, %) distribution. Ly : mean square errors, R: mean
of the number of observations, m: mean of the selected dimensions. All standard deviations are
given in parenthesis.

R available for the estimation is smaller.

T A=0 A =0.01 A=0.1 A =05 A =0.75
L 11.24-1073 16.67 - 1073 16.77- 1073 24.55-1073 38.56 - 1073
500 _2 (1.91-107%) (1.90 - 107%) (1.87-107%) (1.57-107%) (-1073)
R 248.34 (5.63) 247.34 (5.63) 247.34 (5.63) 247.34 (5.63)  247.09 (5.63)
m 10.27 (1.84) 8.65 (1.68) 8.62 (1.65) 7.33 (1.53) 5.45 (1.72)
L 8.40-1073 12.58 - 1073 12.67-1073 17.22-1073 21.64-1073
1000 _2 (2.77-107%) (3.31-107%) (3.30-107%) (4.27-107%) (6.03-107%)
R 498.53 (8.00) 497.53 (8.00) 497.53 (8.00) 497.53 (8.00)  497.41 (8.01)
m 12.77 (3.20) 10.00 (2.33) 9.92 (2.27) 8.33 (0.47) 7.65 (0.65)
L 3.45-1073 4.65-1073 4.78 -1073 12.66 - 103 21.79-1073
5000 _2 (1.08 - 107%) (1.20-107%) (1.11-107%) (0.94 -107%) (203.45 - 107%)
R 2498.90 (17.80) 2497.90 (17.80) 2497.90 (17.80) 2497.90 (17.80) 2497.7 (17.80)
m 22.19 (4.44) 18.61 (4.00) 17.91 (3.39) 9.04 (0.45) 8.72 (1.39)

Table 2: Simulation results for 7 following a G(2, ) distribution under the dead-zone assumption
(n =1). Ly : mean square errors, R: mean of the number of observations, 7: mean of the selected

dimensions. All standard deviations are given in parenthesis.

5 Concluding remarks

In this paper we propose procedures to estimate the interarrival density of a renewal process. In
the case where the process is continuously observed, our procedure is adaptive minimax and re-
quires little assumptions on the target density. The main difficulty of the problem was to deal
with the random number of observation that is non ancillary. If the process is discretely observed,
the problem becomes much more involved, the observations are not independent nor identically
distributed and the estimation problem is of deconvolution type. When A goes rapidly to zero,
we show that the estimation problem can be handled similarly to the estimation problem from
continuous observation, with preserved properties under some constraints. Otherwise, we imposed
additional simplifying assumptions (A1), (A2) to ensure stationarity of the increments and (A4) to
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Continuous time procedure

Naive procedure Dead-zone procedure

Figure 3:  Estimation of 7, following a shifted (n = 1) Beta distribution 5 x B(6, 3), for T' = 500. The
estimator based on the continuous observation (first line), A = 0.1 (second line) and for A = 0.01 (third
line), with the naive method (first column) and the dead-zone method (second column). True density 7 in
black and 50 estimated curves in green.

manage the distribution of the noise. An adaptive procedure is proposed even though its optimality
remains an open question. The numerical study confirms these theoretical considerations.

In the remaining of this section, we discuss how assumptions (A2) and (A4) might be relaxed.

Assumption (A2) is not necessary since it is established in Lindvall (1992) that under (Al)
and for large enough T the process R has stationary increments. Then, by removing the first
observations, the procedures of Section 3 would have the same properties. Indeed, in the numerical
Section all simulated trajectories start from Ty = 0 ((A2) is not satisfied) and the performances of
the estimators are consistent with the theoretical results. However, from a theoretical viewpoint,
removing assumption (A2) is not straightforward, elements on how one should proceed are given
in Duval (2013b).

Removing assumption (A4) is difficult. In the general case, under (A1) and (A2), we may prove
that the common density of the observations (ﬁJA) is

b A o T (w) — 7 % T (w) du
fa(z) = (ZT*TIO 0 (W) — 7o (wd )*gA*gA(—.) (x), VxeR, (16)

fOA 7o (u)du
where * denotes the convolution product and ga is the general density of Fra .. The issue re-
mains that (16) is a nonlinear transformation of 7 where the transformation itself depends on the

15



knowledge of 71y o). Even if we knew 71y o] or had access to an estimator, inverting (16) is a
difficult problem similar to decompounding (see e.g. van Es et al. (2007), Duval (2013a,2013b) or
Comte et al. (2014)). The dead-zone case only partially solves the estimation problem for renewal
processes. But, it illustrates that in deconvolution problem, when the Fourier transform of the noise
has isolated zero, if Fourier methods become technically difficult, the Laguerre procedure remains
easy to implement.

Finally, note that in both continuous and discrete observation schemes, our procedures can be
immediately adapted to the case where one observes a renewal reward process X with marks having
an unknown distribution that either admits a density with respect to the Lebesgue measure or is
positive. Indeed, this last assumption ensures that almost surely if X; # X, then R; # Ry, for
all (¢, s), consequently all the jumps of R are detected. The estimation of the density of the marks
from the discrete observation of X has been studied in Duval (2013b).

