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KEYPOINT DETECTION IN RGBD IMAGES BASED ON AN EFFICIENT
VIEWPOINT-COVARIANT MULTISCALE REPRESENTATION

Maxim Karpushin, Giuseppe Valenzise, Frédéric Dufaux

LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay

ABSTRACT

Texture+depth (RGBD) images provide information about the geom-
etry of a scene, which could help improve current image matching
performance, e.g., in presence of large viewpoint changes. While
depth has been mainly used for processing keypoint descriptors, in
this paper we focus on the keypoint detection problem. In order to
produce a computationally efficient viewpoint-covariant multiscale
representation, we design an image smoothing procedure which lo-
cally smooths a texture image based on the corresponding depth. This
yields an approximated scale space, where we can find keypoints
using a multiscale detector approach. Our experiments on both syn-
thetic and real-world images show substantial gains with respect to
2D and other RGBD feature extraction approaches.

Index Terms— RGBD, texture+depth, scale space, keypoint
detection, visual odometry

1. INTRODUCTION

Keypoint detection, as a part of the classic image matching problem,
is one of the basic task in computer vision. A number of application-
level problems can be efficiently reduced to image matching, such
as target tracking, visual odometry, and simultaneous localization
and mapping (SLAM). Among the several signal representations on
which to extract interest points, texture+depth (RGBD) content has
been recently attracting a good deal of interest, thanks to the increas-
ing availability of low-cost depth sensors such as Microsoft Kinect.
In RGBD, the geometry of the scene is captured and represented
through a depth map, in addition to the conventional texture map
representation of 2D images. This additional geometrical information
can be used to improve the matching performance by providing more
robust, repeatable and distinctive features. In our previous works
[1, 2] we show that a possible way to use depth maps in matching
consists in improving feature robustness with respect to viewpoint
position changes. However, this was obtained at the price of a signifi-
cant computational effort, and the performance were highly afftected
by depth sensor noise.

On the other hand, few approaches are currently available in the
state of the art that are able to detect repeatable keypoints efficiently,
and which can benefit from both texture and depth information. In
this work, we address this problem by proposing an efficient keypoint
detector for RGBD images. It discovers repeatable keypoints in
the texture image, but uses the depth map as additional source of
information in order to improve the repeatability, especially under
viewpoint position changes. To achieve this, we exploit the idea
of viewpoint-covariant multiscale representation by injecting the
geometrical information into the keypoint detection modality. To
this end, we design an approximated scale space representation that
performs spatially adaptive smoothing, where the intensity of the
filtering is determined by depth. Our results show significant gains

with respect to simple 2D keypoint detectors and alternative RGBD
approaches, both for a mid-level feature evaluation and for a visual
odometry scenario.

The rest of the paper is organized as follows. In Section 2 we
discuss related background and state-of-the-art techniques for com-
puting multiscale image representations and using them in feature
detection. Section 3 describes the proposed keypoint detection ap-
proach in detail. In Section 4 we illustrate the performance of the
proposed detector in terms of keypoint repeatability and in a simple
visual odometry scenario. Finally, Section 5 concludes the paper.

2. BACKGROUND AND RELATED WORK

Multiscale image representations play an important role in vision,
especially in feature detection [3]. Among these representations, the
difference of Gaussians (DoG) detector, used, e.g., in SIFT [4], has
been a successful application of the Gaussian scale space [5] for the
detection of interest points. Similar pyramidal image representations
based on box filter have lower computational complexity and are used
in other local feature detectors, such as SURF [6] or BRISK [7].

Gaussian scale space is constructed through a progressive, un-
structured smoothing process. A function representing Gaussian scale
space is the solution of a partial differential equation problem, set
up for the standard (isotropic) heat diffusion equation and having
the input image as the initial data [8]. Making the diffusion process
anisotropic allows to establish a smoothing that respects the internal
structure of the image. An example of this process is the Malik-Perona
diffusion, that also produces a scale space [9]. Such anisotropic filter-
ing processes were used for keypoint detection [10, 11, 12].

For texture+depth images, the keypoint detection task and, more
widely, local feature extraction have been intensively studied in re-
cent years. Since texture+depth image may be regarded as a mesh
with associated photometric information, keypoint detection and mesh
matching techniques could be used to produce feature representations,
for example [13, 14, 15]. However, transforming a texture+depth im-
age into such a mesh has some drawbacks. First of all, the occlusions
problem raises, which does not exist in the mesh domain. Second,
a texture+depth image is parametrized in the camera coordinates,
contrarily to a typical mesh specified in its own coordinate system.
Therefore, any viewpoint position change corresponds to a mesh
resampling that affects keypoint repeatability and increases the sensi-
bility to acquisition noise.

