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We present numerical methods that enable the direct numerical simulation of two-phase 
flows in irregular domains. A method is presented to account for surface tension effects in 
a mesh cell containing a triple line between the liquid, gas and solid phases. Our numerical 
method is based on the level-set method to capture the liquid–gas interface and on the 
single-phase Navier–Stokes solver in irregular domain proposed in [35] to impose the solid 
boundary in an Eulerian framework. We also present a strategy for the implicit treatment 
of the viscous term and how to impose both a Neumann boundary condition and a jump 
condition when solving for the pressure field. Special care is given on how to take into 
account the contact angle, the no-slip boundary condition for the velocity field and the 
volume forces. Finally, we present numerical results in two and three spatial dimensions 
evaluating our simulations with several benchmarks.

1. Introduction

Multiphase flows are ubiquitous in most modern processing technology and are critical to the understanding of a wide 
range of physical and biological phenomena. Consequently, the design of numerical methods enabling the simulation of 
multiphase flows is the subject of intense research. When considering solid boundaries, explicit descriptions of the geometry 
have demonstrated results of superior accuracy in the case of one-phase flows, when compared to implicit representations 
of the geometry. Indeed, body-fitted grids can be constructed to enable the accurate treatment of boundary conditions and 
to capture the rapid variations of the solution near walls, e.g. the turbulent boundary layer in high speed flows. In the 
case of multiphase flows, however, body-fitted approaches are less practical since conforming mesh must be reconstructed 
several time during the course of a simulation. This is, for example, the case of the simulation of bubbly flows or sprays, 
where the fluid interface can be strongly deformed and stretched. The automatic meshing necessary in such cases is a 
difficult task and in turn, the resulting mesh could lack the quality needed to guarantee accurate numerical results.

Since the pioneer work of Peskin [38], introducing the immersed boundary method, an important research effort has 
been devoted to the development of Eulerian fluid solvers in irregular domains. These methods have the advantage that no 
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remeshing is necessary during the course of a simulation in the case of uniform grids. If adaptive grids are employed, then 
the remeshing is straightforward since the free boundary is embedded in the grid. Two classes of methods have emerged 
in the Eulerian framework: ‘delta’ formulations, where the Dirac distribution representing surface forces is approximated 
by a regularized function [54] (and the references therein) and ‘sharp’ approaches, where jump conditions at the free 
boundary are enforced at the discrete level [15,19,22,32,40,43,52,53,64,66] (and the references therein). Formulations based 
on regularized Dirac distributions provide a pathway to easily extend single-phase to multiphase solvers [8,49]. On the other 
hand, these methods suffer from drawbacks that limit their use in some applications due to the inherent smearing of the 
solution near interfaces. Although efficient adaptive mesh refinement techniques [2,20] can help reduce the extent of the 
smearing by imposing increased resolution where needed, ‘sharp’ numerical methods are still desired in some applications. 
These methods, however, are difficult to design due to the difficulty of imposing boundary conditions implicitly.

While several works have been presented in the last decade on immersed boundary methods for incompressible one-
phase flows [4,25,31,33–35,56,57,59,63,65], only a few [29,36,58] have been dedicated to incompressible two-phase flows, 
especially in the case where a contact line of the liquid–gas interface is formed on the embedded solid boundary. In such 
a situation, two different interfaces must be managed in a computational cell, and the numerical solver for the pressure 
must impose both a jump condition between the liquid and the gas to account for surface tension effects and a Neumann 
boundary condition between the fluid and the solid phase to impose the no-slip boundary condition.

An attractive immersed boundary method for one-phase flows, based on a finite volume discretization of the Laplace 
operator, has been proposed in [35]. It enables to impose solid boundary conditions on the pressure and on the velocity 
with a second-order spatial accuracy and to maintain the symmetric definite positiveness of the resulting linear system. 
Consequently, standard methods such as the preconditioned conjugate gradient can be used to invert efficiently the linear 
system.

In this paper, we propose to extend the work of [35] to the more complex situation of two-phase flows. Indeed, to our 
knowledge, only a few methods are dedicated to the numerical simulation of multiphase flows in irregular domains. As 
two-phase flows are involved, surface tension has to be accounted for, even in the case where solid, liquid and gas are 
present in the same computational cell. To that extent, we have developed a new numerical scheme to account for both 
a pressure jump condition due to the surface tension and a Neumann condition on the solid domain in the same cells, as 
described in section 3.2. This spatial discretization enables the treatment of volume forces inside the mesh cells that are 
crossed by the contact line. In section 3.3, specific details are given on how to perform an implicit temporal discretization of 
the viscous terms with a coupled linear system involving all the velocity components, while imposing the jump condition on 
viscosity. In section 3.4, we describe how to enforce the Dirichlet boundary condition on the velocity field in computational 
cells crossed by the solid boundary, in order to ensure the no-slip boundary condition. To our knowledge, solving such 
a coupled system with an immersed boundary condition has never been addressed in the existing literature. Finally, we 
discuss in section 3.5 how to impose the appropriate contact angle by extrapolating the liquid–gas level-set function inside 
the solid domain with an iterative PDE.

Several benchmarks are proposed in section 4. In the first part of section 4, one-phase flow simulations are presented in 
order to compare two possible approaches to compute the viscous terms in two and three spatial dimensions. Next, test-
cases involving two-phase flows in a complex geometry (droplet deposited on a slanted wall, half-filled rotating spherical 
tank) are presented and compared to theoretical solutions in order to highlight the behavior of the proposed numerical 
methods for the computation of the surface tension and the volume forces in the grid cells that are both crossed by the 
liquid–gas interface and the solid boundary. Orders of accuracy are difficult to determine for such simulations, however 
grid sensitivity studies are presented for all the benchmarks in order to ascertain that all the computations converge to the 
correct solution.

2. Equations and standard projection methods

The Navier–Stokes equations describe the motion of fluids at the continuum level. However, their formulations and 
approximations depend on how surface forces are represented. Nevertheless, standard state-of-the-art numerical approxi-
mations are based on the projection method for single-phase flows, introduced by Chorin [11].

2.1. Single-phase flows

Consider a domain Ä = Äl ∪ Äs with boundary ∂Ä. The regions Äl and Äs represent the fluid and solid regions, re-
spectively. The boundary between the fluid and the solid is denoted by Ŵs . The incompressible Navier–Stokes equations for 
one-phase Newtonian flows are written as:

∇ · u = 0 in Äl,

ρ

(

∂u

∂t
+ (u · ∇)u

)

= −∇p + µ1u+ ρg in Äl,

where t the is time, ρ the fluid density, u = (u, v, w) the velocity field, µ the viscosity assumed constant, p the pressure 
and g the acceleration due to gravity.



Fig. 1. The computational domain in the case of two-phase flows in irregular domains.

In the case of single-phase flows, Chorin used the Hodge decomposition of vector fields, to design a three-stage projection 
method to solve the Navier–Stokes equations [11]: first, given a velocity un at time tn = n1t , an intermediate velocity u∗

can be computed for a time step 1t without considering the pressure component:

u∗ = un − 1t

(

(

un · ∇
)

un −
µ1un

ρ
− g

)

.

Second, the pressure field pn+1 serves as the scalar function of the Hodge decomposition, satisfying:

∇ ·
(

∇pn+1

ρ

)

=
∇ · u∗

1t
, (1)

with homogeneous Neumann boundary conditions on ∂Ä and non-homogeneous Neumann boundary condition on Ŵs:

ns ·
∇p

ρ

∣

∣

∣

∣

Ŵs

= ns ·
(

u∗ − us

)∣

∣

Ŵs
,

where us is the specified velocity field on the solid’s boundary. Finally, the fluid velocity un+1 is defined at the new time 
step tn+1 as the projection of u∗ onto the divergence-free space:

un+1 = u∗ − 1t
∇pn+1

ρ
.

2.2. Two-phase flows

Consider a computational domain, Ä, that contains solid, liquid and gas regions denoted by Äs , Äl and Äg , respectively1

(see Fig. 1). We call Ŵ the liquid’s boundary and n its outward normal. Likewise, we call Ŵs the solid’s boundary and ns

its outward normal. Finally, ∂Ä denotes the boundary of Ä. The incompressible Navier–Stokes equations for Newtonian 
two-phase flows can be described differently, whether the jump conditions are considered as functions in the entire com-

putational domain, or as sharp jump conditions locally applied to the density, viscosity and pressure field. In what follows, 
we briefly present the main formulations that are used, keeping in mind that an implicit formulation of the viscous terms 
must be favored to perform computations on irregular domains because an immersed Dirichlet boundary condition has 
to be imposed on the velocity field. Indeed, as a subcell resolution is used to compute this boundary condition, temporal 
stability of the computation cannot be achieved by using an explicit temporal discretization, see [18] for more details.

2.2.1. The “delta” formulation

The “delta” formulation [44,49] writes the Navier–Stokes equations for two-phase flows as:

∇ · u = 0,

ρ

(

∂u

∂t
+ (u · ∇)u

)

= −∇p + ρg + ∇ ·
(

2µD
)

+ σκnδŴ,

where σ is the surface tension, κ is the interface local mean curvature, δŴ a multidimensional Dirac distribution localized 
at the interface, and D the rate-of-deformation tensor defined as:

1 We consider a liquid region and a gas region for the sake of presentation, but this work is equally applicable to two liquids or two gases.



D =
∇u + ∇uT

2
.

The density and the viscosity are piecewise constant and only vary across the interface. They can then be defined as:

ρ = ρl + HŴ(ρg − ρl),

µ = µl + HŴ(µg − µl),

with HŴ denoting the Heaviside distribution, equal to 1 in the liquid and 0 in the gas phase, with the following definition 
for density and viscosity jump conditions:

[ρ] = ρl − ρg,

[µ] = µl − µg .

When applying a projection method to the “delta” formulation, one obtains the following explicit discretization: first, 
solve for an intermediate velocity field u∗

1 with

u∗
1 = un − 1t





(

un · ∇
)

un −
∇ ·

(

2µn+1Dn
)

ρn+1
−

σκn+1

ρn+1
n δŴ − g



 .

In the rest of the paper, we omit the subscripts on κ and µ, which are always estimated at tn+1 . Second, solve a Poisson 
equation to determine the Hodge field:

∇ ·
(

∇pn+1

ρn+1

)

=
∇ · u∗

1

1t
.

And finally project u∗
1 onto the divergence-free velocity field:

un+1 = u∗
1 − 1t

∇pn+1

ρn+1
.

This numerical scheme is usually used in the framework of the Continuum Surface Force (CSF) model, which requires the 
definition of smoothed functions δǫ and Hǫ to approximate the Dirac and Heaviside distributions. The ease of implementa-

tion of this method comes with drawback of artificially thickening the interface. Unlike the CSF model, the “sharp” interface 
approach [24,39,50] builds a sharp discretization of singular source terms, avoiding the introduction of a fictitious interface 
thickness. Some details on the theoretical equivalence between the jump condition formulation and the“delta” formulation 
is detailed in [26,27].

