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Mathematical formula recognition using graph grammar

Stéphane Lavirottea and Löıc Pottiera

aINRIA Sophia Antipolis, 2004 Route des Lucioles, 06902 Sophia Antipolis, BP 93, France

ABSTRACT

This paper describes current results of Ofr (Optical Formula Recognition), a system for extracting and un-
derstanding mathematical expressions in documents. Such a tool could be really useful to be able to re-use
knowledge in scientific books which are not available in electronic form. We currently also study use of this
system for direct input of formulas with a graphical tablet for computer algebra system softwares. Existing
solutions for mathematical recognition have problems to analyze two dimensional expressions like vectors and
matrices... This is because they often try to use extended classical grammar to analyze formulas, relatively to
baseline. But a lot of mathematical notations do not respect rules for such a parsing and that is the reason why
they fail to extend text parsing technic. We investigate graph grammar and graph rewriting as a solution to
recognize two dimensional mathematical notations. Graph grammar provide a powerful formalism to describe
structural manipulations of multi-dimensional data. The main two problems to solve are ambiguities between
rules of grammar (1 for theorems) and construction of graph.

Keywords: Formula recognition, optical character recognition, document understanding, document recognition,
graph grammar, graph rewriting

INTRODUCTION

For many years, transmission and storage of information have been by paper documents. Since the emergence of
computer science and binary information treatment, documents are originated on computers, but it’s not clear
if it decreased or increased the use of paper. However, documents are still printed for mass edition (such as for
books), sending mailing. . . and, in many case, you can not have electronic sources of documents you received. The
ultimate solution would be for computers to deal with these paper documents and turn them into an electronic
form. So that, in the late 1980s, fast computers, large computer memory, and inexpensive dedicated hardware
increased the interest in document image processing and analysis. A lot of researches were made before and
are still done on pattern recognition, document analysis. . . Currently good results are expected for text or form
recognition, for document analysis, but some components of documents are not treated at all to extract usable
information. This is the case of formula for example. Some new technic allow to separate and identify different
components of a document.2 No commercial OCR deal with such expressions ; mathematical formula are
sometimes clearly located but never analyzed or recognized.

Parsing 2D expressions is much more difficult than parsing strings because mathematical expressions, or other
2D languages, differ greatly from text. A line of text is one-dimensional and discrete: characters are placed one
after another on the same line, the only problem to deal with being line breaking. But symbols in mathematical
expressions may be under, upper on the right and far, included in another, etc, with continuous distances. Many
works have been done since the sixties on parsing two dimensional expressions and the development of methods
for recognizing mathematical expressions has been a subject of growing interest in last years3 ,4 ,5 .

There is a wealth of mathematical knowledge in books that can be potentially very useful in many computa-
tional applications. But these material are not available in a computer usable form. Currently, the only way to
use mathematical informations in a document is to re-type formulas on keyboard to be able to add it in Computer
Algebra System (CAS) or in any application using mathematical input. To incorporate such informations into
systems (CAS or formula database), there is too much typing work. If one also wants to bypass the relatively
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L.P.: E-mail: Loic.Potẗıer@sophia.inria.fr; WWW:http://www.inria.fr/croap/personnel/Loic.Pottier/home.html



unfriendly input interfaces of most CAS, one can dream of writing formulas with a pen on the screen or on a
board. In these cases, the problem to solve is : How to build the syntax tree of a formula just with graphical
informations (recognized characters and their position) ?

After this introduction, we will present :

First we introduce our method, design of our prototype and discuss other approaches of other researches in
the domain.

In a second part, we briefly present the preprocessing step to analyze image, to extract character and needed
features.

In the third section, we present the methodology we have used for syntax analysis. After a short introduce
of notion of graph representing a formula, we explain the geometric construction of graph from the result of the
OCR step. Finally we present the formalism of our graph grammar, properties allowing to eliminate ambiguities,
and show how to use them to parse formulas.

The fourth part describes briefly the implementation, shows some examples which are currently well parsed
by our prototype and then, we conclude in describing future works.

