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Prediction-based control of linear input-delay system subject to state-dependent state delay -Application to suppression of mechanical vibrations in drilling

In this paper, we consider linear dynamics subject to a distributed state-dependent delay and a pointwise input-delay. We propose a prediction-based controller which exponentially stabilizes the plant. The controller design is based on a backstepping approach where delays are reformulated as hyperbolic transport PDEs. Infinity-norm stability analysis of the corresponding closed-loop system is addressed. We show that this result is of interest to suppress mechanical vibrations arising in drilling facilities, which have been attributed recently to a coupling between torsional and vertical displacement involving an implicit state delay equation. Numerical simulations illustrate the merits of our controller in this context.

INTRODUCTION

Mechanical instabilities are an important source of damage for drilling equipment, particularly in the oil industry. These undesirable dynamical behaviors cause wear-and-tear on the installations and sometimes lead to complete and premature failures. Three main types of instability arise: vertical vibrations, leading to pressure oscillation in the surrounding mud, whirl oscillations, due to an unbalanced drillstring, and torsional vibrations. All these vibration phenomena often degenerate into an oscillatory behavior referred to as stick slip phenomenon. It consists of a phase during which the drill bit velocity decreases, potentially up to a point where the bit stops rotating, followed by a phase where the angular velocity suddenly increases, up to twice the rotating velocity imposed on the rotating table at the top of the drill pipe. This is why this behavior has been the focus of many studies, aiming at identifying the mechanisms of self-excitation to suppress them. Conventionally, axial and torsional vibrations are considered as decoupled problems. The torsional dynamics is assimilated to an inverted pendulum excited by a rockon-the-bit friction term which decreases with the bit angular velocity, acting as an "anti-damping" term (see [START_REF] Navarro-López And | Modelling and analysis of stick-slip behaviour in a drillstring under dry friction[END_REF], [START_REF] Dankowicz | On the origin and bifurcations of stick-slip oscillations[END_REF]).

Lately, an alternative interpretation has emerged. The model proposed in [START_REF] Depouhon | Instability regimes and selfexcited vibrations in deep drilling systems[END_REF] instead attributes stick slip to a coupling between torsional and vertical displacements. Inspired by studies of tool chatter in metal machining, this work proposes to represent the torque acting on the angular bit velocity as a function of the vertical displacement. The model characterizing this displacement is an implicit statedependent delay equation and therefore leads to the study of 1 This research was supported by the ANR grant number ANR-15-CE23-0008.

an input-delay dynamics subject to distributed state-dependent state delay.

For this reason, in this paper, we focus on linear systems subject to constant (pointwise) input delay and state-dependent (distributed) state delay. We aim at designing a prediction-based control strategy for this problem. This class of controllers, more commonly known as Smith Predictor (see [START_REF] Smith | A controller to overcome dead time[END_REF], [START_REF] Artstein | Linear systems with delayed controls: a reduction[END_REF], [START_REF] Manitius | Finite spectrum assignment problem for systems with delays[END_REF]), is grounded on the use of a prediction of the system state on a time horizon equal to the input delay and aims at compensating it, which notably improves the transient performances. However, while its use is state-of-the-art for systems subject to a single constant input time-delay, its applicability to systems with both input and state delays has seldom and only recently been studied: a nominal prediction-based controller has been proposed in [START_REF] Kharitonov | An extension of the prediction scheme to the case of systems with both input and state delay[END_REF] for a linear systems subject to pointwise state and input delays (see [START_REF] Bresch-Pietri | Prediction-based control for linear systems with input-and state-delay-robustness to delay mismatch[END_REF] for a delayrobustness version of this result) and extended in Bekiaris-Liberis [2014] to encompass nonlinear dynamics and (potentially) distributed state delays. All these results consider the state delay as constant.

In this paper, we extend this methodology to tackle the case of a state-dependent state delay. This type of dependency has been considered in [START_REF] Bekiaris-Liberis | Compensation of state-dependent state delay for nonlinear systems[END_REF] for a specific class of state-dependent state delay systems which are not subject to input delay and in Bekiaris-Liberis and [START_REF] Bekiaris-Liberis | Compensation of statedependent input delay for nonlinear systems[END_REF] which consider state-dependency of the input delays, resulting in a very intricate relation between the system state and the control inputs which is not involved here. These have inspired the proposed prediction design.

