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Simple and Scalable Surface Reconstruction

Dobrina Boltcheva 1,2 and Bruno Lévy 2

1 Univerity of Lorraine - LORIA 2 INRIA Nancy

Figure 1: Our method applied to a pointset with 33 million points. The total computation took 360 seconds (49 sec. for 2 iterations of
smoothing and normal estimation, 78 sec. reconstruction, 61 sec. surface extraction, 114 sec. post-processing and 58 sec. loading and
saving)

Abstract
We present a practical reconstruction algorithm that generates a surface triangulation from an input pointset. In the result, the
input points appear as vertices of the generated triangulation. The algorithm has several desirable properties: it is very simple
to implement, it is time and memory efficient, and it is trivially parallelized. On a standard hardware (core i7, 16Gb) it takes less
than 10 seconds to reconstruct a surface from 1 million points, and scales-up to 36 million points (then it takes 350 seconds). On
a telephone (ARMV7 Neon, quad core), it takes 55 seconds to reconstruct a surface from 900K points. The algorithm computes
the Delaunay triangulation of the input pointset restricted to a "thickening" of the pointset (similarly to several existing methods,
like alpha-shapes, crust and co-cone). By considering the problem from the Voronoi point of view (rather than Delaunay), we
use a simple observation (radius of security) that makes the problem simpler. The Delaunay triangulation data structure and
associated algorithms are replaced by simpler ones (KD-Tree and convex clipping) while the same set of triangles is provably
obtained. The restricted Delaunay triangulation can thus be computed by an algorithm that is not longer than 200 lines of
code, memory efficient and parallel. The so-computed restricted Delaunay triangulation is finally post-processed to remove the
non-manifold triangles that appear in regions where the sampling was not regular/dense enough.
Sensitivity to outliers and noise is not addressed here. Noisy inputs need to be pre-processed with a pointset filtering method. In
the presented experimental results, we are using two iterations of projection onto the best approximating plane of the 30 nearest
neighbours (more sophisticated ones may be used if the input pointset has many outliers).

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Boundary representations & Curve, surface, solid, and object representations
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1. Introduction

Over the past two decades there has been a significant amount of
effort dedicated to the problem of surface reconstruction. The prob-
lem of surface reconstruction may be formulated as follows: given
a sampling of points from a surface, recover the original surface
from which those points were sampled. This general problem is
motivated by numerous applications in reverse-engineering, proto-
typing, visualisation, or computer vision since a growing variety of
scanning devices nowadays provides measurements of objects in
the form of point sets.

In the surface reconstruction problem we are given only a finite
sampling P ⊂ R3 of an unknown surface S. The goal is to build a
model of the surface S from the sampling P which is referred to
as a reconstruction of S from P. It is generally represented as a tri-
angulated surface mesh that can be directly used by computer pro-
grams from further processing. The reconstruction should match
the original surface in terms of geometric and topological proper-
ties. In general, surface reconstruction is highly under-constrained
and there are multiple triangulated surfaces that might fulfil these
criteria. The difficulty of meeting geometric and topological cri-
teria depends on properties of the sampling and on properties of
the sampled surface. In particular, sparsity, redundancy, occlusion,
noise, non-smoothness and boundaries make surface reconstruction
a challenging problem.

Surface mesh reconstruction methods can be divided into meth-
ods that approximate the points by an implicit function and meth-
ods that connect the points to form a surface mesh. The first ap-
proach is widely spread because it generates smooth and closed
meshes, usually by extracting the zero level of some potential field.
The second type of approach is useful whenever it is desired to keep
the input points, for instance when they represent measurements. In
geological applications, the points are usually obtained by complex
drilling simulations and they are expected to be contained in the
final mesh for further processing. In this paper, we are interested
in the second kind of approach, which aims at building a mesh by
connecting the input points.

We present a new reconstruction algorithm that generates a sur-
face triangulation from an input point set. Our algorithm is de-
signed to process a clean and accurately registered point set, and
does not attempt to average out noise, outliers or residual registra-
tion errors. The algorithm has several interesting properties: it is
very simple to implement and it is time and memory efficient.It is
"embarrassing parallel" and outperforms the concurrent algorithms
(by two order of magnitude in some cases). Our algorithm uses only
one data structure (a kd-tree), and accommodates evenly sampled
irregular points sets, as demonstrated in the results. It handles large
pointsets - up to 36 million points in minutes on an off-the-shelf
PC.

2. Related work

There are two classes of approaches which differ as to whether they
approximate or interpolate the input points.

The approximation methods aim to fit the best surface approx-
imating the sampling and they usually ignore the sampling noise

in the input data. A recent state-of-the-art and a benchmark of this
family of algorithms can be found in [BLN∗13, BTS∗14]. These
methods usually fit the points using the zero set of an implicit func-
tion, such as a signed distance function [HDD∗92, CL96, BC02],
a sum of radial bases [CBC∗01], piecewise polynomial functions
[ABCO∗03, OBA05, NOS09] or an indicator function [KBH06,
KH13, MPS08, ACSTD07]. In particular, the Poisson surface re-
construction method solves for an approximate indicator function
of the inferred solid, whose gradient best matches the input nor-
mals. The output scalar function, represented in an adaptive octree,
is then iso-contoured using an adaptive marching cubes [LC87].
Recently, a screened Poisson algorithm [KH13] has been intro-
duced which resolves the over-smoothing problem and offers the
ability to reconstruct meshes with boundaries.