1. DESCRIPTION OF OFR DESIGN

We describe the design and first implementation of Ofr (Optical Formula Recognition), a system for extracting
and recognizing mathematical expressions in printed documents. The system described in this paper is based on
three different components, each one giving just the necessary information to the next process. Here we suggest
a scheme to really separate the different steps of building the syntax tree from the graphical informations. Figure
1 represents the Ofr organization.
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Figure 1. The Ofr architecture

So, our approach clearly separate character recognition, geometrical treatment, and grammatical treatment.
This approach was used at the beginning of OCR study, but current commercial program prefer to use syntax
or semantic rules during the recognition process. We chose this approach because it’s a simple one and for the
moment, we don’t study problem of miss recognition and errors correction. This separation between all the
components allow us to be able to swap used OCR and allow a large set of tests on generated images (by LATEX



for example), on real scanned images, and also with handwritten recognition software. We do not have results
yet on this third category of test but we make some tests of usability.

From the result given by OCR (Optical Character Recognition) step applied to a bitmap representation of a
scanned formula, we build a graph encoding relative positions of characters (geometrical treatment), and then
use a context dependent graph grammar to reduce it to an irreducible form. Then nodes contain abstract syntax
trees of recognized formulas. We introduced a method to automatically complete a given context free graph
grammar by adding contexts to rules, in order to remove ambiguities. This method is based on a “critical pairs”
approach in the sense of Knuth-Bendix algorithm.

2. OCR

The OCR (Optical Character Recognition) step is very important, and researches on this subject have lead to
good solutions, at least for printed characters and also for handwritten ones with HMM’s method. In this paper,
we won’t discuss about character recognition problems. We have completely disconnected this problem from the
rest of our study.

We just assume that there is an OCR process which is able to separate formulas from the rest of the document.
This operation is not very hard to do because the density of characters in formulas are not the same as text. An
other criterion is the two dimensional structure of mathematical formulas. Horizontal and vertical projections
of the page would give interesting information too. Current researches have lead to usable results.

Then for each isolated area of formula the process should give output informations about symbols present on
the sheet. For each character, we expect to have :

• recognized symbol.

• coordinates of the bounding box of each characters (the position of the symbol on the sheet in absolute or
relative coordinates).

• font size of the character. For this point we don’t suppose that the OCR is able to compute the exact size
in points of the font, but a relative size between all the characters.

• reference point of the character (typically the baseline of the character). This information can be approxi-
mately generated if the used OCR is not able to give it.

We use a simple OCR developed at our laboratory. This software is able to learn some given fonts (for
example the LATEX ones) and after to recognize formula symbols and characters printed with one of the learned
font. A font is learned by giving an image of characters we want the OCR to learn and the corresponding ascii

description for each one. So that, it returns all the needed informations to the subprocess. For example, for the
following simple formula (a2 + b), it returns as output:

Symbol Bounding Box Baseline Size

2 1246,454,1258,472 1246,472 7

b 1316,461,1330,490 1316,490 10

+ 1275,466,1302,492 1275,489 10

a 1224,471,1243,490 1224,490 10

All these informations will be used to construct a data graph as we will see in next section.



3. SYNTAX ANALYSIS

3.1. Definition of graphs

We introduce an intermediate combinatorial structure, between the recognized symbols with their positions in
the plane, and the tree of formula. It is a graph, nodes being characters, and edges being relative positions of
these graphical objects in the paper sheet. Then, using a graph grammar, the parsing algorithm will update and
reduce the graph of data into a single node which will contain the syntax tree of the formula.

Of course, the construction of the graph is difficult, but we think that the separation of geometric and syntax
is very important to understand and solve the problem of parsing 2D expressions, like mathematical ones.

Let us precise now our notion of graph.

Every object will be represented by terms or finite sets of terms. As usual, the set T (F, V ) of terms is
inductively defined by a set F of functional symbols of fixed arity and a set V of variables: variables are terms,
and if t1, . . . , tn are terms, and f is a n-ary functional symbol of F , then f(t1, . . . , tn) is a term. We note V ar(t)
the set of variables occurring in a term (or a finite set of terms) t.

We use uppercase symbols for functional symbols and lowercase ones for variables.

Vertices, edges and graphs are represented as follows :

• a vertex is a term V (t, v, i) where:

– t is its lexical type, e.g. ”Operator”, ”Variable”, ”Digit”,etc.

– v is its value, typically a mathematical expression in term form, e.g. x, Plus(x, (Mult(2, y))), etc.

– i is an identifier, distinguishing distinct occurrences of the same mathematical expression.

• an edge is a term E(t, v1, v2) where:

– v1 and v2 are vertices.