Our stability analysis is grounded on PDEs tools that were proposed lately to address input delay compensation (see [START_REF] Krstic | Boundary Control of PDEs: a Course on Backstepping Designs[END_REF], [START_REF] Krstic | Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch[END_REF]) and were extended recently in [START_REF] Bresch-Pietri | Prediction-based control for nonlinear state-and input-delay systems with the aim of delay-robustness analysis[END_REF] to handle the case of an additional distributed state-delay. In this paper, we build on those previous contributions to propose a PDE framework accounting for state-dependency of the state delay. Modeling both actuator and state delays as transport PDEs coupled with the original Ordinary Differential Equation (ODE), we rely on a backstepping transformation of the distributed input to analyze the closed-loop stability. To formulate the corresponding target system, one needs to study an implicit functional PDE. While state delay is responsible for the implicit nature, the functional one originates from the fact that this delay is distributed. We then carry out an L ∞ analysis for the closed-loop system. This along with the prediction design is the main contribution of the paper.

The paper is organized as follows. In Section 2, we introduce the problem under consideration before providing the prediction-based control we propose. Then, we present the stability analysis of the closed-loop dynamics in Section 3. Finally, Section 4 is devoted to the application of this control strategy to the suppression of mechanical vibrations in drilling. We conclude with directions of future work.

PROBLEM STATEMENT AND CONTROL DESIGN

We consider the problem of stabilizing the following (controllable) linear system subject to a distributed2 space-dependent state delay and a constant input delay

Ẋ(t) =A 0 X(t) + A 1 t t-D 1 (X t ) X(s)ds + BU(t -D 2 ) +Ch(t) (1) in which X ∈ R n , U is the scalar input 3 , h is a known function of time, the state-delay D 1 : C ([-D, 0], R n ) → [0, D] (D > 0) is a continuously differentiable function, D 2 is a constant input- delay and X t denotes the function X t : s ∈ [-D, 0] → X(t + s).
Similarly, in the following, we denote X t,1 : s ∈ [-D 1 (X t ), 0] → X(t + s) and U t,2 : s ∈ [-D 2 , 0] → U(t + s). In the sequel, we consider4 that D 2 ≥ D.

Before presenting our strategy to handle the input-delay, we make an assumption on the nominal input-delay free system stabilization. Assumption 1. There exists κ :

C 0 ([-D 1 , 0], R n ) → R which is a linear and class C 1 feedback law such that the dynamics Ẋ(t) = A 0 X(t) + A 1 t t-D 1 (X t ) X(s)ds + Bκ(X t,1 ) +Ch(t) (2)
is globally exponentially stable, i.e. (see [START_REF] Kolmanovskii | Introduction to the theory and applications of functional differential equations[END_REF], [START_REF] Pepe | Converse Lyapunov-Krasovskii theorems for systems described by neutral functional differential equations in Hale's form[END_REF]), there exist a continuous functional

V 0 : C ([-D, 0], R n ) → R and constants C 1 ,C 2 ,C 3 > 0 such that C 1 ϕ ∞ ≤ V 0 (ϕ) ≤ C 2 ϕ ∞ (3) |∂ ϕ V 0 (ϕ)| ≤ C 3 (4)
and, moreover, the functional V 0 is differentiable along the trajectories of the closed-loop system (2) and

V0 (t) ≤ -V 0 (t) (5) 
It is worth noting that requiring a linear feedback map is not demanding as we consider linear dynamics.

Even if this assumption can seem quite restrictive at first glance, it actually encompasses a large class of systems. Indeed, all systems under a strict-feedforward form for example will satisfy it. More generally, all systems for which the backstepping methodology can be applied will fold under this assumption, as the following example illustrates it.

Example: Consider the plant

ẋ1 (t) =x 1 (t) + t t-D 1 (X t ) x 1 (s)ds + x 2 (t) (6) ẋ2 (t) =2x 1 (t) + x 2 (t) +U(t) (7) 
which is under the form (1) with X = [x 1 x 2 ] T and h = 0. The state delay D 1 is a given known state-dependent function.