Most of these methods estimate a signed-distance function. If
the input points are unoriented, an important step is to correctly in-
fer the sign of the resulting distance field [ACSTD07, MdGD∗10].
These approaches are well-equipped to handle various imperfec-
tions in the data. However, normal estimation in the presence of
imperfect data remains an open problem [MN03, DLS05].

The interpolation methods elaborate upon Voronoi-Delaunay
concepts and come with theoretical guarantees under sampling
conditions. Surveys of these algorithms can be found in [CG06,
Dey06]. Among these methods there are Tangent plane meth-
ods: [Boi84,GK02,CSD04,KY05,BG14], Inside/Outside labelling
methods: Power Crust [ACK01], Natural neighbors [BC02], Wrap
[Ede03,RS07], Convection [ACA07], Delaunay refinement [BO05]
and Restricted Delaunay based methods.

More precisely, our algorithm belongs to the category of the Re-
stricted Delaunay based surface reconstruction methods. The main
idea behind these methods is to filter out a subset of the Delaunay
triangulation Del(P) of the sampling P, by restricting it to some
subset of R3 (thickening of the point set) which is a good approx-
imation of the unknown surface S and can be efficiently computed
from P.

This idea is motivated by the fact that, if the input meets pre-
scribed sampling assumptions on its quality (ε-sampling), it has
been proven that the output mesh is homeomorphic to S (see the
theorems in [ES94, AB98]). The general ε-sampling framework
proposed by Amenta Bern [AB98] defines a real-valued function f ,
called the local feature size on a smooth surface S (as the distance
to the medial axis of S) and, essentially, requires that the sample set
P leaves no ball centered at a surface point p and of radius ε× f (p)
unsampled.

Alpha shapes are one of the first attempt to use this idea for sur-
face reconstruction, [EM94]. These methods define the dilation of
the pointset as the union of balls of radius α: P = ∪Bα(pi). Then
they build the α-complex which is the restriction of the Delaunay
triangulation of P to the union of α-balls : Del(P)|∪Bα(pi).

The Ball Pivoting algorithms [BMR∗99, DADSG11] are opti-
mized variants of Alpha Shapes where the computation of the 3D
Delaunay triangulation is avoided. They generate the surface incre-
mentally, starting from a single triangle and adding new triangles
to the surface by pivoting an α-ball. Since all the computations are
local, these algorithms exhibit linear complexity and are efficiently
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parallerized to handle large data sets [Dig14]. The method intro-
duced by Digne et al. [DMSL11] improves the noise-resilience of
the BPA by applying it to a scale-space version of the point set.

The Cocone algorithms, fist designed by Amenta and Bern
[ACDL00], build on the same idea. Here, the thickening of the
pointset is defined as the union of co-cones placed at each point
(double cones with opening angle of π/8 with respect to the esti-
mated normal). For the Cocone algorithm the theoretical guaran-
tees come with a sampling density at least 0.18× l f s(x) and for
θ = π/8. Intuitively, the Cocone angle θ absorbs the deviation be-
tween the estimated normal vector and the true normal of the sur-
face.

One of the main limitations of the Cocone algorithm is its com-
putation cost. For large datasets, the data structures employed ex-
ceed the system memory and processing speed becomes very slow.
Even if efficient and robust implementations of the 3D Delaunay
triangulation are used [CGAL, GEOGRAM], these algorithms do
not scale up well and cannot accommodate large data sets com-
prising dozens of million of points within a reasonable space and
time. Moreover, even on well sampled smooth surfaces, the worst-
case complexity of the 3D Delauany triangulation can be quadric
O(n2 logn), where n = ‖P‖ is the size of the sampling [Eri01].

Local Cocone variants were developed to mitigate this problem.
These algorithms are local in sense that the restricted Voronoi cells
of each point are computed using a small neighbourhood around
the point. Our method belongs to this category and in the following
we detail the state of the art of these algorithms.

Funke and Ramos [FR02] demonstrated that the Cocone algo-
rithm can be modified so that no global computation of the 3D De-
launay triangulation of the entire pointset is required. They intro-
duced an additional local uniformity assumption on the sampling
which requires a minimum separation between the sample points
(there is some δ ∈ {0,1} such that any p,q ∈ S must be separated y
a distance of at least δεl f s(p)). This involves decimating the input
pointset so that the working point set is a locally uniform subset of
the original input. Within this theoretical framework they showed
that the cocone triangles can be computed locally. Indeed, the re-
sulting restricted cocone of each point p is a local object in a sense
that it is completely determined by nearby samples, when the sam-
pling conditions are met. When the algorithm expands the calcu-
lation of the 3D Voronoi cell for each point p, it stops when the
distance between p and the new samples exceeds 3× dmax, where
the maximum distance of a point on a Voronoi edge of Vp within
Cp. Thus, the algorithm makes sure that the cocone region of each
3D Voronoi cell (with respect to the estimated normal) is computed
exactly since further nearest neighbours are added until it is sure
that the cocone region is not affected any more. The complexity of
the resulting theoretical algorithm is almost linear O(n logn), but it
has not been implemented.

Dumitriu et al. [DFKM08] used this locally uniform ε-sampling
framework to design a surface reconstruction algorithm with cor-
rectness guarantees. Although the algorithm is quite complicated,
Dumitriu et al. have produced an implementation [DFKM10].
Amenta and Kil [KA08] employed similar techniques to design a
very simple and efficient reconstruction algorithm which processes

the sample points in parallel on the GPU. However, all these algo-
rithms require a noise free locally uniform ε-sampling which is not
reasonable to expect from raw pointsets and the problem of build-
ing such sampling from an arbitrary input pointset is still open.