– t is a type of edge, i.e. a term L(d,w), d being a graphical directions (e.g. ”Left”, ”Right”, ”Top”,
etc), and w being a weight, encoding the relative proximity of two symbols in the plane.

• a graph is a finite set of edges:

{E(t1, v11, v2,1), . . . , E(tn, v1n, v2,n)}. The set {vij} being the set of vertices of the graph. For simplicity,
we suppose that graphs are connected and have at least one edge ∗.

The next section will detail how the data graph is constructed and the interaction between graph builder and
graph grammar parser.

3.2. Construction of data graphs

Extending the usual methodology of string languages analysis, we use the notion of lexical units, or token. In
our case, a token is basically a symbol of the sheet, and will be more complicated expression during the parsing
process.

The graph builder constructs a graph with all tokens. Oriented links between vertices are deduced from
graphical informations. In fact, this step is a generalization of the only two links before and after determining
relative character position in a computer input string.

Theses graphic oriented links are intended to capture all useful geometric informations of character relative
positions. The main problem in graph building is to find a good trade-off between two extreme cases:

• a graph with too many links will represent more than one formula, and then lead to inconsistency.

∗Then every vertices appears in at least one edge. This is not a restriction : we can add a generic vertex, connected
to every vertex with generic edges.



• a graph with few links will not contain sufficient informations to build the formula.

The third possible problem is not to build false links between edges. For example if the algorithm build a right
link instead of a upper right one, the analyzed result won’t be correct. So graphical algorithms to determinate
position of object should be well written. Here is an overview of the general algorithm to build the data graph.

For each symbol of the sheet, we try to link it in all the 8 directions of the plane (left (l), right (r), top (t),
bottom (b), top-left (tl), top-right (tr), bottom-left (bl), bottom-right (br)) with the closest symbols. A last type
of connections between 2 symbols should not be forgotten : in (i) which is used for the square root for example.

This give us a set of possibles connections between symbol and neighbors in all directions. Then, before
creating these links between symbols (i.e. edges between the corresponding vertices), we apply some test to
know is the edge we want to create as a sense.

First, we use a criterion based on type of symbol. In the lexer we associate type to particular symbol and for
each type, we can specify what sort of links are not allowed. For example, here is a very simple lexer :

List of forbidden

Reg-expr Type outgoing edges incoming edges

[0-9] Digit () ()

"Sigma" Sum ’(tl bl tr br) ’(tr br)

...

The second criterion is based on the manner to read or write mathematical expressions. For text, we write
from left to right without line changing excepted at the end for line breaking. Mathematical expressions are
more difficult because have 2D placement. But a lot of used notations are based on normal reading (from left to
right). So symbols which are on top-left or bottom-right or. . . are very close from the reference symbol. In the
other hand, horizontal links between symbols can be far-off. On this establishment of fact, we have introduced a
notion of gravity between symbols. So, for all neighbors of a symbol, we calculate the force of magnet between
the 2 symbols. Gravitational force should be very high for upper, lower or diagonal links but can be less for
horizontal ones. Figure 2 shows a graphical representation of an isopentional of the considered box.

Figure 2. Representation of gravitational isopotential for a symbol box

We introduced a grid like structure to be able to have a good algorithm complexity so that it’s possible to
define neighbors of a symbol not with a O(n2) complexity but in a constant time (in fact depending on the
density of symbols near the considered one).

The next step is now to define a type of grammar and a parsing method to use this combinatorial structure
in order to derive tree (i.e. term) representations of formulas.

3.3. Graph grammar

Graph grammar provide a useful formalism to describe structural manipulations of multi-dimensional data. They
were introduced in6 to solve picture processing problems, and are studied in a theoretic point of view (e.g. in7

,8 ), or in a more practical one (9 ,10 ). To have a good overview of this subject, see11 ,12 .

Graph grammars are used to parse and generate graphs. A graph grammar is specified by a start graph (the
one we have constructed during the previous step) and a set of production rules. The role of the rule is to replace
the matched subgraph by another one. This process depends on a specification on the desired embedding, this
means that there is different ways to replace the matched subgraph.



We use context-sensitive graph grammars. A rule of grammar expresses that a sub-graph of the graph can be
collapsed into a new vertex (representing the sub-formula) if some conditions are verified by the involved tokens.
Terminal symbols represent symbols detected on the sheet by the OCR program and non terminal symbols
represent a recognized expression.