Taking x 2 as a virtual input in ( 6) to map it into the target dynamics ẋ1 (t) = -x 1 (t) leads to the choice

κ(X t ) = -[x 2 (t) -v(t)] -2x 1 (t) -x 2 (t) + v(t) (8) = -7x 1 (t) -2x 2 (t) + x 1 (t -D 1 (X t )) -3 t t-D 1 (X t ) x 1 (s)ds in which v(t) = -2x 1 (t) - t t-D 1 (X t ) x 1 (s)ds (9) 
The control law (8) satisfies Assumption 1 as it is linear, of class C ∞ and the closed-loop system corresponding to

U(t) = κ(X t ) is ẋ1 (t) = -x 1 (t) + x 2 (t) -v(t) (10) ẋ2 -v(t) = -(x 2 (t) -v(t))
(11) which is exponentially stable.

We are now ready to carry out the prediction-based control design. With this aim in view, consider the state prediction history

P t (τ) = (12)              X(τ + D 2 ) if t -D -D 2 ≤ τ ≤ t -D 2 e A 0 (τ+D 2 -t) X(t) + τ+D 2 t e A 0 (τ+D 2 -s) Ch(s)ds + τ t-D 2 e A 0 (τ-s) × A 1 s s-D 1 (P s ) P t (ξ )dξ + BU(s) ds if t -D 2 ≤ τ ≤ t for t ≥ 0 and τ ∈ [t -D -D 2 ,t]
. We now use this prediction as argument for the nominal input-delay free control law in lieu of the original distributed state U(t) =κ(P t t,1 )

Theorem 1. Consider the closed-loop system consisting of (1) satisfying Assumption 1 and the control law (13) involving the prediction (12). Define the functional

Γ(t) = max s∈[-D,0] |X(t + s)| + max s∈[-D 2 ,0] |U(t + s)| (14) 
There exist R, ρ > 0 such that, for In order to properly understand the choice of the control law, we provide several comments next.

(X 0 ,U 0,2 ) ∈ C 0 ([-D, 0], R n )× C 0 (-D 2 , 0), R), Γ(t) ≤ RΓ(0)e -ρt ,
First, it is worth noticing that the function P t t defined through (12) is a D 2 units of time ahead prediction of X t , the state history over a time horizon. Indeed, integrating (1) between t and τ + D 2 with the use of the variation of constant formula, one obtains

X(τ + D 2 ) =e A 0 (τ+D 2 -t) X(t) + τ+D 2 t e A 0 (τ+D 2 -s) × A 1 s s-D 1 (X s ) X(ξ )dξ + BU(s -D 2 ) +Ch(s) ds =e A 0 (τ+D 2 -t) X(t) + τ+D 2 t e A 0 (τ+D 2 -s) Ch(s)ds (16) + τ t-D 2 e A 0 (τ-s) A 1 s s-D 1 (X s+D 2 ) X(ξ + D 2 )dξ + BU(s) ds
in which the last expression has been obtained performing a change of variable under the integral. One can observe that ( 16) is formally equivalent to the definition proposed in (12) and thus can obtain formally that P t (τ) = X(τ + D 2 ) for all τ ∈ [t -D,t]. Consequently, plugging the control law (13) into the original dynamics, one naturally infers that the resulting closedloop dynamics is exponentially stable, from Assumption 1. This is indeed the result stated in Theorem 1.

Second, note that we define the prediction as a function of two arguments: P t 1 (τ) is the prediction X(τ + D 2 ) computed at time t 1 , using X(t 1 ) as a starting point. This aims at emphasizing the choice we make to compute this prediction by incorporating measured delayed states in the definition (12) instead of relying on an open-loop integration of (1) as in Bekiaris-Liberis [2014]. Of course, without dynamics uncertainty, the two formulations are equivalent. However, in presence of uncertainty, P t 1 (τ) is likely to be different from P t 2 (τ) for t 2 = t 1 and, in all likelihood, this formulation should improve the robustness of the prediction-based controller to model mismatch.

