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Abstract

With the objective of modeling both separate and disperse two-phase flows, we use in this paper a methodology for
deriving two-fluid models that do not assume any flow topology. This methodology is based on a variational principle
and on entropy dissipation requirement. Some of the models that are such derived and studied are already known in the
contexts of the description of separate- or disperse-phase flows. However, we here propose an arrangement of these
models into a hierarchy based on their links through relaxation parameters. Moreover, the models are shown to be
compatible with the description of a monodisperse bubbly flow and, within this frame, the relaxation parameters can
be identified. This identification is finally verified and discussed through comparisons with experimental measures of
sound dispersion and with dispersion relations of a reference model for bubbly media.

1 Introduction - Context
Two-phase flows configurations may involve different regimes in the sense that the topology of the interface sep-

arating both fluids may involve very different scales (see [18] for examples of different flow regimes). Indeed, in
flows called separate-phase flows, the variation of the material interface is described at the bulk fluid scale, while for
bubbly flows or sprays, one phase is dispersed within a surrounding fluid and the interfaces are much smaller than the
macroscopic dynamics of the flow. Industrial applications may often involve flows where different regimes are at play
successively or simultaneously. For example in combustion chambers, as described in [19, 21], a liquid fuel is injected
at high velocity and pressure. In the vicinity of the injection duct, the fluids form a jet that can be considered as a
separate-phase flow. However, further away from the injection point, the flow turns into a cloud of liquid drops. As
there is a strong connection between the repartition of the droplets with respect to size and velocities and the quality of
the combustion (see for instance a study in [27]), being able to accurately model the creation of this cloud in the cham-
ber is a key challenge for the industrial community. Modeling such process is very difficult as it involves phenomena
with very different characteristic scales, as is for instance widely described in [32].

The goal of the present work is to bring out connections between a system that may be used for modeling a
dispersed flow, in the context of bubbly flows, and systems pertaining to the category of separate-phase flows models.
Our approach leads to consider a five-equation barotropic two-phase model that is a priori neutral with respect to
the topology of the interfaces and brings into play a hyperbolic convective part supplemented with stiff source terms.
A key feature of this model is that it accounts for two-scale kinematic effects: bulk kinematics and also small-scale
vibrations [14, 12]. On the one hand, by considering instantaneous equilibria within the model, we will show that it
can be considered as a parent model for two sub-models that are used in the literature for the simulation of separate-
phase flows [4, 16, 1]. On the other hand, our five-equation model is compatible with hypotheses that describe the
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topology of a simple monodisperse bubbly flow. More specifically it is possible to retrieve an evolution equation for
the bubble dynamics that is analogous to the Rayleigh-Plesset equation [26, 24]. That way, we obtain a hierarchy
of two-phase models that includes models suitable to both separate and disperse phase flows. Moreover, using this
hierarchy, we propose two different estimates for two relaxation parameters related to mechanical equilibrium between
materials in the separate-phase model. This result is notable as these estimates are often replaced by infinitely fast
relaxation processes or heuristic values [4, 11, 17, 28]. Few works have already addressed this matter and proposed
similar estimate. However, the choice of this parameter must be careful as an ill-considered estimate can lead to
significantly underestimate damping effects in the system, as it will be shown in the sequel. The different choices
for these fluid parameters will be tested by studying the acoustic regime and comparison with reference data issued
from both experiments and the bubbly flows model of [9]. This study will also shed some light on similarities and
differences between the models of the hierarchy by considering their acoustic behavior as a benchmark tool.

The paper is structured as follows. First, we will apply classical modeling guidelines: the conservative part of the
five-equation model will be derived thanks to the Least Action Principle. The system will be equipped with dissipative
structures by enabling an entropy budget. After completing the definition of the parent five-equation model, two sub-
models will be derived. We shall then consider the case of a bubbly flow and identify the parent five-equation model
with a monodisperse flow. In this context, we will see that it is possible to identify parameters of the models with
micro-viscosity and micro-inertia. Furthermore, estimate for these parameters will be proposed. We shall then study
each model of the hierarchy in the acoustic regime, by exploiting their respective dispersion relation. Finally, we will
compare the acoustic behavior of the models with reference data.

2 A five-equation hyperbolic two-fluid system
In the following section, we construct a complete model for the simulation of a two-phase flow within the frame-

work of the following three ground hypotheses:

(H1) there is no mass transfer between the two phases,

(H2) there is no shift velocity between the two phases,

(H3) energy is a mute variable, completely defined by the partial densities and the local velocity.

In order to give a physical justification to these hypotheses, we illustrate them in the case of a bubbly flow. The
limits of such hypotheses will be discussed in sections 3 and 4. Hypothesis (H1) is quite self-explanatory: there is no
phase change, what is initially gaseous stays gaseous and the same for the liquid part. Hypothesis (H2) implies that the
difference between the bulk velocity of both phase is neglected. This boils down to assume that velocity of the bubbles
relaxes towards the velocity of the underlying carrying liquid with a characteristic time that is very small compared to
other characteristic times that drive the flow. Consequently, we shall assume that a single velocity field u can be used
to describe the macroscopic kinematics of both phases. Eventually, physical justification of hypothesis (H3) is more
delicate. In [25], Prosperetti studies thermal effects in bubble oscillations and proves that, in the small perturbation
limit, the bubble oscillation mechanism is driven by three dimensionless numbers:

G1 =
λ

λg
, G2 =

R0

εth
g

and G3 =
R0

εth
l

,

where λ̄ is the mean free path in the gas, λg is the wavelength within the bubble, R0 is the bubble radius at equilibrium
and εth

g and εth
l are the characteristic thicknesses of penetration of thermal conduction within the gas and the liquid.

G1 is shown to measure a ratio between acoustic and thermal phenomena characteristic penetration thicknesses and
G1 � 1 for a broad range of acoustic frequencies. Next, G2 compares the thermal penetration characteristic thickness
with the bubble radius and this allows us to discriminate two main regimes. When G2 � 1, thermal equilibrium is
always reached within an acoustic period and the bubble oscillation can be considered as isothermal. When G2 � 1,
thermal conduction between liquid and gas is negligible and the transformation can be considered as adiabatic. In both
cases, internal energy is simply driven by the other state variables and the energy equation is redundant. Hypothesis
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(H3) thus extends this last statements to all the regimes in G2, meaning that, with G2, bubbles oscillation goes from an
isothermal to an adiabatic regime under the constant fact that energy is always a mute variable.

As a consequence, in the case of bubbly flows or not, both fluids are governed by a barotropic Equation Of State
(EOS) characterized by

ρk 7→ fk(ρk) and ρk 7→ pk(ρk) = ρ2
k(d f k/dρk)(ρk), (1)

where ρk, fk and pk are respectively the densities, the specific Helmoltz free energies and the partial pressures of each
fluid, k = 1, 2. Then, c2

k = (dpk/dρk) denote the sound velocities within each pure material k. If we note Yk the mass
fraction of each fluid, we have Y1 + Y2 = 1 and if we moreover postulate that fluids 1 and 2 are immiscible, we can
also define the volume fractions αk, such that α1 + α2 = 1. For convenience, in the rest of this paper we set α = α1,
Y = Y1 and mk = αkρk, what allows us to define the density ρ of the medium by

ρ = m1 + m2.

