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Abstract. Lagrangian particle dispersion models require me-

teorological fields as input. Uncertainty in the driving mete-

orology is one of the major uncertainties in the results. The

propagation of uncertainty through the system is not simple,

and it has not been thoroughly explored. Here, we take an en-

semble approach. Six different configurations of the Weather

Research and Forecast (WRF) model drive otherwise identi-

cal simulations with FLEXPART-WRF for 49 days over east-

ern North America. The ensemble spreads of wind speed,

mixing height, and tracer concentration are presented. Uncer-

tainty of tracer concentrations due solely to meteorological

uncertainty is 30–40 %. Spatial and temporal averaging re-

duces the uncertainty marginally. Tracer age uncertainty due

solely to meteorological uncertainty is 15–20 %. These are

lower bounds on the uncertainty, because a number of pro-

cesses are not accounted for in the analysis.

1 Introduction

Lagrangian particle dispersion models (LPDMs) are com-

monly used to simulate transport of trace gasses and aerosols

for air pollution studies, greenhouse gas tracking, determi-

nation of sources of radiative releases (Stohl et al., 2012),

and forecasting of volcanic impacts. Lagrangian models are

efficient, flexible, and self-adjoint. The lattermost property

means that simulations can be run backward in time to find

the sources of species observed at a particular time and place,

which can provide a very large gain in efficiency. Backward

runs are used, among other uses, to invert measurements

to find source emission strengths and locations (Brioude et

al., 2011, 2013b; Locatelli et al., 2013) (and many others).

LPDMs are used at scales ranging from global to mesoscale.

Uncertainty in LPDM results is difficult to assess. Many

sources of uncertainty exist, among the most important be-

ing uncertainty in emissions and uncertainty in the driv-

ing meteorology. Lagrangian models require meteorological

fields as input. These are usually provided by operational

output or reanalysis from a numerical weather prediction

model. For global or large-scale simulations, output from

global operational models or associated reanalyses is com-

monly used. Mesoscale simulations require more finely re-

solved input data (here we define mesoscale as intended to

resolve features 10–100 km in size). Many groups run their

own mesoscale meteorological simulations. Assessing the

uncertainties and biases in those simulations is itself difficult,

since observations are sparse and themselves uncertain. Fur-

ther, the propagation of errors from the meteorological fields

through the LPDM is not trivial. Some aspects are obvious.

For example, random errors in wind direction will broaden

the plume from a small source. However, the limits of this

kind of thinking become clear quite quickly when one con-

siders a plume propagating in a spatially inhomogeneous and

temporally changing atmosphere, in which the errors also

change in space and time. This is precisely the situation for

which mesoscale simulations are needed.

In this paper we present LPDM (FLEXPART-WRF;

Brioude et al., 2013a) simulations driven by a six-member

ensemble of meteorological model runs. Other than the driv-

ing meteorology, the FLEXPART-WRF runs are identical.
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FLEXPART-WRF is run forward in time, transporting speci-

fied tracer emissions. We postulate that the ensemble spread

of wind speed and of mixing height represents the uncer-

tainty of the meteorological simulation. The spread of the

tracer concentrations then represents the meteorological un-

certainty as propagated through FLEXPART-WRF. However,

such a small ensemble probably does not represent the full

range of uncertainty. Biases due to errors in parts of the

model common to all configurations will produce biases in

the ensemble output that cannot be detected. We therefore

attempt to interpret the results with suitable modesty. Many

results are presented with one significant figure, or as ranges,

to avoid unwarranted precision. We also note that the gener-

ality of the results is unknown. The region we cover is in the

middle of a continent, with only modest terrain, and we only

consider 6 weeks of one season. We use spatially distributed

emissions; point sources might produce rather different re-

sults.

Hegarty et al. (2013) showed that differences between

LPDMs are much smaller than differences between mete-

orological models, pointing out the fact that uncertainties

most likely arise from the meteorological models when La-

grangian models are used. The propagation of uncertainty

from meteorological fields through an LPDM was addressed

by Lin and Gerbig (2005) for horizontal wind uncertainty,

and by Gerbig et al. (2008) for uncertainty in vertical mix-

ing. In both cases, they found that failing to account for

meteorological uncertainty produced backward simulations

with insufficient dispersion. They pointed out the impor-

tance of spatial correlation in the random errors. All errors

were assumed to be random; that is, biases were not ad-

dressed. Numerical uncertainties, especially those due to ter-

rain, were addressed by Brioude et al. (2012). Meteorolog-

ical performance of a group of regional air quality models

was evaluated by Vautard et al. (2012). Ensemble forecasts

were used to evaluate ozone predictability in Texas by Zhang

et al. (2007). Locatelli et al. (2013) used several different

global meteorological and transport model pairs to evalu-

ate uncertainty in methane inversions, finding large uncer-

tainties at regional and smaller scales. Several recent studies

(Chevallier et al., 2010; Houweling et al., 2010; Kretschmer

et al., 2012; Lauvaux and Davis, 2014) used small numbers

of models or configurations of one model to evaluate un-

certainties in carbon dioxide (CO2) simulations. Of these,

Kretschmer et al. (2012) and Lauvaux and Davis (2014)

worked at mesoscale with WRF meteorology. They explored

only the differences due to parameterization of vertical mix-

ing.