Alternatively, Dey et al. [DDW11] developed an octree-based
version of the Cocone algorithm such that the 3D Delaunay triangu-
lation is only computed on small clusters of the total point set. They
relaxed the local uniformity criterion and adopted the assumption
that the local sampling density is bounded by a constant, [ABL03].
Under this assumption, the Localized Cocone maintains the theo-
retical guarantees of the original Cocone algorithm.

The Localized Cocone has been implemented using the CGAL
library, to facilitate the computation of the 3D Delaunay triangu-
lation on each octree leaf. The reported results show that it recon-
structs inputs of 5 million points in more than 1 hour and uses more
than 2000MB of memory. Our algorithm described below takes less
than a minute on comparable point sets. In addition, in the local-
ized cocone algorithm, when the input pointset does not meet the
stringent sampling requirements, the manifold extraction step is not
particularly robust. If the sampling density is insufficient to ensure
a full umbrella of cocone triangles around a vertex, then in the sub-
sequent trimming stage of the algorithm, all cocone triangles are
removed. In practice, it is necessary to introduce heuristics to pre-
vent catastrophic failure to accommodate real sample sets. But in
this case, there is no longer a guarantee that the output will be topo-
logically correct.

3. The SSSR algorithm

Our algorithm is strongly related to the theoretical algorithm of
Funke and Ramos [FR02]. In particular, it uses similar ideas as in
the Localized Cocone algorithm [DDW11] and the Vorpaline algo-
rithm [LB12] but it differs from previous Cocone algorithms in two
main respects:

• Our algorithm computes the Delaunay triangulation of the
pointset restricted to a set of disks. Instead of computing the De-
launay triangulation then restricting it, we directly compute the
restricted Voronoi cells (intersections between the Voronoi cells
and the disks), and deduce the restricted Delaunay triangles from
the combinatorial information of the restricted Voronoi vertices
(see Section 3.4, Figure 3, Figure 5 below), this results in an al-
gorithm that is simple and "embarassingly parallel".
• We also present a new manifold surface extraction method which

avoids the trimming step (the most critical because it can end up
with an empty mesh). Starting from a subset of candidate trian-
gles which forms a clean and orientable manifold with bound-
aries, we add the remaining triangles, one by one, only if they
do not break the topological properties of the initial mesh. The
algorithm is guaranteed to terminate with a non-empty manifold
mesh.

The input is an unorganized 3D point set, possibly with normal
attributes (unoriented or oriented). The output of the algorithm is
a triangular mesh connecting the input points which approximates
the surface. Specifically, the output triangulation is a compact 2-
pseudo-manifold (see Section 3.7), it is orientable (no Moebius
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Figure 2: Overview of the algorithm.

strip) and may contain several connected components and bound-
aries.

The algorithm uses two pre-processing steps which allows us to
accommodate raw data sets. First, it uses a smoothing algorithm to
reduce the noise in the input data. Second, if input data does not
come with normals, it uses a normal estimation algorithm. Note,
however, that this algorithm does not need to consistently orient
the normals.

The general workflow of our algorithm in summarised in Figure
2. We give details of each of these steps in the following sections.

3.1. Kd-tree construction

During this initial step the data is loaded and prepared for the re-
maining operations. The vertices P are organized in a geometric
search data structure, such that for any pi we can efficiently com-
pute the list of nearest neighbours p j sorted by increasing distance
to pi, [Sam05].

To do this step, one can use the Approximate Nearest Neigh-
bours (ANN) library [MA97] which with ε set to 0 computes the
exact nearest neighbours for each point. We have developed our
own version of the same algorithm that only uses contiguous arrays
in memory. To save one integer per vertex, we compute a balanced
binary tree. As a consequence, the links are completely implicit in
the tree.

3.2. Smoothing

Since our algorithm interpolates the input points, it requires a clean
and accurately registered point set. Thus, if the input set is noisy
such as raw scanning data, it has to be smoothed before the recon-
struction.

Our current implementation uses projection onto the best ap-
proximating plane of the k-nearest neighbours, [HDD∗92]. Specif-
ically, for a point p and its k nearest neighbours {pi}k

i=1, we

find the fitting plane nT x = c for p by minimizing the error term
e(n,c) = ∑

k
i=1(n

T pi− c)2 under the constraint nT n = 1. Then, the
point p is projected onto this plane. We compute the best fit plane
for each point in parallel. Once all the points are projected, we up-
date the kd-tree.

Parameters: This step uses two parameters : the number of near-
est neighbours nb_neighbors (by default 30) and the number of
smoothing iterations smooth_iter (by default 0). We have used the
default values for the small data sets shown in the results, while,
for the large ones, we have done two iterations

3.3. Normal estimation

If the input points come without normals, our algorithm estimates
them locally with the best fitting plane following exactly the same
formulation as in the smoothing step, [HDD∗92].

Notice that the algorithm dose not need to orient the normals
since we only need an approximation of the (unoriented) normal
direction at each point which is used to create the tangent disk, in
the next step of the algorithm.

Parameters: This step uses one parameter: the number of nearest
neighbours nb_neighbors set by default to 30.