Third, even if the equation ( 12) may seem implicit at first glance, this prediction is actually well-defined and the solution always exists and is unique, as the solution of the differential equation (1). Further, more interestingly, it is also practically computable, relying on suitable discretization scheme of the integral (see [START_REF] Van Assche | Some problems arising in the implementation of distributeddelay control laws[END_REF] for a study on the effect of this discretization scheme on the closed-loop stability of linear systems and [START_REF] Karafyllis | Numerical schemes for nonlinear predictor feedback[END_REF] where nonlinear dynamics are addressed and a time-varying discretization methodology is proposed. Alternatively, one can rely on a lowpass filter addition as proposed in [START_REF] Mondié | Finite spectrum assignment of unstable time-delay systems with a safe implementation[END_REF] for linear systems or on an approximate predictor as done in [START_REF] Karafyllis | Stabilization by means of approximate predictors for systems with delayed input[END_REF]), and only requires the knowledge of past values of the state and the input, as illustrated in Fig. 1 and2.

Finally, it is worth understanding that, contrary to Bekiaris-Liberis and [START_REF] Bekiaris-Liberis | Compensation of statedependent input delay for nonlinear systems[END_REF], we do not need to impose any restriction on the state-dependent delay rate here and thus to limit our result to a local one. Indeed, we consider that this state-dependency only affects the state delay. Consequently, the prediction ( 12) is not impacted by the state-delay rate, which can be arbitrarily large a priori and in particular can vary faster than the absolute time.

We now provide the proof of this theorem.

STABILITY ANALYSIS -PROOF OF THEOREM 1

In the sequel, for the sake of conciseness, we sometimes write D 1 (t) = D 1 (X t ) and Ḋ1 (t) = dD 1 dX t • Ẋt

PDEs reformulations

Consider the distributed variables

ζ (x,t) =X(t + D 1 (t)(x -1)) (17) ζ (x,t) =X(t + D(x -1)) (18) u(x,t) =U(t + D 2 (x -1))
(19) Those variables encompass the history of the state over a variable time horizon D 1 (X t ) and a fixed on D and the history of the input over a time horizon of length D 2 , respectively. The plant (1) can then be reformulated as the following PDE-ODE cascade

               Ẋ(t) = A 0 X(t) + A 1 D 1 (t) 1 0 ζ (x,t)dx + Bu(0,t) +Ch(t) D 1 (t)∂ t ζ (x,t) = (1 + Ḋ1 (t)(x -1))∂ x ζ (x,t) ζ (1,t) = X(t) D 2 ∂ t u(x,t) = ∂ x u(x,t) u(1,t) = U(t) (20)
and, in addition, one can obtain

D∂ t ζ (x,t) =∂ x ζ (x,t) ζ (1,t) =X(t) (21) 
Now, define the following distributed predictions, for (x, y) ∈

[0, 1] 2 , p(x,t) = e A 0 D 2 x X(t) + t+D 2 x t e A 0 (t+D 2 x-s) Ch(s)ds + D 2 (22) × x 0 e A 0 D 2 (x-y) Bu(y,t) + A 1 D 0 1 ( χ(y, •,t)) 1 0 χ(y, ξ ,t)dξ dy χ(x, y,t) =        ζ y + D 2 D x,t if xD 2 + D(y -1) ≤ 0 p x + D D 2 (y -1),t if xD 2 + D(y -1) ≥ 0 (23) χ(x, y,t) =                X(t + D 2 x + D 0 1 ( χ(x, •,t))(y -1)) if xD 2 + D 0 1 ( χ(x, •,t))(y -1) ≤ 0 p x + D 0 1 ( χ(x, •,t)) D 2 (y -1),t if xD 2 + D 0 1 ( χ(x, •,t))(y -1) ≥ 0 (24)
in which we introduced the function D 0 1 defined as D 0 1 ( χ(x, •,t)) = D 1 (X t+xD 2 ). In ( 22), p(x,t) simply accounts for the prediction X(t + xD 2 ), in accordance with (12), while χ(x, •,t) and χ(x, •,t) represent history of p(x,t) over time horizon of D and D 1 (X t ), respectively.

Finally, define the following backstepping transformation of u w(x,t) =u(x,t)κ 0 (χ(x,

•,t)) , 0 ≤ x ≤ 1 (25)
in which we introduced κ 0 (ζ (•,t)) = κ(X t,1 ). We have the following result which is proven in Appendix A.