The Southeast Nexus (SENEX) campaign (http://www.

esrl.noaa.gov/csd/projects/senex/) was conducted in June and

July 2013. The NOAA WP3 aircraft made 19 science flights

(Fig. 1) from its base in Smyrna, TN (near Nashville). The

aircraft carried a comprehensive package of gas-phase and

aerosol chemistry instruments, as well as standard meteoro-

logical instruments.
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Figure 1:  Maps of the WRF domain with terrain height (m ASL) colored as background and 535 

showing Climate Reference Network sites (upper left) and flight tracks of the NOAA WP3 (upper 536 

right).  Lower panel shows CO tracer emissions used in the FLEXPART-WRF runs.  537 

Figure 1. Maps of the WRF domain with terrain height (m a.s.l.)

colored as background and showing Climate Reference Network

sites (upper left) and flight tracks of the NOAA WP3 (upper right).

Lower panel shows CO tracer emissions used in the FLEXPART-

WRF runs.

After presenting the model configurations (Sect. 2), we

evaluate the ensemble and its members against specifically

relevant observations (Sect. 3). Then we present the ensem-

ble spreads (Sect. 4), followed by discussion and conclu-

sions.

2 Model configurations

Six WRF configurations are used, as shown in Table 1. They

cover three axes of the configuration space, including two

different initial and boundary condition data sets, two differ-

ent planetary boundary layer (PBL) parameterizations, and

two different treatments of the soil variables. All are run on

a single 12 km horizontal grid covering most of the eastern

half of North America (Fig. 1). The vertical grid has 60 lev-

els, with 19 below 1 km a.g.l. and the lowest level at 16 m.

We note that the goal is to produce several reasonable so-

lutions, not to establish a single “best” configuration. All

configurations use WRF version 3.5, RRTMG (Rapid Ra-

diative Transfer Model) shortwave and longwave radiation,

Eta microphysics, and the Noah land surface model with

single-level urban canopy. The Grell 3D cumulus scheme

was used, with shallow cumulus option on for runs with the

MYNN ( Mellor–Yamada–Nakanishi–Niino) PBL scheme

and off for runs with the TEMF (total energy–mass flux)

PBL scheme. The model was initialized at 00:00 UTC each
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Table 1. Names and primary definitions of the six WRF configurations to be discussed.

Name Initialization PBL scheme Soil treatment Cumulus

GM GFS MYNN2 Direct Grell 3D with shallow

EM ERA MYNN2 Direct Grell 3D with shallow

EMC ERA MYNN2 Cycled Grell 3D with shallow

GT GFS TEMF Direct Grell 3D NO shallow

ET ERA TEMF Direct Grell 3D NO shallow

ETC ERA TEMF Cycled Grell 3D NO shallow

day and run for 30 h. Except for the runs with cycled soil

moisture and temperature, all initial and land boundary con-

ditions were taken from the global analysis (Global Forecast

System (GFS) or ERA-Interim). To make a continuous out-

put data set, the first 6 h of each daily run were discarded as

spin-up. Sea surface temperature (SST) was provided by the

US Navy Global Ocean Data Assimilation Experiment (GO-

DAE) high-resolution SST (see http://www.usgodae.org/

ftp/outgoing/fnmoc/models/ghrsst/docs/ghrsst_doc.txt), up-

dated every 6 h and interpolated between updates. No ob-

served data were directly assimilated into WRF, nor were the

WRF runs nudged toward any analysis. Most of these con-

figuration choices were the same as used for California in

Angevine et al. (2012). References for all WRF options can

be found in Skamarock et al. (2008).

We used a version of the FLEXPART Lagrangian parti-

cle dispersion model (Stohl et al., 2005) modified to use

WRF output (Brioude et al., 2013a). FLEXPART-WRF uses

the same grid spacing as in WRF. FLEXPART-WRF solves

turbulent motion in a Lagrangian framework using first-

order Langevin equations. The turbulent motion is stochas-

tic and parameterized using the Hanna scheme. That scheme

uses PBL height, Monin–Obukhov length, convective veloc-

ity scale, roughness length, and friction velocity. The PBL

height and friction velocity are read from the WRF output.

The PBL height in WRF with the MYNN PBL scheme is

calculated based on a turbulent kinetic energy (TKE) thresh-

old. With the TEMF PBL scheme, the PBL height is the level

reached by an entraining thermal from the surface (Angevine

et al., 2010). FLEXPART-WRF prescribes a turbulent pro-

file based on the Hanna scheme (Stohl et al., 2005), depend-

ing on convective, neutral, or stable conditions. Horizontal

and vertical turbulence are both calculated from the Hanna

scheme. We used the WRF output with an output time in-

terval of 30 min. The number of particles emitted per unit

time in each grid square is proportional to the tracer emis-

sions at that time and place in the inventory (described be-

low). Runs begin at 00:00 UTC on 4 May 2010 and run un-

til 00:00 UTC on 26 June 2010. Particles are retained until

they leave the domain. Each particle carries a fixed quantity

of tracer. The time of emission is carried with each particle.

We used time-average wind out of WRF to reduce trajec-

tory uncertainties (Brioude et al., 2012) as time-average wind

is more representative of the wind variability than instanta-

neous wind out of WRF. Brioude et al. (2012) have shown

that this setup conserves the well-mixed criterion in the PBL

in FLEXPART-WRF. Above the PBL, a simple coefficient of

diffusivity is used to simulate the horizontal turbulent motion

in the free troposphere. Particles are not exchanged directly

by turbulence between the PBL and the free troposphere but

by horizontal displacement or by the resolved vertical dis-

placement in the WRF wind.