3.4. Candidate triangles

Figure 3: We compute the Voronoi diagram of the input pointset
restricted to a union of disks centered on the points and orthogo-
nal to the estimated normals. From left to right: the radius of the
disks is increased from 0.2% to 4% of the bounding box diagonal.
All the restricted Voronoi cells (colored polygons) are computed
in parallel. Whenever three restricted Voronoi cells meet, the three
corresponding input points will be connected with a triangle.

Given a pointset {pi}n
i=1 with estimated normals {ni}n

i=1 and
a radius r, our algorithm computes the intersection between the
Voronoi cells of the points Vor(pi) and the disks Dr

i of radius r
centered on the points and orthogonal to the normals.
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pi pj

Vor(pi)

Figure 4: The Voronoi cell Vor(pi) is the result of clipping the
entire space by all the bisectors (continuous lines) of the segments
[pi, p j] (dashed lines). Among the bisectors, some are contributing
(black) and some are non-contributing (gray).

During this step, we fist build a disk Dr
i at each point pi ∈ P

orthogonal to ni and with user-given radius r . In our implemen-
tation, we use a polygon (with 10 vertices) that approximates the
disk. In contrast with previous algorithms, we explicitly build the
restriction of the Voronoi cell Vor(pi) to the tangent disk Dr

i at p,
Vor(pi)∩Dr

i , as shown on Fig.3 and Fig.5. Thus we collect a set of
restricted Voronoi vertices.

The set T of candidate triangles is then defined by the triangles
which are dual to the restricted Voronoi vertices (more on this be-
low).

The basic operation in this step of the algorithm consists of clip-
ping the disk Dr

i with the Voronoi cell Vor(pi) of each point pi.
Here we use ideas that are similar to those presented in the Local-
ized Cocone algorithm [DDW11] which allows us to build locally
the candidates triangles by using only the k-nearest neighbours.
More precisely, we use the clipping algorithm and the local char-
acterization of the restricted Voronoi cells introduced in [LB12]
which we recall in the following in order to make the explanation
self-contained.

3.5. Clipping a disk

Let us recall that a Voronoi cell is a convex polytope, that can be
defined as the intersection of halfspaces : Vor(pi) =

⋂
j 6=i Π

+(i, j),
where Π

+(i, j) denotes the half-space bounded by the bisector of
(pi, p j) that contains pi. Note that the bisectors between pi and
all the other points are involved in the definition above, whereas
only a small subset of them corresponds to actual Voronoi edges
(see Figure 4). As a consequence, we can classify the bisectors
Π
+(i, j) into two sets : non-contributing if Vor(pi)⊂Π

+(i, j) and
contributing otherwise. In other words, clipping a Voronoi cell by
a non-contributing bisector does not change the result. Therefore,
the Voronoi cell can be computed by intersecting a superset of the
contributing bisectors.

Let p j1 , p j2 , . . . p jn−1 denote the vertices sorted by increasing dis-
tance from pi. Let Vk denote the intersection of the k first halfspaces

Di

pi

pj1

pj2

pj3

pj4

pj5

pj6

qij1j2

qj1j2i

qj2ij1

Figure 5: Clipping a disk Dr
i (in blue) by the bisectors of the neigh-

boring points p ji . The so-defined restricted Voronoi vertex qi j1 j2
and the associated restricted Delaunay triangle (pi, p j1 , p j2) are
highlighted.

and let Rk denote its pi-centered radius :

Vk(pi) =
k⋂

l=1
Π
+(i, jl)

Rk = max{d(pi,x)|x ∈Vk(pi)}.

We can then make the following simple observation: For all j
such that d(pi, p j)> 2Rk, the bisector Π

+(i, j) is non-contributing,
i.e. Vk(pi)⊂Π

+(i, j).

Consider p ∈ Vk(pi) and p j such that d(pi, p j) > 2Rk. By defi-
nition of Rk, d(p, pi) < Rk. We have d(pi, p)+d(p, p j)≥ (pi, p j)
(triangular inequality) and d(pi, p j) > 2Rk, therefore d(p, p j) >
Rk > d(p, pi) and p ∈Π

+(i, j) �

As a direct consequence of the previous observation:
d(pi, p jk+1)> 2Rk⇒Vk =Vor(pi).

We call radius of security the first value of Rk that satisfies this
condition. Note that this observation does not have a practical value
in the case of the (unrestricted) Voronoi diagram, since some cells
are unbounded and have infinite Rk therefore, for an infinite cell,
all the bisectors are considered, leading to prohibitive computation
time. However, the observation can be clearly used to compute the
restricted Voronoi cells Vor(pi)∩Dr

i , since they are finite (they are
contained by Dr

i ).

We use Algorithm 1 to build the restricted Voronoi cell for each
point, which is the intersection between the tangent disk and the
Voronoi cell of the point.

Note that each restricted Voronoi vertex q is the intersection be-
tween the disk Dr

i and the bisectors Πi, j1 and Πi, j2 . When we build
the clipped disk, we memorize the indices j1 and j2 which generate
every restricted Voronoi vertex. This allows us to easily output the
corresponding dual triangle i, j1, j2, see Fig. 5.