2.2.2. The Ghost-Fluid Primitive viscous Method

A splitting on the viscous-stress tensor can be applied:

∇ ·
(

2µD
)

= 2µ∇ ·
(

D
)

+ 2[µ]
∂un

∂n
δŴn

= µ1u+ 2[µ]
(

nT · ∇u · n
)

δŴn.

(2)

This leads to a new possible description of the intermediate velocity, where a jump condition in the viscous term has to be 
imposed. The reader may find a detailed demonstration of equation (2) in Appendix A.

In [24], the authors proposed a sharp interface method for incompressible two-phase flows based on the principles of the 
Ghost-Fluid Method [15,28]. This approach is widely used in the literature, even though it is first-order accurate for solving 
the Poisson equation with jump conditions. In [21], a second-order approach has been developed, but not yet applied to 
Navier–Stokes equations. The Ghost-Fluid Method introduced in [24] can be described briefly as proposed in [26]: first, the 
intermediate velocity u∗

2 is updated with

u∗
2 = un − 1t

(

(

un · ∇
)

un −
µ1u∗

ρn+1
− g

)

.

Next, the Poisson equation for the pressure is solved with the appropriate jump condition:

∇ ·
(

∇pn+1

ρn+1

)

=
∇ · u∗

2

1t
+ ∇ ·

(

σκ + 2[µ]
(

nT · ∇u · n
)n

ρn+1
δŴ n

)

.

Finally the correction step gives the divergence free velocity at tn+1:



un+1 = u∗
2 −

1t

ρn+1

(

∇pn+1 −
(

σκ + 2[µ]
(

nT · ∇u · n
)n

)

n δŴ

)

.

This method has been dubbed the Ghost-Fluid Primitive viscous Method (GFPM) in [26]. In this framework, the compu-

tation of the viscous terms requires to determine explicitly the jump condition on the projected viscous stresses. As these 
jump conditions depend on the numerical solution, achieving a fully implicit temporal discretization of the viscous terms is 
not a straightforward task in the case of the GFPM. Depending on whether the CSF formulation or the GFPM formulation is 
used, the intermediate velocity in the prediction step is different. Even though these two methods are formally equivalent, 
they lead to different definitions of the predicted velocity field in the projection step.

2.2.3. The Ghost-Fluid Conservative viscous Method

In [50], Sussman et al. introduced another formulation for the intermediate velocity field, which refers to as the Ghost-
Fluid Conservative viscous Method (GFCM) in [26]. In this case, the intermediate velocity u∗

3 is obtained as:

u∗
3 = un − 1t

(

(

un · ∇
)

un −
1

ρn+1
∇ ·

(

2µDn
)

− g

)

.

Next, the Poisson equation is solved to determine the pressure field:

∇ ·
(

∇pn+1

ρn+1

)

=
∇ · u∗

3

1t
+ ∇ ·

(

σκnδŴ

ρn+1

)

.

Finally in the correction step, the physical velocity field can be determined with the pressure field previously computed:

un+1 = u∗
3 −

1t

ρn+1
(∇pn+1 − σκnδŴ).

In order to remove the O
(

1x2
)

time step restriction incurred by the viscosity term, the following implicit temporal 
discretization is used, referred to in this paper as the Ghost-Fluid Conservative Method with an Implicit scheme (GFCMI): 
the intermediate velocity u∗

4 is updated as:

ρn+1u∗
4 − 1t∇ ·

(

2µD∗
)

= ρn+1
(

un − 1t
((

un · ∇
)

un − g
))

, (3)

which leads to a large linear system where the three velocity components are coupled. The subsequent steps are similar to 
the one used in GFCM, with the computation of the pressure field:

∇ ·
(

∇pn+1

ρn+1

)

=
∇ · u∗

4

1t
+ ∇ ·

(

σκnδŴ

ρn+1

)

,

followed by the correction step:

un+1 = u∗
4 −

1t

ρn+1
(∇pn+1 − σκnδŴ).

2.2.4. The Ghost-Fluid Semi-Conservative Method

Finally in [26] the authors proposed a semi-conservative formulation for discretizing the viscous term, referred to in this 
paper as the Ghost-Fluid Semi-Conservative Method with an Implicit scheme (GFSCMI). Starting with the splitting:

∇ · (2µD) = ∇ · (µ∇u+ µ∇Tu)

=∇ · (µ∇u) + ∇ · (µ∇Tu)

=∇ · (µ∇u) + ∇Tu · ∇µ + µ∇ · (∇Tu)

=∇ · (µ∇u) + [µ]∇Tu · nδŴ,

where ∇ · (µ∇u) is a formal equivalent of the one-phase flow formulation of viscous effects. Therefore each component is 
solved independently from the others, as the cross-terms of the viscous term in [µ]∇Tu · nδŴ are enforced explicitly as a 
jump condition. The prediction step is:

ρn+1u∗
5 − 1t∇ ·

(

µ∇u∗
5

)

= ρn+1

(

un − 1t

(

(

un · ∇
)

un − g

)

)

.

Then the computation of the pressure field takes into account part of the viscous effects in the pressure jump:



∇ ·
(

∇pn+1

ρn+1

)

=
∇ · u∗

5

1t
+ ∇ ·

(

(

σκ + [µ]
(

nT · ∇u · n
)n )

ρn+1
n δŴ

)

. (4)

Finally, the correction step to compute the divergence free velocity is:

un+1 = u∗
5 −

1t

ρn+1

(

∇pn+1 −
(

σκ + [µ]
(

nT · ∇u · n
)n

)

n δŴ

)

. (5)

Remark. The implementation of an implicit temporal discretization of the viscous terms is easier with this method (GFSCMI) 
than GFCMI. Indeed if GFSCMI is used, each velocity component can be computed by solving a simple linear system (sym-

metric definite positive) that does not treat cross-derivatives implicitly. However, even though GFCMI treats cross-derivatives 
implicitly, a few iterations of Gauss–Seidel suffice for convergence and the results are superior to GFSCMI. These methods 
are compared in section 3.4 to offer some insight on how velocity boundary conditions should be enforced on irregular 
domains.

2.2.5. A note on the time step constraint
Let us remark that, unlike GFCMI, GFSCMI does not fully remove the stability constraint on the time step due to viscosity, 

since an explicit part depending on the viscosity jump condition remains in equation (5). Therefore, as it has been discussed 
in [26], a stability constraint depending on the viscosity jump condition must be imposed to ensure stability of the method. 
Specifically, the following standard time step constraints for the convection and the surface tension effects, must be imposed 
to ensure the temporal stability of the computation:

1tconv =
1x

max |u|
, 1tsurf_tens =

1

2

√

ρl

σ
1x3/2,

for a global time step restriction of:

1

1t
=

1

1tconv
+

1

1tsurf_tens
. (6)

If GFSCMI is used, the following constraint must be added to account for the jump condition on viscosity in equation (5):

1tvisc =
ρ

[µ]
1x2,

where ρ is the average density of the two phases. This leads to a new global time step restriction given by:

1

1t
=

1

1tconv
+

1

1tsurf_tens
+

1

1tvisc
.

2.3. A note on solid’s boundary conditions for multiphase flows

As stated earlier, when irregular domains are handled, Neumann boundary conditions on the domain boundaries are 
enforced on Ŵs the fluid–solid interface for the pressure field. It leads to the following relation for GFCMI:

ns ·
∇p

ρ

∣

∣

∣

∣

Ŵs

= ns ·
(

u∗ − us + σκnδŴ

)∣

∣

Ŵs
,

and for GFSCMI as:

ns ·
∇p

ρ

∣

∣

∣

∣

Ŵs

= ns ·

(

u∗ − us +
(

σκ + [µ]
(

nT · ∇u · n
)n

)

n δŴ

)∣

∣

∣

∣

∣

Ŵs

.

One can notice that jump conditions have to be taken into account on the irregular domain as well. Section 3 will discuss 
the numerical discretization of these boundary conditions.

3. Numerical methods

In this section, we provide the details of the numerical methods used in our two-phase flow solver in irregular domains. 
First, we present the level-set method and the spatial discretizations of the two different projection methods that we 
consider for irregular domains. We then provide the details of the implicit discretization of the viscous terms and how the 
level-set function is computed in the solid domain in order to impose the contact angle.



Fig. 2. Standard MAC grid configuration: the scalar variables are sampled at the cells’ centers (circles), the x-component of the velocity field is sampled 
on the vertical faces (blue triangles), and the y-component of the velocity field is sampled on the horizontal faces (red triangles). The irregular domain 
is represented by the shaded area Äs . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

3.1. Capturing the moving interface

In this work, we use the level-set method of Osher and Sethian [37] to represent the interface between the two fluids. 
A signed and continuous level-set function φ is defined in a domain Ä such as Ä− = {x : φ(x) < 0}, Ä+{x : φ(x) > 0} and 
Ŵ = {x : φ(x) = 0} where Ŵ represents the interface captured by the following transport equation:

∂φ

∂t
+ u · ∇φ = 0. (7)

One of the benefits for using the level-set function is its regular property in the whole domain. Sussman et al. [49] devel-
oped an algorithm allowing to maintain this property by re-initializing the level-set function with the following equation:

∂d

∂τ
= Sign(φ) (1− |∇d|), (8)

where Sign(φ) is a regularized signed function defined by Sussman et al. in [49] and d the update of the function φ. 
Equation (8) iterates for a few fictitious time step τ to finally converge to a continuous signed distance function in the 
whole domain. Thus, geometric properties such as n the outward unit normal vector to the interface and κ the local mean 
curvature can be accurately computed:

n =
∇φ

|∇φ|
, and κ(φ) = ∇ · n.

Spatial derivatives in equations (7) and (8) are computed with the WENO-Z scheme [5], and the temporal derivative with 
a third order TVD Runge–Kutta scheme. Let us notice that the temporal integration is fully coupled with the Navier–Stokes 
solver [24].

3.2. Discretization of the projection method in irregular domains

The method developed in this study to solve the Poisson equation (4) on irregular domains is based on Ng, Min and 
Gibou’s algorithm [35]. This numerical method presents several attractive features. Indeed the spatial discretization for the 
pressure Poisson equation is second order, for all computational nodes, including the irregular domain nodes crossed by 
the solid–fluid interface where the embedded Neumann Boundary condition is enforced. Moreover, the resulting matrix of 
the linear system is still symmetric definite positive which allows using a classical Preconditioned Conjugate Gradient. More 
efficient solvers, as the Black Box MultiGrid [13], can also be used to speed-up simulations.

Consider a vector field u∗ in the domain Ä, separated by the interface Ŵs into two distinct subdomains Ä f and Äs , such 
as Ä = Ä f ∪ Äs . As Äs would correspond to a solid media, we only solve the Navier–Stokes equations in Ä f . Let φs be 
another level-set function such as Äs = {x : φs(x) > 0}, Ä f {x : φs(x) < 0} and Ŵs = {x : φs(x) = 0}. We consider a MAC grid 
configuration and a cell C i, j = [i − 1/2, i + 1/2] × [ j − 1/2, j + 1/2], partially covered with Ä f . For more clarity we only 
consider a 2D example to illustrate the method which can be extended to 3D. The configuration is illustrated in Fig. 2.