We defined the FLEXPART-WRF output grid (which is

independent of the transport calculation) with a 12 km grid

spacing in both horizontal dimensions and 28 vertical lay-

ers, each 100 m thick. The horizontal grid corresponds to that

used for the driving WRF simulations. Particles are grouped

into six age classes on output, with maximum ages of 3, 6,

12, 24, 48, and 120 h since emission.

Approximately 1.8 million particles were emitted each day

of the simulation. No chemical transformation or deposition

was simulated. The spatial and temporal pattern of emissions

is that of carbon monoxide (CO) specified according the

US EPA 2011 National Emission Inventory, version 1, avail-

able as of 8 November 2013 (http://www.epa.gov/ttn/chief/

net/2011inventory.html#inventorydoc). Gridded (4 km reso-

lution), hourly emissions for a July average weekday in 2011

have been derived from this inventory, and are publically

available at the WRF–Chem data site: ftp://aftp.fsl.noaa.gov/

divisions/taq/emissions_data_2011/. Specific details on the

files and data sets used for spatial and temporal partition-

ing are supplied in the readme.txt file at the data site. Be-

cause the map projection and domain used in the WRF and

FLEXPART-WRF simulations are chosen to overlap with the

US EPA emissions grid, hourly emissions from the 4 km Na-

tional Emissions Inventory (NEI) inventory are simply com-

bined together within the 12 km grid resolution used here.

Details of the emissions are not directly relevant here, since

all runs use the same emissions and results are normalized.

When comparing with observed CO, it must be kept in mind

that there are a number of CO sources not accounted for in

these simulations. These include biomass burning, class-3

commercial marine vessels, and oxidation of methane and

volatile organic compounds.
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http://www.usgodae.org/ftp/outgoing/fnmoc/models/ghrsst/docs/ghrsst_doc.txt
http://www.usgodae.org/ftp/outgoing/fnmoc/models/ghrsst/docs/ghrsst_doc.txt
http://www.epa.gov/ttn/chief/net/2011inventory.html#inventorydoc
http://www.epa.gov/ttn/chief/net/2011inventory.html#inventorydoc
ftp://aftp.fsl.noaa.gov/divisions/taq/emissions_data_2011/
ftp://aftp.fsl.noaa.gov/divisions/taq/emissions_data_2011/


2820 W. M. Angevine et al.: Uncertainty in Lagrangian pollutant transport simulations

Table 2. Comparison statistics for all WP3 aircraft flights below 1000 m a.s.l. Model points are extracted along the flight track every 10 s,

linearly interpolated in space and time, and then averaged to 120 s. SD is the standard deviation of the differences, and r is the Spearman

rank correlation coefficient. Units are m s−1 for wind speed, K for potential temperature, and g kg−1 for water vapor mixing ratio. Sign of

bias is model–measurement. Number of points is 2026.

WP3 GM EM EMC GT ET ETC Ensemble mean

Wind speed mean bias 0.26 −0.14 −0.16 0.48 0.15 0.14 0.12

SD 1.7 1.7 1.7 1.8 1.8 1.8 1.5

r 0.64 0.72 0.72 0.66 0.67 0.68 0.72

Potential temperature mean bias −0.30 0.07 0.16 −0.16 0.30 0.58 0.11

SD 0.94 1.1 1.1 1.1 1.2 1.2 0.96

r 0.93 0.90 0.90 0.92 0.90 0.90 0.92

Water vapor mixing ratio mean bias −0.20 −0.73 −0.88 −0.76 −1.3 −1.6 −0.91

SD 1.6 1.5 1.5 1.5 1.5 1.5 1.3

r 0.74 0.79 0.79 0.76 0.78 0.78 0.82

3 Meteorological evaluation

Here we present some evaluation of the performance of each

of the WRF configurations. Our goal is to establish that each

of the runs has reasonable and comparable performance and

therefore that each is a suitable ensemble member. We do not

intend to comprehensively evaluate each run in this context.

Evaluation of specific processes such as vertical transport by

clouds is reserved for future analyses.

Table 2 presents a statistical comparison of each model run

to data from all 19 flights of the NOAA WP3 aircraft during

SENEX. All data below 1000 m a.s.l. are used, that is, data in

the daytime boundary layer and the nighttime residual layer.

All the runs produce statistics in the range usually considered

in the literature to be “good agreement”. While small differ-

ences may be statistically significant with such a large data

set, we do not consider the differences to be of practical sig-

nificance. These data, and all WP3 data presented herein, are

averaged to 120 s (approximately 12 km) to match the model

output grid. Calculations with 10 s data (not shown) produce

very similar results.

Soil moisture is a key control on meteorological model

performance (Chen et al., 2007; Koster et al., 2010; Kumar

et al., 2006; LeMone et al., 2008) because it governs the par-

titioning of incoming solar radiation into sensible heat flux

(heating the boundary layer) and latent heat flux (moisten-

ing the boundary layer). The six WRF runs use three dif-

ferent strategies to initialize soil moisture and temperature.

The runs with GFS initial and boundary conditions (“G”

runs) use the soil moisture directly from the GFS analysis

at 00:00 UTC each day, interpolated to the WRF grid. Runs

with ERA-Interim (“E” runs) do the same with the ERA-

Interim soil moisture. Cycled runs (“ExC”) start with the soil

moisture from ERA-Interim at 00:00 UTC on 28 May and

then run open loop. That is, the soil moisture for each day’s

run is taken from the 24 h forecast initialized the previous

day. This approach was shown by Angevine et al. (2014) and

Di Giuseppe et al. (2011) to improve results under some con-

ditions, although the differences in these runs are small.