3.6. Set of candidate triangles

Once we have computed the restricted Voronoi cell Dr
i ∩Vor(pi) for

each point (pi), we are able to find all the triangles i, j1, j2 using the
stored indices. We call T the set of candidate triangles, that are dual
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Algorithm 1 Computes a Restricted Voronoi Cell, i.e. the intersec-
tion between a disk and the Voronoi cell of a point.
Data: the index i of the point xi, the disk Dr centred on it, the num-

ber of neighbours n and the set of points P
Result: Restricted Voronoi Facet at pi: Vor(pi)∩Dr

i

V ← Dr
i

Rk←max{d(p, pi)|p ∈V }
k← 1
while d(xi,x jk )< 2Rk f and k < n do

V ←V ∩Π
+(i, jk)

Rk←max{d(p, pi)|p ∈V}
k← k+1

end

to every restricted vertex. From this set T of candidate triangles,
that may contain a non-manifold configuration, we extract a clean
surface, in the next steps of the algorithm. Let us further analyse
the structure of T :

Figure 6: A: the set of triangles seen from three restricted Voronoi
cells (T3), with some holes (yellow). B: the set of triangles seen
from one or two Voronoi cells (T1,2, in red) fills some holes, but
have non-manifold configurations (e.g., the "sliver" formed by the
four red triangles in the right). C: result after carefully inserting the
T1,2 triangles one by one in a way that preserve manifold topology.
D: the remaining holes are suppressed by a post-processing step.

The set T of candidate triangles is composed of the restricted

Delaunay triangles T3 plus some other triangles, as explained be-
low.

The set T3 of restricted Delaunay triangles is defined as:

T3 = {(i, j,k) | (Vor(pi)∩Dr
i )∩(Vor(p j)∩Dr

j)∩(Vor(pk)∩Dr
k) 6= ∅}.

(1)

In other words, they correspond to triples of restricted Voronoi
cells (i, j,k) that are mutually in contact (see Figures 5 and 3).
These triangles can be easily found, by generating all the index
triples that correspond to the restricted Voronoi vertices, sorting
them (using for instance the lexicographic order) and keeping the
triples that appear three times in the sorted sequence. The so-
computed T3 triangles are displayed in Figure 6-A. Note that in
the sorted sequence, there are also triples that appear once or twice.
The corresponding set of triangles is referred to as T1,2 and is de-
fined by:

T12 = {(i, j,k) | Dr
i ∩Vor( j)∩Vor(k) 6= ∅}−T3. (2)

In other words, a triangle (i, j,k) is in T12 whenever the restricted
Voronoi cell of pi "sees" p j and pk but not both conversely. A 2d
example is shown in Figure 7(a): in the Voronoi cell of p j, Dr

j
(symbolized as a thick line) touches a side that is adjacent to a cell
Vor(pk) that is different from Vor(pi). Other examples are shown
in Figure 7(b), that correspond to nearly co-spherical configura-
tions. The so-defined T12 triangles are displayed in red in Figure 6-
B. As expected, they are not as "reliable" as the T3 triangles, in the
sense that they are likely to generate non-manifold configurations
(see for instance the four interconnected red triangles that form a
"sliver" in the top right part of the neck in Figure 6-B). However,
one can observe that they contain interesting information, and could
be used to fill the holes in the T3 triangles (Figure 6-A).

i

j

k

(a)

22

2 2

1

1 1

11

3
2

3

1 1

1

(b)

Figure 7: (a) Configuration resulting into a T12 triangle . (b) Con-
figurations of 4 co-circular where T12 triangles appear.

Thus, the idea is to start from the T3 triangles, then carefully in-
sert the triangles from the T12 set, one triangle at a time, making
sure that the reconstructed mesh remains manifold with the addi-
tional triangle inserted. If it is not the case, the triangle is rejected.
The algorithm that implements this idea is detailed in the next sec-
tion.

Parameters: This step uses one parameter : the disk radius (in %
of the bounding box diagonal). Note that this is not a "real" param-
eter as it is the case for any Ball Pivoting algorithm, for example.
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Indeed, when the radius r is sufficiently large (i.e. larger than the
width of the Voronoi cells), the disks Dr touch all the sides of their
Voronoi cells (like on the bottom-right of Figure 3), and increasing
the radius no longer changes the result. Thus, the radius can always
be set to some large value. In our experimental results, we used
r=5% of the bounding box diagonal and we decrease the size in
order to accelerate the clipping for the very large data sets (r=0.5%
bbox diagonal when number of vertices > 10M).

3.7. Manifold mesh extraction

The original "prunning and walking" approach [ACDL00] consists
of first deleting all triangles incident to sharps edges and then ex-
tracting the outer boundary of the set of remaining triangles by a
depth-first walk along each of its connected components. As men-
tioned earlier, this algorithm is not particularly robust and uses
many heuristics for the practical implementation and may end up
with an empty mesh.

Here we take a different strategy which allows us to avoid this
problem. We first build a clean orientable 2-manifold mesh with a
subset of the candidate triangles. Then we fill the holes iteratively,
with the remaining triangles, if they do not jeopardize the topolog-
ical properties of the output.

More precisely, the mesh structure that we build incrementally
is a manifold mesh where each edge can only be adjacent to two
facets, edges with only one incident triangle are allowed, as well as
triangles adjacent only by one vertex (this is a non-manifold vertex
whose neighbourhood is not a topological 2-sphere). The output
mesh (also known as a 2-pseudo-manifold [Mun84]) is orientable
and can have several connected components.

We initialize the output mesh with all T3 triangles. Then we
remove the triangles which exhibit non-manifold edges and non-
manifold vertices by excess. Recall that a non-manifold edge is in-
cident to more than 2 triangles, while a ’by-excess’ non-manifold
vertex has a closed loop of triangles (clean umbrella) in its neigh-
bours plus additional triangles (see Fig. 8(a)) We also check that
there are no Moebius strips within the initial mesh (see Fig. 8(b)).
Note, that the initial mesh can however exhibit triangles incident to
each other only by a vertex.