6 Proofs

6.1 Proof of Proposition 1

Recall that 7, denotes the orthonormal projection of 7 on S,,. First, by Pythagoras Theorem we
have

m—1
T =717 = 17 = 7> + D @ — ax)”
k=0

Taking expectation and decomposing on the possible values of R, we are left to control

14

El(@ - o] = [ZHRT (7 Xeup) - ) |

We adopt the convention %2?21 = 0, then the first sum starts at £ = 1. Consider the contrast
ve(t) =+ Ef:o (t(D;) = (t, 7)), t € (2(RT). Then, we can show that

—

m—

sup ()’ = Y 2 (). (17)
ltl=1, t€Sm =0

sup (l/g(t))2 = sup (l/g( ak(t)gok))2

lell=t. €50 (an()ER™, TPt an(®?=1 " 150

= sup ( kzo ar(t)ve (‘Pk))

(an(t)€R™, o7 an(t)2=1

m—1 m—1 m—1
< sup (D2 a®?) (X2 vien) = (D2 vilen)
(an(O)ER™, " ar(t)?=1 " k=0 k=0 k=0
Moreover, if we consider the coefficients
ai(t) : &, F=0,...m—1

Zk o Vi ; (or)

16



the former inequality is an equality and (17) is proven. It follows that

m—1
E[(ar — ak = [Z]IRT =0 sup Vz?(t)}
P [[t]|=1, tESm
<E[D tneme( sup  vE() =201 +2e)HD)), |
—~ lltll=1, t€Sm

+E [ S Lre2(1+ 252)Hﬂ
=1

Z 0)1/2g1/2 [( sup vi(t) —2(1 + 254)H§))i]
~ Ilt]=1, t€Sm

B[S Lay-i2(1 + 220 2],
{=1

for some positive constants €, and Hy, where Hy is such that

E[  sup |w(t)|] <H;, and E[ sup (D1)?] <2
lltl=1, teSm lt]=1, t€Sm

Note that, if ¢ € S,, such that ||t = 1 we have [|[t]. = V23 -, "ar(t)] < v2m, by the Cauchy

schwarz inequality. Then, we can set H, = 1/277”. It follows from Lemma 5 (see the Appendix

section), applied with F = S,,,, v =2, b = v/2m and ¢, = 1, that
- 4\2 2v/2m\ 4 VIR 1/2
- )] < =0"2(6(55) exe (=w'm) +36(=757) exn (- 7))
E[(ar — ax) _; 6 T exp | —k'm ) + 36 I exp 7
- 12m
E[> tnre—]
; Rr=t=

where x’ is a universal constant. From the Cauchy Schwarz inequality and va + b < \/a + Vb, we
get

m—1

k=0

—1

3

E[(ay — ax)?] < iP(RT =) (gi) exp (——m m)
=1

b
Il

0

+6 gP(RTz (m )4(ie 2)1/2+12mE{ﬂ};§T21}

1 1
= Cyexp (—im’m) + Com E[ RTZI}

Tr;>1
+12m E[ > }
Rj

Ry

where we set

Moreover, using that 7' > m > log?(T'), we obtain

m—1
1 1 1
3 Ef@ — )’ < 12mE[ RTE} + Cpexp (——,4 1og2(T)) +CoT IE[ RTfl]
k=0 R 2 R7

Gathering all the terms completes the proof. O
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6.2 Proof of Proposition 2
Using the definition of Ry it is straightforward to establish the following

Sk,
Rt

T S
Ir;>1 < =1Rr;>1 < RTHﬂRTzh VT > 0. (19)
Rr Rr

We have the decomposition

#[(3) 1] = 5[ () 10

oo
{=1

Introduce the event

(%<4}

First let a > 0, it is easy to get

E{(%)QHRTZJ > E[i (%)aﬂRT:e} = (%)QP(RT >1)> a(g)a- (20)

Moreover, under (A3) we apply the Bernstein inequality (see Corollary 2.10 in Massart [25]) to get

2

P(2) < 2exp ( - S(f+c%)) (21)
We derive, using that ”71 <2,V¥¢>1 and that o > 0,
() ] < 5] (S0 5 St 5[5 () et

< 0+ 3 B[ () e[ 10,
=1

If a > 1/2, x — 2%* is convex, together with (A3), (21) and the Cauchy Schwarz inequality we

obtain
SRr+1\® o [2a]lvel201-2 S~ .
— < = _
E|(F5) Taex] < Gue + 5 £§:1<P<QE>IP<RT o)t

[2a]lvel2e1-2 u?
< PP S s (- )
< (3u)* + 5 ; 1 exp 32(0 + 1)
20 lwel2a]—2 w2 N1
< (3u)* + %(1% 32<v+ca>) . (22)

Now if 0 < a < %, x — 22 is concave, using the Jensen inequality and similar arguments as above,
we get

S a __u?
(5521 by a] < G+ B[ (1) )
T
Finally, gathering equations (22) , (23) and (20) into (19) and taking expectation provides the
following under (A3) and for a > 0

1R, >1

CoT— < E[ } <o T°,

T

where C5 is defined in (20) and C; in (22) if @ > 1/2 or in (23) if @ € (0,4). This completes the
proof. O
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6.3 Proof of Corollary 2
It follows from the Cauchy Schwarz inequality that

E[Wﬂmzl} < \/M\/E[(log@ +Rr))’.