The Climate Reference Network (CRN) (Diamond et al.,

2013) provides measurements of soil moisture at multiple

levels at 28 sites within our model domain. The time series

of modeled and observed soil moisture is shown in Fig. 2.

The runs using GFS soil moisture directly are clearly too

moist, and a strong tendency to dry down in the course of

each day is visible. Runs with ERA-Interim start and stay

close to the observations. Without cycling, these runs (EM

and ET) are too moist after day 170, and a diurnal cycle is

visible but smaller than with GFS. Run EMC stays closest

to the observations through the period. Around day 160, run

ETC falls below the observations and remains there until late

in the period. In Fig. 3, the observations of daily maximum

and minimum near-surface air temperature at the CRN sites

are shown along with the simulations from each WRF run.

All runs have a larger diurnal cycle than the observations.

Some of the differences between runs can be traced to the

soil moisture and shallow cloud treatment, but the details are

outside the scope of this paper.

Cycling soil moisture is vulnerable to errors in modeled

precipitation. Figure 4 shows the observed precipitation for

the whole period from the NOAA Stage IV analysis (http:

//data.eol.ucar.edu/codiac/dss/id=21.093), a blend of gauge

and radar measurements. The corresponding modeled pre-

cipitation is shown in Fig. 5, and the totals are in Table 4. All

of the WRF runs miss an area of precipitation in the north-

central part of the domain (roughly 38–40◦ N, 87–89◦W)

that occurs in late June, but otherwise the spatial patterns are

similar. All runs underestimate the total precipitation except

GM, which comes quite close despite the previously men-

tioned missing area.
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Table 3. Comparison statistics of near-surface (2 m) temperature for 28 Climate Reference Network sites. Model results are from the nearest

grid point to each site. Sign of biases is model–measurement.

GM EM EMC GT ET ETC Ensemble mean

Daily maximum bias 1.4 2.2 2.4 1.8 2.8 3.6 2.4

Daily maximum SD 2.2 1.9 2.0 2.3 2.4 2.9 2.1

Daily maximum r 0.35 0.43 0.42 0.43 0.40 0.34 0.44

Daily maximum 2 / 3 spread 1.5

Daily minimum bias −1.6 −0.86 −1.4 −2.0 −1.3 −2.1 −1.5

Daily minimum SD 2.9 2.8 3.0 2.7 2.6 3.0 2.8

Daily minimum r 0.46 0.48 0.44 0.47 0.49 0.45 0.47

Daily minimum 2 / 3 spread 1.0

Daily mean bias −0.13 −0.54 −0.41 −0.13 0.48 0.47 0.27

Daily mean SD 1.7 1.8 1.9 1.7 1.8 1.9 1.7

Daily mean r 0.54 0.46 0.44 0.52 0.43 0.39 0.48

Daily mean 2 / 3 spread 1.4

Table 4. Mean precipitation totals (mm) in the portion of the domain

shown in Figs. 4 and 5.

Stage IV observed GM EM EMC GT ET ETC

237 245 189 185 199 154 147

 34 
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Figure 2: Soil moisture mean of 28 Climate Reference Network stations.  Measurement at 20 cm 540 

depth is compared to second model level (10-40 cm).  Legend refers to table 1.  Run GM is often 541 

obscured by GT. 542 
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Figure 2. Soil moisture mean of 28 Climate Reference Network

stations. Measurement at 20 cm depth is compared to second model

level (10–40 cm). Legend refers to Table 1. Run GM is often ob-

scured by GT.

4 Ensemble spreads and their relationships

The ensemble spread of wind speed is shown in Fig. 6.

The averages are taken over all 50 days and hours

10:00–12:00 UTC (denoted AM) and 18:00–20:00 UTC (de-

noted PM). Throughout the text, we discuss the “2 / 3”

spread, that is, the difference between the fourth and second

ranking values of the six models at each point. This corre-

sponds to the common idea of uncertainty as a standard de-

viation (Taylor, 1997). The choice is discussed further in the

Discussion section below. Some tables also show the “full”
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Figure 3:  Daily maximum and minimum near-surface temperature averaged over 28 Climate 544 

Reference Network sites. 545 
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Figure 3. Daily maximum and minimum near-surface temperature

averaged over 28 Climate Reference Network sites.

spread (maximum minus minimum value). If the spread is

not explicitly qualified as 2 / 3 or full, the 2 / 3 spread is in-

tended. In the figures, spreads are normalized by the mean

value at that point from the six models, so a plotted value of

www.geosci-model-dev.net/7/2817/2014/ Geosci. Model Dev., 7, 2817–2829, 2014
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Table 5. Mean normalized CO tracer spreads at two levels of the whole domain with varying mixing ratio thresholds. Number of points is

also shown. Grid size is 216× 236, so maximum possible N = 50 976.