Thus, an image-level RGBD feature extraction is of interest.
Viewpoint Invariant Patches (VIP) [16] extend SIFT detection prin-
ciple to texture+depth images by detecting dominant planes in the
scene and synthesizing their frontal views. A major limitation of
this approach emerges when dealing with images having a complex
geometry, where such dominant planes are little or not present at
all. Some approaches focus only on keypoints in depth maps, such
as 2.5D SIFT [17], NARF [18] or SIPF [19], just to name a few.



As the texture is not exploited, this allows to eliminate any feature
instability caused by illumination changes. However, in some real
scenes with rich texture maps, depth maps alone (without texture)
are not representative enough to provide a rich and distinctive feature
representation for an image matching-based application. A number
of techniques for texture+depth image matching focus only on the
descriptor side, e.g. BRAND [20], PIN [21], CSHOT [22] or our
previous work [1]. In these works, conventional keypoint detectors
are used, applied to the texture image only. A possible reason is that
the design of a distinctive descriptor is perhaps an easier and less
constrained task than constructing a repeatable detector. This exposes
a lack of keypoint detectors that are able to benefit from the geometri-
cal information in order to provide more repeatable keypoints, which
is the main contribution of this paper.

3. THE PROPOSED DETECTOR DESIGN

A scale invariant keypoint detector is generally composed of two
blocks: i) a signal representation where to look for keypoints, typi-
cally with a scale space-like structure; and ii) one or more keypoint
selection criteria. In the following we describe in detail these two
parts that form our proposed approach.

3.1. Scale space approximation

A scale space is typically engendered by progressively applying an
image smoothing operator to the input image. Keeping in mind the
goal of improved keypoint repeatability under viewpoint position
changes, in this paper we exploit the idea of transferring smoothing
from the image plane (as in the Gaussian scale space, for example)
onto the scene surface given by the depth map. The resulting smooth-
ing process becomes viewpoint covariant, and the keypoints will then
be searched on the scene surface as if they were attached to it.

In our previous work, we formalized such an approach as a dif-
fusion process on a manifold, whose internal metric is given by the
depth map, and the texture represents the initial data [2]. Although
that approach proves to satisfy scale space requirements, it has the
drawback of requiring a computationally expensive iterative simula-
tion of the diffusion process. In this work, we propose a simpler and
faster approximation of [2], which adapts the intensity of smoothing
locally by using depth information.

The proposed scale space approximation is based on the follow-
ing observation. A texture image corresponds to the projection of
objects in the scene onto the camera plane, followed by a sampling
at the pixel granularity. As this sampling is uniform on the camera
plane, the scene surfaces are sampled non uniformly. We leverage
this simple observation to construct an approximated scale space, by
varying locally the amount of smoothing, i.e., we vary the smoothing
quantity from pixel to pixel as a function of the distance given by the
depth map, so that the further a given pixel is, the less it is smoothed.
More precisely, assume that we can smooth the input image up to a
given smoothing quantity σ(x, y) at each pixel location (x, y). Then,
let us assume that σ(x, y) depends on the depth map D(x, y) in the
following way:

σ(x, y) =
σ̂

D(x, y)
. (1)

σ̂ is a constant value (in x, y image variables) representing a scale on
the surface, or spatial scale, whereas σ is the corresponding scale in
the image plane or projected scale. Using the pinhole camera model,
it is straightforward to show that the projection on the camera plane
of an object of characteristic spatial size σ̂ is of size σ̂

D(x,y)
pixels

independently on the observer position. Thus, the smoothing quantity

σ(x, y) injected into the image becomes related to the surface and
varies accordingly when the camera moves.

By progressively smoothing the original texture image I using
a set {σ̂k}k of increasing σ̂ values, it is possible to build a multi-
scale representation Ik = I(σ̂k) that demonstrates the described
approximated viewpoint-covariant behavior. The choice of σ̂k and
the structure of Ik are discussed in Section 3.2.