The function z — (log(1 + :1:))2 is concave for ze — 1. Then, decomposing on the events { Ry < 1}
and {Ry > 2} and applying the Jensen inequality leads to,

\/E[(log(l + RT))2} < \/(log(2))2 + (log(1 + E[RT]))2 <log(2) + log(1 + E[Ry]).
Next, using the inequality (see Grimmett and Stirzaker (2001) p. 420)
T 1-m

E[Rr] < — +
H1 H1

where 1 = E[Dy A 1] > 0. This leads to,

T+1)‘

E[log(1+ Rr)] < ‘log( .

Finally, Inequality (4) of Proposition 2 with oo = 2 gives

log(1+ Rr)

C
Br ]lRTzl] < Q(C3 +log(T + 1)),

|
T
where C is defined in Proposition 2 and C5 = log(2) + | log(x1)|. This completes the proof. O

6.4 Proof of Theorem 1
6.4.1 Proof of Theorem 1

First, observe that
i =arg min (=7l +5En(m) = arg_min (7 = Full* + penom)

Rt
Consider the contrast vr(t) = ||t||>—(2/Rr) Z t(D;). It is easily verified that, 7,,, = argminseg,, y7(t).
i=1
Moreover, we note that
Rt

n(t) = () = = FI7 = lls = FIP 420 = 5.7) = == > (¢ = $)(Di). (24)

T3

Then, by definition of 1, we have yr (7, ) + pen(m) < yr (7 ) + pen(m). This with (24) implies

[T = 7)1* < |17 = 7nl|? + Deni(m) + 2vp(Ts, — 7m) — DEN(1h), (25)
where
1 &

vr(t) = —— > (H(D:) — (t,7)).
Rt

i=1

Using that vy is a linear form and the inequality 2zy < %xz + 4% we get

R 1 .
2ur (T — Tm) < ZHTm_TmH2+4 sup  vp(t)?
tESmvm,||t]|=1

IN

1 1
in =7+l =44 s ()2,
tE€Smvm,llt]=1

19



Plugging this in (25) and gathering the terms, lead to
1, 3 _ —
ST = 7l? < Sll7 = mll* + Pen(m) +4  sup  wp(t)* — pen(in).
2 2 tE Sy ms It =1

We introduce the following Lemma (see the proof in Section 6.4.2):

Lemma 4. Under the Assumptions of Theorem 1, let

2m
Ry’
For ¢ > max(1/x’,2/(log(2)(x")?), where ' is defined in Corollary 2 of Birgé and Massart [5], we
have, for T > €2,

2 A / 1/2 T211RT>1 1/2 T411RT>1
E sup vr(t) —pr(m v m) < (V3E — i +E —
T
+

pr(m) = 2(1+ 2clog(1 + Rr)) (26)

LESivm,|[t][=1 T
with ¢ given in (51).
We have
1

sIFm = 7I* <Slr=mal® +4( sup — vr(t)* —pr(m Vi)
tE€Smvm,|[tl[=1

w

+
+ pen(m) + 4pr(m V i) — pen(m)

where pr is defined in (26). Using that 4pr(m V m) < dpr(m) + 4pr(m) and pen(m’) = 4dpr(m'),
v m', we get

—HTm -7l* <5 HT —mll*+4( sup  wr(t)® —pr(m Vi), + 2pen(m) (27)
LESmvm,[t]=1

Taking expectation in (27) together with Lemma 4, we derive Vm € My

~ 2 2 — / 12 [T*LRr>1 12 [T L Re>1
T T

This implies the result given in Theorem 1. O

6.4.2 Proof of Lemma 4

First, we use that

su 1% 2 m = 3 su 1% 2_ m —
I[‘EKISESWI]I?%l—l 7(8)"~pr( )>J gE[(&esmﬁll—l R )>+1RT€]

i( [(tesm b 1V(t)2—pe(m))2+]P(ﬂRT:e)) : (28)

N

where v(t) = %E 1 (((Dy) = (t,7)) and pe(m) = 2(1 + 2e4)H, with the convention vy(t) = 0,
Vt and po(m) = 0, Vm so that the previous sum starts at £ = 1. We bound the expectation
n (28) using Lemma 5 hereafter (see the Appendix section), with b = v2m, v = 2, F = S,,,

g¢ = clog(1 4+ ¢) and H} = 2. Denote by X = Ssqu” 1Vg(t)2 —-2(1+ EZ)HEQ)Jrv we obtain
tE€Sm,|It]|=

E[X?] < 6(%>2exp(— K'clog(1 —l—f)m) +36(2\€/j—m>4exp(— Ky C“\(g(l +£))

253 1 2932m?
< (K')2 m+2 + (k)04 eXp ( o ﬂ)’ (29)
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for ¢ > (1/k') Vv 2/(log2(k")?). Injecting (29) into (28), together with the inequality va +b <
Va4 Vb and using that ¢4 exp(—v/¥) < co = (8/e)?, leads to

B(,_ s wr(®? —pom)) |

T =1{) + 29/23712\/5 i (P(RTSZ 6))1/2.