Threshold (mean mixing ratio >) 10 ppb 20 ppb 30 ppb 40 ppb 50 ppb

0–100 m a.g.l. AM 2 / 3 0.39 0.36 0.34 0.32 0.32

AM full 0.70 0.65 0.61 0.58 0.57

N 38 354 29 169 19 822 13 299 8568

PM 2 / 3 0.35 0.32 0.30 0.29 0.29

PM full 0.62 0.57 0.54 0.52 0.51

N 35 856 22 698 14 238 7739 3487

400–500 m a.g.l. AM 2 / 3 0.43 0.40 0.38 0.38 N too small

AM full 0.78 0.71 0.69 0.68 N too small

N 34 248 18 127 10 383 1963 20

PM 2 / 3 0.35 0.32 0.30 0.30 0.29

PM full 0.61 0.56 0.53 0.52 0.51

N 34 525 19 240 10 993 4045 1069

 36 

Figure 4:  Observed precipitation from the NOAA Stage IV product for 28 May – 15 July 2013 547 

(mm).  Edges of the domain are excluded for clarity. 548 
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Figure 4. Observed precipitation from the NOAA Stage IV product

for 28 May–15 July 2013 (mm). Edges of the domain are excluded

for clarity.

1 means that the spread is equal to the mean value. The level

of approximately 200 m a.g.l. is chosen to be relevant to both

daytime and nighttime transport. Mean and median spreads

are approximately 20 %. This includes the narrow band at

the domain edges where the spread is small, but the results

are only slightly reduced thereby. Some geographic features

are apparent, for example the Appalachian Mountains have

larger spreads than surrounding lowlands in the morning and

especially at midday. The largest spreads are found in north-

ern Florida, probably due to differences in thunderstorms be-

tween the WRF runs.

Mixing height is a key parameter in Lagrangian mod-

els. The ensemble spread of mixing height (also called PBL

height here) is shown in Fig. 7. The mixing height as used

within FLEXPART-WRF is shown, which is somewhat mod-

ified from the direct WRF output. In particular, a minimum

height of 100 m is imposed upon input to FLEXPART-WRF.

Figure 5. Total precipitation from each WRF run for

28 May–15 July 2013. Color scale same as Fig. 3.

The early morning PBL heights (10:00–12:00 UTC) have

large spreads in the eastern part of the domain and even

larger in the western part. This is largely because the TEMF

PBL scheme allows very low PBL heights as designed, while

the MYNN PBL scheme diagnoses higher heights. Near the

western edge of the domain, the three runs with TEMF

Geosci. Model Dev., 7, 2817–2829, 2014 www.geosci-model-dev.net/7/2817/2014/
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Figure 6:  Wind speed spread in early morning and midday from the WRF ensemble.  Spread is 553 

normalized by mean speed (therefore unitless) and averaged over all 49 days.554 
Figure 6. Wind speed spread in early morning and midday from

the WRF ensemble. Spread is normalized by mean speed (therefore

unitless) and averaged over all 49 days.

Table 6. Comparison statistics of CO and CO tracer for all WP3 air-

craft flights below 1000 m a.s.l. Model points are extracted along the

flight track every 10 s, linearly interpolated in space and time, and

then further averaged to 120 s. r is the Spearman rank correlation

coefficient. Number of samples is 1597.

Ensemble

GM EM EMC GT ET ETC mean

CO tracer 0.62 0.61 0.61 0.59 0.59 0.59 0.62

mixing

ratio r

PBL differ on the location and extent of high PBLs, which

are not present in the MYNN runs at all. In the afternoon

(18:00–20:00 UTC), PBL height spreads are moderate except

over water. Most land areas have spreads around 20 %. The

large spreads over water arise from differences in the temper-

ature and wind speed and direction. Overwater PBLs can be

stable and therefore shallow in the afternoon, but not at the

exact same times and places in the different runs. Mean PBL

height spreads over the whole domain are 50 % in the early

morning and 25 % at midday.
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Figure 7:  Spread of boundary layer height (mixing height) in the early morning and midday as 555 

interpreted by FLEXPART-WRF from the WRF ensemble input.  Spread is normalized by the 556 

mean value.  557 

Figure 7. Spread of boundary layer height (mixing height) in the

early morning and midday as interpreted by FLEXPART-WRF from

the WRF ensemble input. Spread is normalized by the mean value.

The effects of mixing height and wind speed can be

combined into a single quantity called “ventilation”, which

roughly expresses the tendency of emissions to be diluted

horizontally and vertically. The ventilation is simply the

product of mixing height and wind speed, in this case at

200 m a.g.l. (Fig. 8). The ventilation spread maps inherit pri-

mary features from the wind speed (Fig. 6) and PBL height

(Fig. 7) maps. In the early morning, the ventilation spread is

moderate in the east and large in the west. At midday, the Ap-

palachian Mountains stand out as areas of moderately large

spread, with quite large values over the Great Lakes, Florida,

and the Atlantic and Gulf coasts. Mean ventilation spreads

for the whole domain are 60 % in the early morning and 35 %

at midday.

Figure 9 shows the mean ensemble spread of tracer mixing

ratio in the lowest FLEXPART-WRF level (0–100 m a.g.l.).

Points with small mean values (< 10 ppbv) are masked out.

In the afternoon (lower panel) moderate spreads (roughly

30 %) are present over most of the central part of the domain.

Spreads are large near the Gulf Coast, Great Lakes, and off-

shore. Mean spread for the whole domain is 35 % (Table 5).

In the morning (upper panel), the area of moderate spreads
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Table 7. Spread and standard deviation statistics for all WP3 aircraft flights below 1000 m a.s.l. and for CRN 2 m temperature. Model points

are extracted along the flight track every 10 s, linearly interpolated in space and time, and then averaged over 120 s. CRN 2 m temperature

statistics are for all available hourly observations (N = 33 569). N = 2026 for P3 meteorology; N = 1597 for P3 CO. Columns are: standard

deviation of simulated minus observed value, full spread of the ensemble (highest minus lowest member at each point), spread of the inner

four of the six ensemble members (i.e., 2 / 3 spread), standard deviation of the observation, and standard deviation of the ensemble mean. CO

spreads and simulated CO standard deviation are normalized by the simulated ensemble mean. Observed CO standard deviation is normalized

by the observed mean with minimum value subtracted to account for background. For simulated–observed standard deviation of CO, two

values are shown; the smaller is normalized by the observed mean with minimum subtracted (71 ppb) and the larger is normalized by the

simulated mean (32 ppb).