Finally, we suppose given a function
(ρ,Y, α) 7→ f ,

that is the Helmoltz free energy of the medium. The choice of f will be specified later.
Thanks to hypotheses (H1) and (H2), the total mass and the mass fractions of each fluid are conserved under the

same velocity field u and these hypotheses can be written as:

∂tρ + div(ρu) = 0, (2)
∂t(ρY) + div(ρYu) = 0, (3)

or equivalently by ∂tmk + div(mku) = 0, k = 1, 2.

2.1 Variational principle for two-phase models
The first step in our modeling work aims at deriving a system of conservation laws, that is hyperbolic and equipped

with a mathematical entropy evolution equation. Following the lines of [2] for barotropic fluids, of [14] for a system of
equations for two compressible fluids and two temperatures, or of [3] for a homogeneous isothermal two-fluid model,
we propose to use a variational approach and Hamilton’s principle of stationary action to derive the conservative
structure of our two-fluid model. Before going any further, we introduce a few notations: if a and b are two column-
vectors whose components are ai and bi, 1 ≤ i ≤ d, then aT is a row-vector, aT b =

∑
i

aibi is a real number and abT

is a square matrix of size d with (abT )i, j = aib j. If x ∈ Rd 7→ A is a field of square matrices of size d then div(A) is a
column vector of size d, where div(A)i =

∑
j ∂ jAi j. Finally, we note Dt(·) = ∂t(·) + uT∇(·) the material derivative.

Now, we need to define the kinetic energy Ekin and the potential energy Epot that are involved in the conservative
transformations of our system. We postulate that the specific potential energy of our system is the free energy f . Also,
following [14], a key element of our study consists in considering a two-scale kinetic energy composed by a bulk
kinetic energy ρ|u|2/2 and a mesoscopic kinetic energy ν(Dtα)2/2, where ν > 0 is a function of the volume fraction α
only and whose physical interpretation and characterization is given latter on. This mesoscopic kinetic energy can be
illustrated in the context of bubbly flows, as taking into account the vibrations of the bubbles: it models the bubbles
as mesoscopic resonators by representing their pulsating inertia. Obviously, this split of the kinetic energy term is not
specific to the context of bubbly flows. It allows a finer representation of general two-phase flows and the consequences
of such a hypothesis will be further discussed in sections 3 and 4.

Now, the Lagrangian L = Ekin − Epot of our system is fully defined, namely:

L(u, ρ,Y, α,Dtα) =
1
2
ρ|u|2 +

1
2
ν (Dtα)2 − ρ f (ρ, y, α). (4)

Let V (t) be the volume occupied by a portion of fluid during t0 ≤ t ≤ t1. We note Ω = {(x, t) ∈ R3 × [t0, t1] | x ∈ V (t)},
the subset of all space-time points generated by V (t) for t0 ≤ t ≤ t1. The space variable X ∈ V (0) denotes the
Lagrangian coordinates associated with the reference frame at instant t = t0. If (X, t) 7→ ϕ is the mapping that
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gives the position ϕ(X, t) at instant t of a fluid element that was located at X at time t = t0, then obviously Ω =

{(ϕ(X, t), t) | X ∈ V (t0), t0 ≤ t ≤ t1}.
From a pure Eulerian point of view, a transformation of the medium is fully characterized by the fields (x, t) 7→

(ρ,u,Y, α). Equivalently, we can say that a transformation of the medium is fully characterized by the Eulerian fields
(x, t) 7→ (Y, α) and the Lagrangian mapping (X, t) 7→ ϕ under the hypothesis that ϕ is compliant with the mass
conservation.

If (x, t) 7→ (Y, α) and (X, t) 7→ ϕ is a given transformation of the medium, we consider a family of transformations
(x, t, ζ) 7→ (Ŷ , α̂) and (X, t, ζ) 7→ ϕ̂ parametrized by ζ ∈ [0, 1] such that:

• (Ŷ , α̂)(x, t, ζ = 0) = (Y, α)(x, t) and ϕ̂(X, t, ζ = 0) = ϕ(X, t),

• Ŷ and ϕ̂ verify the mass and partial mass conservation (2) and (3), for all ζ ∈ [0, 1].

We adopt the classic definition of the infinitesimal transformations that acts on the medium by introducing the in-
finitesimal displacement (x, t) 7→ ξ, where

ξ
(
ϕ(X, t), t

)
=

(
∂ϕ̂

∂ζ

)
X,t

(X, t, ζ = 0),

and by setting for any Eulerian field (x, t, ζ) 7→ b̂

δb(x, t) =

 ∂̂b
∂ζ


x,t

(x, t, ζ = 0).

Using the lines of [2, 14, 12], our hypotheses provide the infinitesimal variations of ρ, Y , u and Dtα. We obtain indeed
that

δρ = −div(ρξ), δu = Dtξ − (ξT
∇)u, δY = −(ξT

∇)Y and δ(Dtα) = Dt(δα) + (∇α)T [Dtξ − div(uξT )]. (5)

Now, we can define the Hamiltonian ActionA(ζ) by setting

A(ζ) =

∫
Ω

L(̂u, ρ̂, Ŷ , α̂, ∂tα̂ + ûT
∇α̂) dxdt,

and compute the infinitesimal variations of the action, δA = (dA/dζ)(ζ = 0):

δA =

∫
Ω

(∂L
∂u

)T

δu +
∂L

∂ρ
δρ +

∂L

∂Y
δY +

∂L

∂α
δα +

∂L

∂(Dtα)
δ(Dtα)

 (u, ρ,Y, α,Dtα) dxdt.

We make the classic assumption (see [13, 14]) that for our transformation family, ξ and δα vanish on ∂Ω. Thanks to
the Green formula, we obtain after tedious calculations that

δA = −

∫
Ω

{
−ρ∇

(
∂L

∂ρ

)
+ ∂t

(
∂L

∂u

)
+ div

(
∂L

∂u
uT

)
+ (∇u)T

(
∂L

∂u

)
+

(
∂L

∂Y

)
∇Y

+

[
∂t

(
∂L

∂(Dtα)

)
+ div

(
∂L

∂(Dtα)
u
)]
∇α +

∂L

∂(Dtα)
∇(Dtα)

}T

ξ dxdt

−

∫
Ω

[
−
∂L

∂α
+ ∂t

(
∂L

∂(Dtα)

)
+ div

(
∂L

∂(Dtα)
u
)]
δα dxdt. (6)

We follow the Least Action Principle that boils down to postulate that a physical transformation of the medium should
extremize the Hamiltonian actionA. In our case, this yields

−ρ∇

(
∂L

∂ρ

)
+ ∂t

(
∂L

∂u

)
+ div

(
∂L

∂u
uT

)
+ (∇u)T

(
∂L

∂u

)
+

(
∂L

∂Y

)
∇Y

+

[
∂t

(
∂L

∂(Dtα)

)
+ div

(
∂L

∂(Dtα)
u
)]
∇α +

∂L

∂(Dtα)
∇(Dtα) = 0, (7)

−
∂L

∂α
+ ∂t

(
∂L

∂(Dtα)

)
+ div

(
∂L

∂(Dtα)
u
)

= 0. (8)
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For the choice of L expressed by (4), we have

∂L

∂ρ
=
|u|2

2
− f − ρ

∂ f
∂ρ
,

∂L

∂Y
= −ρ

∂ f
∂Y

,
∂L

∂α
=

1
2
ν′(α) (Dtα)2 − ρ

∂ f
∂α
,

∂L

∂(Dtα)
= νDtα,

∂L

∂u
= ρu. (9)

Relations (7) and (8) will respectively provide the evolution equations for the momentum and the volume fraction.
Indeed, reinjecting (9) into (7)-(8) provides

∂t(ρu) + div(ρuuT ) + ∇

(
ρ2 ∂ f
∂ρ

+
1
2
ν(Dtα)2

)
= 0, −ρ

∂ f
∂α

= −
1
2

(Dtν)(Dtα) + ∂t(νDtα) + div(uνDtα).