Considering a finite volume approach, we integrate the left hand side of equation (4) over C i, j and apply the divergence 
theorem:

∫

C i, j∩Ä f

∇ ·
(

∇p

ρ

)

dA =
∫

∂(C i, j∩Ä f )

n ·
(

∇p

ρ

)

dl,



with dA and dl differential area and length. Similarly for the right hand side:
∫

C i, j∩Ä f

∇ · u∗dA +
∫

C i, j∩Ä f

∇ ·
(

FST

ρ

)

dA =
∫

∂(C i, j∩Ä f )

n · u∗dl +
∫

∂(C i, j∩Ä f )

n ·
(

FST

ρ

)

dl,

where FST can represent the surface tension effects and the jump conditions due to viscosity depending on the choice of 
the intermediate velocity:

• For GFCMI, FST = σκnfδ f .

• For GFSCMI, FST =
(

σκ + [µ]Ŵ
(

nT · ∇u · n
)n

)

nδ f .

We now only consider the contribution of all the components of ∂(C i, j ∩ Ä f ), and define the length fraction Li, j of the 
face covered by the irregular domain {x|φs(x) ≤ 0} which can be linearly approximated here for [i − 1

2
] × [ j − 1

2
, j + 1

2
] by:

Li− 1
2 , j =



















































1y
φi− 1

2 , j− 1
2

φi− 1
2 , j− 1

2
− φi− 1

2 , j+ 1
2

for φi− 1
2 , j− 1

2
< 0 and φi− 1

2 , j 12
> 0,

1y
φi− 1

2 , j+ 1
2

φi− 1
2 , j+ 1

2
− φi− 1

2 , j− 1
2

for φi− 1
2 , j− 1

2
> 0 and φi− 1

2 , j 12
< 0,

1y for φi− 1
2 , j− 1

2
< 0 and φi− 1

2 , j 12
< 0,

0 for φi− 1
2 , j− 1

2
> 0 and φi− 1

2 , j 12
> 0.

(9)

For more clarity the subscript “s” is omitted, but it is the function φs that is used to estimate the length fractions. Using 
the length fraction established in equation (9), and sampled values at the center of the cell, we obtain:

−
∫

∂(C i, j∩Ä f )

n ·
(

∇p

ρ

)

dl ≃
Li− 1

2 , j

ρi− 1
2 , j

(

pi, j − pi−1, j

1x

)

+
Li+ 1

2 , j

ρi+ 1
2 , j

(

pi, j − pi+1, j

1x

)

+
Li, j− 1

2

ρi, j− 1
2

(

pi, j − pi, j−1

1y

)

+
Li, j+ 1

2

ρi, j+ 1
2

(

pi, j − pi, j+1

1y

)

−
∫

C i, j∩Ŵ

n ·
(

∇p

ρ

)

dl,

where 
∫

C i, j∩Ŵ
is the integral over the interface with the irregular external boundary. Similarly, we obtain:

−
∫

∂(C i, j∩Ä f )

n · u∗dl ≃ Li− 1
2 , ju

∗
i− 1

2 , j
− Li+ 1

2 , ju
∗
i+ 1

2 , j
+ Li, j− 1

2
v∗
i, j− 1

2

− Li, j+ 1
2
v∗
i, j+ 1

2

−
∫

C i, j∩Ŵ

n · u∗dl.

For cells where both Ŵ and Ŵs are present, respectively the fluid–fluid interface and the fluid–solid interface, the Ghost-
Fluid Method [15,28] is applied on each part of Ŵ: let βi, j = 1

ρi, j
be a diffusion coefficient in the cell, computed with a 

harmonic average of the values β+ in the region where φ is positive and β− for the negative region, and a(xŴ) = σκ the 
corresponding jump function for GFCMI. For the interface crossing a cell border between xi, j and xi+1, j :

βi+1/2, j =
β+β−

β+θ + β−(1− θ)
,

and

a(xŴ)i+1/2, j = σκi, jθ + σκi+1, j(1− θ),

with

θ =
|φi+1, j|

|φi, j| + |φi+1, j|
.



Then one can define g∗
i, j as in [26]:

gL
i, j = ±βi− 1

2 , ja(xŴ)i− 1
2 , j gR

i, j = ±βi+ 1
2 , ja(xŴ)i+ 1

2 , j gB
i, j = ±βi, j− 1

2
a(xŴ)i, j− 1

2
gT
i, j = ±βi, j+ 1

2
a(xŴ)i, j+ 1

2

and finally obtain:

−
∫

∂(C i, j∩Ä−)

n ·
(

σκnfδ f

ρ

)

dl ≃ Li− 1
2 , j g

L
i, j + Li+ 1

2 , j g
R
i, j + Li, j− 1

2
gB
i, j + Li, j+ 1

2
gT
i, j

−
∫

C i, j∩Ŵ

n ·
(

σκnfδ f

ρ

)

dl.

If GFSCMI is used, one can notice that the formulation is almost the same, except that the function a(xŴ) will be 
completed with the jump due to the viscous term:

a(xŴ)i+1/2, j = θ

(

σκ + [µ]Ŵ
(

nT · ∇u · n
)n

)

i, j
+ (1− θ)

(

σκ + [µ]Ŵ
(

nT · ∇u · n
)n

)

i+1, j
,

and

−
∫

∂(C i, j∩Ä−)

n ·





(

σκ + [µ]Ŵ
(

nT · ∇u · n
)n

)

nfδ f

ρ



dl ≃ Li− 1
2 , j g

L
i, j + Li+ 1

2 , j g
R
i, j + Li, j− 1

2
gB
i, j + Li, j+ 1

2
gT
i, j

−
∫

C i, j∩Ŵ

n ·





(

σκ + [µ]Ŵ
(

nT · ∇u · n
)n

)

nfδ f

ρ



dl.

Finally, one obtains the following problem with Neumann boundary conditions on the embedded solid boundary:

Li− 1
2 , j

ρi− 1
2 , j

(

pi, j − pi−1, j

1x

)

+
Li+ 1

2 , j

ρi+ 1
2 , j

(

pi, j − pi+1, j

1x

)

+
Li, j− 1

2

ρi, j− 1
2

(

pi, j − pi, j−1

1y

)

+
Li, j+ 1

2

ρi, j+ 1
2

(

pi, j − pi, j+1

1y

)

= Li− 1
2 , ju

∗
i− 1

2 , j
− Li+ 1

2 , ju
∗
i+ 1

2 , j
+ Li, j− 1

2
v∗
i, j− 1

2

− Li, j+ 1
2
v∗
i, j+ 1

2

+ Li− 1
2 , j g

L
i, j + Li+ 1

2 , j g
R
i, j + Li, j− 1

2
gB
i, j + Li, j+ 1

2
gT
i, j.

As Ng, Min and Gibou demonstrated in [35], the above discretization forms a symmetric positive definite linear system 
for the pressure field.

3.3. Spatial discretization of the viscous terms

As illustrated in Section 2, the implementation of the viscosity terms depends on the formulation of the intermediate 
velocity, thus generating different discretizations that are formally equivalents. The implicit formulations for both GFCM and 
GFSCM are thoroughly detailed in the following section.

3.3.1. GFCMI discretization
We have seen in section 2 that the equation of the intermediate velocity for GFCMI is:

ρn+1u∗ − 1t
(

∇ ·
(

2µD∗)) = Frhs, (10)

with Frhs the right-hand side of equation (10):

Frhs = ρn+1
(

un − 1t
((

un · ∇
)

un − g
))

. (11)

In order to compute the intermediate velocity field, one must compute all the terms of the right-hand side of equation 
(11). The advection term is solved with a fifth order WENO-Z scheme [5]. Let us remind the stress tensor formulation for 
the discretization of the viscous term:

D =
1

2

(

∇u+ ∇Tu
)

with ∇u =









∂u

∂x

∂u

∂ y

∂v

∂x

∂v

∂ y









.



The discretization is presented as a 2D discretization, but can be easily extended to a 3D formulation. By applying the 
divergence operator:

∇ ·
(

2µD
)

=









∂

∂x

(

2µ
∂u

∂x

)

+
∂

∂ y

(

µ

(

∂u

∂ y
+

∂v

∂x

))

∂

∂ y

(

2µ
∂v

∂ y

)

+
∂

∂x

(

µ

(

∂u

∂ y
+

∂v

∂x

))









.

By projecting on the ex direction:

∇ ·
(

2µD
)

· ex
∣

∣

∣

i+ 1
2 , j

=
∂

∂x

(

2µ
∂u

∂x

)
∣

∣

∣

∣

i+ 1
2 , j

+
∂

∂ y

(

µ

(

∂u

∂ y
+

∂v

∂x

))
∣

∣

∣

∣

i+ 1
2 , j

, (12)

with:

∂

∂x

(

2µ
∂u

∂x

)
∣

∣

∣

∣

i+ 1
2 , j

≃
2µi+1, j

(

ui+ 3
2 j − ui+ 1

2 , j

1x

)

− 2µi, j

(

ui+ 1
2 , j − ui− 1

2 , j

1x

)

1x
,

∂

∂ y

(

µ
∂u

∂ y

)
∣

∣

∣

∣

i+ 1
2 , j

≃
µi+ 1

2 , j+ 1
2

(

ui+ 1
2 , j+1 − ui+ 1

2 , j

1y

)

− µi+ 1
2 , j− 1

2

(

ui+ 1
2 , j − ui+ 1

2 , j−1

1y

)

1y
,

and

∂

∂ y

(

µ
∂v

∂x

)
∣

∣

∣

∣

i+ 1
2 , j

≃
µi+ 1

2 , j+ 1
2

(

v i+1, j+ 1
2

− v i, j+ 1
2

1x

)

− µi+ 1
2 , j− 1

2

(

v i+1, j− 1
2

− v i, j− 1
2

1x

)

1y
.

Likewise, by projecting on the ey|i, j+ 1
2
direction:

∇ ·
(

2µD
)

· ey

∣

∣

∣

i, j+ 1
2

=
∂

∂x

(

µ

(

∂u

∂ y
+

∂v

∂x

))∣

∣

∣

∣

i, j+ 1
2

+
∂

∂ y

(

2µ
∂v

∂ y

)∣

∣

∣

∣

i, j+ 1
2

, (13)

with:

∂

∂x

(

µ
∂u

∂ y

)
∣

∣

∣

∣

i, j+ 1
2

≃
µi+ 1

2 , j+ 1
2

(

ui+ 1
2 , j+1 − ui+ 1

2 , j

1y

)

− µi− 1
2 , j+ 1

2

(

ui− 1
2 , j+1 − ui− 1

2 , j

1y

)

1x
,

∂

∂x

(

µ
∂v

∂x

)
∣

∣

∣

∣

i, j+ 1
2

≃
µi+ 1

2 , j+ 1
2

(

v i+1, j+ 1
2

− v i, j+ 1
2

1x

)

− µi− 1
2 , j+ 1

2

(

v i, j+ 1
2

− v i−1 j+ 1
2

1x

)

1x
,

and

∂

∂ y

(

2µ
∂v

∂ y

)
∣

∣

∣

∣

i, j+ 1
2

≃
2µi, j+1

(

v i, j+ 3
2

− v i, j+ 1
2

1y

)

− 2µi, j

(

v i, j+ 1
2

− v i, j− 1
2

1y

)

1y
.