3.3.1. Definition

The precise forms of rules and grammars are the following:

• a rule is a term V ← G,C where:

– V is a vertex, called the ”production” of the rule.

– G is a graph, called the ”pattern” of the rule.

– C is a finite set of graphs, called the ”context” of the rule. We will precise this point in the next
section.

• a grammar is a finite set of rules.

Given a graph representing a formula (its vertices are symbols and edges are graphical links between them),
rules are intended to rewrite it by replacing sub-graphs by vertices whose values are term forms of the recognized
sub-formulas. This process uses matching and replacement in a way that we precise below.

First, we recall the notions of substitution and term matching :

• a substitution is an endomorphism of T (F, V ), i.e. an application σ verifying σf(t1, . . . , tn) = f(σt1, . . . , σtn)
for all f in F and all terms t1, . . . , tn. A substitution σ is uniquely determined by its restriction σ|V to the
set of variables.

• a term t matches a term t′, noted t ≤ t′ iff there exists a substitution σ such that σt = t′.

Matching of finite sets of terms is defined by :

{t1, . . . , tn} ≤ {t
′
1, . . . , t

′
m} ⇔ ∃σ {σt1, . . . , σtn} = {t

′
1, . . . , t

′
m}

A rule r = V ← G,C rewrites a graph G1 into a graph G2, noted G1 →r G2 iff there exists a substitution
σ, a sub-graph G′ of G1 (i.e. G′ ⊂ G1), such that:

• σG = G′.

• for all graph H in the context C, there is no substitution τ such that τ|V ar(G) = σ|V ar(G) and τH ⊂ G1.

• G2 is obtained by collapsing G′ into σV , i.e. removing in G1 all edges of G′ and replacing in G1 all the
vertices of G′ by the vertex σV .

3.3.2. Contexts of rules

One of the main problem with grammar and rewrite rules is the existence of ambiguities: two rules can rewrite
an object into two distinct objects. Suppression of ambiguities can be made for example by using priorities, case
analysis on pattern of rules, or by Knuth-Bendix completion. These techniques hardly apply to our case, this is
why we use contexts in rules: given a graph grammar which leads to ambiguities, our goal is to add contexts
to its rules to remove these ambiguities, as automatically as possible.

When two rules can apply to two sub-graphs of graph which have disjoint sets of vertices, there is no ambiguity:
applications of the to rules commute.

Ambiguities can appear when the two patterns of the rules can be superposed:



• two graphs G1 and G2 can be superposed iff there exist σ1 and σ2 such that σ1G1 and σ2G2 have a common
vertex. We note S(G1, G2) the set of couples of such substitutions, called superpositions of G1 and G2.

• given two rules ri = Vi ← Gi, Ci, i = 1, 2, the set A(r1, r2) of ambiguities of r1 and r2 is defined as the
subset of S(G1, G2) formed by couples (σ1, σ2) such that the two rules can apply to the graph σ1G1∪σ2G2,

i.e. ∀i = 1, 2, ∀H ∈ Ci, there is no substitution τ such that τ|V ar(Gi) = σi|V ar(Gi) and τH ⊂ σ1G1 ∪ σ2G2.

The set S(G1, G2) can be infinite, but ”minimal” superpositions are in finite number, as shown by the next
propositions.

In this paper we omit proofs and description of construction of contexts of rules, which are more technical
than difficult. In all cases, all can be found in1 .

3.4. Parser

The parsing algorithm we use is a bottom-up algorithm. Two main reasons motivated this choice. Firstly, a
sheet can contains many formulas, and a bottom-up approach allow local treatment of the sheet. This also
correspond to a human perception of formula, even if we often sue a global view of a formula before reading
its components. Trying to simulate this global view by top-down parsing is possible, but we think that this
approach will lead to a combinatorial explosion and an exponential parsing which is generally the case in two
dimensional parsing algorithms in literature. Secondly, geometric parameters of a formula deduced from those of
its components are given by functions which are very difficult to inverse. In particular, the bounding box can not
be split into sub-rectangles as we can easily make a partition from a string into sub-strings in a top-down parsing.
Moreover, to be able to make top-down parsing suppose to determinate graphic links between sub-formulas and
again determine geometric parameters of components from parameters of formulas.

The parsing algorithm consists in applying the first rule which can be applied in regards to the contexts. All
the matched nodes are collapsed as specified in the rule. Then, we update all the outgoing links of matched
sub-graph with the neighbors.