We define the medium pressure p and a new variable w by setting

p = ρ2 ∂ f
∂ρ

and Dtα =
ρYw
√
ν
. (10)

Using the mass and partial mass conservation hypotheses we obtain that the fluid transformations are governed by the
following system of equations

∂tρ + div(ρu) = 0, (11a)
∂t(ρY) + div(ρYu) = 0, (11b)

∂t(ρu) + div(ρuuT ) + ∇

(
p +

1
2
ν(Dtα)2

)
= 0, (11c)

∂tα + uT
∇α =

m1w
√
ν
, (11d)

∂tw + uT
∇w = −

ρ

m1
√
ν

∂ f
∂α
. (11e)

The Least Action Principle only provides here conservative elements for our model: the momentum equation (11c),
the evolution equation for the volume fraction (11d) and small scale pulsation evolution equation (11e), that supple-
ment the mass conservation equations (11a)-(11b) which have been postulated. We shall examine the dissipative
structures of system (11) in the next section.

2.2 Dissipation and second principle of thermodynamics

While we are not interested in bulk dissipation phenomena, we aim at describing small scale dissipation associ-
ated with the mesoscopic kinetic energy ν (Dtα)2 /2, see equation (4). This way, the damping of local microscopic
pulsations of the interface due to various dissipative phenomena can be taken into account.

In the specific case of bubbly flows, we illustrate our words by the large study done in [25], where the different
damping contributions to bubbles oscillations are identified to be viscous, thermal and acoustic. For very small bubbles
(radius below 10−6 m), the dominant damping effect is the mechanical one, due to the viscous stress at the gas-liquid
interface. Thermal damping effects are dominant for bubbles of larger radii and at low frequency pulsations. This
damping is due to the heat exchanges between the gas and the liquid phases and to the thermodynamical state of the
interior of the bubble.

Another form of damping is related to the “sound” emitted by the interface (or the bubbles) when it vibrates. This
phenomenon prevails for high frequencies perturbations. However, in this range of frequencies, we believe that our
model is not relevant, as it does not take into account diffraction, for instance.

In a general two-phase flow context, we now propose to introduce irreversible damping effects in our two-phase
system, by adding terms to (11) that are compatible with a mathematical entropy evolution equation. First, we suppose
that equations (11a)-(11d) are valid, but we discard (11e) and consider that Dtw is now a quantity to be defined.
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In the barotropic case, it is classic (see [15, 29]) to consider the total free energy of the system as a mathematical
entropy:

ρη(u, ρ,Y, α,w) =
1
2
ρ|u|2 +

1
2

(ρYw)2 + ρ f (ρ,Y, α). (12)

We now seek for an entropy flux function G and a proper evolution principle for Dtw, such that

∂t(ρη) + div(ρηu + G) ≤ 0,

or equivalently
ρDtη + div(G) ≤ 0. (13)

Relation (13) reads

div(G) + ρ

(
∂η

∂u

)T

Dtu + ρ
∂η

∂ρ
Dtρ + ρ

∂η

∂Y
DtY + ρ

∂η

∂α
Dtα + ρ

∂η

∂w
Dtw ≤ 0.

Using (11a)-(11d) to express Dtu, Dtρ, DtY , Dtα and

∂η

∂u
= u,

∂η

∂α
=
∂ f
∂α
,

∂η

∂ρ
=

1
2

(Yw)2 +
∂ f
∂ρ
,

∂η

∂w
= ρY2w,

altogether with (10), we obtain that

div
[
G −

(
p +

1
2

(ρYw)2
)

u
]

+
ρ2Yw
√
ν

(
∂ f
∂α

+
√
νYDtw

)
≤ 0. (14)

A simple choice for ensuring (14) consists in setting

G =

(
p +

1
2

(ρYw)2
)

u and
∂ f
∂α

+
√
νYDtw = −ε

Yw
√
ν
,

where ε > 0 is a constant. This yields a definition of G and a new evolution equation for w that reads

∂tw + uT
∇w = −

ε

ν
w −

1
√
νY

∂ f
∂α
.

Consequently, the generic form of our two-phase flow system reads

∂tρ + div(ρu) = 0, (15a)
∂t(ρY) + div(ρYu) = 0, (15b)

∂t(ρu) + div(ρuuT ) + ∇

(
p +

1
2

(ρYw)2
)

= 0, (15c)

∂tα + uT
∇α =

m1w
√
ν
, (15d)

∂tw + uT
∇w = −

ε

ν
w −

ρ

m1
√
ν

∂ f
∂α
. (15e)

In order to complete the definition of our model, we need to specify the free energy of the medium. We consider
that f is the sum of a bulk mixture free energy and a compaction energy α 7→ e(α), where e is a given function (see
[14]). We set

f (ρ,Y, α) = Y f 1

(
ρY
α

)
+ (1 − Y) f 2

(
ρ(1 − Y)

1 − α

)
+ e(α). (16)
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For this choice, granted that ρ2
k∂ f k/∂ρk = pk, k = 1, 2, a straightforward calculation gives that

p = ρ2 ∂ f
∂ρ

= αp1 + (1 − α)p2 and ρ
∂ f
∂α

= p2 − p1 + ρ
de
dα
,

and system (15) reads here

∂tρ + div(ρu) = 0, (17a)
∂t(ρY) + div(ρYu) = 0, (17b)

∂t(ρu) + div(ρuuT ) + ∇

(
p +

1
2
ν(Dtα)2

)
= 0, (17c)

∂tα + uT
∇α =

m1w
√
ν
, (17d)

∂tw + uT
∇w = −

ε

ν
w +

1
m1
√
ν

(
p1 − p2 − ρ

de
dα

)
. (17e)

The new variable w accounts for variations due to small scale velocities. It is worth noting these vibration-like effects
impact the total momentum of the mixture and appear as an additional pressure in the third equation of system (15).

Let us conclude this section by stating well-posedness properties of our two-phase model with micro-inertia ν. We
consider the sole convective part of system (15) for one-dimensional problems by discarding the source terms. The
resulting system is hyperbolic and its characteristic velocities are

u − c, u, u + c,

where
c2 = c2

Frozen + ρ(Yw)2 and c2
Frozen = Yc2

1 + (1 − Y)c2
2. (18)

Details related to the eigenstructure of system (15) are presented in appendix B.

2.3 Submodels and traversing the hierarchy
We consider the most complete model (17) and we examine two limit flow regimes, obtained for vanishing values

of the parameters ε and ν. First, we study the case of a negligible micro-inertia compared to the internal dissipation
effects, i.e. ν→ 0 and ε = O(1). Second, we consider the case when both micro-inertia and internal dissipation tend to
zero, with ν → 0 and ε = o(

√
ν). Both cases allow to recover the two-phase systems presented in [4]. These systems

are both composed of a conservative part and a (possibly null) stiff source term.