In order to compute rightfully the viscous term at the intermediate time step, one must solve a coupled linear system of 
two matrices with 9 diagonals per velocity components as:

ai+1, ju
∗
i+ 3

2 , j
+ ai, ju

∗
i− 1

2 , j
+ ai+ 1

2 , j+ 1
2
u∗
i+ 1

2 , j+1
+ ai+ 1

2 , j− 1
2
u∗
i+ 1

2 , j−1
+ αu∗

i+ 1
2 , j

−bi+ 1
2 , j+ 1

2
v∗
i+1, j+ 1

2

+ bi+ 1
2 , j+ 1

2
v∗
i, j+ 1

2

− bi+ 1
2 , j− 1

2
v∗
i+1, j− 1

2

+ bi− 1
2 , j− 1

2
v∗
i, j− 1

2

= Fx_rhs

and

ci+ 1
2 , j+ 1

2
v∗
i+1, j+ 1

2

+ ci− 1
2 , j+ 1

2
v∗
i−1 j+ 1

2

+ ci, j+1v
∗
i, j+ 3

2

+ ci, jv
∗
i, j− 1

2

+ βv∗
i, j+ 1

2

−bi+ 1
2 , j+ 1

2
u∗
i+ 1

2 , j+1
− bi− 1

2 , j+ 1
2
u∗
i+ 1

2 , j
+ bi+ 1

2 , j+ 1
2
u∗
i− 1

2 , j+1
+ bi− 1

2 , j+ 1
2
u∗
i− 1

2 , j
= Fy_rhs



with Fx_rhs and Fy_rhs the right-hand side terms from GFCMI projection method in equation (11), respectively projected 
onto the x- and y-directions, respectively. The matrix coefficients are deduced from equations (10), (12) and (13) as:

ai+1, j = −
2µi+1, j

1x2
1t, bi+ 1

2 , j+ 1
2

=
µi+ 1

2 , j+ 1
2

1x1y
1t, ci+ 1

2 , j+ 1
2

= −
µi+ 1

2 , j+ 1
2

1x2
1t,

ai, j = −
2µi, j

1x2
1t, bi+ 1

2 , j− 1
2

=
µi+ 1

2 , j− 1
2

1x1y
1t, ci− 1

2 , j+ 1
2

= −
µi− 1

2 , j+ 1
2

1x2
1t,

ai+ 1
2 , j+ 1

2
= −

µi+ 1
2 , j+ 1

2

1y2
1t, bi− 1

2 , j+ 1
2

=
µi− 1

2 , j+ 1
2

1x1y
1t, ci, j+1 = −

2µi, j+1

1y2
1t,

ai+ 1
2 , j− 1

2
= −

µ
i+ 1

2
, j− 1

2

1y2
1t, bi− 1

2 , j− 1
2

=
µi− 1

2 , j− 1
2

1x1y
1t, ci, j = −

2µi, j

1y2
1t,

(14)

α = ρn+1

i+ 1
2 , j

− ai+1, j − ai, j − ai+ 1
2 , j+ 1

2
− ai+ 1

2 , j− 1
2
, (15)

and

β = ρn+1

i, j+ 1
2

− ci+ 1
2 , j+ 1

2
− ci− 1

2 , j+ 1
2

− ci, j+1 − ci, j. (16)

Since the linear system is diagonally dominant,2 it can be solved efficiently with a few Gauss–Seidel iterations (< 20

iterations for typical multiphase flow configurations, such as the benchmarks of section 4). For a 3D system, a third coupled 
matrix has to be accounted for, resulting in a 15-diagonal matrix per velocity components.

3.3.2. GFSCMI discretization
GFSCMI projection proposed in [26] enables an easier implementation for an implicit temporal discretization of the 

viscous terms, albeit semi-implicit:

ρn+1u∗
5 − 1t∇ ·

(

µ∇u∗
5

)

= Frhs = ρn+1

(

un − 1t
( (

un.∇
)

un − g
)

)

. (17)

The viscous term can be computed as:

∇. (µ∇u) =









∂

∂x

(

µ
∂u

∂x

)

+
∂

∂ y

(

µ
∂u

∂ y

)

∂

∂x

(

µ
∂v

∂x

)

+
∂

∂ y

(

µ
∂v

∂ y

)









.

By projecting in the x-direction:

∇ · (µ∇u) · ex|i+ 1
2 , j =

∂

∂x

(

µ
∂u

∂x

)∣

∣

∣

∣

i+ 1
2 , j

+
∂

∂ y

(

µ
∂u

∂ y

)∣

∣

∣

∣

i+ 1
2 , j

, (18)

with:

∂

∂x

(

µ
∂u

∂x

)∣

∣

∣

∣

i+ 1
2 , j

≃
µi+1, j

(

ui+ 3
2 j − ui+ 1

2 , j

1x

)

− µi, j

(

ui+ 1
2 , j − ui− 1

2 , j

1x

)

1x
,

and

∂

∂ y

(

µ
∂u

∂ y

)∣

∣

∣

∣

i+ 1
2 , j

≃
µi+ 1

2 , j+ 1
2

(

ui+ 1
2 , j+1 − ui+ 1

2 , j

1y

)

− µi+ 1
2 , j− 1

2

(

ui+ 1
2 , j − ui+ 1

2 , j−1

1y

)

1y
.

Likewise, by projecting in the y-direction:

∇ · (µ∇u) · ey

∣

∣

i, j+ 1
2

=
∂

∂x

(

µ
∂v

∂x

)∣

∣

∣

∣

i, j+ 1
2

+
∂

∂ y

(

µ
∂v

∂ y

)∣

∣

∣

∣

i, j+ 1
2

, (19)

2 Depending on the time step constraint, if ρ >> 6ai j , then the system is diagonally dominant, which is always the case in our configurations, cf. 
Appendix B.



with:

∂

∂x

(

µ
∂v

∂x

)
∣

∣

∣

∣

i, j+ 1
2

≃
µi+ 1

2 , j+ 1
2

(

v i+1, j+ 1
2

− v i, j+ 1
2

1x

)

− µi− 1
2 , j+ 1

2

(

v i, j+ 1
2

− v i−1 j+ 1
2

1x

)

1x
,

and

∂

∂ y

(

µ
∂v

∂ y

)
∣

∣

∣

∣

i, j+ 1
2

≃
µi, j+1

(

v i, j+ 3
2

− v i, j+ 1
2

1y

)

− µi, j

(

v i, j+ 1
2

− v i, j− 1
2

1y

)

1y
.

In order to solve for the viscous term in the intermediate time step, one must solve a linear system in each direction:

ai+1, ju
∗
i+ 3

2 j
+ ai, ju

∗
i− 1

2 , j
+ ai+ 1

2 , j+ 1
2
u∗
i+ 1

2 , j+1
+ ai+ 1

2 , j− 1
2
u∗
i+ 1

2 , j−1
+ αu∗

i+ 1
2 , j

= Fx_rhs,

and

ci+ 1
2 , j+ 1

2
v∗
i+1, j+ 1

2

+ ci− 1
2 , j+ 1

2
v∗
i−1 j+ 1

2

+ ci, j+1v
∗
i, j+ 3

2

+ ci, jv
∗
i, j− 1

2

+ βv∗
i, j+ 1

2

= Fy_rhs,

with Fx_rhs and Fy_rhs the right-hand side terms from GFSCMI projection method in Eq. (17), respectively projected onto the 
x- and y-direction. The coefficients above are given by equations (14), (15) and (16).

As explained before, this formulation is quite straightforward as each component is decoupled from the others. This 
section is concluded by some comments on how to define the density ρn+1

i, j+ 1
2

and ρn+1

i+ 1
2 , j

, as well as all the viscosity 

constants µi± 1
2 j± 1

2
. The definitions must be compatible with the computation of the correction step, which itself relies on 

the way the density is computed when the Poisson equation for the pressure is solved. We use the computation of the 
harmonic average when grid cells are crossed by the fluid–fluid interface, as proposed in [24,28]:

1

ρn+1
=

1

ρ+ρ−

1

ρ+ θ +
1

ρ− (1− θ)

=
1

ρ−θ + ρ+(1− θ)
.

3.4. Velocity boundary conditions

On the solid–fluid interface, we impose the following Dirichlet boundary condition to enforce the solid’s velocity us on 
the fluid to ensure the no-slip condition:

u|Ŵs
= us.

In [18], the authors introduced a second-order accurate numerical scheme to enforce a Dirichlet boundary condition for the 
Poisson equation in irregular domains. We follow this approach to implicitly impose the no-slip condition when considering 
the viscous term, i.e. in the case of the linear systems for both GFCMI and GFSCMI given in section 3.3.2.

The projection on the x-direction of the stress tensor in the case of GFCMI gives:

∇ ·
(

2µD
)

· ex
∣

∣

∣

i+ 1
2 , j

=
∂

∂x

(

2µ
∂u

∂x

)∣

∣

∣

∣

i+ 1
2 , j

+
∂

∂ y

(

µ

(

∂u

∂ y
+

∂v

∂x

))∣

∣

∣

∣

i+ 1
2 , j

. (20)

The discretization of equation (20) gives:

∇ ·
(

2µD
)

· ex|i+ 1
2 , j ≃

2µi+1 j

(

∂u

∂x

)

i+1, j

− 2µi, j

(

∂u

∂x

)

i, j

1x

+
µi+ 1

2 j+ 1
2

(

∂u

∂ y

)

i+ 1
2 , j+ 1

2

− µi+ 1
2 j− 1

2

(

∂u

∂ y

)

i+ 1
2 , j− 1

2

1y

+
µi+ 1

2 j+ 1
2

(

∂v

∂x

)

i+ 1
2 , j+ 1

2

− µi+ 1
2 j− 1

2

(

∂u

∂x

)

i+ 1
2 , j− 1

2

1y
.



Each term is discretized as follows:

• Discretization of 
∂u

∂x

∣

∣

∣

∣

i+1, j

:

If φi+ 1
2 , jφi+ 3

2 j > 0, the cell 
[

i + 1
2
, i + 3

2

]

× [ j] is entirely covered with fluid. In this case, the approximation is:

∂u

∂x

∣

∣

∣

∣

i+1, j

=
ui+ 3

2 j − ui+ 1
2 , j

1x
.

