
HAL Id: hal-01349212
https://hal.science/hal-01349212

Submitted on 27 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On-line handwritten formula recognition using hidden
Markov models and context dependent graph grammars

Andreas Kosmala, Gerhard Rigoll, Stéphane Lavirotte, Loïc Pottier

To cite this version:
Andreas Kosmala, Gerhard Rigoll, Stéphane Lavirotte, Loïc Pottier. On-line handwritten formula
recognition using hidden Markov models and context dependent graph grammars. International
Conference on Document Analysis and Recognition, Sep 1999, Bangalore, India. 1999, Proceed-
ing of the Fifth International Conference on Document Analysis and Recognition. �10.1109/IC-
DAR.1999.791736�. �hal-01349212�

https://hal.science/hal-01349212
https://hal.archives-ouvertes.fr

On-Line Handwritten Formula Recognition using Hidden Markov Models and
Context Dependent Graph Grammars

Andreas Kosmala & Gerhard Rigoll
Dept. of Computer Science

Faculty of Electrical Engineering
Mercator University Duisburg
D-47057 Duisburg, Germany

kosmala@fb9-ti.uni-duisburg.de
rigoll@fb9-ti.uni-duisburg.de

Stéphane Lavirotte & Loı̈c Pottier
Cafe and Lemme Teams
INRIA Sophia-Antipolis

2004, route des Lucioles BP 93
06560 Sophia Antipolis, France

Stephane.Lavirotte@sophia.inria.fr
Loic.Pottier@sophia.inria.fr

Abstract

This paper presents an approach for the recognition of
on-line handwritten mathematical expressions. The Hidden
Markov Model (HMM) based system makes use of simulta-
neous segmentation and recognition capabilities, avoiding
a crucial segmentation during pre-processing. With the seg-
mentation and recognition results, obtained from the HMM-
recognizer, it is possible to analyze and interpret the spa-
tial two-dimensional arrangement of the symbols. We use
a graph grammar approach for the structure recognition,
also used in off-line recognition process, resulting in a gen-
eral tree-structure of the underlying input-expression. The
resulting constructed tree can be translated to any desired
syntax (for example: Lisp, LATEX, OpenMath . . .).

1. Introduction
Currently, most people who need to enter mathemati-

cal expressions for a computational treatment need to type
formulae in an ASCII form or use an editor. But regard-
ing today’s word processors or mathematical software tools,
the input interface still offers poor convenience for edit-
ing expressions. Obviously, handwritting could serve as a
superior man machine interface for the input of formulae
from lots of different domains, like physics, mathematics,
chemistry. . . . Beside the mentioned desk-top applications,
such a recognition engine could also be used as an inter-
face for the upcoming keyboard-less “personal digital as-
sistants” (PDA), in order to integrate complex calculator fa-
cilities. According to [1], the solution for the mathematical
expressions recognition can be sub-divided into two main
problems: segmentation and recognition, analysis and in-
terpretation of the symbol’s spatial-arrangement.

2. System overview
The system proposed here is capable of recogniz-

ing mathematical expressions with a set of 100 dif-
ferent characters or symbols in a writer dependent
mode. Beside small and capital letters, and digits,

the system contains several mathematical symbols (+ −
· : / ˆ√ ∑∏ ∫

,′ =<>≤≥→↔≈!∞), as
well as some of the most frequently used Greek letters
(α, β, γ, λ, μ,Δ, π, ω, ε, τ, φ) and some parentheses ((,), [,
], {, }). To model the spaces between the symbols, an addi-
tional ’space’ model is introduced. For initialization, each
of these symbols is written several times well separated on
a sheet. For an embedded training, 100 common mathemat-
ical or physical formulae are collected as training set and an
additional set of 30 formulae is used as test set, represented
by 150000 feature vectors and 45000 feature vectors, re-
spectively. Figure 1 gives an overview of the entire system.
The processing levels as they are shown, will be described
in the following sections.

transcription
+ temp. alignment

+
feature extr.