2.3.1 4-equation model for ν→ 0 and ε = O(1)

We consider system (17) and suppose here that ν→ 0 for a fixed value of ε. We see that (17e) provides that

m1w
√
ν

=
1
ε

(
p1 − p2 − ρ

de
dα

)
.

By using equation (17d) we obtain that the limit regime is governed by

∂tρ + div(ρu) = 0, (19a)
∂t(ρY) + div(ρYu) = 0, (19b)

∂t(ρu) + div(ρuuT ) + ∇p = 0, (19c)

∂tα + uT
∇α =

1
ε

(
p1 − p2 − ρ

de
dα

)
. (19d)
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In the specific case de/dα = 0, we recover the relaxation system studied in [4]. The conservative part of system (19)
is a hyperbolic system whose characteristic velocities are {u−cFrozen, u, u+cFrozen} and that is equipped with an entropy
inequality

∂t

(
1
2
ρ|u|2 + ρg(ρ,Y, α)

)
+ div

([
1
2
ρ|u|2 + ρg(ρ,Y, α) + p

]
u
)
≤ 0.

The stiff source term in (19d) drives all the dissipation effects within system (19).

2.3.2 3-equation model for ν→ 0 and ε = o(
√
ν)

The last model of our hierarchy can be obtained either by considering model (17) and the two vanishing coefficients
ν→ 0 and ε = o(

√
ν), or by taking ε→ 0 in (19). Formally, we obtain

∂tρ + div(ρu) = 0, (20a)
∂t(ρY) + div(ρYu) = 0, (20b)

∂t(ρu) + div(ρuuT ) + ∇p = 0, (20c)

p1

(
ρY
α

)
− p2

(
ρ(1 − Y)

1 − α

)
− ρ

de
dα

(α) = 0. (20d)

This system is fully conservative. Also, relation (20d) implies that α is no longer an independent variable: the volume
fraction has become a function of ρ and Y .

In the specific case de/dα = 0, we recover the classic partial pressure equilibrium closure relation p1 = p2 that
was studied in [4]: the resulting system is strictly hyperbolic as it possesses three distinct real-valued characteristic
velocities {u − cWood, u, u + cWood}, where cWood is defined by

1
c2

Wood

=
α2

Yc2
1

+
(1 − α)2

(1 − Y)c2
2

. (21)

Concerning the mathematical properties of (20), we refer the reader to [4]. One can just note that for both relations
(18) and (21), the subcharacteristic condition is verified, as cWood ≤ cFrozen ≤ c. However, we will see in part 3.3
that the real velocities of wave propagation are different from these characteristic velocities and depend on the wave
frequency.

3 Application to bubbly flows in the small perturbation regime
The derivation of model (15) relies on general mechanics and thermodynamics principles that do not involve

specific hypotheses on the flow topology. Hereafter, we show that under simple hypotheses, we obtain a specific
model for bubbly flows, compatible with system (17). This allows us to carry out an acoustic regime analysis and so
to compare the behaviour of our model with other bubbly flow models.

3.1 Connection with the Rayleigh-Plesset equation
Let us consider a bubbly flow which is monodisperse and characterized as follows: at each position and instant

(x, t), the distribution of the number of bubbles is defined by the density function n(x, t) and all bubbles are spher-
ical with a radius R(x, t). Given the phasic gas density ρ1(x, t), all the bubbles have the same mass Mb(x, t) =

4/3πρ1(x, t)R3(x, t). The gas volume fraction α and partial mass m1 can now be related to the flow structure parameters
by

α(x, t) =
4π
3

R3(x, t)n(x, t), m1(x, t) = n(x, t)Mb(x, t). (22)

Now, we make two additional assumptions:

(H4) the mass of each bubble remains constant during a medium transformation (no break-up nor collapse),
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(H5) the surrounding liquid is incompressible and thus has a constant density ρ2 = ρ2.

Hypothesis (H4) boils down to DtMb = 0. Using the conservation of the partial mass m1 = ρY for the gas (17b)
and n = m1/Mb, we obtain the following conservation law for n

∂tn + div(nu) = 0. (23)

The conservation of the partial mass m2 = ρ(1 − Y) for the surrounding fluid and hypothesis (H5) imply that div(u) is
constrained by Dtα through the relation

Dtα + (α − 1)div(u) = 0. (24)

Now, let us express Dtα, w and Dtw in terms of R(t) and its material derivatives. We have α = (4π/3)R3m1/Mb, which
yields

Dtα = α
(
−div(u) + 3

DtR
R

)
. (25)

Using (24), we obtain

Dtα = 3α(1 − α)
DtR
R
.

Expressing m1 thanks to (22) and using (17d) leads to

w =
√
ν

4π
Mb

(1 − α)R2DtR. (26)

Relations (26) and (25) provide

Dtw =
3α(1 − α)

√
ν

m1

[(
2 − 3α +

3α(1 − α)
2

ν′

ν

) (DtR
R

)2

+
D2

ttR
R

]
. (27)

Finally, combining (27) and (17e) gives the evolution equation for R:

p1 − p2 − ρ
de
dα

= ε
3α(1 − α)

R
DtR + 3α(1 − α)ν

(
3(1 − α) +

3
2
α(1 − α)

ν′(α)
ν

) (DtR
R

)2

+ 3α(1 − α)ν
D2

ttR
R

. (28)

We see that the two-phase model (17), supplemented by our bubbly flow structure assumptions (H4-H5), provide the
evolution equation (28) for a spatial distribution of bubbles radii.

If we moreover suppose that:

(H6) for a bubble located at (x, t), the pressure is uniform within the bubble and equal to p1(x, t) and the pressure of
the surrounding liquid is equal to p2(x, t),

(H7) the radius distribution is uniform in space, namely R = R(t),

then R is a global variable of the studied multiphase system, whose dynamics is driven by relation (28), where DtR =

(dR/dt)(t) = Ṙ(t) and D2
ttR = (d2R/dt2)(t) = R̈(t). This equation is now an ODE, analogous to the evolution equation

of a nonlinear oscillatory system with damping and forcing terms which reads

p1 − p2 − ρ
de
dα

= ε
3α(1 − α)

R
Ṙ + 3α(1 − α)ν

(
3(1 − α) +

3
2
α(1 − α)

ν′(α)
ν

) (
Ṙ
R

)2

+ 3α(1 − α)ν
R̈
R
. (29)

Thanks to this analogy, ν is connected to the inertial effects and referred to as "micro-inertia", while ε is related to
damping. Moreover, under the strong hypothesis (H7), one can compare the evolution equation of R(t) with other
existing models that account for bubble vibrations in specific flow regimes. These comparisons may provide an
estimate for the values of ν and ε in the model (17). We propose to proceed along these lines by considering the
Rayleigh-Plesset equation (58g) of the Drew-Passman system (58). We examine a flow regime involving a bubble
radius and a volume fraction small enough such that α � 1 in (17) and kR � 1 in (58). We neglect the surface tension
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in (58g) by setting σ = 0 and relate p1 − p2 − ρde/dα in (28) to p1i − p2 in (58g), recalling the hypothesis of uniform
pressures (H6). By identifying the terms in Ṙ, R̈ and Ṙ2, we respectively obtain:

ε
3α
R

=
4µ2

R
,

3α
R
ν = ρ2R and

3α
R2 ν

(
1
2
ν−1ν′(α)3α + 2

)
=

3
2
ρ2. (30)

The first two relations of (30) allow to identify respectively ε and ν as

εRP =
4µ2

3α
and νRP =

ρ2R2

3α
=
ρ2(3α)−1/3

(4πn)2/3 . (31)

The third relation of (30) is redundant but compatible with the definition of ν expressed in (31). We thus see that
for this specific flow regime, it is possible to insert a monodisperse bubble flow model into our two-phase model, for
which the dynamics of the bubble radii degenerates to the Rayleigh-Plesset equation. Also, the resulting values of ν
and ε match the results of [14] derived in the context of a Baer-Nunziato-type two-fluid model.