ﬂRTZI
6
RT

ﬂRTzl 29/23771\/% > 1
E[ } + > 7 : (30)

(v')?

where the last inequality follows from the Cauchy Schwarz inequality. To conclude, we write that

EK sup VT(t)Z—pT(me)>]
t€S v m It =1 +

< ) E sup VT(t)Q_pT(m\/m/)
LES ury sl =1
>1
c

m’/eMr

/ 1gr, 1g,>
R>,\1/m —|—m Vm, |E|=£
mGMz

for ¢’ a constant, ¢’ > max(Cy, Cs), where Cy and Cs can be derived from (

Consequently, using that log®(T) < m < T together with the Cauchy Schwarz inequality

sup  vr (t)2 — pr(m)
1S mvm lltl=1 .

Now, for T > ¢2, we have log? (T) > 4 and

o 1 1 1
> sty e[t 3 [l
T

T
Tr,>1
<C| |T § E| == + 72 |E
B |: RT :| +
m'=|log?(T)]

E
T

Tr;>1
ﬁ] . (32)

m'=10g?(7) m'=1
We have _ -
B[ Lo=1] _p(p. = 1) < ]P>(i > 1) < ]E[]IRTE}
L Ry o \Br LRy
and
=1 11 1
Ry>2 Rp>1
E 7 < [ 1r >2] <2E [ }
mZ—:4 Ry RET—1/Ry " RY
Thus we obtain
4 Lr,y>1 LRy >1
> E|—E| <3TE | =% (33)
m’'=log?(T)] r T
Therefore, plugging (33) in equation (32) implies the result of Lemma 4. O
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6.5 Proof of Lemma 1
From (6), we derive that for ¢ > 1, DZJr1 DRAA_H—i—AfZ where we set §; 1= (FTA A F"fﬁl—ﬁ)'

By the definition of forward time and the vamables (TZA), it is straightforward to get that |&] < 1.
We are left to prove that (Dp_,+1) are i.i.d. with density 7. The independence is due to the

renewal property. Let h : R —R be a bounded measurable function, decomposing on the values
of T2, we find that

N
E[h(DRfiAH)} = Y E[h(Drs)|TP = jAIP(TS = jA).
j=1

To finish the proof it is sufficient to show that for all & < j the variables Dg,, +1 and (Rxa—R—1)a)
are independent and that Dg,, 1 has density 7. Indeed, in that case the independence between

DpRja+1 and (Rgka — Rip—1)a)k<; ensures that Dg, . 41 is independent of the event {TA = jAY).
This leads to

|Ta— R
B Drya)] = 3 BHOrae [P =8

LTA '

Z/ y)dyP(TA = jA) = E[h(D1)].

Let hy : Ry — R and hy : N — R be bounded measurable functions, and k£ < j. We have

E[hi(Dp,a+1)h2(Ria — Rg—1)a)]
oo El 52

= Z Z Z ha(£3)E[hy(Dg,41)|Rja = 01, Rpa = L2, Rpa — Rip—1ya = 3]
el 052 Of'g 0

X P(Rja = {1, Rpa = la, Rya — R—1)a = U3).

As k < j, we have Rka — R(x—1)a < Rga < Rja a.s. and the renewal property ensures that Dy, 11
is independent of the event {Rja = l1, Rga = Lo, Rpga — R(p—1ya = {3}, 0 < €3 < £y < {4, it follows
that

E[h1(Dg,s+1)h2(Ria — Rig—1)a)]

=E[h1(Dy)] Z ha(f3) Z Z P(Rja = {1, Rka = l2, Rea — Rj—1ya = {3)
£3=0 Ly=L3 La=L3

=E[h1(Dy)] Z ha(€3)P(Rja > Rpa, Ria = Ria — Rig—1)as Ria — R—1)a = {3)
L3=0

=E[h1(Dy)] i ha(€3)P(Ria — Rp—1ya = £3) = E[h1(D1)]E[ho(Ria — Rik—1)a)]
03=0

at last line we used that k < j, implying that Rka — Rr—1)a < Rga < Rja a.s. The proof is now
complete. O

6.6 Proof of Proposition 3

As in the proof of Proposition 1 we have

m—1
||%m_7—||2 = ||T_Tm||2 Z ak_ak
k=0
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Having an expansion of the coefficients aj based on relation (8) leads to