Standard deviation Standard Standard deviation

of difference Ensemble Ensemble deviation simulated

(simulated-observed) spread (full) spread (2 / 3) observed ensemble mean

Potential temperature (P3) (K) 0.96 1.5 0.89 9.1 9.1

Water vapor mixing ratio (P3) (g kg−1) 1.3 2.0 1.3 2.3 2.1

Wind speed (P3) (m s−1) 1.5 1.9 1.3 2.2 2.3

2 m T (CRN) (K) 4.7 2.4 1.5 4.5 4.9

CO tracer mixing ratio (normalized) 0.39 (0.87) 0.54 0.31 0.46 0.58
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Figure 8:  Spread of ventilation (PBL height * wind speed) in the early morning and midday.  558 

Spread is normalized by the mean value.  559 
Figure 8. Spread of ventilation (PBL height ·wind speed) in the

early morning and midday. Spread is normalized by the mean value.

is smaller but the spatial distribution of values is similar.

Mean spreads are larger, roughly 40 %. Some areas with large

emissions – for example Atlanta, Georgia (approximate co-

ordinates 34◦,−84◦) – have relatively small spreads. Table 5

gives the mean spreads for several threshold values of mean

mixing ratio, showing that areas with larger concentrations

have slightly smaller spreads. Note that the tracer values do

not include any background CO, so areas unaffected by emis-

sions within the domain have zero mixing ratio. Absolute

values of mean tracer concentration and spread are shown

in the Supplement. These are useful for checking the reason-

ableness of the results, but difficult to interpret in terms of

uncertainty.

The near-surface layer is perhaps the most difficult layer

for the models, so in Fig. 10 we show the tracer spread

in the 400–500 m a.g.l. layer. The afternoon pattern and

mean values are similar to the 0–100 m layer, which makes

sense because boundary layer turbulence couples these lev-

els strongly during the day. In the early morning, normalized

spreads are larger in the upper layer than near the surface, be-

cause the upper layer is decoupled from surface emissions.

The WP3 aircraft flights provide another perspective on

the ensemble behavior of the CO tracer. Table 6 displays

correlations between the measured CO and the tracer from

each member and the ensemble mean. Biases and standard

deviations are not shown because computing them requires

strong assumptions about the emissions and background. In

Fig. 11, a two-dimensional histogram shows the frequency of

occurrence of tracer mixing ratio spread and mean age along

the flight tracks for all points with CO measurements below

1000 m a.g.l. The peak of the spread histogram is at about

20 % and 30 h age, and the mean spread is 30 % (median

21 %). Although the diagram suggests a correlation between

age and spread, its value is only 0.12 (Spearman). There are

a number of points with short ages and large spreads, and

a wide distribution of spread at any age. Fresh plumes near

sources explain the large spreads at short ages. These plumes

can be rather narrow, and small differences in wind direction

move them to slightly different locations. At longer ages, the
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Figure 9:  Mean ensemble spread of tracer mixing ratio at level 1 (0-100 m AGL).  The averages 560 

are taken over all 49 days and hours 0400-0600 LST (AM, top) and 1300-1500 LST (PM, bottom).  561 

The spread is normalized by the mean mixing ratio at each point.  Points with small mean values 562 

(<10 ppbv) are masked out.   563 

Figure 9. Mean ensemble spread of tracer mixing ratio at level 1

(0–100 m a.g.l.). The averages are taken over all 49 days and hours

04:00–06:00 LST (AM, top) and 13:00–15:00 LST (PM, bottom).

The spread is normalized by the mean mixing ratio at each point.

Points with small mean values (< 10 ppbv) are masked out.

spread distribution narrows because the air being sampled

has circulated through the domain for several days, and dif-

ferences in transport and mixing in specific locations have

been smoothed out. The spread may be asymptotic to a value

of 50–60 % at long ages.

We might have expected that spread and mixing ratio

would correlate inversely, plumes measured near sources

having little time to be transported differently, but the lower

panel of Fig. 11 shows no such correlation. Larger mixing

ratios occur near sources, but different source strengths place

those occurrences at different places on the x axis. In fact,

the peak of the histogram occurs at small to moderate spread

(10–20 %) and small mixing ratio (∼ 15 ppb). Figure S3 in

the Supplement shows scatterplots of the simulated CO tracer

from each ensemble member vs. CO measured on the WP3.

Tracer age is another important product from the

FLEXPART-WRF simulations, and its uncertainty should

also be evaluated. Figure 12 shows two-dimensional his-

tograms of age spread. The peak of the histogram is at mod-

erate ages (25–35 h) and spreads of 15–20 %. Overall mean

spread is 17 % and its median is 13 %. Age spread is not cor-

related with age or mixing ratio.
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Figure 10:  Mean ensemble spread of tracer mixing ratio at level 5 (400-500 m AGL).  The 564 

averages are taken over all 49 days and hours 0400-0600 LST (AM, top) and 1300-1500 LST (PM, 565 

bottom).  The spread is normalized by the mean mixing ratio at each point.  Points with small mean 566 

values (<10 ppbv) are masked out.   567 

Figure 10. Mean ensemble spread of tracer mixing ratio at level 5

(400–500 m a.g.l.). The averages are taken over all 49 days and

hours 04:00–06:00 LST (AM, top) and 13:00–15:00 LST (PM, bot-

tom). The spread is normalized by the mean mixing ratio at each

point. Points with small mean values (< 10 ppbv) are masked out.