Let us remark that in the context of bubbly flows, similar models for micro-inertia are available. In [31], a pulsa-
tional energy is considered in the form: Epuls = 1

2 MpulsṘ2 and Mpuls = 4πρ2R3. An alternative approach that allows to
incorporate small scale bubble velocity is also proposed in [23], by accounting for pseudo-turbulent kinetic energies
generated by particles pulsations Kc = 1

2 Q(α)(DtR)2, where Q(α) is proportional to 3α in the dilute limit of the dis-
persed phase. In [12], a micro-scale kinetic energy of the form 3αρ2(DtR)2 is used for modeling vibrations of bubbles
within a bubbly flow.

Concerning ε, this identification corresponds to the viscous contribution to damping discussed at the beginning of
part 2.2. To recover the other damping effects, that may prevail in some bubbly flow configurations, one must get rid
of the hypothesis of uniform state of the gas inside the bubbles. However, in the literature, this is only done in the
linear regime for small bubbles oscillations: this is presented in the next section.

3.2 Connection with the linearized Rayleigh equation
We further examine the bubbly flow model of section 3.1 by considering now the regime of small variations of the

bubbles radius. Let us assume that

R = R(1 + rz), p2 = p2 + rδp2, n = n, Mb =Mb, (32)

where R, p2,Mb, n are constant values and 0 < r � 1 is a small parameter. If one notes α = 4πR
3
n/3, ρ1 = nMb/α,

p1 = p1(ρ1) , c1 = c1(ρ1) , ν(α) = ν and ρ = αρ1 + (1 − α)ρ2 then (32) yield

α = α(3 + rz) + O(r2), p1 = p1 − 3ρ1 c1
2rz + O(r2) (33a)

ν = ν + O(r), ρ
de
dα

(α) = ρ
de
dα

(α) + 3αz
[
ρ

d2e
dα2 (α) − ρ2

de
dα

(α)
]

r + O(r2). (33b)

Injecting (33) into (29) we obtain

p1 − p2 − rδp2 − ρ
de
dα

(α) − 3αz
[
ρ

d2e
dα2 (α) − ρ2

de
dα

(α)
]

r = 3r
(
ρ1 c1

2z + αεż + α νz̈
)

+ O(r2).

Identifying same order terms with respect to r yields

p1 − p2 − ρ
de
dα

(α) = 0,

and

3α νz̈ + 3αεż + 3
[
ρ1 c1

2
+ α ρ

d2e
dα2 (α) − αρ2

de
dα

(α)
]

z = −δp2. (34)
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Equation (34) is a second order linear ODE in z that is consistent with the evolution of a linear harmonic oscillator with
damping and forcing terms. This type of equations is classic in the literature for describing the motion of vibrating
bubbles in the linear regime. Indeed, following [25, 5], we have

ρ2R
2
z̈ + 2γ ρ2R

2
ż + ρ2R

2
ω2

0z = −δp2, (35)

where γ = γvis + γth + γac drives the damping intensity of the system. The coefficients γvis pertains to viscous effects
due to the surrounding liquid and is defined by γvis = 2µ2/(ρ2 R

2
), γth is related to thermal exchanges between the gas

and the liquid and γac concerns acoustic scattering by the bubbles. Expressions for γth and γac are available in [25, 5],
and references from previous studies therein. They involve several intermediate parameters but also characteristics
parameters of the forcing term, like the frequency of the perturbation δp2. Identifying terms in (34) and (35) yields
the following definitions for ν and ε

εLin =
4µ2

3α
+

2ρ2R
2

3α
(γth + γac) , νLin =

ρ2R
2

3α
. (36)

We thus see that the above analysis and the resulting relation (36) provides a definition for ε that is different from
(31). More specifically, as εLin > εRP we can see that (36) yields greater damping than (31). The discrepancy between
εLin and εRP can be explained by simplifying hypotheses at the core of model (17) and our simple bubbly flow model.
Indeed, (H3) does not allow to describe thermal exchange in the fluids and we also completely neglected pressure
fluctuations within the bubbles although they importantly contribute to damping effects.

In the sequel, we will rely on the following relations:

• Pfriem’s expression that can be found in [5] for γth:

γP40
th (ω) = ωn

3(γ1 − 1)
√

2a1

2
√
ωR

, (37)

where a1 is the thermal diffusivity of the gas and γ1 its ratio of specific heats.

• The natural frequency ωn is given by the relation from [5]:

ω2
n =

3κ1 p1

ρ1R2 , (38)

with κ1 the thermal conductivity of gas.

• For γac we consider the relation found in [25]:

γP77
ac (ω) = 0.5

ω2Rc2

c2
2 + (ωR)2

. (39)

Finally, for practical purposes, we want to get rid of the dependance of these damping parameters on the frequency
of the considered accoustic perturbation. A way to get simple and constant values for these damping effects is to
evaluate expressions (37) and (39) at the natural frequency (38) :

γth = γP40
th (ωn) and γac = γP77

ac (ωn). (40)

3.3 Dispersion relations for a plane and monochromatic wave
In order to test the relevance of our models and of the identification made for ε and ν, we will compare in Part 4 the

behavior of systems (17), (19) and (20) in their acoustic regime to experimental measures of sound waves dispersion.
Considering smooth solutions of one-dimensional problems, all these systems can be expressed using the generic

quasilinear form
∂tW + A(W)∂xW = S(W). (41)
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Following standard lines [34, 10], we seek for a monochromatic wave solution of (41) by writting W in the form

W(x, t) = W(0) + rW(1)(x, t) + O(r2), W(1)(x, t) = Ŵ(1) exp
(
iωt − ik(ω)x

)
, (42)

where ω is the angular frequency, k the wavelength and r is a small amplitude parameter. The states Ŵ(1) and W(0) are
both constant. The fluid parameters involved with W(0) are noted with the superscript (0) and for the sake of simplicity,
we suppose that W(0) is always a rest state, i.e. u(0) = 0.

Injecting (42) into (41) and identifying terms with respect to the powers of r yields

S(W(0)) = 0, Ŵ(1) ∈ ker
(
iωId − ik(ω)A(W(0)) − S′(W(0))

)
. (43)

Consequently ω and k(ω) are bound by the so-called dispersion relation

det
(
iωId − ik(ω)A(W(0)) − S′(W(0))

)
= 0, (44)

which allows to defined the phase velocity and the spatial attenuation of the acoustic wave respectively by Re[ω/k(ω)]
and Im[k(ω)]. Let us now detail the results for each system of our hierarchy. Let us note

H(ρ,Y, α) = ρ
Y(1 − Y)c2

1(ρ1)c2
2(ρ2)

α2(1 − α)2 .