recognition

x

y

^ ^

+

2 b 2a

(x,y)(k)

 up, lo, le, ri, mx, my
a:584,615,274,308,291,600
2:549,580,325,348,336,564
+:589,618,373,402,388,603
b:567,622,420,457,439,595
2:553,572,459,489,474,563

2: k = 83 ... 98
+: k =106 ...126
b: k =142 ...173
2: k =188 ...202

a: k = 47 ... 68

transcription
+ spat. alignment

spatial
alignment

Δ(x,y)(n T)
T=1/200 sΔ

re-sampling

parsing
2D

Figure 1. System overview

3. On-line character recognition
With the presented approach, it is not necessary to en-

ter each single symbol well separated, neither spatially nor
temporally. This continuous formula recognition can be
considered as a kind of sentence recognition without pre-
vious word segmentation. The segmentation of the distinct
words is realized within the HMM framework, applying
a special ’space’ HMM for the detection of word bound-
aries. Instead of attempting to identify each symbol sepa-
rately, the efficient HMM-based decoding techniques allow

a complete identification of the entire formula string. An-
other advantage of the HMM approach for this application
is the possibility to incorporate high level syntactic con-
straints (e.g. grammars) directly into the low level recog-
nition process.

3.1. Pre-processing and low-level feature extraction

The raw data is captured with a constant sample rate
of 200 Hz, resulting in a temporal vector sequence of
the Cartesian coordinates of the pen position. The pre-
processing step is a re-sampling of the captured pen trajec-
tory with vectors of constant length [10]. Beside the data
reduction effects of 1:2 up to 1:3, a further advantage of the
re-sampling is, that the implicitly given writing speed, re-
sulting from different distances between two samples and
the constant sample rate, is eliminated. Writing speed is
especially in the context of formula recognition supposed
as a highly inconsistent feature, because obviously identi-
cal handwriting images can be produced with completely
different writing speeds. For instance, this could happen if
the writer holds on to think about his currently written for-
mula. It should be stressed, that the re-sampling preserves
the spatial information, i.e. the Cartesian pen coordinates.

On the recognition level, several features are extracted
from the re-sampled vector sequence. The first type of fea-
tures are the online features [10], which is the orientation α
of the re-sampling vectors coded in sine and cosine as well
as the sine and cosine of the differential angle Δα of two
successive re-sampling vectors. The third online feature is
the pen pressure, which is extracted as a binary feature and
indicates if the pen is set down or lifted. The pen pres-
sure is helpful to model word or symbol boundaries within
an expression. The second type of feature is an off-line fea-
ture [3, 7], which is a sub-sampled bitmap, sliding along the
pen-trajectory after re-sampling. In a subsequent step, each
of these feature streams, except the binary pressure, is quan-
tized with a vector quantizer (VQ). As vector quantizer, usu-
ally a k-means VQ is used or a MMI neural net (NN) VQ
[9] with different codebook sizes for each feature, respec-
tively. Subsequently, the resulting discrete multi-stream is
presented to the HMMs.

3.2. HMM training and recognition

For the modeling of the symbols, discrete left to right
HMMs without skips and with different numbers of states
are used. With the features described above, discrete, i.e.
hybrid NN-HMMs have shown to be superior compared to
continuous HMMs [9]. One reason for this is the discrete
nature of the pen-pressure (pen up or pen down). Further-
more, the α and Δα-features are due to the constant re-
sampling vector length distributed on the unit circle, which
enables an efficient vector quantization, while Gaussian
pdfs as they are commonly used in continuous HMM sys-
tems can not be sufficiently mapped to this kind of distribu-
tion. HMMs with 12 states are used for capital letters and
larger mathematical operators, like sum or product. Small
letters and smaller operators are modeled with HMMs with
8 states, while very short symbols (.,) are modeled with 3
state HMMs.

For recognition purposes, a synchronous Viterbi decod-
ing is used [8]. By means of the Viterbi algorithm, it is
possible to determine the most likely state sequence q� of a
set of HMMs λ for a given sequence of frames O.