If φi+ 1
2 , jφi+ 3

2 j ≤ 0, there are two possible situations: either the cell point 
(

i + 1
2
, j

)

is in the solid domain, which means 

that ui+ 1
2 , j = 0, or the cell point 

(

i + 3
2
, j

)

is in the solid domain. In this scenario, the method of [18] is applied, giving:

∂u

∂x

∣

∣

∣

∣

i+1, j

=
uŴ − ui+ 1

2 , j

θ1x
,

with uŴ the velocity boundary condition and θ1x the length fraction of the cell covered by the fluid, hence:

θ =
|φi+ 1

2 , j|

|φi+ 1
2 , j| + |φi+ 3

2 j|
.

The interpolated length fraction is computed on a staggered cell point in order to keep second-order accuracy with:

φi+ 1
2 , j =

φi+1, j + φi, j

2
and φi+ 3

2 , j =
φi+2, j + φi+1, j

2
.

• Discretization of 
∂u

∂x

∣

∣

∣

∣

i, j

:

If φi+ 1
2 , jφi− 1

2 , j > 0 the cell 
[

i − 1
2
, i + 1

2

]

× [ j] is entirely covered with fluid. In this case, the approximation is:

∂u

∂x

∣

∣

∣

∣

i, j

=
ui+ 1

2 , j − ui− 1
2 , j

1x
.

If φi+ 1
2 , jφi− 1

2 , j ≤ 0,there are two possible situations: either the cell point 
(

i + 1
2
, j

)
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The procedure is easier for GFSCMI, as the cross derivative terms are considered explicitly as a jump condition in the 
pressure resolution instead of implicitly.

3.5. Imposing the contact angle

When both the liquid–gas interface and the fluid–solid interfaces are located in the same cell, one needs to compute 
the surface tension effect on the irregular domain boundaries. Modeling accurately the contact line on a wall is challenging 
because the surface physics is not currently completely understood. In this study we only focus on static contact angles 
based on thermodynamic properties. Modeling dynamic contact angles is out of the scope of this paper for the reasons that 
are provided in section 3.6.

When the equilibrium state is reached, the static contact angle θs (see Fig. 1) can be used to obtain a Neumann boundary 
condition on the fluid interface level-set function:

ns · ∇φ = cos θs with ns =
∇φs

|∇φs|
.

As θs is known from the properties of the flow, one needs to enforce this condition on φ when a contact line appears. 
Our method is based on the multidimensional extrapolation suggested by [3,15] to define the fluid level-set function’s 
extrapolation in the irregular domain:

∂φ

∂τ
+ H(φs)ns · ∇φ = cos θs, (21)

where τ is a fictitious time step, and H(φs) a Heaviside function. Equation (21) is only applied on the cells in solid domains. 
A second order upwind scheme was used for the discretization of ns · ∇φ.

The curvature also needs to be extrapolated to properly handle the pressure jump condition in cells where the three 
phases are present. The extrapolation process is the same that the one used for the level-set function in equation (22), i.e.:

∂κ

∂τ
+ H(φs)ns · ∇κ = 0, (22)

where we recall that κ is the local mean curvature.
We note that this procedure is similar but different from that of [29], in which the authors consider a moving contact 

line with a reconstruction of the level-set function up to 2.51x in the fluid domain in order to keep a smooth computation 
of the local curvature. This procedure thus alters the flows near the solid–fluid interface. In our computation of the static 
contact angle, the extension of the local curvature is in the solid media only and does not affect the flow.

3.6. Advancing and receding contact line

It is well known that the contact angle of a droplet or a bubble can vary when they move on a solid surface. In 
particular, it has been observed in several experimental studies that the value of the contact angle depends on the interface 
velocity and on its sign, i.e. the contact angle will take different value depending on whether the interface is advancing 
or receding, all other physical parameters being equal. Moreover, the dynamics of the interface will not only depend on 
the physicochemical properties of the fluid and of the solid, but also on the surface quality, which can be characterized 
for example by its roughness. De Gennes showed that roughness can induce a hysteresis phenomenon on the contact angle 
[17]. In [47], the author presents simulations involving contact angle hysteresis enforced on a solid boundary fitted to the 
computational domain.

Although many studies have been performed on this difficult topic [1,45–48], there is a lack of consensus on how to 
handle a moving contact angle in numerical simulations in a way that does not depend on the grid cell size. For this 
reason, we do not propose in this paper any numerical models to account for a moving contact line. Indeed, this topic is 
out of the scope of this paper, since this problem should be solved accurately on simplest configurations without irregular 
domains (horizontal wall fitted to the computational domain) before performing an implementation with irregular domains. 
Consequently, the validations of our numerical simulations will involve configurations with a steady shape of the interface. 
We note, however, that considering a static contact line enables us to illustrate the extent to which the method limits 
spurious parasitic currents and thus illustrate its numerical stability.

4. Numerical examples and validations

In this section, we provide numerical examples that test the two different viscosity solvers (GFCMI and GFSCMI). At 
first, one-phase flows are considered in order to assess the accuracy of the two different viscosity formulations with sim-

pler configurations. We then turn our attention to two-phase flows and report numerical results in two and three spatial 
dimensions.



Fig. 3. Streamlines for a flow past a cylinder at Re = 40. Characteristics such as the location of the vortices center (xc, yc) and the length, xs , of the 
recirculation are represented.

4.1. Flow past a cylinder

We consider a flow past a cylinder in order to show that the different discretizations are able to compute both steady and 
unsteady regimes. Coutanceau and Bouard [12] showed in an experiment that a transition regime exists between Reynolds 
numbers 40 and 50. Consider a domain Ä = [−16; 16] × [−8; 8] and a cylinder with a radius of r = 0.5 and center at [0, 0]. 
We impose a Dirichlet condition U∞ = 1 m · s−1 on the left, symmetric boundary conditions on the top and bottom, and 
an outflow boundary condition on the right of the domain, with a no-slip condition on the cylinder boundary. In these 
simulations we define the viscosity coefficient as µ = 2rU∞/Re, with Re = 20, 40 and 100, corresponding respectively to the 
case A, B and C. Experimental and numerical experiments from others allow us to compare the total drag, CD , and lift, CL , 
forces acting on the cylinder:

F f →s =
2π
∫

θ=0

σnRdθ with σ = −pII+ 2µD,

giving the drag and lift coefficients:

CD =
Fx

1
2
ρU2

∞D
and CL =

F y

1
2
ρU2

∞D
.

For steady flows, one can also measure some characteristics of the vortices in the wake of the cylinder, such as their 
centers position (xc, yc) and the length, xs , of the recirculation as illustrated in Fig. 3.

We will present here some comparisons for a one-phase flow between the Implicit Conservative Viscous Method (ICVM) 
and the Implicit Primitive Viscous Method (IPVM) which corresponds respectively to GFCMI and to GFSCMI for a two-phase 
flow. Indeed, most studies involving one-phase flows use a numerical scheme similar to the IPVM [35] to deal with viscous 
terms. However as it has been discussed previously, in the framework of two-phase flows, a numerical scheme based on a 
conservative formulation of the viscous terms can be preferred for temporal stability and accuracy (see Appendix for more 
details).

Therefore, this test-case will allow us to check that both methods will provide similar results in order to validate the 
ICVM for a one-phase flow before performing computations of GFCMI in irregular domains. The simulations have been 
performed with four different grids, 128 × 256, 256 × 512, 512 × 1024, and 1024 × 2048, which correspond respectively to 
1x = D/8, 1x = D/16, 1x = D/32 and 1x = D/64.

Streamlines and vorticity contours have been plotted in Fig. 4 for cases A and B corresponding to Re = 20 and Re = 40, 
respectively. Steady vortices are attached to the rear of the cylinder. These vortices are growing if the Reynolds number is 
increased. In Table 1, some comparisons between our numerical simulations and several numerical and experimental studies 
are presented. Our two schemes (ICVM and IPVM) provide similar results and converge to an expected value if the size of 
the grid cell is at least equal to 1x = D/16.

In the case Re = 100, the flow in the wake of the cylinder is unsteady due to the development of a Von-Kármán instabil-
ity. The vorticity contours have been plotted in Fig. 5 in order to visualize the periodic detachment of vortices in the wake 
of the cylinder. The temporal evolution of the drag and the lift coefficients are also presented in Fig. 5. Quantitative com-

parisons between our numerical simulations and other data from the literature are reported in Table 2. These comparisons 
show a satisfactory agreement between all results.

The configurations studied in this case do not allow a proper convergence study, as no theoretical result exists. In [16], 
the authors suggest a convergence study at early flow times, based on the ‘best converged results’. Fig. 6 presents our results 
for Reynolds numbers 20, 40 and 100, where the error is computed as e = |rbc − rgm|, with rbc the best converged result 
and rgm the result for a given mesh. The spatial convergence for early flow times observed in Fig. 6 shows a satisfactory 
agreement with the previous study made by Ng et al. in [35] on analytical cases where the 2nd spatial order was proved 
for the IPVM.



Fig. 4. Streamline representation and vorticity contours (s−1) [−5; .5;5] for Case A (a, c) and B (b, d).

Table 1

Drag coefficient and recirculations characteristics for Re= 20 and Re = 40.

Re = 20 Re = 40

CD xs xc yc CD xs xc yc

Coutanceau & Bouard [12] – 0.93 0.33 0.23 – 2.13 0.76 0.29

Xu [62] 2.23 0.93 0.36 0.21 1.66 2.24 0.72 0.3

Ye et al. [64] 2.03 0.92 – – 1.52 2.27 – –

Xie & Desjardin [60] 2.19 1 – – 1.60 2.26 – –

Tritton [55] 2.22 – – – 1.48 – – –

Present study with ICVM

1x = D/8 2.25 0.9 0.318 0.217 1.64 2.24 0.714 0.297

1x = D/16 2.214 0.942 0.344 0.223 1.628 2.251 0.709 0.299

1x = D/32 2.224 0.937 0.351 0.218 1.614 2.227 0.706 0.297

1x = D/64 2.234 0.933 0.353 0.217 1.621 2.221 0.707 0.297

Present study with IPVM

1x = D/8 2.318 0.916 0.317 0.221 1.687 2.255 0.713 0.3

1x = D/16 2.239 0.946 0.344 0.224 1.639 2.257 0.709 0.3

1x = D/32 2.247 0.94 0.351 0.218 1.625 2.228 0.706 0.298

1x = D/64 2.250 0.933 0.352 0.217 1.628 2.220 0.707 0.297

We present in Fig. 7 the temporal coefficient for two given grids, respectively 1x = D/32 and 1x = D/64, with the ICVM 
discretization of the viscous terms. Indeed, it has been reported in [42] that the dimensionless time where the instability 
starts for Re = 100 depends on the numerical methods which are used, see for example Fig. 6.b in the referred paper. Our 
simulations bring out that the duration of the transient regime can also depend slightly on the mesh refinement, with 
respectively Tadim = 182 and Tadim = 166 for the two successive meshes. These durations are close to the results reported 
in [42].