• For the two-phase model with micro-inertia (17), the dispersion relation, the associated phase velocity cε,νPhase and
the spatial attenuation βε,ν read:(

kε,ν(ω)
ω

)2

=
νω2 − iεω − c−2

WoodH(ρ(0),Y (0), α(0))

νc2
Frozenω

2 − iε c2
Frozenω − H(ρ(0),Y (0), α(0))

, cε,νPhase(ω) = Re

[
ω

kε,ν(ω)

]
, βε,ν(ω) = Im[kε,ν(ω)].

(45)

• For the micro-inertia free model (19) obtained by the limit ν → 0, ε = O(1), we get the dispersion relation,
phase velocity cεPhase and attenuation βε defined by(

kε(ω)
ω

)2

=
iεω + c−2

WoodH(ρ(0),Y (0), α(0))

iεc2
Frozenω + H(ρ(0),Y (0), α(0))

, cεPhase(ω) =Re

[
ω

kε(ω)

]
, βε(ω) =Im[kε(ω)]. (46)

• Finally for the full-equilibrium model (20) when ν→ 0, ε = o(
√
ν), the dispersion relation reads

k(ω)2

ω2 =
1

c2
Wood

, cPhase(ω) = cWood, β = 0. (47)

We recall that cWood and cFrozen are defined by (21) and (18).
We observe that when one accounts for internal damping with ε > 0 and with micro-inertia (resp. without micro-

inertia), the phase velocity of the acoustic wave cε,νPhase (resp. cεPhase) is not equal to the sound velocity c (resp. cFrozen)
issued from the characteristic velocities when one discards the source terms in the system. This underlines the fact
that micro-inertia and damping source terms have a substantial influence on the phase velocity of the acoustic wave.

Let us now examine the variations of the dispersion relations across the hierarchy. As ν and ε reach their asymptotic
limit, the transition from one model to another materializes through the dispersion relations (45), (46) and (47). Indeed,
we see that

lim
ν→0

cε,νPhase = cεPhase, lim
ν→0

ε=o(
√
ν)

cε,νPhase = cPhase, lim
ε→0

cεPhase = cPhase.

Le us note that these limits are not uniform over all frequencies: this is illustrated in figures 2. Indeed, we can
observe that, whatever the value of ε, there is a frequency above which cεPhase will be close to cFrozen. However, this
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critical frequency increases when ε decreases. On the contrary, the transition from cε,νPhase to cεPhase is more uniform,
as illustrated in figures 1. Indeed, when ν decreases, the damping effects due to ε prevail, and although the resonant
frequency only depends on ν, the effects of resonance are completely attenuated because of ε. One can also note that
the asymptotic behavior for spatial attenuation at low frequencies does not depend on the value of ν, but depends on
the value of ε, see figure 2 for the 4-equation model.

The model hierarchy also shows through when one spans frequency values ω (and can also be noticed on Figures
1 and 2). Indeed, if one considers acoustic waves at low frequencies ω � 1, then the dispersion relations (45), (46)
and (47) yield (

kε,ν(ω)
ω

)2

=

(
kε(ω)
ω

)2

+ O(ω2) =
1

c2
Wood

+ O(ω)

In terms of phase velocities and attentuation we obtain

cε,νPhase = cεPhase + O(ω2) = cWood + O(ω), βε,ν = βε + O(ω4) = O(ω).

In the limit ω → 0, the phase velocity of the acoustic waves for all models will tend to cPhase = cWood and the spatial
attenuation will vanish. Let us now turn to high frequencies ω � 1. From (45), (46) and (47) we have(

kε,ν(ω)
ω

)2

=

(
kε(ω)
ω

)2

+ O
(

1
ω2

)
=

1
c2

Frozen

+ O
(

1
ω

)
. (48)

Thus the acoustic waves of both systems equipped with internal damping are such that

cε,νPhase = cεPhase + O
(

1
ω2

)
= cFrozen + O

(
1
ω

)
. (49)

Consequently, in the limit ω → +∞, the phase velocities of the acoustic waves associated with (17) and (11) tend to
cFrozen, while it remains constant and equal to cWood for (20). In all cases the spatial attenuation tends to 0.

Finally, let us mention a distinctive behavior of the acoustic waves for the system (17) equipped with both damping
and micro-inertia : in the case of low internal dissipation i.e. small values of ε, the dispersion relation (45) leads to
resonance in the vicinity of the frequency

ωres =
1

cWood

√
H(ρ(0),Y (0), α(0))

ν
. (50)

4 Comparison with bubbly flow reference data
From now on, we shall suppose that the compaction energy is null e(α) = 0, and that the barotropic EOS for each

pure fluid have the form
pk = p0

k + c2
k (ρk − ρ

0
k), (51)

where ck, ρ0
k and p0

k are real constants chosen as follows

p0
1 = 1.0 × 105 Pa, c1 = 340 m.s−1, ρ0

1 = 1.2 kg.m−3,

p0
2 = 1.0 × 105 Pa, c2 = 1500 m.s−1, ρ0

2 = 1000 kg.m−3.

Thanks to the dispersion relations (45), (46) and (47), we can now study the response of systems (17), (19) and
(20) in the acoustic regime under a forced pressure oscillation and compare them with experimental results obtained
for bubbly flows. The data we shall use rely on two experimental works by [30] and [22]. Let us first briefly outline the
framework of these studies. In the sequel, elements related to the experimental data will be denoted with the superscrit
ref.
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(a) Phase velocity. (b) Spatial attenuation.

Figure 1. Phase velocity and spatial attenuation for the 5-equation model and influence of the value of ν.

(a) Phase velocity. (b) Spatial attenuation.

Figure 2. Phase velocity and Spatial attenuation for the 4-equation model and influence of the value of ε.
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The data of [30] are considered as reference experimental results in the domain of acoustic wave propagation for
bubbly flows. They have been used in comparisons with several models in the literature [33, 6, 7, 9]. The method
proposed in [30] consists in generating standing waves in various length steel pipes. The sound is generated at one
end of the pipe while small hydrophones measure sound pressure at the other end. Measures are performed between
two nodes or antinodes that allow to compute the phase velocity and the spatial attenuation. The size distribution of
the bubbles is estimated using photographs. The resulting measures were very accurate, except near the resonance fre-
quency ωref

res. Indeed, for ω close to ωref
res evaluation of the phase velocity was not possible due to the severe attenuation

of the acoustic waves. In order to obtain data in this range of frequencies, we shall use the work of [22] that involves
acoustic wave propagating within a thin hair gel sample containing air bubbles. The sound waves are produced at
one end of the system by a transducer and measurements are performed thanks to an hydrophone at the other end.
The advantage of using the gel is that the distribution of bubbles radii and volume fractions are accurately known.
According to [22], the difference in terms of acoustic behavior between water and gel is negligible regarding the wave
dispersion. Thanks to this set up, the results of [22] provide accurate data for both phase velocity and attenuation in
the vicinity of ωref

res.

4.1 Influence of micro-viscosity and micro-inertia in the acoustic regime
We shall examine the behavior of the models when ω spans the possible frequencies and distinguish three main

ranges of frequencies for characterizing the phase velocity and the spatial attenuation. Then we will focus specifically
on the near-resonance frequencies.

Comparison across the whole spectrum of frequencies ω

We consider a set of measures from [30] that involve a flow characterized by R = 2.5 mm and α = 5.84 × 10−4.
Using relations (31) and (36), we obtain the following values for the parameters of the 5-equation model (17) and the
4-equation model (19)

εRP = 2.28, νRP = 3.57, (52)

εLin = 1.61 × 103, νLin = 3.57. (53)

Figure 3 displays both phase velocity and spatial attenuation for all models of the hierarchy, for the model of Drew [6],
superposed on the experimental results.