To complete the construction of scale space, we need an appro-
priate smoothing filter. Existing multiscale representations used for
feature detection generally employ either a Gaussian or a box filter.
Since σ(x, y) varies across the image, filtering an N pixels image

with aM×M pixels Gaussian kernelKG(x, y, σ) =
1

2πσ2 e
− x2+y2

2σ2

requires O(NM2) operations, which can be computationally expen-
sive for large filters (coarsest scales). On the other hand, a box
filter consists in convolving the image with a constant square kernel,
which can be done with O(N) operations using integral images [23].
However, the box filter is not rotationally invariant.

In this paper, we adopt a smoothing filter we presented recently
in [24], which offers a more accurate smoothing under image rota-
tions, at the same computational complexity of the box filter. Apply-
ing this filter to the texture image with σ controlled by the depth map
according to Eq. 1, we are able to synthesize I(σ̂k). A visual example
is given in Fig. 1 (a) – (c). The desired viewpoint-covariant behavior
of the proposed approach might be observed on larger scales.

3.2. Detection criteria

Once a scale space is defined by a proper smoothing operator, the
remaining part of keypoint detection consists in three steps: candi-
dates selection; candidates filtering; and accurate localization. In this
work, we use the multiscale detector approach proposed in [27] to
select candidates. That is, we simply look for spatial local extrema
in images obtained in a DoG-like fashion, by subtracting consecu-
tive levels of our proposed multiscale representation. Specifically,
candidates selection is performed as follows:

(i) The detection begins by setting σ̂ = σ̂0, a parameter tuned man-
ually as a function of the depth measurement unit, which mainly
depends on the used depth sensor (e.g., Kinect or LIDAR).

(ii) Next, we construct the pyramidal image representation analo-
gous to [3], conventionally used in numerous scale-invariant de-
tectors, including SIFT. It is based on a combination of smooth-
ing and subsampling steps: we compute I(σ̂k) and I(2σ̂k) as
described in the previous section and then downsample the in-
put image by a factor of two horizontally and vertically. Here, k
is an integer representing the octave index (counted from zero),
and σ̂k = 2kσ̂0. The smoothing filter we use allows to avoid
explicit downsampling of the texture image, however, the depth
map is properly filtered and resampled to avoid aliasing.

(iii) Finally, we compute the differences Jk = I(2σ̂k) − I(σ̂k),
which are analogous to DoG. It is known that local extrema of
DoG reveal visual details of different scales and are repeatable
under various transformations [28]. Based on this, our tech-
nique consists in taking the local extrema of Jk that should
reveal visual details of a given spatial scale in octave k.

An illustration is given in Fig. 1 (d), (e). Distinctive red and blue
blobs in the example images contain local maxima and minima of Jk
that are taken as initial candidates.

For the candidate filtering and the accurate localization we reuse
the methodology of SIFT, which filters out the keypoints situated on
straight edges of Jk and performs an iterative accurate local extrema
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Fig. 1: Qualitative comparison of the Gaussian and the proposed multiscale representations for an RGBD image from the LIVE dataset [25, 26].
Top row: standard Gaussian scale space, where σ is constant within each image (no depth map used). Second row: proposed multiscale
representation, where σ varies but σ̂ remains constant. Images (a)–(c) in each row present different levels of smoothing. Images (d) and (e)
obtained by subtracting adjacent smoothed images.

localization based on derivatives of Jk [4]. Keypoints detected on all
octaves are put together and sent to the detector output. Each keypoint
is thus characterized by its location on the image plane and its visual
scale σ obtained according to Eq. 1 and interpolated properly after
the accurate localization process.

4. EXPERIMENTS AND DISCUSSION

The proposed detector is evaluated in two scenarios: (1) a typical
mid-level detector evaluation using repeatability score on synthetic
RGBD sequences; and (2) an application-level evaluation on real
RGBD images from KITTI dataset [29], where the depth maps are
acquired with a LIDAR laser scanner.

4.1. Repeatability score

In this first scenario, keypoint detection is performed on a set of
images (views) of a given scene. Keypoints extracted from the first
(reference) view of the scene are then compared with keypoints ob-
tained from other views. A keypoint from the reference view is
repeated in another (test) view, if there is a keypoint detected in it
that occupies approximatively the same area on the scene surface.
The portion of repeated keypoints between two views is called re-
peatability score and is often used to evaluate the keypoint detection
performance [30].