(a) (b)

Figure 8: (a) Combinatorial test III. A non-manifold vertex ’by
excess’. (b) Combinatorial test IV. Moebius band.

We then fill the holes of the initial mesh with the remaining tri-
angles from T12. The T12 triangles are tested against the following
criteria, from the simplest to the most time consuming. Whenever
a criterion is not satisfied, the considered triangle is rejected. Only
the triangles that pass all the test are inserted in the final surface.

• Geometric test: This criterion ensures that the normals of the
neighbouring triangles agree, which means that they do not make
a sharp edge (less than π/4)

• Combinatorial test I: This connectivity test ensures that the tri-
angle is properly connected to the current mesh. Every new tri-
angle should be either incident to two edges of existing triangles,
or to one edge of an existing triangles and one isolated point.

• Combinatorial test II: This test checks for non-manifold edges
and tests whether the three candidate edges are manifold.

• Combinatorial test III: This criterion checks that inserting the
new triangle do not generate ’by-excess’ non-manifold vertices.

• Combinatorial test IV: This global orientability test checks if
in the neighbourhood of the triangle the same connected compo-
nent appears with two opposite orientations, then connecting the
triangle would create a Moebius strip. The triangle is rejected if
it is incident to the same connected component with two different
orientations.

In the following, we give the overview of the manifold extraction
algorithm :

Algorithm 2 Extracting the manifold mesh.
Data: A set of candidate triangles T
Result: An orientable 2-manifold mesh built from T

(1) Compute the subsets T 3 and T 12 of triangles
(2) Initialize the mesh M with the subset T 3
(3) Remove from M :
- triangles incident to non-manifold edges (Test II)
- triangles which are incident to non-manifold vertices by excess
(Test III)
- triangles inducing orientability problems (Moebius strip) (Test
IV)
(4) Tentatively add into M each triangle t from T 12 if it success-
fully passes all following tests:
- Geom. Test : the normals to t and its neighbour should not point
to opposite directions
- Test I : t is incident to at least two edges of existing triangles, -
Test II : t does not create non-manifold edges - Test III : t does
not create non-manifold vertex by excess
- Test IV : t maintains the global orientability of the mesh

The output of this algorithm is an orientable triangular mesh
which has no non-manifold edges but can have non-manifold ver-
tices, such as a pinched torus. It possibly has several connected
components and boundaries.

Parameters: This step uses one parameter which is the maximum
deviation angle between the triangles normals max_N_angle. We
always use the default value set to 60 degrees.

3.8. Post-processing

At this point, after the manifold extraction test, the obtained mesh
may still contain a number of isolated holes, caused mainly by in-
sufficiently sampled sharp features (see e.g. the top of the ears of
the horse in Figure 12 C). To eliminate these, we add an extra post-
processing step, that fills some of the holes.
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The algorithm takes an user-defined maximum hole size parame-
ter, in terms of number of edges. Then it looks for simply connected
holes and fills them using a classical loop-split algorithm [Lie03].
This algorithm splits the hole recursively until it gets holes com-
posed of exactly 3 edges and fills them with the corresponding tri-
angle.

In order to ensure that the holes are simple loops, we first
search and remove the configurations where the holes contain
"bridges"(see Fig.9). We call bridge triangles those which are vis-
ited more than one time when we walk around the border edges of
a hole. Note that this definition dose not capture bridges wider than
two triangles but we did not encounter any, in practice.

(a) (b)

Figure 9: (a) Simple bridge. (b) Double bridge.

Parameters: This step uses two of the following four parameters
which give the size of the holes to be filled and the connected com-
ponents to be removed. In our experiments, we have always used
the default values:

• max_hole_area (=5%) : Fill holes smaller than (in % total area)
• max_hole_edges (=500) : Fill holes with a smaller number of edges
• min_comp_area (=0.01%) : Remove small components (in % total area)
• min_comp_facets (=10) : Remove small components (in facet number)

4. Experimental results and Discussion

Our implementation is available in C++, in the supplemental ma-
terial, together with datasets and comparison data for ScaleSpace
reconstruction [Dig15], screened Poisson [KH13] and SuperCo-
cone [DDW11]. The implementation is straightforward. A naive
implementation fits within 200 lines of code (100 for the Kd-Tree,
50 for the polygon clipping routine and 50 for putting everything to-
gether). Our parallel implementation uses 2000 lines (the additional
lines are for manifold extraction, book-keeping, handling several
options, and for the parallel implementation).

We tested our algorithm on a database of examples available
from the world-wide-web [AIM, Sta, Far, EE] and compared the
results with the three state-of-the-art methods cited above. Our
database of examples is decomposed into two subsets SMALL (up
to 1 Million of points) and LARGE (from 1M up to 36M).

Table 1 lists the models and reports the timings for the four al-
gorithms. We used implementations written by the authors of the
cited methods, and the same computer for all the tests [Proces-
sor: Intel Core i7-4900MQ CPU @ 2.80GHz, RAM:16Gb, Disk:
SSD LITEONIT LCS-256M6S 2.5 7mm 256GB, OS:Linux 4.4.0-
1-amd64 - Debian distribution]. Our algorithm takes 5 minutes to
reconstruct a surface from 36.2 million points.