5 Discussion

A key question in working with an ensemble is whether it

is reliable; that is, does the probability with which an event

occurs in the ensemble correspond to the probability of that

event in reality? For our application, we are interested in a

simpler but related criterion, whether the spread of the en-

semble is a good estimate of the uncertainty of the CO mix-

ing ratio (above background) at a particular time and place.

Uncertainty is often expressed by a standard deviation. One

standard deviation each side of the mean covers 66 % of a

Gaussian distribution. For those times, places, and variables

for which we have observations, we can compare the error

(simulation–observation) with the ensemble spread. These

relationships are tabulated in Table 7. Of the meteorologi-

cal variables, potential temperature and water vapor from the

aircraft show spreads somewhat larger than the standard de-

viation of the errors. Wind speed has approximately equal

spread and error. Temperature at 2 m from the Climate Ref-

erence Network sites has errors twice the spread. The CO

tracer error is sensitive to the choice of mean for normaliza-

tion, since the observed mean (minus its minimum) is twice

as large as the simulated mean. This is due largely to the
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Figure 11:  Frequency of occurrence of CO tracer spread along the P3 flight tracks vs. simulated 568 

mean tracer age (top) and simulated mixing ratio (bottom) for all points with valid CO 569 

measurements below 1000 m AGL.570 

Figure 11. Frequency of occurrence of CO tracer spread along the

P3 flight tracks vs. simulated mean tracer age (top) and simulated

mixing ratio (bottom) for all points with valid CO measurements

below 1000 m a.g.l.

neglect of non-anthropogenic sources in the simulations. The

spread–error relationship is therefore not useful in this situa-

tion.

Rank histograms (Hamill, 2001) are a method to visual-

ize the relationship between spread and error. Each measure-

ment is ranked among the values from the ensemble mem-

bers, and the ranks are counted. The expectation is that an

observation should fall with equal probability into each bin of

a ranked ensemble if the ensemble is reliable. Therefore the

histogram should be approximately flat, although caveats ap-

ply. In Fig. 13, the rank histograms for meteorological vari-

ables measured by the WP3 are shown. The potential temper-

ature histogram is fairly flat, indicating reasonable reliability.

An excess of points in the leftmost bin indicates a small bias

consistent with the values in Table 2. A more significant bias

to the right is found for water vapor. The wind speed spread

may be somewhat too small as indicated by the U shape of

the histogram. Figure 14 shows the rank histogram for 2 m T

at the CRN sites, for which the ensemble clearly has too little

spread.

For our six-member ensemble, the standard deviation can

be approximated as the range of the four inner members

(leaving out the minimum and maximum). This quantity is

tabulated as 2 / 3 spread in Table 7, and shown in the preced-

ing figures. It agrees better with the error (also defined as a

standard deviation) than the full spread for potential tempera-

ture and water vapor. This is the reason we have used the 2 / 3

 44 

Figure 12:  Frequency of occurrence of CO tracer age spread along the P3 flight tracks vs. 571 

simulated mean tracer age (top) and simulated mixing ratio (bottom) for all points with valid CO 572 

measurements below 1000 m AGL.  573 
Figure 12. Frequency of occurrence of CO tracer age spread along

the P3 flight tracks vs. simulated mean tracer age (top) and simu-

lated mixing ratio (bottom) for all points with valid CO measure-

ments below 1000 m a.g.l.

spread above and in our conclusions below. The 2 / 3 spread

is clearly too small for 2 m T at the CRN sites, for reasons

we have not explored.

The ensemble spreads presented above represent, by our

postulate, the uncertainty at a single point of a 12 km grid

in a single realization. For the maps in Figs. 9 and 10, the

spreads were computed with 3 h averaging. The comparisons

with WP3 data (Table 6) include no temporal averaging. The

uncertainty can be reduced by further averaging in space or

time. The effect of averaging depends on the degree of in-

dependence of the samples. Figure 15 shows the behavior of

the ensemble spread (uncertainty) with respect to spatial and

temporal averaging. Results are shown for individual hours

(11:00 and 19:00 UTC) and for 3 h averages, each spatially

averaged over 1, 3, 5, 7, 9, and 19 grid points in each di-

rection (1, 9, 25, 49, 81, and 361 points total). Averaging

is done to each mixing ratio field before the spread is cal-

culated. Points are also shown on the right axis for aver-

aging over the entire spatial domain. Removing the 3 h av-

eraging increases the spread by about 5 %. Averaging over

three points in each direction reduces the spread by about

5 %. Further reductions come with increased averaging, but

the gain is rather slow. Even averaging over nine points in

each direction only reduces the spread by 5–10 %. The re-

duction is much slower than would be expected if we naively

assumed that all points in the average or all points in each di-

rection were independent, in which case averaging would re-
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Figure 13:  Rank histograms for all P3 flight data below 1000 m AGL for potential temperature, 574 

water vapor mixing ratio, and wind speed (as labeled). 575 

  576 

Figure 13. Rank histograms for all P3 flight data below

1000 m a.g.l. for potential temperature, water vapor mixing ratio,

and wind speed (as labeled).
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Figure 14:  Rank histogram for all hourly near-surface temperature observations at 28 Climate 577 