4.2. Flow past a sphere

We now consider the simulation of the flow past a sphere. This study will allow us to show that our numerical 
simulations are able to reproduce 3D steady axisymmetric and 3D non-axisymmetric steady flows. Consider a domain 
Ä = [−8, 8] × [−4, 4] × [−4, 4] and a sphere with radius r = 0.5 and center located at (0, 0). We impose a Dirichlet condi-
tion U∞ = 1 m · s−1 on the left, symmetric conditions on the top, bottom, front and back walls, and an outflow boundary 
condition on the right side of the computational field. A no-slip boundary condition is imposed on the sphere’s boundary. 
In these simulations, we define the viscosity coefficient as µ = 2rU∞/Re, with Re = 25, 50, 100, 150 and 200 for steady 
axisymmetric flows as depicted by Fig. 8, and 250 for the steady non-axisymmetric flow.



Fig. 5. (a) Vorticity contours [−4 : .15 : 4] for Case C. (b) and (c) represent the evolution of the drag and lift coefficients through time.

Table 2

Drag and lift coefficients and Strouhal number for Re= 100 for a flow past a cylinder.

Re = 100

CL CD St = f D/U∞

Berthelsen et al. [4] ± 0.34 1.38 ± 0.01 0.169

Braza et al. [7] ±0.25 1.346 ± 0.015 –

Liu et al. [29] ±0.339 1.35 ± 0.012 –

Calhoun [9] ±0.298 1.330 ± 0.014 0.175

Ng et al. [35] ±0.36 1.368 ± 0.016 –

Guittet et al. [20] ± 0.331 1.401 ± 0.016 –

Xu et al. [61] ±0.353 1.42 ± 0.013 0.171

Choi et al. [10] ±0.315 1.4 ± 0.011 –

Present study with ICVM

1x = D/8 ±0.261 1.404 ± 0.008 0.167

1x = D/16 ±0.334 1.419 ± 0.011 0.170

1x = D/32 ±0.321 1.369 ± 0.010 0.170

1x = D/64 ±0.321 1.369 ± 0.010 0.170

Present study with IPVM

1x = D/8 ±0.262 1.430 ± 0.008 0.167

1x = D/16 ±0.336 1.424 ± 0.011 0.168

1x = D/32 ±0.322 1.376 ± 0.010 0.169

1x = D/64 ±0.322 1.371 ± 0.010 0.169

The drag and lift coefficients are defined as:

F f →s =
π

∫

θ=0

2π
∫

9=0

R2 sin θσ ndθd9,



Fig. 6. Convergence at early flow time for a flow past a cylinder at Re 20, 40 and 100.

Fig. 7. Drag coefficients for two successive meshes with the ICVM versus Tadim = 2tD/U∞ .



Fig. 8. Illustration of streamlines for a flow past a sphere at Re = 150.

Table 3

Convergence of drag coefficient for a flow past a sphere, for ICVM and IPVM for different 
Reynolds numbers in the steady regime.

Re = 25 Re = 50 Re = 100 Re = 150 Re = 200

Schiller–Naumann 2.27 1.53 1.09 0.91 0.80

ICVM Method

1x = D/8 2.27 1.49 1.051 0.88 0.78

1x = D/16 2.23 1.464 1.017 0.84 0.74

IPVM Method

1x = D/8 2.31 1.50 1.052 0.87 0.77

1x = D/16 2.268 1.48 1.024 0.84 0.74

Fig. 9. Drag coefficient evolution versus the Reynolds number.

CD =
Fx

1
2
ρU2

∞πD2/4
and CL =

F y

1
2
ρU2

∞πD2/4
.

Fig. 9 gives some comparisons on the drag coefficient obtained from several published works, including the experimental 
studies of [23,41], numerical simulations, and the semi-empiric correlation of Schiller–Naumann. This correlation is given 
by the following relation:

CD =







24(1+ 0.15Re0.687)

Re
for Re ≤ 1000,

0.44 for Re > 1000.

Simulations for both IPVM and ICVM are presented for 1x = D/16 which corresponds to a grid with 1283 cells. We can 
observe a good agreement of our numerical simulations with the results reported in the literature. In Table 3, we present 
some comparisons of the drag coefficient between our simulations for two grid resolutions and the Schiller–Naumann law. 



Fig. 10. Geometric characteristics of the flow past a sphere for different Reynolds number.

Fig. 11. Top: streamlines (left) and vorticity (right) contours [-5:.5:5] in the x–y plane for Re = 150. Bottom: corresponding results from Johnson & Patel [23].

These comparisons show that the two numerical methods converge towards the same solutions with a slight discrepancy 
(< 10%) with the Schiller–Naumann correlation.

Fig. 10 presents a comparison of the recirculation length as well as the position of the center of the vortices between our 
simulation and the experimental results from Johnson & Patel [23], Taneda [51], Magnaudet [30]. In this case, we use the 
ICVM method with 1x = D/16. One can observe good agreement. Fig. 11 compares the streamlines and vorticity contours 
from Johnson and Patel [23] and our simulations for Re = 150.

Fig. 12 compares the streamlines results obtained with our simulations and those of Johnson and Patel [23] for Re = 250. 
We can observe the expected instability and that the streamlines are in good agreement. Fig. 13 presents some projected 
streamlines on different planes. The qualitative comparison for this non-axisymmetric case are in good agreement with 
[23] for both IPVM and ICVM. In conclusion, one can observe that IPVM and ICVM behave similarly in terms of numerical 
accuracy.

4.3. Two dimensional two-phase flows in irregular domains without volume forces

In this section, we present some numerical simulations of a hemispherical droplet deposited on a wall without initial 
velocity. These simulations are performed with a horizontal solid boundary (aligned to mesh axes) but also with a slanted 
plane, see Fig. 14, in order to demonstrate the ability of the proposed numerical method to obtain the expected shape of the 
droplet deposited on arbitrary solid boundaries. This configuration is instigated by the previous work of Dupont [14] which 
has been performed with a horizontal solid boundary located on the boundary of the computational domain. An additional 



Fig. 12. Illustration of streamlines for a flow past a sphere at Re = 250. On the left present results and on the right corresponding results from [23].

Fig. 13. Illustration of streamlines for a flow past a sphere at Re = 250, on top our simulation and bottom corresponding results from [23]. (a) Streamlines 
projected on the on the x–y plane for [23], and (b) streamlines projected on the y–z plane 8 diameters downstream from the sphere center.

difficulty suggested in [36] is to consider embedded solid boundary instead of using the computational domain as solid 
boundaries. If the static contact angle is not 90◦ the contact line will move until equilibrium is reached. If the gravity is 
zero, the exact final shape of the drop can be obtained due to geometrical considerations and mass conservation.

The numerical domain is Ä = [−3R0, 3R0] × [−3R0, 3R0]. The simulations are carried out with both GFSCMI and GFCMI, 
with a horizontal wall, and with a slanted wall (for α = 40◦), with θs ∈ [30, 120], and the following parameters: R0 =
6.4 × 10−4 m, σ = 7.2 × 10−2 N ·m−1 , ρL = 1000 kg ·m−3 and µL = 10−2 kg ·m−1 · s−1 for the liquid and ρG = 1 kg ·m−3

and µG = 10−5 kg ·m−1 · s−1 for the gas.



Fig. 14. Initial shape of the drop released on an slanted plan.

Fig. 15. Characteristics of the final drop shape (from [14]).

Fig. 16. Shapes of 2D drops on a slanted wall for different values of the contact angle.

For 2D cases without volume forces, mass conservation gives:

R = R0

√

π

2(θs − sin θs cos θs)
, L = 2R sin θs, e = R(1− cos θs),

with R the equilibrium radius of the circle, L the spreading length, e the height of the drop, as illustrated in Fig. 15.
Fig. 16 illustrates the shapes of two drops at equilibrium on a slanted wall for two static contact angles, θs = 30◦ and 

θs = 120◦ . In Fig. 17 and Fig. 18, one can observe the convergence to expected theoretical values. Fig. 17 gives the results for 
a wall aligned to the mesh, while Fig. 18 shows non-aligned wall to the mesh. Both methods converge towards the correct 
solution, and a gain in accuracy is observed with GFCMI. In order to compare more accurately the two methods, a study on 
spurious currents and mass conservation for different static contact angles is presented in Table 4.

In order to quantify the accuracy of the numerical methods, we have performed a mesh sensitivity study with three 
different grids for different contact angles in the case of a slanted wall. The results are presented in Table 4, where the value 
of e, L, |Vmax| and the volume loss are reported in the case of GFCMI and GFSCMI. The maximum velocity is reported when 
the drop reaches its equilibrium shape, hence enabling the quantification of spurious currents. Ghost-Fluid Methods and 
more generally sharp-interface methods [24,50] are well known to produce low amplitude spurious currents in comparison 
to continuum-surface-force methods. However in the framework of a coupling between a two-phase flow solver with an 
embedded solid boundary, the problem of spurious currents can be much more stringent on the contact line. Consequently, 
this parameter is of great importance to assess the relevance of such numerical methods. In Fig. 19, the temporal evolution 
of the maximum velocity is given, indicating that the spurious currents decrease with the mesh refinement.

The results presented in the Table 4 demonstrate that the two methods (GFCSMI and GFCMI) converge toward the 
expected solution. In some situations, when considering a specific parameter, the errors can increase at one point when 
the grid is refined. In our opinion, this singular behavior should not be alarming since it can be assuredly explained by 
the compensation of errors acting in an opposite way. This phenomenon occurs frequently when numerical simulations 
involving complex and strongly coupled mathematical models are considered, see [53] for example. On the one hand GFCMI 
and GFSCMI provide results of equivalent accuracy if geometrical properties are considered (e, L, volume loss). On the other 



Fig. 17. Results on a flat wall.

Fig. 18. Results on an inclined wall (α = 40◦).

Table 4

Comparison of characteristics of GFCMI and GFSCMI for a slanted wall.

GFCMI GFSCMI

e L ‖Vmax‖ % Vol e L ‖Vmax‖ % Vol

θ = 30◦ 642 0.557 4.122 0.00224 0.975 0.553 4.181 0.0065 1

1282 0.555 4.158 0.0015 0.998 0.559 4.16 0.015 1.002

2562 0.556 4.136 0.00059 1 0.561 4.153 0.011 1.005

theoretical 0.558 4.164 – – 0.558 4.164 – –

θ = 60◦ 642 0.784 2.748 0.003 0.977 0.784 2.55 0.0055 0.97

1282 0.794 2.753 0.0071 0.990 0.794 2.766 0.0125 0.992

2562 0.799 2.752 0.0015 0.999 0.799 2.755 0.0121 0.995

theoretical 0.799 2.76 – – 0.799 2.76 – –

θ = 90◦ 642 0.961 2.014 0.0083 0.962 0.965 2.026 0.009 0.97

1282 0.992 2.08 0.0034 0.991 0.99 1.999 0.012 0.987

2562 0.999 1.998 0.0012 1 0.997 2.002 0.007 0.995

theoretical 1 2 – – 1 2 – –

θ = 120◦ 642 1.151 1.397 0.012 0.975 1.147 1.418 0.028 0.976

1282 1.164 1.369 0.0059 0.98 1.167 1.380 0.0105 0.985

2562 1.181 1.363 0.0061 0.996 1.185 1.363 0.0061 0.996

theoretical 1.18 1.365 – – 1.18 1.365 – –



Fig. 19. An example of the evolution of |Vmax| throughout time on an inclined wall (α = 40◦) and θs = 90◦ with GFCMI.

hand GFCMI provides an important gain in accuracy on the amplitude of parasitic currents. Indeed, if the latter is used, the 
amplitude of the maximum velocity is 5 to 20 times smaller on the finest grid (except if θ = 120◦ where the two methods 
provide similar results).