Model Size SSSR SCocone ScSpace ScrPoisson
#M vert. sec. sec. sec. sec.

hotdog 0.001 0.07 0.22 10.86 1.78
sphere 0.03 0.24 2.16 1.54 7.77
horse 0.1 1.17 13.96 KO (3004) 18.82
daratech 0.24 2.07 34.79 37.43 28.23
anchor 0.26 2.23 34.57 crash 48.73
dame 0.31 2.88 44.91 39.98 46.00
hand 0.32 2.59 52.01 KO (922) 59.50
lord quas 0.35 3.42 54.31 45.99 32.14
bunny 0.36 4.86 50.23 29.31 48.95
dc 0.46 4.23 71.52 32.41 49.14
MagaliHand 0.7 8 109.7 KO (591) 48.18
eagle 0.79 10.72 113.4 127 118.8
Nasa 0.88 9.89 117.5 105.01 105.27

Cube 1.01 14.51 139.78 161.81 134.04
PerfumeBottle 1.25 13.27 172.18 187.74 122.39
Galaad 1.45 17.19 210.20 368.75 79.72
ToyTurtle 1.47 16.34 207.62 303.23 100.19
SophieHand 1.58 19.29 217.27 334.43 107.54
chineseDragon 1.76 24.63 250.39 KO (899) 149.65
PooranHand 2.10 21.76 312.98 480.45 94.42
PierreHand 2.63 27.40 379.66 643.41 115.94
TrungHand 2.83 42.19 408.76 699.65 132.13
HeleneHand 3.65 38.60 543.62 736.48 119.91
cutanubis 5 45.50 crash KO (2522) 84.01
anubis 9.99 88.50 1806.62 2153.13 170.18
night 11.05 110.19 1805.97 crash 567.25
lucy 14.02 131.76 2307.91 1483.31 267.42
tanagra 16.38 173.27 2673.32 2301.94 274.55
facadeValGrace 29.46 340.66 KO (4730) crash 856.70
chateauRives 32.75 360.56 crash crash KO (543)
rosetta 36.2 352.88 crash crash 675.81

Table 1: Comparison of processing times for the 4 methods. Tim-
ings are in seconds and model sizes in million vertices. We used
implementations written by the authors of the cited methods, and
the same computer for all the tests [Intel Core i7-4900MQ CPU @
2.80GHz, 16GB]. For the three biggest models, ScaleSpace crashed
on all of them, SuperCocone ran out of memory on some models,
and Poisson failed on some models (probably due to incoherent
normals). KO means that the result has too many holes or is mostly
unrelated with the data or the computation time explodes as com-
pared to data of similar size.

The implementation is very simple, with no dependencies, and
thus can be easily ported to any architecture. We ported it to an
Android phone [HTC M7, Processeur: ARMv7 NeonFPU 4 cores,
RAM: 2Gb, Android 4.4 (kitkat)]. The algorithm exploits the 4
cores of the phone. It is approximately 10 times slower than on
the PC. It took 1.5 seconds to reconstruct 25K points, 7.5 sec. for
70K points, 14 sec. for 200K points and 55 sec. for 900K points.

The timing breakdown of the different phases of our algorithm,
computed on the entire database are summarized in the charts in
Figure 10 and size-time curves for all methods and datasets are
shown in Figure 11.

We also show some images with example results from our
dataset. To be able to analyse and compare the behaviour of the al-
gorithm, we deactivated the post-processing step of our algorithm,
so that what we compare with the state of the art in the images is
the output of the manifold extraction of our algorithm. Figure 12
shows a horse sampled with 100000 points with a varying sam-
pling density. ScaleSpace has difficulties finding the correct scale
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(a) (b)

Figure 10: Timing breakdown of the different steps of our algo-
rithm. (a) Small data. (b) Large data with two iterations of smooth-
ing.

Figure 11: Performance of the tested algorithms. Up, timings ob-
tained on the Small data. Bottom, timing obtained on the Large
data.

in this dataset, and takes more than 3000 seconds. The result has
holes when the triangles are larger than the estimated scale. Su-
perCocone divides the input points into several subsets using an
octree. It sometimes fails to recover triangles that cross octree cells
boundaries. This behaviour of ScaleSpace and SuperCocone is also
observed on the hand dataset in Figure 13. In this figure, one can
observe that Poisson depends on a correct orientation of the nor-
mals.

In Figure 14, we show the behaviour of the algorithms for a noisy

Figure 12: Comparison of the algorithms with a small dataset
(100K vertices) that has high variations of sampling density.

Figure 13: Poisson needs consistent normal orientations.
ScaleSpace had difficulties estimating the scale, and lost features
(finger tips).

pointset(original registered pointset data for the Stanford bunny).
For this data, Poisson both cancels the noise and recovers fine de-
tails. ScaleSpace manages to extract a manifold mesh that exactly
follows the details of the data, even when it is very bumpy. Our
algorithm outputs a result that is very similar to that of SuperCo-
cone. The same dataset with one iteration of smoothing is shown
in Figure 15. All the algorithms give a similar result. Note the
aligned missing triangles in SuperCocone at boundaries between
octree cells.
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Figure 14: A noisy dataset (original scanner data of the Stan-
ford Bunny). Poisson both filters-out the noise and recovers the fine
features. ScaleSpace successfully extracts a continuous manifold
mesh. SuperCocone and our algorithm recover a smaller number
of triangles.

Figure 15: The same dataset as in Figure 14 with one iteration of
smoothing applied. The methods give similar results.