P (O,q�|λ) = max
q

P (O,q|λ) (1)

This can be very effectively exploited for formula recog-
nition by analyzing the resulting alignment of each feature
frame to its best matching HMM state, with the result, that
the indexes of start- and end-frames of the recognized sym-
bols within an expression can be taken directly from the
decoding or recognition process. The achieved recognition
with the simultaneous segmentation of the symbols is an
important information for further extraction of geometrical
features for the structure analysis.

The initialization of the HMMs is realized with the
Viterbi training using the separate collected, isolated sam-
ples of the symbols. HMM parameter optimization is car-
ried out by an iterative application of the Viterbi algo-
rithm in order to find an optimal state sequence, and a re-
estimation path of the pdfs.

For the embedded training of the complete formulae, the
Forward Backward algorithm is used. Again, in an itera-
tive way, optimized HMM parameters λ̂ can be found by a
maximization of the Kullback-Leibler distance Q(λ, λ̂):

max
λ̂

Q(λ, λ̂) = max
λ̂

∑

q

P (q|O, λ) log P (O,q|λ̂) (2)

The re-estimation formulae for the HMM parameter set can
be derived directly from Q(λ, λ̂) [8].

4. Structure analysis
As described before, the result from the Viterbi decoder

is not only the transcription (the sequence of recognized
words and symbols) but also the start- and end-frames of
each symbol. The following sub-sections describe, how this
information can be used for further processing.
4.1. Spatial alignment

The temporal alignment of frames together with the re-
sampled vector-data allows the extraction of geometrical
features of the symbols or a spatial alignment. These ge-
ometrical features are the center of a recognized symbol
and the size and position of its bounding box. As shown
in Fig. 2, the bounding box of a word is extracted by step-
ping through the re-sampled vector sequence starting at the
start-frame number of the current word until the stop-frame
number is reached, and searching for minima and max-
ima in x- and y-direction in the determined part of the se-
quence of Cartesian vectors. The spatial alignment for each
symbol is characterized by the parameters of the bound-
ing box up, lo, le, ri and denotes the upper, lower, left and
right boundary of the symbol. The centers of the bounding
boxes mx and my of each symbol are shown in the last two
columns in figure 1 and figure 2.

Before starting analysis of spatial alignment, we intro-
duce other computed information which will be attributes
of recognized symbols. The introduction of this data will
help to recognize formula’s structure.

temp. alignment
 up, lo, le, ri, mx, my

spat. alignment

a:900,954,082,142,112,927
(x,y)(k=35)

(x,y)(k=59)

up

lo

le ri

mx

my

a: k = 35 ... 59

Figure 2. Spatial- from temporal alignment

4.2. Deduction of criterions
Next step is to deduce an approximative baseline de-

pending on the recognized symbol and to compute a relative
size for each recognized character in order to make some
groups of symbols. This last process is not just depending
on the bounding box size but is also relative to the recog-
nized symbol. For example, if we compare “e” and “g” just
considering the size of the bounding box, it will lead to the
conclusion that “e” is smaller than “g”. So we ponder each
symbol by a relative size depending on the manner to write
the character. This can be done while collecting symbols
during the training set. All this information will be used to
determine the symbol potentially in a subscript or a super-
script position.

4.3. Lexical analysis
Before starting the syntax recognition we give a lexical

type to each recognized symbol. This method helps us to lo-
cate operators and avoid some parsing mistakes. It was first
mentioned in [6] as an approach to help subscript and su-
perscript recognition. Thus, recognition is based on spatial
coordinates as well as local context depending on the lexi-
cal type. This system prevents misrecognition of relation-
ship between two symbols. For example, it’s a good way to
avoid the detection of “.” as a subscript of x in the example
“x.y”, because a dot is not supposed to be a subscript for
a letter. For a well formed printed document recognition,
this problem of spatial arrangement is not as important as in
a hand printed recognition because the writer does not fol-
low the writing baseline exactly. This technic is helpful for
subscript and superscript recognition but also to determi-
nate other spatial relationship and especialy to avoid some
of them depending on lexical rules.