1 Nt 1 Nt A Nt
— DAY _ N =y + — ' (&
= N ;<Pk(Di ) = Ny ;@k(DR@AJA +AG) =ax + Ny ;@k(&)’

for some random variables £; and where

1
ay 1= Ny ; Ok (DR,fiA+1)-

It follows that

m—1 m—1 m—1 Nt

Using that [¢r||e < V2, ¥k and the relation (see Lemma 5.2 in Comte and Dion (2016))
k—1
P =~ — 2 Z Pe (34)
=0

we get ||¢} ]l < V2(1 + 2k). This leads to

m—1 m—1 m—1
(ar —ar)® <2 (@ — ar)® + 247 Y 2(1 + 2k)°
m—1
4m? — 1
_9 (ak_ak)ZjLA?%_
k=0

Taking expectation and thanks to Lemma 1 the first term can be treated similarly as in the proof
of Proposition 1 replacing Ry with Ny. We derive Proposition 3. O

6.7 Proof of Theorem 2

The proof of Theorem 2 follows the line of the proof of Theorem 1 with vr(t) replaced by vr(t)

where
Nt

. 1 N
or(0) = 3 (D) ~ 7. 0)
We have
sup [or (t)]2 <2 sup [vr (t)]2 +2 sup [résT(t)]2
tESmvm,||t||=1 tESmvm,||t]|=1 tESmvm,|[t]|=1
where
1z
résr(t) NT;(( i) — (D))

It follows from the proof of Proposition 3 that

4
sup [resp(t)]? < —m3A2.
t€ S mms Hl|=1 3
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Then, let pr(m) defined in (26) and pr(m) = (8/3)A%m3. We get

1. 3 5 )
N5 —7I? < St —mml®+pen(m)+8(  sup  vr(t)® —pr(mVm))
2 2 £ES v | H|=1 *

+8( sup [res(t)]* — pr(m Vv Th))Jr + 8pr(m V1)
tESmvm,||t]|=1

+8pr(m V ) — pén(1h)

IN

3 .
—||T—Tm||2—|—pen(m)—|—8( sup vr(t)? —pT(m\/m))
2 t€SmvmlltlI=1

+8pr(m V) + 8pr(m V1) — pén(m).

+

Now we choose pén(m) = 8pr(m) + 8pr,2(m) so that
8pr(m Vv m) + 8pr(m V) — pén(m) < pén(m)
and we apply Lemma 4, which yields
1 1
Ell#n =712 < 3|7 — 7|+ 4E[pén(m)] + 16¢ (\/§1E1/2 [%} +EY? [%D .
T

This ends the proof of Theorem 2. O

6.8 Proof of Lemma 2

From (6), and under (A4) we have fori > 1, R~ Fa =i a.s. and thus Dz—i—l = Diy1+Fpa_p Fiﬁl—ﬁ’

where the three variables are independent by the renewal property. Under (A2) and for fixed time
t > 0 the density of F; does not depend on t and is given by 7y defined in (A2) (see e.g. formula
(4.2.6) in Daley and Vere-Jones (2003)). Let h : R — R be a bounded measurable function, we
have

[Ta)
E[h(Fza_a)] = Y E[h(Fja-a)|TP = jAJP(TS = jA).
j=1

Moreover, for all z > 0 we have
P(Fja-a < z|T2 = jA) = P(Fja_a < z|3io, Tiy € (5 — 1)A, jA])
= P(FjA A< .’L“FJA A< A)
_ fmA (1—Jy r( z)dz)dy  xAA
f 1— [ 7(2)dz)dy A

where we used the dead-zone assumption (A4) to derive the last equality. The variable Fja_a fiA =
JA has uniform distribution over [0, A], then,

[TA™Y N A
EFrs )] = > [ gh)a@ = ia) = [ Zhw.

j=

which completes the proof. O

6.9 Proof of Proposition 4

To avoid cumbersomeness we work in the sequel as if the observations (ﬁiA, 1 < i < Rp) were
independent. Strictly, we should consider separately ( 5, 2 <20 < Ryp) and ( g1, 152141 <
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Rr), which are independent. But it is always possible in the sequel to split the sample, even if it
means increasing slightly the constants.
First as 7, is in S,,,, by Pythagoras Theorem we have

T = 717 = [T = 71> + [T = 71> = 17 = 7”4+ |G (D) 2 (B = B) 5.,
m—1
<lr =7l + 9 (G (D) 2) Y (b — bi)?
k=0

where ||.||2,» denotes the ¢ euclidean norm of a vector of size m. Taking expectation and decom-
posing on the possible values of Ry, we are left to control

Y4

B(( — be)?] = [ZnRT o > () - o dal - 2) .