Lemma 1. The infinite-dimensional backstepping transformation ( 25) together with the control law ( 13) transform ( 20) into the target system

                     Ẋ(t) = A 0 X(t) + A 1 D 1 (t) 1 0 ζ (x,t)dx +Ch(t) + Bκ 0 (ζ (•,t)) + Bw(0,t) D 1 (t)∂ t ζ (x,t) = (1 + Ḋ1 (t)(x -1))∂ x ζ (x,t) ζ (1,t) = X(t) D 2 ∂ t w(x,t) = ∂ x w(x,t) w(1,t) = 0 (26)
The aim of this backstepping transformation is to ease the Lyapunov analysis by introducing the suitable boundary condition w(1,t) = 0. This will appear clearly in the following section.

Lyapunov analysis

We are now ready to carry out the Lyapunov analysis. Consider the following Lyapunov functional candidate

V p (t) = µ 0 + 1 - 1 2p V 0 (t) 2p + b 2p D 2 1 0 e 2pµ 0 x w(x,t) 2p dx (27) in which V 0 has been introduced in Assumption 1, p ∈ N * and µ 0 > 1. Taking a time-derivative, one gets Vp (t) = -(2p(µ 0 + 1) -1)V 0 (t) 2p + (2p(µ 0 + 1) -1)V 0 (t) 2p-1 ∂ ϕ V 0 (X t )Bw(0,t) -b 2p w(0,t) 2p -b 2p 2pµ 0 2 0 e 2pµ 0 x w 2p (x,t)dx (28)
Using Young inequality and (4), one obtains

Vp (t) = -2pµ 0 V 0 (t) 2p -b 2p -(µ 0 + 1) 2p |C 3 B| 2p w(0,t) 2p -b 2p 2pµ 0 2 0 e 2pµ 0 x w 2p (x,t)dx (29) Consequently, choosing b > (µ 0 + 1)|C 3 B| (30) it follows that Vp (t) ≤ -2pηV p (t) (31) 
in which η = min µ 0 µ 0 +1 , 1 D 2 and thus

V p (t) 1 2p ≤e -ηt µ 0 + 1 - 1 2p 1 2p V 0 (0) + b D 2 1 0 e 2pµ 0 x w(x, 0) 2p dx 1 2p (32) 
This gives

µ 0 + 1 - 1 2p 1 2p V 0 (t) + b D 2 1 0 e 2pµ 0 x w(x, 0) 2p dx 1 2p ≤ 2e -ηt µ 0 + 1 - 1 2p 1 2p V 0 (0) + b D 2 1 0 e 2pµ 0 x w(x, 0) 2p dx 1 2p
(33) Taking the limit as p tends to infinity, one obtains

V 0 (t) + b max x∈[0,1] e µ 0 x |w(x,t)| ≤ e -ηt V 0 (0) + b max x∈[0,1] e µ 0 x |w(x, 0)| (34)
Finally, using (3), the fact that κ is linear from Assumption 1 and applying Young and Cauchy-Schwarz inequalities to the backstepping transformation (25), one obtains the desired result. rotating velocity at the surface. These are transmitted to the Bottom Hole Assembly (BHA) several kilometers downhole, which holds the drill bit that chatters and cuts the rock, thus creating the borehole. Axial and torsional displacement waves travel up and down the drillstring at a finite velocity, while the BHA is considered as a lumped oscillating mass. A nonlinear law describes the interaction of the drillbit with the rock, akin to a cutting process: both the torque and weight-on-bit are proportional to the depth of cut, defined as the vertical displacement of the bit over one revolution. More precisely, the following equations describe the deviation of the system states from an equilibrium (see [START_REF] Germay | Multiple mode analysis of the self-excited vibrations of rotary drilling systems[END_REF]).

• Topside actuation λ (0,t) = µ(0,t) + 2 wop (t) (35) ϕ(0,t) = ψ(0,t) + 2 Ω(t) (36)

• Propagation of axial and torsional waves (0 ≤ x ≤ L p ) λ t (x,t) + c a λ x (x,t) = 0, µ t (x,t)c a µ x (x,t) = 0 (37) ϕ t (x,t) + c τ ϕ x (x,t) = 0, ψ t (x,t)c τ ψ x (x,t) = 0 (38) • Velocity continuity at the drillstring -BHA junction

µ(L p ,t) = -λ (L p ,t) + 2V (t) (39) ψ(L p ,t) = -ϕ(L p ,t) + 2Ω(t) (40) 
• Dynamics of the BHA