4.4. Two dimensional two-phase flows in irregular domains with volume forces

In this section, the previous study is completed by applying different gravity fields, hence changing the final equilibrium 
drop’s shape. The Bond number (Bo = ρL gR

2
0/σ ) characterizes the gravitational stress applied to the drop, with Bo ∈ [0, 10]. 

Results are presented for θs = 60◦ and θs = 120◦ . Two asymptotic solutions are provided, with one being dominated by 
capillarity effects and the other by gravity. If the shape of the drop is driven by the surface tension effects, its thickness, e0 , 
is deduced from:

e0 = R0(1− cos θs)

√

π

2 (θs − sin θs cos θs)
. (23)

For Bo >> 1, the drop spreads under the effect of gravity and forms a small puddle with a thickness, e∞ , directly 
proportional to the capillary length:

e∞ = 2

√

σ

ρL g
sin

(

θs

2

)

. (24)

Fig. 20 illustrates the shape of a drop at equilibrium on a slanted wall for a static contact angle of θs = 60 ◦ and for three 
different Bond numbers. The simulations are found to be in good agreement with the two asymptotic solutions (23) and 
(24). One can observe that the transition between these two regimes is approximately for Bo = 1, when gravity and surface 
tension effects are of the same order of magnitude. GFCMI converges faster, as illustrated in Figs. 21 and 23. In order to 
compare more accurately the two methods, details on the simulations are provided in Tables 5 and 6. An illustration of the 
sharp pressure field is also available in Fig. 22.

Both methods converge to the same values when the mesh is refined, but as it is the case for the previous example, 
GFCMI gives better results for lower resolutions. Also, the spurious currents are reduced in the case of GFCMI when the 
mesh is refined, which is not the case of GFSCMI, hence suggesting a lack of stability of the latter.

4.5. Three dimensional two-phase flows in irregular domains without volume forces

This study is the same configuration that the one used in section 4.3 except that they represent three dimensional 
numerical simulations. The slanted wall is chosen in a way as to enforce the wall not to align to the grid in any direction 
(we take z = 0.85(x + y) for α = 40◦). The contact angle used in this study is θs = 120◦ . The analytical radius, R , thickness, 
e and length, L, of the drop are obtained as before, using mass conservation arguments and geometrical properties:

R = R0

(

2

(2+ cos θs)(1− cos θs)2

)

1
3

, L = 2R sin θs, e = R(1− cos θs). (25)



Fig. 20. Illustration of the shape of a drop on a slanted wall for a static contact angle of θs = 60◦ and for different Bond numbers.

Fig. 21. Results on a slanted wall as a function of B0 for θs = 60◦ .

Fig. 24 illustrates the final shape of the drop on an slanted wall for θs = 120◦ . In Table 7, some comparisons between 
GFSCMI and GFCMI are presented. Even though the mesh with 643 cells is not fine enough to model the behavior of the 
drop, the error is still less than 9% for the analytical values of the thickness of the drop for the two methods. The error is 
reduced when the mesh is 1283 , with an error of 3.1% for GFCMI and 4.7% for GFSCMI.



Fig. 22. Resulting pressure field (Pa) for Bo = 1 and θs = 60◦ . (For interpretation of the colors in this figure, the reader is referred to the web version of 
this article.)

Fig. 23. Results on a slanted wall as a function of B0 for θs = 120◦ .

Table 5

Comparison of characteristics of GFCMI and GFSCMI for a slanted wall (α = 40◦) and for θs = 60◦ .

GFCMI GFSCMI

e ‖Vmax‖ % Vol e ‖Vmax‖ % Vol

Bo = 0.1 642 0.966 0.024 0.976 0.967 0.017 0.978

1282 0.977 0.0082 0.991 0.979 0.0105 0.990

2562 0.986 0.0011 0.998 0.985 0.010 0.995

Bo = 1 642 0.848 0.02 0.969 0.839 0.06 0.963

1282 0.860 0.015 0.987 0.854 0.06 0.980

2562 0.869 0.011 0.996 0.862 0.05 0.986

Bo = 10 642 0.401 0.18 0.962 0.365 0.15 0.970

1282 0.376 0.14 0.968 0.383 0.17 0.995

2562 0.395 0.0102 0.982 0.390 0.2 0.952

4.6. Half-filled rotating spherical tank

In order to highlight the applicability of the numerical methods presented in this paper, we now describe the benchmark 
of a rotating spherical tank half-filled with water, with the other half filled with a gas. The center of the spherical tank is 
located at a distance x = L, from a rotational axis along the z-axis. Consequently, the spherical tank is rotating in the 
xy-plane. As our simulations will be performed in the tank reference frame R ′ , it is necessary to account for the inertial 
forces, which can be decomposed into two terms in the Navier–Stokes equations:

Fv = −ρa1 − ρa2,

with



Table 6

Comparison of characteristics of GFCMI and GFSCMI for a slanted wall (α = 40◦) and for θs = 120◦ .

GFCMI GFSCMI

e ‖Vmax‖ % Vol e ‖Vmax‖ % Vol

Bo = 0.1 642 0.961 0.0105 0.975 0.950 0.034 0.97

1282 0.972 0.006 0.987 0.974 0.0105 0.992

2562 0.998 0.0044 0.996 0.994 0.011 0.98

Bo = 1 642 0.846 0.02 0.932 0.813 0.062 0.895

1282 0.864 0.015 0.964 0.857 0.04 0.97

2562 0.846 0.010 0.995 0.870 0.025 0.988

Bo = 10 642 0.444 0.18 0.83 0.416 0.2 0.85

1282 0.442 0.15 0.905 0.440 0.15 0.905

2562 0.456 0.11 0.970 0.442 0.15 0.905

Fig. 24. Final shape of the drop on an slanted wall for θs = 120◦ .

Table 7

Geometrical characteristics of the final shape of the 
drop on a slanted wall (α = 40◦) in 3D for θs = 120◦ .

e/R0 L/R0

Analytical results 1.26 1.45

GFCMI

1x = R0/10 1.16 1.47

1x = R0/20 1.22 1.45

GFSCMI

1x = R0/10 1.17 1.48

1x = R0/20 1.20 1.46

a1 = ÄR ′/R × (ÄR ′/R ×OM) and a2 = 2ÄR ′/R × VR ′(M), (26)

where a1 represents the centrifugal acceleration and a2 denotes the Coriolis acceleration. We also denote by ÄR ′/R = ω ez
the rotation vector and OM = (L + x) ex + y ey + z ez the position vector of a fluid particle located at M in the tank’s 
reference frame. Since the gravity force acts along the z-axis, we obtain the following expression for the three components 
of the volume force in the Navier–Stokes equations:

Fx = ρ(−2ωv + ω2(L + x)), F y = ρ(2ωu + ω2 y), and F z = −ρgz.

In this simulation example, we are interested in computing the forces acting on the wall of the tank due to the fluid 
motion. In the simple configuration, which is presented in this section, a steady theoretical solution of the interface shape 
and of the pressure force can be obtained. Considering the characteristic length of the tank, this benchmark emphasizes 
the volume forces effects over the capillary effects on the resulting flow. The equilibrium shape of the interface is resulting 
from the enforced contact angle and the volume forces balance. This enables us to assess the accuracy of our numerical 
methods in a situation where the fluid motion induced by non-inertial forces is coupled to a three-dimensional simulation 



Fig. 25. Initial position of the interface for the four simulations of the rotating spherical tank. (For interpretation of the references to color in this figure, 
the reader is referred to the web version of this article.)

Table 8

Configuration of the four cases.

Case A Case B Case C Case D

ω2L

gz
0.176 1 5.67 1

R

L
0.05 0.05 0.05 1

in an irregular geometry. We have imposed a contact angle between the liquid–gas interface and the solid tank boundary 
equal to θs = 90◦ .

In the general case, the liquid–gas interface will evolve towards a parabolic-like shape. However, it can be demon-

strated that in our configuration, if R/L ≪ 1, the liquid–gas interface will be a flat surface forming an angle equal to 

θeq = tan−1

(

ω2L

gz

)

with the xy-plane.

The theoretical expression of the resulting force is obtained from the integration of the pressure field on the surface of 
the tank. We write the force balance:

∇p = −ρae + ρg with ae = −ω2
(

(L + x)ex + yey
)

.

Therefore the decomposition of the pressure gradient in each direction is:

∂p

∂x
= ρω2 (L + x) ,

∂p

∂ y
= ρω2 y and

∂p

∂z
= −ρgz.

Thus with an integration of the pressure field one obtains:

p(x, y, z) = ρω2

(

Lx+
x2 + y2

2

)

− ρgzz + p0.

In order to compute the force, the pressure can be integrated on the wall of the spherical tank. The integration gives the 
following resulting forces in each direction:

Px =
4π

3
ρω2LR3, P y = 0, P z = −

4π

3
ρgzR

3.

The resulting force is expressed here with ρl and divided by 2, as the tank is half filled with water:

Fvs→f
=

2

3
π R3ρl(ω

2L ex − gz ez).

The fluid properties are close to that of water for the liquid and that of air for the gas, i.e. we take ρL = 1000 kg ·m−3 , 
µL = 10−3 kg ·m−1 · s−1 , ρG = 1 kg ·m−3 , µG = 10−5 kg ·m−1 · s−1 and σ = 7 × 10−2 N ·m−1 . The radius of the spherical 
tank is R = 2.5 × 10−2 m and the acceleration due to gravity is equal to gz = 9.81 m · s−2 . We have performed simulations 
for the four configurations given in Table 8.



Table 9

Comparisons between theoretical and the computational results (for two different grids) of the 
pressure force acting on the wall for cases A, B , and C .

Case A Case B Case C

Fx(N) F z(N) Fx(N) F z(N) Fx(N) F z(N)

643 0.05574 −0.3166 0.3189 −0.3518 1.746 −0.302

1283 0.05618 −0.3234 0.3358 −0.3330 1.974 −0.337

Theory 0.0566 −0.321 0.321 −0.321 1.82 −0.32

Fig. 26. Final steady position of the interface for the four simulations (cases A, B, C and D) of the rotating spherical tank (grid 1283). (For interpretation of 
the colors in this figure, the reader is referred to the web version of this article.)

For large time, a flat interface is expected in cases A, B and C with θeq = 10P ◦ , 45◦ and 80◦ . For case D , considering 
that the ratio R/L is not negligible anymore, a parabolic-like shape of the interface is observed. This can be demonstrated 
by the former equation depicting the pressure field as:

p(x, y, z) = ρω2

(

Lx+
x2 + y2

2

)

− ρgzz + p0.