We recover the same term as in the proof of Proposition 1, the same computations based on Lemma
5, and using that T'> m > 10g2(T) lead to

m—1
E[(by — by )? <12mE[
k=0

ﬂRq-Zl}

} + Cpexp (——Fé log (T)> + CoT E{ RA

T

where C; and Cs are given in (18). O

6.10 Proof of Theorem 3

Let mmax denote the maximum dimension m in Mp. Consider the vectors

t= (G/O(t)7 et 7ammax_l(t))T
Mmax—1

in R"mex which are one-to-one related with functions t of Sy, by t = >4 a;(t)p;. Vectors
and functions spaces are denoted in the same way. If t is in S, for m < mp.x we have a,,(t) =

.= Gy, —1(t) = 0. Let [t],, be the m-dimensional vector with coordinates (ag(t), ..., am_1(t))T.
We also denote by (u, v)gm the vector scalar product in R™. Therefore, for t € S,,,, thanks to the
triangular form of G,,,(A)™2, we have

<t7 G (A)izgmmax>Rm'ﬂax = <[t]mv G, (A)”Bmmm
Following the lines of the proof of Theorem 1 in Comte et al. (2016), and noticing that

Ton = arg min Fr(8), Fr(t) = [l Ermax = 206m, G (A) 7 Dr ) rrmames

m&Om

and
m = arg min {7,(7,) + pen(m)}
meMrp

we obtain 1 3

ST = 7lI? < Sl — 7nll? + pen(m) + 4 sup  [pr(t)]* — pen(m)

2 2 tesnl\/?n/
where _

;T(t) = <t7 Gmn]ax (A>72(bmmax - bmmax»Rmmax-

Now, define pr(m,m’) = p*(Gym (A)~2)pr(m, m’) with pr defined in (26). Writing that

tes

E[( sup [or(t))? — pr(m,m)] ) } Z E ( sup [DT(LL)]?_]gT(m,m')])J

t€Smvm m EM

mvm/
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and

E

(5w B = pr(m,m'))

] < P (G (8)*)E l( sup  [vr(t))? —pT(m,m’)])J

+ teS, vm/

we get the result. Indeed p?(Gnym (A)~2) < T in My and the powers of Ry in the residual terms
can be increased at the expense of slightly larger constants. O

6.11 Proof of Lemma 3

Recall that gi(A) = %fOA ¢j(z)dx and that ®(x) = f;oo @;(u)du, we get gi(A) = %(,(0) —
@1 (A)). Straightforward computations give

and (14) follows. For (15), we start from formula (34), yielding

—
|
[y
~—
B

i (@) = Dj(x) +2) Dp(a).
k=0

This formula implies (15) as

J j—1
P =i +2) Br =D+ B+ O 2 Dy
k=0 k=0
=p;

Appendix

A Talagrand inequality

The result established below follows from the Talagrand concentration inequality given in Corollary
2 of Birgé and Massart [5].

Lemma 5. Let Dq,..., Dy be ¢ i.i.d. random variables and F a countable family of functions that
are uniformly bounded by some constant b. Let v = sup,cr E[t(D1)?]. There exists a universal
constant k' such that, for any positive ey, we have

(gm0 202e0m) ] <635 e (<) w0 (75) e (- P5E)

where vy(t) = %Zﬁ:l (t(Dj) — (t, 7'>), with the convention vy(t) =0, Vt € F.

Proof of Lemma 5

The result is established using the Talagrand inequality and that for any positive random variable

X we have E[X?] = 2 [[TtP(X > t)dt. Denote by X = sup  ve(t)? —2(1 + Eg)Hf) , it
teSm,||t]|=1 +
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follows that

E[X?] = 2/ ﬂP’( sup  vp(t)? > 2(1 + 2¢0)H? +t)dt
0 tESm,|It||=1

:2/ tIP’( sup  |we(t)| > \/2(1—1—25@)He2+t)dt
0 t€Sm,t]=1

> / t
< 2/ tP( sup  |we(t)| > /(1 +e¢)He + \[ecHE + 5)dt.
0 tESm,||t||=1

We apply the Talagrand inequality (see e.g. Corollary 2 in Birgé and Massart [5]) with n =
(VI+er—1)Aland N\ = \/e,H? 4+ t/2. We obtain, for £’ a universal constant,

E[X?] §6/ texp(—fﬁ/{géHev+t/2/\ m})dt
0

b
o HZ +1/2 o VeH +t/2
§6/ texp(—fﬁ’w)dt—i—G/ texp(—ﬁk/%—i_/)dt.
0 v 0

Next, we use that \/e,H? +t/2 > (\/EeH + \/t/2) /V2 to derive

IE[XQ] < 6exp (—M&TKHE) /Ootexp (;—/ﬂt)dt
0

+66Xp( \/_b\/agHQ)/OooteXp(—n&)
:6(%)2@@ (_H%ETZH@) +36( 21;) exp( \/_b1/52H2)

Which is the desired result. O
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Supplementary Material

We present hereafter the numerical results corresponding to the distributions presented in Section
4. Tables 3-5 correspond to the comparison of the continuous time and the naive procedures and
Tables 6-8 to the comparison of the continuous time and the dead-zone procedures.