Following our previous works [1, 2], we control the keypoint area
overlap by means of Jaccard index-based relative error η. Jaccard
index is computed on spherical keypoint areas: its centers are obtained
by projecting the keypoint positions onto the scene surface, and radii
are approximated from the keypoint scale. For a given η value, the
keypoint is counted as repeated if Jaccard index is greater than 1− η
(please refer to [1] for a detailed explanation). In a nutshell, the
smaller the η, the more the keypoints that must be repeated and
precisely localized in order to contribute to the repeatability score.
We perform the experiment for two values of η: 0.5 and 0.25.

We use two artificial RGBD sequences both containing significant
viewpoint position and scale changes: Bricks with 20 images and
House with 25 images [31]. The proposed detector performance is
compared to SIFT (VLFeat [32] implementation) and VIP (original
implementation). The resulting repeatability scores as a function of
the angle of view difference between test and reference views are
shown in Fig. 2.
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Fig. 2: Keypoint repeatability obtained with different detectors on
two synthetic RGBD sequences.

The proposed detector demonstrates better overall repeatability
except. A particularly higher accuracy is achieved on Bricks, as for
tighter η our proposed detector demonstrates a significant gain up to
45° of rotation. At larger angles, the proposed scheme is outperformed
by VIP on Bricks and SIFT on House, but the difference is at most
10 points. Furthermore, VIP detector fails on House sequence due
to a more complex geometry, that may not be represented well by
dominant planes. It is worth noticing that the number of detected
keypoints by SIFT and the proposed detector are comparable and
of order of 1000 to 2000, whereas VIP exhibits 2 or 3 times more
keypoints. A visual example of repeated keypoints is given in Fig. 3.



4.2. Visual odometry

In the second part of our experiments, we evaluate the proposed
approach in a visual odometry scenario. This is one of the typical
applications of image matching, which consists in estimating the
observer position and orientation solely based on data coming from
visual sensors.

We match consecutive frames using different keypoints and de-
scriptors, and then retrieve the pose change using Nister’s calibrated
fivepoint solver [33] (we used its implementation in OpenCV 3.0
beta). The obtained pose change is then cumulated within the current
one, giving an estimation of the absolute pose with respect to the first
frame. The result is then compared to the ground truth.

As the test data, we use ten sequences from KITTI dataset [29].
For each sequence we conduct the experiment on the first 300 frames,
computing at each frame two types of error:

• translation error, simply equal to the absolute distance between
estimated position and the real one from the ground truth;

• rotation error showing the inaccuracy in the estimated orien-
tation; if Rest and Rgt are, respectively, the estimated and
ground-truth 4×4 pose matrices in the coordinates of the first

frame, the angular error is given by arccos
(

tr(R−1
estRgt)−1

2

)
.

These errors are cumulative and strongly depend on the feature
repeatability. Thus we present the error values reached on the last
frame (final translation and rotation errors), as well as the error values
averaged over all frames. In this test, we compare with the conven-
tional SIFT descriptor and BRAND (Binary Robust Appearance and
Normal Descriptor) [20], a recently proposed binary descriptor for
RGBD images. It is originally used with CenSurE (Center Surround
Extrema) keypoint detector [34], whose OpenCV implementation
is referred to as STAR. For both descriptors we consider both the
detectors suggested in the original papers, i.e., DoG for SIFT and
STAR for BRAND, and the proposed one. On each image and with
each detector we keep only 1000 keypoints with the highest detector
response. We also conducted this test with VIP features, however, on
all the test sequences VIP fails at the very first frames, revealing its in-
ability to detect enough features to match two frames. Consequently,
the relative pose can not be determined.

The results are shown in Table 1. For both descriptors, on almost
all sequences the proposed keypoints reach smaller translation errors.
The rotation errors are also small and comparable to the ones achieved
by SIFT. Moreover, our method always outperforms STAR detector
on all sequences and for all error types.

5. CONCLUSION

In this paper we present a simple and efficient keypoint detector for
texture+depth images. Our proposed approach takes into account the
depth map in order to provide an adapted multiscale representation
of the texture map, that yields better keypoint repeatability. Our
experiments show higher repeatability scores with respect to standard
SIFT and VIP features, and improved tracking precision in a visual
odometry application with SIFT and BRAND descriptors. Further
improvement could be reached by using a more accurate filtering, that
takes into account the edges of object in the scenes and adapts better
to the local surfaces in the scenes. How to achieve this while keeping
the computational complexity as limited as possible is currently one
of our research directions.

Fig. 3: Repeated keypoints of the proposed detector in two views of
Bricks scene: 1257 / 1109 keypoints, 34.9% repeated for η = 0.5.
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