• Range ω � ωref
res. For low frequencies, the pressure perturbation is very slow and thus we can expect the

bubbles of the system to remain at an equilibrium state with respect to both mechanics and thermodynamics.
Little internal dissipation is involved with this regime, which is visible through the measures that show a low
spatial attenuation. The evaluation of cref

Phase in the experiment provides values that are close to cWood. All the
models of the hierarchy show a good agreement with these data, as seen in Fig. 3. As ω increases, the spatial
attenuation βref also increases. This trends is correctly followed by the models of the hierarchy that account for
internal dissipation. Nevertheless, [25] underlines that in this regime and up to a certain frequency, the thermal
dissipation is the dominant internal dissipation effect. For all models, βε,ν and βε are lower than experimental
data. However, if the five-equation model (17) importantly underestimates βε,ν when the damping is matched on
Rayleigh-Plesset (ε = εRP), the match with the reference data is very good when ε = εLin.

• Range ω close to ωref
res. Near resonance, βref increases with ω and becomes very large. On the contrary, cref

Phase
decreases as ω increases. It reaches cref

Phase = 0 for some frequency ωref
ext < ωref

res. For ω ∈ [ωref
ext, ω

ref
res], there is

a good agreement between cε,νPhase, cεPhase and cref
Phase. On the contrary, there is an important discrepancy between

the phase velocity predicted by the model of Drew and cε,νPhase, cεPhase for this range of frequencies. It is worth
noting that cε,νPhase is much closer to the reference value for ε = εLin than for ε = εRP. Concerning the spatial
attenuation, we can see that models of the hierarchy that account for micro-inertia, namely (17) and (11) fit
quite well the reference results. In contrast, models (19) and (20) yield a poor estimate of the spatial attenuation.
This suggests that the source terms related to ν in (15d) and (15e) play a key role in the system behavior when
ω ≈ ωref

res. Moreover it also hints that our estimate for ν in (31) and (53) is coherent. Finally, the results suggest
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(a) Phase velocity. (b) Spatial attenuation.

Figure 3. Dispersion relations for the different models from the hierarchy (full and dashed lines) and Silberman’s
measures (symbols) for radii of bubbles around R = 2.0 × 10−3 m, α = 5.84 × 10−4.
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that the source terms related to ε in (11) do not have a great influence on the values of βε,ν in this range of
frequencies.

• Range ω � ωref
res. For high frequencies, very few experimental data are available and thus the main comparison

elements are given by the model of Drew. In this regime, one can presume that acoustic radiation effects cannot
be neglected. Indeed, the bubbles start emitting acoustic waves that are transmitted to the liquid. This process
will remove energy from the bubbles and therefore will become the main damping effect of the system. For all
systems of our hierarchy except (20), the phase velocity will tend to cFrozen, which agrees with the behavior of
Drew’s model. The spatial attenuation coefficients of the model hierarchy do not match well the reference data
of Drew’s model in this range of frequencies: (19) clearly overestimates damping (purple dashed line), when
model (17) with matching coeffictients νRP and εRP provides too low a dissipation (yellow plain line). For the
same model, the micro-viscosity choice εLin clearly increases the damping effect but still at a much lower level
than the dissipation of Drew’s model (red dashed line).

Finer comparison near resonance

In Leroy’s experiment [22], the set of measures is very dense for ω close to ωref
res. In this paragraph we discard both

4-equation model (19) and 3-equation model (20) as they cannot produce resonant behavior. The bubbles in [22] are
smaller than those of [30], we thus consider different values of (R, α) by setting R ≈ 8.1 × 10−5 m and α = 1.5 × 10−4.
Thanks to (31) and (36) we obtain

εRP = 8.89 × 10−1, νRP = 1.46 × 10−3. (54)

εLin = 87.3, νLin = 1.46 × 10−3. (55)

The results we obtain with this set of parameters is coherent with the previous comparison. Indeed, in figure 4 we
can see that forω close toωref

res the phase velocity cε,νPhase is clearly overestimated for εRP but the match with experimental
data for εLin seems more accurate than the for model of Drew. Regarding the attenuation βε,ν, the choice of εLin gives
clearly a better match with the reference data than εRP.

4.2 On the evaluation of the micro-viscosity and the micro-inertia

We succeeded in identifying the micro-inertia ν = νLin = νRP and the micro-viscosity ε = εRP (resp. ε = εLin)
in the five-equation model (17) thanks to comparison with the Rayleigh-Plesset equation (29) (resp. the linear radius
evolution equation (34)). However, the values of εRP and εLin are significantly different and for a given ω ≥ ωref

res, εRP
and εLin yield different acoustic behaviors for system (17): the agreement with reference data is better for ε = εLin. We
believe that underlying hypotheses of our model hierarchy clearly impact the definition of ε. Indeed, assumption (H6)
does not allow to account for pressure fluctuations within the bubble, neither for pressure fluctuations in the liquid
that act as inertial terms with respect to the bubble motion. These phenomena are the ground for thermal and acoustic
damping effects, that are respectively driven by γac and γth, see [25] and [5].

What we observed in section 4.1 is coherent with the analysis of [25]: for the flows settings we chose, both thermal
and acoustic damping are the main damping effects involved in the bubble vibrations. According to [25], when the
radius is close to the value of the Silberman experiment, R = 1 mm, one can estimate that γth/γvis ∈ [5, 5000] for
ω ≤ 105 s−1 and γac/γvis ∈ [5, 5000] for ω ≥ 5 × 103 s−1. When R = 8.1 × 10−2 mm, a close value to the bubbles radii
in Leroy’s experiment, we have that γth/γvis ∈ [10, 500] for ω ≤ 106 s−1 and γac/γvis ∈ [3, 500] for for ω ≥ 105 s−1.

Nevertheless, we saw that, by increasing the value of βε,ν, it is possible to enforce an equivalent damping βε,ν ≈ βth
that better fits the reference data in this range of frequencies, especially close to resonance. This enables an alternate
mean for determining ε and ν in order to cope with the flaws of the model without revisiting the core assumptions of
the model. One could tune (ε, ν) in a heuristic way to better fit cε,νPhase and βε,ν with respect to reference data, and thus
use the acoustic regime behavior of model (17) as an evaluation tool.
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(a) Phase velocity. (b) Spatial attenuation.

Figure 4. Dispersion relations for the different models from the hierarchy (full and dashed lines) and Leroy’s measures
(symbols) for radii of bubbles around R = 8.1 × 10−5 m, α = 1.5 × 10−4.
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5 Conclusion
In this work, we have proposed a hierarchy of 3 compressible two-phase flows models. We have proceeded

by deriving a model for a compressible barotropic two-phase medium that accounts for both bulk and small-scale
vibrational kinematic phenomena. A notable characteristic of this model is that it is agnostic with respect to the
regime in the sense that no assumption is made a priori concerning the topology of the interfaces: the model may
describe either separate-phase or disperse-phase flows. Following classical modeling guidelines, we used the Least
Action Principle and the elaboration of an entropy budget, to obtain respectively the conservative and dissipative
structures of our model.