Figure 16 shows the results obtained from another scan-
ner dataset. Similar behaviour is observed. On this dataset too,
ScaleSpace had difficulties estimating the right scale, resulting in
some missing triangles (but processing time, 300s, remains reason-
able as compared to the irregularly horse dataset). Our algorithm
computes the result in 27 seconds.

Figure 17 compares the result on a clean pointset that has bumpy
features (the feathers of the eagle). Poisson faithfully reconstructs

Figure 16: Experimental results with a scanned pointset of in-
termediary size (2.6 M vertices). Poisson performs well on this
data (it takes 45 seconds) ScaleSpace encounters some difficulties,
probably due to the structured patterns and varying sampling, and
misses some triangles (647 seconds). SuperCocone (379 s.) and our
method (27 s.) give a similar result. Note the aligned missing trian-
gles in SuperCocone result, at the junction between octree cells.

Figure 17: This dataset is clean (no much noise) but has small-
scale bumpy features. The behaviour of the methods is similar to
Figure 14: Poisson creates a detailed isosurface, and ScaleSpace
manages to extract a manifold mesh. SuperCocone and our method
create a smaller number of triangles. However, in our result, miss-
ing triangles form small holes, easily filled by our post-processing.

the features. ScaleSpace reconstructs a continuous manifold mesh
that also follows the bumpy features. SuperCocone and our al-
gorithm give a similar result, with more missing triangles than
ScaleSpace. However, the missing triangles are mostly small holes
that can be removed by our post-processing step.
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Figure 18: A dataset with 11 million vertices, extracted from a re-
construction (courtesy of the Digital Michelangelo project). Since it
is not raw scanned data, the only difficulty is the number of points.
Poisson creates a nice isosurface, that both respects the details and
fills-in the holes (time: 230 seconds). SuperCocone gives a good
result. It misses some triangles, probably in junctions between oc-
tree cells (time: 1806 seconds). Our algorithm gives a result that is
similar to the output of SuperCocone in 110 seconds. ScaleSpace
crashed on this dataset.

The ’night’ dataset in Figure 18 is a set of vertices from an al-
ready reconstructed surface, therefore it has no noise, and the only
challenge is its size. Poisson has no problem scaling-up, since its
representation (implicit function on an octree) is decoupled from
the data. Moreover, it very nicely fills all the holes in the input data.
SuperCocone scales up, but still misses some triangles at junctions
between octree cells. Scale Space crashed on this dataset.

Finally, we compare and analyse the result of our method for
the three largest datasets, with up to 36 million points. For such
datasets, existing Delaunay-based method (ScaleSpace and Su-
perCocone) start encountering memory limitations. ScaleSpace
crashed on all examples. SuperCocone gave an incorrect result
on one of them (’facade-val-de-grace’) since many triangles were
missing and crashed on the others (’chateau-rives’ and ’rosetta’).
The results are displayed in Figures 19 and Figure 1. A rendering
of ’rosetta’ is available in the supplemental material.

Results of the ’facade-val-de-grace’ are shown in Figure 19. For
this dataset, Poisson had some problems with some incoherent nor-
mals, causing bubbles to appear. It may not be too difficult to fix,
but the need for having coherent normals is a difficulty for us-
ing Poisson. SuperCocone missed many triangles, we suspect this
comes form their implementation that starts to encounter memory
problems.

We also show in Figure 1 on the first page, the ’chateau-rives’
example with 36 million points. For this dataset, only our algorithm
outputs a valid result.

Figure 19: A scanned pointset with 30 million vertices. On this
dataset, some normals were not coherent, causing some bubbles in
Poisson reconstruction (time: 856 seconds). SuperCocone gave a
result in 5011 seconds, but has many missing triangles (maybe it
starts reaching memory limits). Our algorithm took 340 seconds.

5. Conclusion

Based on a simple observation about the restricted Voronoi cell, our
algorithm has a trivial implementation, is embarassingly parallel
and economic in terms of memory resources, therefore it scales up
quite well to datasets with tens of millions vertices while keeping
computation times smaller than 5 minutes. Its simplicity makes it
possible to embed it into devices such as smartphones and cameras
with a CPU (see Android ARMV7 timings in Section 4).

Compared to the state of the art, it is not as good as Poisson
for filling the holes, and when ScaleSpace can estimate the correct
scale, ScaleSpace has a better set of candidate triangles (see e.g.
the eagle dataset). Regarding timings, our algorithm is the fastest,
by two order of magnitudes in some cases. However, one needs
to take into account that the implementation of SuperCocone that
we obtained from its authors is sequential, and could probably be
easily parallelized. We think that our algorithm will still be faster
since it does not need to compute any Delaunay triangulation (it
directly computes the Restricted Delaunay Triangulation).

Observing the relative timings of the different steps of our algo-
rithm, sadly, manifold extraction and post-processing clearly dom-
inate the "core" of the algorithm. We think there is room for im-
provement. Our implementation of hole filling is not well opti-
mized, not parallel, and we think it could probably be made two
or three times faster.

We designed this algorithm mainly with practical considerations
in mind. A theoretical study would be interesting. For now, the only
property that we can guarantee is that what we compute is exactly
the Delaunay triangulation of the input points restricted to the union
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of the Dr
i disks (see the observation in Section 3.5). In the results,

we observed that the behaviour of our algorithm is very similar to
the Cocone algorithm. Therefore, it would be interesting to char-
acterize the configurations where the outputs of both algorithms
match. We conjecture that it will be some variant of ε-sampling
conditions, that we plan to study in future work.

The algorithm is available in our open source GEOGRAM li-
brary [geo].
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