A relation on 132-avoiding permutation patterns - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2015

A relation on 132-avoiding permutation patterns

Résumé

A permutation $σ$ contains the permutation $τ$ if there is a subsequence of $σ$ order isomorphic to $τ$. A permutation $σ$ is $τ$-avoiding if it does not contain the permutation $τ$. For any $n$, the popularity of a permutation $τ$, denoted $A$$n$($τ$), is the number of copies of $τ$ contained in the set of all 132-avoiding permutations of length $n$. Rudolph conjectures that for permutations $τ$ and $μ$ of the same length, $A$$n$($τ$) ≤ $A$$n$($μ$) for all $n$ if and only if the spine structure of $τ$ is less than or equal to the spine structure of $μ$ in refinement order. We prove one direction of this conjecture, by showing that if the spine structure of $τ$ is less than or equal to the spine structure of $μ$, then $A$$n$($τ$) ≤ $A$$n$($μ$) for all $n$. We disprove the opposite direction by giving a counterexample, and hence disprove the conjecture.
Fichier principal
Vignette du fichier
2375-9839-1-PB.pdf (300.34 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-01349056 , version 1 (26-07-2016)

Identifiants

Citer

Natalie Aisbett. A relation on 132-avoiding permutation patterns. Discrete Mathematics and Theoretical Computer Science, 2015, Vol. 17 no.2 (2), pp.285-302. ⟨10.46298/dmtcs.2141⟩. ⟨hal-01349056⟩

Collections

TDS-MACS
74 Consultations
1156 Téléchargements

Altmetric

Partager

More