The resulting system is a five-equation model whose convective part is hyperbolic. This system features two pa-
rameters: ε that is related to internal dissipation effects and ν that pertains to small-scale kinematic effects. Two
reduced models can be obtained by considering the regimes ν → 0, ε = O(1) and ν → 0, ε = O(

√
ν). These limit

regimes led to models from the literature that have been used for describing compressible separate-phase flows [4, 1].
Then we equipped our five-equation model with additional flow structure hypotheses that enabled the description of
monodisperse bubbly flows. This allowed us to recover two evolution equations for the bubble radius in the non-
linear and linear regime, which can be interpreted as a complete and a linearized Rayleigh-Plesset equation. These
connections have brought two important elements: first it has suggested to relate ε to micro-viscosity effects and ν to
micro-inertial ones. Then, it has also allowed to propose two possible evaluations for (ε, ν): a first evaluation that is
based on the nonlinear Rayleigh-Plesset equation and a second one that uses the linearized Rayleigh-Plesset equation.
Comparing both evaluations allowed to shed some light on the impact of the simplifying hypotheses used for model-
ing the behavior of the fluid within the bubbles. The second evaluation suggested a way to compensate for neglected
effects that may even be predominant in some flow configurations.

We finally considered flows in the acoustic regime: we compared the behavior of monochromatic acoustic waves
for each models of the regime with reference data provided by both experimental data and the two-phase model of [9].
First, this study allowed to further discriminate the domain of validity of each model of the hierarchy. Moreover, this
comparison highlighted differences between the models of the hierarchy like the ability of obtaining resonance regime.
Good matches with the reference data were obtained with the five-equation model and validated the evaluations of
(ε, ν) in this particular situation. In this way, this study brought to light that the acoustic regime can be used as a useful
modeling tool for testing and tuning key elements in flow models.

The present work may be extended by accounting for additional phenomena like thermal effects. The model
hierarchy that was proposed here may also be exploited for investigating coupling strategies in the context of numerical
simulations involving different regimes.

Appendices
A The Drew-Passman Bubbly Flow Model

We recall hereafter the two-phase bubbly system studied in [8, 6]. For the sake of simplicity, we shall only
consider one-dimensional problems. This model is compound of balance equations for mass, momentum and energy
for each fluid. These equations are derived following the lines of [18] for deriving flow-field equations using averaging
methods. Constitutive equations are also used for closure purposes, and finally, an additional interaction laws enables
to relate the pressures of each component and close definitely the equations. The derivation of this interaction law is
presented just below, and is based on the same approach that the one used for deriving Rayleigh-Plesset’s equation
[26, 24].

First, consider the motion of a single bubble with a spherical shape of radius R: one makes the assumption that the
bubble undergoes oscillations that are driven by a velocity potential ϕ of the form

ϕ(r) = −
R2Ṙ

r(1 − ikR)
exp(ik(r − R)),

where r is the distance to the center of the bubble (see [20]) and k is the wave number associated with the disturbance of
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the velocity field coming from the surrounding liquid. The evolution of R is derived by supposing that, in comparison
with the gas inside the bubble, the liquid is almost incompressible and that the pressure far from the bubble interface
is p2, then one supposes the dynamics of the bubble to verify the Bernoulli equation as follows

p2i(t)
ρ2

+
1
2

(∇ϕ(R))2 + ∂tϕ(R) =
p2(t)
ρ2

, (56)

where p2i and ρ2 are respectively the pressure of the liquid at the interface between fluids and the density of the liquid.
Moreover, one supposes that the motion of the bubble is constrained by the Laplace relation that gives the jump relation
between the pressure of both fluids across the interface of the bubble

p1i − p2i =
2σ
R
− 2µ2∂ru2|r=R (57)

where σ is the surface tension and µ2 is the dynamic viscosity of the liquid and p1i is the pressure of the gas at the
bubble boundary. Supposing the amplitude of the bubble oscillations to be small, (57) and (56) are complemented
by an additional relation that connects the gas interfacial pressure variations δp1i to the radius variations δR. This
relation accounts for thermal effects occurring at the interface and also for the thermodynamics properties of the gas.
It involves complex expressions that will not be detailed here, we refer the reader to [25, 5] for a detailed view on this
topic.

The other part of Drew’s model is made of six bulk balance equations given below (58a)-(58f). They characterize
the evolution of the system parameters at the macroscopic scale and are derived by applying an ensemble averaging [9].
Let us note ρq, uq, pq, hq respectively the averaged values of density, velocity, partial pressure and specific enthalpy of
the fluid q = 1, 2. Each fluid is supposed to be a compressible material that is equipped with a pressure law of the form
(ρk, hk) 7→ pk. In the case of a dispersed bubbly flow, the volume fraction of gas is defined by setting α = 4πnR3/3,
where n is the bubble number density. The partial masses are given by mq = ρqαq, where α1 = α, α2 = 1 − α.
Neglecting wall-shear effects and gravity, for one-dimensional problems the system reads as follows

∂t m1 + ∂x (m1u1) =0, (58a)
∂t m2 + ∂x (m2u2) =0, (58b)

∂t (m1u1) + ∂x

(
m1u2

1

)
+ α∂x p1 =M, (58c)

∂t (m2u2) + ∂x

(
m2u2

2

)
+ (1 − α) ∂x p2 = − M, (58d)

∂t (m1h1) + ∂x (m1h1u1) − α ( ∂t p1 + u1∂x p1) = −u1
q′′1i

Ls
, (58e)

∂t (m2h2) + ∂x (m2h2u2) − (1 − α) ( ∂t p2 + u2∂x p2) =
q′′2i

Ls
, (58f)

m2RR̈
(1 − α)(1 − ikR)

+
m2Ṙ2

(1 − α)

 2
1 − ikR

−
1
2
−

(
kR

1 − ikR

)2 +
4µ2Ṙ

R

(
1 −

(kR)2

2(1 − ikR)

)
+

2σ
R

= p1i − p2, (58g)

where q′′1i and q′′2i are interfacial heat fluxes, 1/Ls is the interfacial area density and M accounts for interactions like
drag force, virtual mass or Basset force (see [6]). Relation (58g) is obtained thanks to (56) and (57) and governs the
evolution of R, by means of α in (58a)-(58f) it allows to account for small-scale two-phase interface dynamics in the
bulk dynamics.

Finally, the system (58) has to be complemented with an evolution equation for the number density n. If one
supposes that no coalescence nor breakup can occur, n verifies the conservation equation

∂tn + ∂x(nu1) = 0.
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B Eigenstructure of the two-phase model with micro-inertia
We consider the sole convective part of system (15) for one-dimensional problems by discarding the source terms.

For smooth solutions, the obtained system may be expressed using the variable V = (ρ, u,Y, α,w)T as follows

∂tV + A(V)∂xV = 0, A =


u ρ 0 0 0
c2

ρ
u 1

ρ
∂p
∂Y + Yρw2 1

ρ
∂p
∂α

wρY2

0 0 u 0 0
0 0 0 u 0
0 0 0 0 u


.

The matrix A(V) possesses three distinct eigenvalues: u ± c and u associated respectively with the eigenvectors

Ru±c = (ρ,±c, 0, 0, 0)T ,R(1)
u =

(
∂p
∂Y

+ Yρw2, 0,−c2, 0, 0
)T

,R(2)
u =

(
∂p
∂α
, 0, 0,−c2, 0

)T

,R(3)
u = (ρ2wY2, 0, 0, 0,−c2)T .
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