T A=0 A =0.01 A=0.1 A=0.3
moA2 0.02 1.21 5.06
L 3.64-1073 3.82-1073 10.87-1073 28.90-1073
500 2 (2.83-107%) (3.05-107%) (4.12-107%) (2.69-107%)
R 474.63(13.00)  472.62 (12.95)  463.63 (12.48)  443.30 (11.40)
m 6.05 (1.12) 5.91 (1.22) 4.94 (2.35) 3.83 (0.52)
m3 A2 0.03 3.72 5.93
L 2.06-107 2.15-1073 8.41-1073 28.71-1073
1000 2 (1.06 - 107%) (1.12-107%) (3.10-107%) (1.65-107%)
R 951.76 (18.24)  948.77 (18.17)  930.94 (17.27)  890.23 (15.33)
m 6.65 (0.89) 6.66 (1.13) 7.19 (2.65) 4.04 (0.30)
moA2 0.09 14.58 5.87
L 0.75-1073 0.68-1073 7.23-1073 28.50-1073
5000 2 (0.37-107%) (0.37-107%) (0.79-107%) (0.78 -107%)
R 4757.30 (40.50)  4746.40 (40.50) 4657.20 (38.70)  4455.40 (35.50)
m 8.63 (1.96) 9.76 (1.94) 11.34 (0.63) 4.02 (0.17)

Table 3: Simulation results for 7 following a [A/(1, 3)| distribution. Ly : mean square errors, R:
mean of the number of observations, 7: mean of the selected dimensions. All standard deviations
are given in parenthesis.

T A=0 A =0.01 A=0.1 A=0.3
me A2 0.06 6.19 42.89
L 13.68- 1073 13.82-1073 14.18-1073 16.27 - 1073
500 2 (3.96-107%) (3.86-107%) (3.66 - 107%) (5.00-107%)
R 148.58 (2.78)  147.59 (2.79)  147.59 (2.79)  147.53 (2.80)
m 8.75 (1.33) 8.70 (1.29) 8.52 (1.17) 7.81 (0.68)
mo A2 0.12 10.25 46.67
L 8.59-103 8.61-1073 9.63-1073 14.50- 1073
1000 2 (3.47-107%) (3.47-107%) (4.00 -107%) (1.41-107%)

R 208.53 (3.84)  297.52 (3.84)  297.52 (3.84)  297.48 (3.84)
M 10.62 (1.35) 10.60 (1.34) 10.08 (1.39) 8.03 (0.32)
mo A2 0.40 19.21 48.18
3.23-1073 3.27-1073 5.46 - 1073 13.81-1073
5000 2 (0.78 - 107%) (0.76 - 107%) (1.62-107%) (1.60 - 107%)
R 1498.80 (8.60) 1497.90 (8.60) 1487.90 (8.60) 1497.80 (8.60)
m 15.96 (1.72) 15.86 (1.66) 12.43 (1.81) 8.12 (0.59)

.

Table 4: Simulation results for 7 following a 5 x B(6,3) distribution. Ly : mean square errors, R:
mean of the number of observations, 7: mean of the selected dimensions. All standard deviations
are given in parenthesis.
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T A=0 A =0.01 A=0.1 A=0.3
moA2 0.04 3.74 31.16
L 7.43-1073 7.47-1073 7.35-1073 10.42-1073
500 2 (2.67-107%) (2.67-107%) (2.60-107%) (3.36-107%)
R 283.97 (10.12)  282.95 (10.11) 281.30 (9.99) 271.70 (9.40)
m 7.43 (1.14) 7.41 1.20) 7.21 (0.69) 7.02 (0.19)
m3 A2 0.06 4.46 31.08
L 5.30-103 5.31-1073 5.82-1077 9.12-1073
1000 2 (2.02-107%) (2.00-107%) (1.53-107%) (1.94-107%)
R 570.34 (14.54)  569.30 (14.55)  565.94 (14.38)  547.05 (13.52)
m 8.49 (1.83) 8.47 (1.83) 7.64 (1.25) 7.02 (0.12)
moA2 0.18 11.76 30.88
L 1.48-1073 1.50-1073 2281073 8.07-1073
5000 2 (0.59 -107%) (0.57-107%) (0.76 - 107%) (0.74-107%)
R 2856.40 (33.90)  2852.20 (33.90) 2838.60 (33.80) 2744.20 (31.50)
m 12.30 (2.11) 12.19 (2.06) 10.56 (0.68) 7.00 (0.03)

Table 5: Simulation results for 7 following a (0.4G(2, 3) +0.6G(16, 1)) x 2 distribution. Ly : mean
square errors, R: mean of the number of observations, 7: mean of the selected dimensions. All
standard deviations are given in parenthesis.