5. Two dimensional parsing
The goal is now to generate a tree with recognized sym-

bols as it is shown in figure 1.

5.1. Graph construction
With all these elements (symbols, lexical type, bound-

ing box, approximative baseline and size) we have a lot of
graphical information that we must translate in a more struc-
tured format to be usable and parsable. So, we introduce
graph which provides a good formalism to describe struc-
tural manipulations of multi-dimensional data.

The graph building process is very important because too
many links lead to ambiguities and with too few links one
looses important data. This mechanism of data graph build-
ing using the spatial arrangement of symbols is described in
[5]. It was tested with paper printed documents. We have

modified and enhanced the system to improve links between
symbols in graph and we have reduced constraints for links
creation to suit handwriting style, which is more “random”
than style of printed documents.

With the first small tests, we had good results for the
building process. But with bigger formulae, the process was
too slow, due to a O(n2) complexity. So we introduced an
optimization for graph construction : we now make a sub-
division of the space containing symbols, in order to avoid
making some neighborhood tests with symbols which are
obviously too far away from each other.

For a formula containing 116 symbols, without any op-
timization for the construction of the first data graph, com-
putation time reaches 35 seconds on a Pentium 200. With a
subdivision of space, it drops to less than 4 seconds. The ob-
served speed-up (around 9 for this sample) is not always as
high, but for smaller samples computation time is less than
1 second, with or without optimization. Figure 3 shows the
evolution of computation time for the mentionned sample,
regarding subdivision of the plane along the x and y axis.

0
5

10
15

20
25

30
0

5
10

0

5000

10000

15000

20000

25000

30000

35000

Figure 3. Time optimization for graph building

5.2. Graph parsing

In [4] we have defined a general class of graph grammars
with contexts, where, after a theoretical study of their prop-
erties, we showed how to precisely and automatically solve
ambiguities in these grammars.

A graph grammar acts on a graph as a rewriting system
in a bottom-up manner, rewriting matched sub-graph into
a single node containing the syntax-tree of the recognized
expression. Improvements have to be done on computation
time for graph rewriting. This motivates the next section.

5.3. Parsing optimization

The parsing algorithm is simple: we just iteratively apply
the first rule which can be, and stop when no more apply.

A rule is given by a term G − {C1, . . .} → N , where
G is the sub-graph to be matched, {C1, . . .} is the set of
excluded contexts, and N is the produced node. Such a rule
can be applied to a graph G′ if:

• a substitution σ exists such that σG is a G′ sub-graph,

• for each context Ci, there is no substitution τ such that
τCi is a sub-graph of G′′, and τ = σ on the intersec-
tion of their supports.

When these conditions are satisfied, applying rule con-
sists in replacing subgraph σG of G′ by a single node σN .

During the parsing process, only local modifications are
made to graph. So we very frequently test matching of sub-
graphs, particularly contexts, with few success: if a context
occurs in several rules (which is the case in practice), and
if it occurs in graph, then these rules will not apply, and we
will test these occurrences at each step of parsing.

To avoid this unnecessary complexity, we exploit the lo-
cality of rewriting by maintaining, during the parsing of a
graph G′, two global lists:

• a list G of all pairs (G, σ) such that G is the graph
pattern of a rule, and σG is a sub-graph of G ′,

• a list C of all pairs (C, τ) such that C is a context of a
rule, and τC is a sub-graph of G′.

Searching a rule to apply can then be made by inspecting
the lists G and C to find a pair (G, σ) such that no pair (C, τ)
exists such that τ = σ on the intersection of their supports.

After applying a rule, we have to update the lists G and C.
But since only a small part of G′ is modified, the two lists
are also locally modified. With an adapted data structure
(with pointers from the graph G ′ to lists G and C, and point-
ers from G and C to G′), this can be achieved efficiently.

In fact, this process allows to replace a O(n2) by a O(n)
complexity for parsing process (where n is the number of
edges of the graph to be parsed), which is optimal.