V (t) = α [λ (L p ,t) -V (t)] -β t t-t N -t N (t) V (s)ds -γ tN (t) (41) 
Ω(t) = α [ϕ(L p ,t) -Ω(t)] -β t t-t N -t N (t) V (s)ds -γ tN (t) (42) 
In each right-hand-side, the first term represents the interaction with the drillstring, while the second and third terms represent the interaction with the drillbit (see [START_REF] Germay | Multiple mode analysis of the self-excited vibrations of rotary drilling systems[END_REF]). • Implicit definition of the delay

t t-t N -t N (t) Ω(s)ds + Ω 0 tN (t) = 0 (43) 
All states and parameters are defined in Table 1, with their dependence on time t and space x. We consider that the top and bottom velocities 5 are measured and that the actuation act on the torque, as modeled by ( 35)-(36). 

D 2 =L P /c τ , D 1 (X t ) = tN + tN (t) (44) 
X(t) =[V (t) Ω(t)] T (45) 
U(t) =[λ (0,t -L p (1/c τ -1/c a )) ϕ(0,t)] T (46) 
A 0 = -α 0 0 -α , A 1 = -β 0 -β 0 (47) B = -A , C = - γ γ and h(t) = tN (t) (48) 
The choice of U in (46) follows by noticing that λ (L p ,t) = λ (0,t -L p /c a ) and ϕ(L p ,t) = ϕ(0,t -L p /c τ ) due to the transport equations ( 37)-( 38).

It is worth noticing that, contrary to what could seem at first glance, the control choice ( 46) is causal. Indeed, we simply choose to voluntarily introduce an additional actuation delay in the control path: instead of controlling λ (0,t), we define λ (0,t) = λ 0 (t + L p (1/c τ -1/c a )) and control λ 0 (t). This procedure leads to the formal control definition U(t) = λ (0,t -L p (1/c τ -1/c a )) which is nevertheless causal. It aims at complying with the formulation (1) which considers a unique input delay. One can reasonably expect that this should limit the control performance and should be investigated in future works.

Finally, Assumption 1 is satisfied with the feedback law κ(X t ) = -A 1 t t-D 1 (X t )

X(s)ds -Ch(t) -K 0 X(t) (49) in which K 0 is a given matrix such that the closed-loop matrix dynamics A 0 + BK 0 is Hurwitz.

Figures 4 and5 picture simulations where the proposed controller is used to stabilize the equilibrium corresponding to a nominal rotational velocity Ω 0 = 120 rev/min. We pick K 0 as a zero matrix as the parameters α and α are already positive. The controller is turned on after 10 seconds. One can observe that, first, the system exhibits an oscillatory behavior in openloop (before 10s). Then, when the controller is switched on, the systems exponentially converges to its equilibrium, as expected from Theorem 1. Better performance could be obtained by tuning the feedback gain. This along with comparison with other controllers will be the focus of future works.

CONCLUSION

We have presented a predictor-based control design for system with state-dependent state delay and constant input delay. The The controller uses measurements of the "downhole" states (i.e. uncollocated), which is unrealistic in practice and fixing this will be the topic of future works. Similarly, extending results from the recent literature, the authors believe it is possible to handle multiple input with multiple delays with the same methods employed here.
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 5 Fig. 5. Torsional velocity of the BHA. The red line corresponds to the time instant when the controller is switched on. proposed controller effectively stabilizes models of coupled axial and torsional mechanical vibrations of drilling systems.
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	Symbol	Unit	Description				
	λ (x,t)	m.s -1	Downward axial displacement wave				
	µ(x,t)	m.s -1	Upward axial displacement wave				
	ϕ(x,t)	rad.s -1	Downward torsional displacement wave				
	ψ(x,t)	rad.s -1	Upward torsional displacement wave				
	c a	m.s -1	Axial wave velocity				
	c τ	m.s -1	Torsional wave velocity				
	wop (t)	m.s -1	(Scaled) weight applied by the operator				
	Ω(t)	rad.s -1	Rotational velocity applied by the operator				
	Ω 0	rad.s -1	Nominal rotational velocity				
	V (t)	m.s -1	Bit axial velocity				
	Ω(t)	rad.s -1	Bit torsional velocity				
	α, α', β ,		Bit-rock interaction law				
	β ', γ, γ'		parameters (positive)				
	tN	s	Nominal state-delay at the bit				
	tN	s	Deviation of the state-delay at the bit				
	L p	m	Drillstring length				
	Table 1. States and parameters of the mechanical				
		vibrations model (35)-(43)				
	Using the fact that L p /c a < L p /c τ (since c a = 5000 m.s -1				
	and c τ ≈ 3100 m.s -1 ), one can easily show that (35)-(43) can				
	be reformulated as (1) defining				
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While the top velocity is conventionally measured, the bottom one may actually not be available in practice. Future works will investigate the interest of extending the techniques employed in Bresch-Pietri and