T A=0 A =0.01 A=0.1 A=0.5 A =0.75
L 5.89-1073 7.30-1073 7.43-1073 10.13-1073 14.63-1073
500 _2 (3.48 -107%) (7.30-107%) (7.43-107%) (5.35-107%) (10.57 - 1073)
R 242.61 (4.84) 242.61 (4.84) 241.61 (4.84) 241.61 (4.84) 241.37 (4.83)
m 7.90 (0.68) 6.51 (1.03) 6.48 (1.05) 5.74 (1.30) 4.91 (1.15)
L 4.96-1073 5.02-1073 5.02-1073 5.69-1073 7.49-1073
1000 _2 (2.28-107%) (1.38-107%) (1.34-107%) (2.36 -107%) (3.11-107%)
R 486.29 (7.06) 485.29 (7.06) 485.29 (7.06) 485.29 (7.06) 485.17 (7.05)
m 8.18 (0.39) 7.07 (0.30) 7.07 (0.28) 6.86 (0.49) 6.40 (0.66)
L 4.99-1073 4.12-1073 4.13-1073 4.50-1073 4.94-1073
5000 _2 (0.94-107%) (0.61-107%) (0.60 - 1073) (0.48-107%) (0.35-107%)
R 2437.00 (15.10) 2436.00 (15.10) 2436.00 (15.10) 2436;00 (15.10) 2435.70 (15.20)
m 8.98 (0.16) 7.95 (0.21) 7.94 (0.23) 7.41 (0.49) 7.02 (0.15)

Table 6: Simulation results for 7 following a [A(1, )| under the dead-zone assumption (n = 1). Ly

: mean square errors, R: mean of the number of observations, m: mean of the selected dimensions.
All standard deviations are given in parenthesis.
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T A=0 A =0.01 A=0.1 A =05 A=0.75
L 9.30-1073 16.25- 1073 16.30- 1073 22.49-1073 45.01-1073

500 _2 (4.41-107%) (6.49 -107%) (6.54 -107%) (12.18-1073)  (14.14-107%)
R 113.84 (1.90)  112.84 (1.90)  112.84 (1.90)  112.84 (1.90)  112.73 (1.91)
m o 9.56 (1.24) 7.86 (0.74) 7.85 (0.75) 6.77 (1.10) 5.29 (0.45)
L 5.74-1073 11.60- 1073 11.66 - 1073 15.36 - 1073 23.90-1073

1000 _2 (3.27-107%) (6.08-107%) (6.09 -107%) (3.58 -107%) (6.90-107%)
R 229.26 (2.58)  228.26 (2.59)  228.26 (2.59)  228.26 (2.59)  228.21 (2.58)
m  11.67 (1.37) 9.41 (1.52) 9.39 (1.52) 7.98 (0.22) 6.00 (0.33)
L 1.91-1073 2.19-1073 2.21-1073 6.43- 1073 14.93- 1073

5000 _2 (0.67-1073) (0.76 - 1073) (0.78 -107%) (1.20 - 107%) (1.46 - 1073)
R 1152.10 (5.80) 1151.10 (5.80) 1151.10 (5.80) 1151.10 (5.80) 1151.10 (5.80)
m 17.30 (1.87) 15.33 (1.13) 15.25 (1.05) 10.99 (0.13) 8 (0)

Table 7: Simulation results for 7 following a 5 x 3(6, 3) under the dead-zone assumption (n = 1). Lo

: mean square errors, R: mean of the number of observations, 7m: mean of the selected dimensions.

All standard deviations are given in parenthesis.

T A=0 A =0.01 A=0.1 A =05 A=0.75
L 14.76 - 1073 40.03-1073 40.91-1073 78.24-1073 84.35-1073
500 _2 (11.64 - 1073) (29.77 - 1073) (29.87-1073) (18.51 - 1073) (8.94-107%)
R 180.33 (5.26) 179.33 (5.26) 179.33 (5.26) 179.33 (5.26) 179.16 (5.27)
m 13.01 (3.23) 8.36 (4.34) 8.22 (4.35) 2.90 (2.26) 2.11 (0.41)
L 5.63-103 10.19-1073 10.53 - 1073 31.61-1073 77.02-1073
1000 _2 (3.34-107%) (7.75-107%) (7.98-107%) (14.48 - 107°) (14.03 - 107°)
R 362.37 (7.54) 361.37 (7.54) 361.37 (7.54) 361.37 (7.54) 361.27 (7.54)
m 16.46 (1.22) 14.41 (2.15) 14.30 (2.21) 9.23 (2.14) 2.67 (1.02)
L 2.85-1073 3.84-1073 3.88-1073 15.24-1073 29.53-1073
5000 _2 (0.68 - 107%) (1.11-107%) (1.11-107%) (2.91-107%) (4.19-107%)
R 1817.00 (17.10) 1816.00 (17.10) 1816.00 (17.10) 1816.00 (17.10) 1815.80 (17.10)
m  17.82 (1.06) 16.49 (0.57) 16.45 (0.53) 11.02 (0.52) 9.88 (0.36)

Table 8: Simulation results for 7 following a (0.4G(2, 1) 4 0.6G(16, 1)) x 2 under the dead-zone

assumption (7 = 1). Ly : mean square errors, R: mean of the number of observations, 77: mean of
the selected dimensions. All standard deviations are given in parenthesis.
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