Indeed the interface is an isobar p(x, y, z) = p0 , so the shape of the resulting interface in the following plan equation 
would be:

z = f (x, y) =
ω2

gz

(

Lx+
x2 + y2

2

)

.

If L >> R then the linear term Lx of the equation will dominate the flow, giving a plane interface. When L ≃ R then the 
quadratic term is not negligible anymore and gives the shape of a parabola to the interface.



Fig. 27. Final steady position of the interface and pressure field (Pa) for the four simulations (cases A, B , C and D) of the rotating spherical tank for cases 
B and D (grid 1283). (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

The initial interface (in blue), depicted in Fig. 25, is simply a horizontal plane in all four cases. The boundary of the 
spherical tank and the axis orientation of the computational field is also depicted in Fig. 26. All the simulations are carried 
out until the final time t = 5 s. In Fig. 26, the final steady shape of the interface obtained with a 1283 grid is plotted 
for the four cases. As expected, a flat sloped interface is observed in the simulations of cases A, B and C . In case D , we 
clearly observe a parabolic-like shaped interface, in agreement with theory. Quantitative comparisons between theoretical 
and computational results are presented in Table 9. In Fig. 27, the interface location and the pressure field are plotted in 
the xz-plane for case B and D , where we used a grid with 1283 elements. This gives a more accurate visualization of the 
interface shape and of the pressure isocontours.

5. Conclusion

In this paper, several numerical methods are proposed to compute numerical simulations of liquid–gas flows with an 
embedded solid boundary inside a Cartesian grid. Our numerical method is presented as an extension of the previous 
work in [35], on a coupling between a one-phase flow and a solid, to two-phase flows simulations where contact lines 
can be formed at the boundary between the three phases. Several challenges must be faced to compute accurately the 
surface tension effects, the viscous effects, the contact angle and the volume forces in this more complex framework. We 
propose a detailed analysis and suitable solutions to overcome these difficulties. Next, accurate benchmarks are defined 
and numerical simulations are performed in order to assess the suitable behavior of our numerical method in various 
situations. As an implicit temporal discretization is required to compute the viscous terms in the grid cells which are 
crossed by the solid–fluid interface, we compare two possible implementations of this implicit temporal discretization. 
This comparison brings out that the Conservative formulation (GFCMI) of the viscous terms should be favored instead of 
the Semi-Conservative formulation (GFSCMI), since an important decrease of the spurious currents on the contact line is 
observed with the conservative one.
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Appendix A. Detailed derivation of the splitting of the viscous-stress operator

In this appendix, we give more insight on the splitting of the viscous-stress tensor. In section 2, equation (2) states:

∇ ·
(

2µD
)

= 2µ∇ ·
(

D
)

+ 2[µ]
∂un

∂n
δŴn.

This demonstration is given in 2D for the reader but can be extended to 3D without any difficulties. Let us explicitly 
write the equation on the normal/tangent basis, such as:

∇ ·
(

2µD
)

=
(

∂
∂n

∂
∂t

)

·





2µ ∂un
∂n

µ
(

∂ut
∂n

+ ∂un
∂t

)

µ
(

∂ut
∂n

+ ∂un
∂t

)

2µ ∂ut
∂t







=
∂

∂n

(

2µ
∂un

∂n

)

+ µ

(

∂2ut

∂t∂n
+

∂2un

∂t2

)

+
∂

∂n

(

µ

(

∂ut

∂n
+

∂un

∂t

))

+ 2µ
∂2ut

∂t2
.

The tangential derivatives are straightforward as no particular effects appear in this direction (no jump conditions) and 
the viscosity is piecewise constant. This is not obvious for the normal derivatives, as jump conditions appear at the interface. 
In [24], the authors demonstrate that ∂un

∂n
is continuous throughout the interface, and can therefore be derived as:

∂

∂n

(

2µ
∂un

∂n

)

= 2[µ]
∂un

∂n
δŴn+ 2µ

∂2un

∂n2
.

For the cross-term derivative we refer to [6], where Brackbill demonstrates that µ 
(

∂ut
∂n

+ ∂un
∂t

)

= ∂σ
∂s
, where σ is the 

surface tension and s the curvilinear coordinate along the interface. Therefore, if no Marangoni convection occurs, the 
derivative is continuous throughout the interface, and can also be computed as:

∂

∂n

(

µ

(

∂ut

∂n
+

∂un

∂t

))

= µ

(

∂2ut

∂n2
+

∂2un

∂n∂t

)

as there are no additional singular source term on the interface, and the viscosity is piecewise constant. Finally, we can 
resume this demonstration:

∇ ·
(

2µD
)

=
∂

∂n

(

2µ
∂un

∂n

)

+ µ

(

∂2ut

∂t∂n
+

∂2un

∂t2

)

+
∂

∂n

(

µ

(

∂ut

∂n
+

∂un

∂t

))

+ 2µ
∂2ut

∂t2

= 2[µ]
∂un

∂n
δŴn+ 2µ

∂2un

∂n2
+ µ

(

∂2ut

∂t∂n
+

∂2un

∂t2

)

+ µ

(

∂2ut

∂n2
+

∂2un

∂n∂t

)

+ 2µ
∂2ut

∂t2

= 2µ∇ ·
(

D
)

+ 2[µ]
∂un

∂n
δŴn.

Appendix B. Some remarks on the temporal discretization of the viscous terms

As observed in section 3.3, the resulting matrix from the temporal discretization of the viscous terms is diagonally very 
dominant depending on the time step constraint. Indeed, this hypothesis is verified if:

ρ >>
µ

1x2
1t

with 1t ≃ 1tsur f _tens =
√

ρ

σ
1x3 , as the capillary time step is usually the smaller time step encountered in multiphase flow 

configurations (and if an implicit temporal discretization of the viscous term is used). Therefore,

ρ >>
µ

1x2

√

ρ

σ
1x3

Hence, the condition to obtain a linear system with a very dominant central diagonal is:

1>>

√

µ2

ρ21x4
ρ

σ
1x3 =

µ
√

1xσρ
= Oh1x

with Oh1x the Ohnesorge number based on the cell size of the mesh. Let us remark that in our applications, this number 
respects this condition for typical fluids such as water and air flows, with 1x ∈ [10−6; 10−4]m, Oh1x ∈ [10−2; 10−1].

Appendix C. Rising spherical bubbles at low Reynolds numbers

In this appendix, a study is carried out to compare the different projection methods on regular domains. This study was 
initially proposed in [26] and is completed in this paper with GFCMI.

A spherical air bubble is placed in water under gravity stress. This study is adequate to compare how the different 
projection methods affect the viscous terms as no drag is generated by the pressure in this flow. These are 2D axisymmetric 
numerical simulations with a variation of the Reynolds number, and two different Bond numbers, in order to keep the 
spherical shape. The characteristics of the numerical simulations are reported in Table C.10.

The numerical domain is chosen in order not to disturb the rise of the bubble, with Lr = 8Rbubble and Lz = 4Lr . The 
physical properties of the two fluids are those of air and water, i.e., ρL = 1000 kg ·m−3 , µliq = 0.00113 kg ·m−1 · s−1 , ρgas =
1.226 kg · m−3 , µgas = 1.78 kg · m−1 · s−1 . Table C.10 gives the other physical parameters for five different configurations 
corresponding to Re = 20, 40 and 60 for the Bond number Bo = 0.025 and to Re = 80, 100 for Bo = 0.0125. Fig. 28 illustrates 



Fig. 28. Streamlines and vorticity contours (s−1) in the moving referential of the rising bubble for Re = 60. (For interpretation of the colors in this figure, 
the reader is referred to the web version of this article.)

Table C.10

Parameters used in the numerical experiment of this appendix.

Re∞ = 20 Re∞ = 40 Re∞ = 60 Re∞ = 80 Re∞ = 100

Rbubble [µm] 19.55 44.65 70.45 98.95 127.9

gz [m · s−2] −9144.4 −1755.2 −705.6 −357.5 −213.9

σ [N ·m−1] 0.56 0.56 0.56 1.12 1.12

t f [s] 0.0004 0.00135 0.002375 0.0048 0.007

Table C.11

Error on the final Reynolds number value for rising air bubbles with GFCMI.

Mesh Re∞ = 20 Re∞ = 40 Re∞ = 60 Re∞ = 80 Re∞ = 100

32×128 −22.4% −32.2% −37.2% −75.53% −43.35%

64×256 +2.44% +3.12% +1.07% −1.78% −1.30%

128×512 +2.38% +2.38% +0.37% +0.8% +0.19%

Table C.12

Error on the final Reynolds number value for rising air bubbles with the GFCM.

Mesh Re∞ = 20 Re∞ = 40 Re∞ = 60 Re∞ = 80 Re∞ = 100

32×128 −22.0% −34.0% −38.8% −63.0% −67.4%

64×256 +2.5% +1.8% −1.3% −1.3% −3.0%

128×512 +0.5% +0.8% −1.0% +1.9% +1.9%

Table C.13

Error on the final Reynolds number value for rising air bubbles with the GFSCMI.

Mesh Re∞ = 20 Re∞ = 40 Re∞ = 60 Re∞ = 80 Re∞ = 100

32×128 −18.6% −25.0% −30.2% −52.9% −55.1%

64×256 −1.2% +1.5% −0.1% +2.0% +0.9%

128×512 −3.7% +0.1% −0.2% +3.2% +3.9%

Table C.14

Error on the final Reynolds number value for rising air bubbles with the GFSCM with an explicit scheme used to 
compute the viscous terms.

Mesh Re∞ = 20 Re∞ = 40 Re∞ = 60 Re∞ = 80 Re∞ = 100

32×128 −23.5% −32.5% −9.0% −62.5% −67.0%

64×256 −0.5% +2.5% +1.3% +4.3% +3.0%

128×512 −3.5% +0.6% +0.7% +5.4% +6%



the results for the simulation of a rising air bubble where the final Reynolds number is Re = 60. The numerical simulations 
are conducted for three different meshes, 32 ×128, 64 ×256 and 128 ×512 corresponding respectively to 8, 16 and 32 cells 
per diameter.

Results obtained with GFCMI are presented in Table C.11. For completeness, we also include the results presented in [26], 
namely the results obtained for GFCM (Table C.12), in which the viscous terms were computed using an explicit scheme, 
the results obtained for GFSCMI (Table C.13), and those obtained for GFSCM (Table C.14), where the viscous terms were 
computed with an explicit scheme.

First of all, one can observe that the mesh 32 × 128 cannot describe the viscous effects accurately, as the viscous 
boundary layer is not thick enough to be fully resolved. For the other meshes, the results are satisfactory with an error 
under 3% in most cases.

The results obtained with GFCM and GFCMI indicate convergence with less than 3% on every cases. GFSCM and GFSCMI 
do not give results that are as accurate. This study thus indicates that GFCM and GFCMI are better suited for modeling 
viscous effects in multiphase flows, and confirms that GFCMI is a reliable method to compute the viscous terms in the case 
of irregular domains.
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