Krstic [2014] 

in this case.

Note that the methodology we propose can be straightforwardly extended to handle pointwise state delay, provided that we know a suitable nominal feedback law, namely, that the analog of Assumption 1 holds in this context.

This assumption is only made for the sake of clarity of the exposition. One can easily observe that the proposed strategy straightforwardly extends to the case of multi-input subject to the same delay.

This assumption is also made for the sake of simplicity. When the state delay can potentially be larger than the input delay, the proposed prediction-based control strategy remains unchanged. Only the prediction computation (and the stability analysis) will need to be updated.

We start the proof by noticing p(x,t) = P t (t + D 2 (x -1)), that χ(x, y,t) = P t (t + D 2 (x -1) + D 1 (t)(y -1)) and that χ(x, y,t) = P t (t + D 2 (x -1) + D(y -1)) for (x, y) ∈ |0, 1] 2 . From (25) evaluated for x = 1 and x = 0, one thus directly gets that w(1,t) = 0 and that u(0,t) = w(0,t) + κ 0 (ζ (•,t)). For the remaining of this proof, we define q(x,t) =D 2 ∂ t p(x,t) -∂ x p(x,t) (A.1) r(x, y,t) =D 2 ∂ t χ(x, y,t) -∂ x χ(x, y,t)

3) Now, taking space-and time-derivatives of ( 22), one gets

and

x 0 e A 0 D 2 (x-y) B∂ x u(y,t)

in which we used an integration by parts. Observing that

in which ϕ 1 and ϕ 2 are given in Appendix A. Now, taking timeand space-derivatives of ( 24) and using the dynamics of ζ , one gets

Similarly, taking time-and space-derivatives of ( 24), using (A.7) and the fact that

))(y -1) ≥ 0 Plugging together (A.7),(A.8) and (A.9), one gets r(x, y,t) r(x, y,t) = (A.10)

and similarly rx , χx and rx . Then, taking a space-derivative of (A.10) and using the smoothness properties of the ϕ i functionals gathered in Appendix A, one can obtain the existence of continuously differentiable functionals α 1 , α 2 , α 3 and α 4 such that

As the dynamics (1) is linear, its solution does not escape in finite time and is infinitely continuously differentiable. Thus, from the smoothness properties of the functional gathered in Appendix A, it follows that the solution of these delayed differential equations is unique. One thus easily obtains that r(x, y,t) = 0 and r(x, y,t) = 0 for all (x, y,t) ∈ [0, 1] 2 × R + . Consequently, it follows that

13) which completes the proof.

Appendix B. EXPRESSIONS AND SMOOTHNESS PROPERTIES OF INTERMEDIATE FUNCTIONS AND FUNCTIONALS

The functionals ϕ 1 and ϕ 2 introduced in (A.7) are defined as,

The functions ϕ 0 , φ0 and the functional ϕ 3 introduced in (A.10) are defined as, for ψ ∈ C ([0, 1], R n ), ϕ 0 (x, y,t) = x + D 0 1 ( χ(x, •,t)) D 2 (y -1) φ0 (x, y) = x + D D 2 (y -1) ϕ 3 (x, y,t, u([0, ϕ 0 (x, y,t)],t), χ([0, ϕ 0 (x, y,t)],t)) • ψ = -(y -1)∂ x p (ϕ 0 (x, y,t),t) dD 0 1 d χ ( χ(x, •,t)) • ψ in which ∂ x p(x,t) is a function which depends on x, t, χ([0, x], •,t) and u([0, x], •,t) according to (A.5).