6. Conclusion
Presented approach leads to two major improvements:

1. Constraints concerning the writing (from left to right
and top to bottom) as introduced in [2] can be relaxed.

2. The output is a general description of the handwritten
expression in a tree format which can be translated to
any other format (Lisp, LATEX, OpenMath. . .).

Graph grammar was used to recognize mathematical ex-
pressions in printed documents as presented in [1] and [5].
With some more work, we have adapted this method to
handwriting recognition of mathematical expressions. The
same software is used in both case, just needing to spec-
ify the input type (it could be automated). Considering the
method used in [2], some constraints were made on how the
formula should be written (for left to right and from top to
bottom). With this method, we do not have any assumption
on how the formula should be written, so there is no con-
straint for writers and it is more adaptive to different writer
style. Figure 4 gives two samples of recognized formulae.

The advantage of a graph grammar system is that it is
adaptive to any kind of mathematical notation. To intro-
duce a new notation, one just needs to write the right parsing
rule. We are currently working on recognition of handwrit-
ten vectors or matrices notations.

In summary, graph rewriting is a good approach for
mathematical expression recognition as well as for printed
documents and for handwritten recognition. To our knowl-
edge, it is the first experience in using graph grammars in
handwritten mathematical formula recognition.

c
d e

/

1

/

-
a /

b -

-

=

y

x4

3

-

*

2 x

^

+

*

/

x 2

1

Figure 4. Recognition results

References
[1] D. Blostein and A. Grbavec. Recognition of Mathematical

Notation. In H. Bunke and P. S. P. Wang, editors, Hand-
book of Character Recognition and Document Image Analy-
sis, chapter 21, pages 557–582. World Scientific Publishing,
1997.

[2] A. Kosmala and G. Rigoll. Recognition of On-Line Hand-
written Formulas. In 6th Int. Workshop on Frontiers in
Handwriting Recognition (IWFHR), Taejon, Korea, 1998.

[3] A. Kosmala, J. Rottland, and G. Rigoll. An Investigation
of the Use of Trigraphs for Large Vocabulary Cursive Hand-
writing Recognition. In Proc. IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP), pages 3373–3376,
Munich, 1997.

[4] S. Lavirotte and L. Pottier. Optical formula recognition. In
Proc. of 4th Int. Conf. on Document Analysis and Recog-
nition, volume 1, pages 357–361, Ulm, Aug. 1997. IEEE
Computer Society Press.

[5] S. Lavirotte and L. Pottier. Mathematical formula recog-
nition using graph grammar. In Document Recognition V,
volume 3305, pages 44–52, San Jose, USA, Jan. 1998. SPIE
- The Int. Society for Optical Engineering.

[6] H. Lee and J.Wang. Design of a mathematical expression
recogntion system. In Proc. of 3rd Int. Conf. on Docu-
ment Analysis and Recognition, pages 1084–1087, Mon-
treal, Canada, Aug. 1995. IEEE Computer Society Press.

[7] S. Manke, M. Finke, and A. Waibel. Combining Bitmaps
with Dynamic Writing Information for On-Line Handwrit-
ing Recognition. In Proc. Int. Conf. on Pattern Recognition
(ICPR), pages 596–598, Jerusalem, 1994.

[8] L. R. Rabiner. A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition. Proc. of the
IEEE, 77(2):257–285, 1989.

[9] G. Rigoll and A. Kosmala. An Investigation of Context-
Dependent and Hybrid Modeling Techniques for Very Large
Vocabulary On-Line Cursive Handwriting Recognition. In
6th Int. Workshop on Frontiers in Handwriting Recognition
(IWFHR), Taejon, Korea, 1998.

[10] G. Rigoll, A. Kosmala, J. Rottland, and C. Neukirchen. A
Comparison between Continuous and Discrete Density Hid-
den Markov Models for Cursive Handwriting Recognition.
In Proc. Int. Conf. on Pattern Recognition (ICPR), volume 2,
pages 205–209, Vienna, 1996.