A straightforward analysis shows that, if n is the number of symbols on the sheet, then the time complexity
of the parsing algorithm is at most O(n log n) with the grid structure presented in graph construction section.

4. CURRENT RESULTS

4.1. Implementation

The current developed software to recognize mathematical expressions runs under UNIX system. The supported
systems are Linux machines (for example PC), Sparc computers running SunOS 4.x and Dec UNIX.

We use a Hewlett Packard ScanJet 4c scanner to scan the mathematical expressions document and save it as
a binary image file. The software used to drive the scanner is xvscan, an extension to the famous xv software.

OCR used currently is a small package written in Java by our team. This software is able to learn font sets
and after to recognize characters printed with these fonts. This package is about 7500 lines of Java.

The Graph Builder and Graph Grammar package are currently implemented in Klone, a Common Lisp
dialect. Klone has been designed specially to be embedded in C applications. Calling a C function or accessing
a C structure from Klone interpreter is straightforward. Klone is among the most efficient embeddable Lisp
interpreter and still a very small process (about 200Kb on a Sparc Station running SunOS 4.x). All these
advantages were useful to quickly develop these experimental packages on graph grammar. Graph Builder and
Graph Grammar are about 9000 lines of Klone.



4.2. Samples

In this section, we present some samples which are correctly analyzed by our Ofr prototype. For history, the
first real sample which as been analyzed is the following :

x−201+y523

abce

(x2 + y2)(x3 + y3)

We won’t detail grammar and problems on this sample but on the next which is a bit more difficult.

(

1

x2 + 1

)(n)

= (−1)n.n!

∑

0≤2p≤n

(−1)pC2p+1
n+1 Xn−2p

(X2 + 1)n+1

The lexer needed is not very important. This part depends on the output of the used OCR. For example if the
OCR return a special code for some characters, we must write a special rule to give to this code the good type.
The used OCR return sigma name for the sigma symbol. So, the lexer should contain the following declaration :

"Sigma" Sum ’(tl bl tr br) ’(tr br)

The lexer part permit to adapt the graph builder to the used OCR.

The grammar to analyze this sample contains 15 rules. There is different kinds of operators declared in the
grammar :

• linear:

– postfix for factorial (!)

– infix for addition subtraction. . . (+,−, ∗. . . )

– prefix for negation (unary minus).

• vertical: Like divide operator (/).

• implicit: Like products, power, indices (2x, xy, xy).

• 2D: Sum (
∑

) and binomial (Cp
n).

Critical cases are for the sum argument. There is some small characters with several changes of baseline
for indexes, power. Adding to all this, there is implicit multiplication between the 3 terms. This part is not
hackneyed to correctly analyze. This can be correctly understood because of the contexts of grammar rules. It
starts to collapse the implicit multiplication between 2 and p and then collapse all the add, minus, unary minus
operators. Then it collapses Cp

n, power and to finish it do the implicit multiplication between all the 3 elements.

To have an overview of how the algorithm works on this sample, you can have a look to :

http://www.inria.fr/safir/slavirot/Ofr/ . You would be able to see an animation of the parsing of this formula.



5. CONCLUSION AND FURTHER WORKS

We have presented in this paper a method and a system to recognize scanned mathematical formulas. Originalities
of our approach are: on a theoretical level, this allows us to precisely define a method to remove ambiguities of
graph grammars. On a practical level, we have a first implementation of the method, which works on various
complex formulas printed in LATEX for example, obtained from bitmap images of formulas, with good time
complexity. Defined grammar for these formulas are not trivial, using more than 50 operators, with many kinds
of constructions:

• linear operators: prefix, postfix, infix, parenthesis.

• vertical operators: fractions, etc.

• 2D tree-operators: indexed sums, integrals, limits.

• implicit operators: product, power, indices, arrays.

For most grammars dealing with these constructions, we are able to remove correctly ambiguities, with the
presented criterion. In some cases, we need heuristics, but our aim is to mechanize this process.

In real applications, OCR is not able to recognize each characters with 100% of success. We will study how
to incorporate errors detection and correction in our graph grammar as introduced in13 . We will test also the
possibility of adapting our approach to handwritten character recognition to be able to write formulas on a tablet
and to use this method to bypass keyboard typing of formulas for application needed mathematical input.
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