Reference Network sites. 578 

  579 

Figure 14. Rank histogram for all hourly near-surface temperature

observations at 28 Climate Reference Network sites.

duce uncertainty by the inverse square root of the number of

samples (green and red lines, respectively). The spreads for

1 and 3 h averaging converge as spatial averaging increases.
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Figure 15:  CO tracer spread as a function of averaging for surface (top) and 400-500 m AGL 580 

(bottom).  The points (+ and x) for AM and PM 3h averaging without spatial averaging are the 581 

means shown in the figures and in the second column of table 5.  Points on the right axis are for 582 

averages over the entire domain (216x236 points). 583 

Figure 15. CO tracer spread as a function of averaging for sur-

face (top) and 400–500 m a.g.l. (bottom). The points (+ and x) for

AM and PM 3 h averaging without spatial averaging are the means

shown in the figures and in the second column of Table 5. Points

on the right axis are for averages over the entire domain (216× 236

points).

The pattern of improvement with averaging is similar at the

surface and in the 400–500 m layer. Averaging over the en-

tire domain, a rather extreme procedure, reduces the spread

to roughly 5 %. This remnant spread is due to the fact that

the tracer can leave the finite domain at different rates with

different wind patterns.

The results we have presented (Figs. 6–10) show that pat-

terns of ensemble spread of CO tracer are not simply related

to patterns of wind speed, PBL height, or ventilation (their

product). This result may appear surprising at first glance.

However, we are dealing with a large area with moderately

complex terrain, distributed sources, and complex meteorol-

ogy. The LPDM simulates all of the complex patterns, in-

cluding medium-range transport between regions and partial

recirculation or stagnation of the tracer. There is some ten-

dency toward larger spread of all variables in mountainous

areas, at night, and over coastal waters (see for example Ngan

et al., 2012).

Previous work of Gerbig et al. (2008) and Lin and

Gerbig (2005) addressed uncertainty in meteorology driving

an LPDM by adding a correlated random error, effectively
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increasing the diffusion terms in the transport equations. Our

work shows that the uncertainty is highly variable in space

and time, and it is not clear how one would account for this

in an approach like theirs. Most likely, uncertainties from me-

teorological model runs cannot be fully addressed by corre-

lated random errors, and an ensemble approach should be

used instead.

6 Conclusions

We have presented ensemble spreads of tracer mixing ratio

from the FLEXPART-WRF Lagrangian particle dispersion

model driven by meteorological fields from six different con-

figurations of WRF.

The spreads of a passive tracer emitted according to all

inventoried CO sources are 30–40 %, for transport time of

5 days or less, whether they are taken over the whole domain

at the surface or in the daytime boundary layer (Table 5),

or sampled by the aircraft (Table 7). Excluding points with

small tracer mixing ratios keeps the spreads near the smaller

end of those ranges (Table 7). Spatial or temporal averaging

reduces the spreads, but rather slowly (Fig. 15).

We postulated that the tracer spread is a measure of un-

certainty in the LPDM simulation due to meteorological un-

certainty. This is verified by comparing spreads to errors in

meteorological variables. Among meteorological variables

compared with measurements on the aircraft, the ensemble

is roughly reliable for potential temperature and water vapor

but has too little spread for wind speed. For near-surface tem-

perature at the CRN sites, the ensemble has significantly too

little spread.

No member of a valid ensemble should be obviously bad

or obviously superior. The direct comparisons with observa-

tions in Tables 2 and 3 verify this. The best and worst per-

forming members for one variable or platform are not the

same as for others. It is also interesting to note that the en-

semble mean is not obviously better than the best member

for any particular variable.

We examined wind speed, boundary layer height, and ven-

tilation, looking for relationships between the spreads of

these parameters and the tracer spread. No obvious relation-

ships were found. Spreads of meteorological variables are

largest where we would expect: in complex terrain, at night,

and over coastal waters. Simple relationships among the un-

certainties of meteorological parameters and the tracer un-

certainty are missing because of terrain, partial recirculation,

medium-range (order 100 km) transport, and long tracer life-

time. These are the reasons why an LPDM is needed in this

and similar real mesoscale situations. We do not think that

tracer spreads can be predicted from known error character-

istics of the meteorological variables. We recommend that an

ensemble approach like this one, or an even more sophisti-

cated one, be used to assess the uncertainty of Lagrangian

simulations.

Uncertainty in single LPDM simulations of passive tracers

at mesoscale due solely to uncertainty in the meteorological

forcing is 30–40 % of the tracer mixing ratio. The uncertainty

is somewhat less, perhaps as little as 20 %, under particularly

favorable conditions (strong, broad plumes sampled in day-

time at moderate distance/time downwind of their sources).

It is greater, by as much as 60 %, under less favorable condi-

tions (weak or narrow plumes, undifferentiated background,

or sampling at night). Spatial averaging can reduce the uncer-

tainty with loss of resolution. Uncertainty of simulated tracer

age is 15–20 %.

Code and data availability

WRF is available from http://wrf-model.org. FLEXPART-

WRF is available from http://flexpart.eu and from the on-

line supplement to Brioude et al. (2013a). Interested parties

may contact us to access the (large) amount of WRF and

FLEXPART-WRF output used in this study.

The Supplement related to this article is available online

at doi:10.5194/gmd-7-2817-2014-supplement.
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