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Abstract Earthquake slip distributions are asymmetric along strike, but the reasons for the asymmetry are
unknown. We address this question by establishing empirical relations between earthquake slip profiles and
fault properties. We analyze the slip distributions of 27 large continental earthquakes in the context of available
information on their causative faults, in particular on the directions of their long-term lengthening. We find that
the largest slips during each earthquake systematically occurred on that half of the ruptured fault sections most
distant from the long-term fault propagating tips, i.e., on the most mature half of the broken fault sections.
Meanwhile, slip decreased linearly over most of the rupture length in the direction of long-term fault
propagation, i.e., of decreasing structural maturity along strike. We suggest that this earthquake slip asymmetry
is governed by along-strike changes in fault properties, including fault zone compliance and fault strength,
induced by the evolution of off-fault damage, fault segmentation, and fault planarity with increasing structural
maturity. We also find higher rupture speeds inmoremature rupture sections, consistent with predicted effects
of low-velocity damage zones on rupture dynamics. Since the direction(s) of long-term fault propagation can be
determined from geological evidence, it might be possible to anticipate in which direction earthquake slip,
once nucleated, may increase, accelerate, and possibly lead to a large earthquake. Our results could thus
contribute to earthquake hazard assessment and Earthquake Early Warning.

1. Introduction

The spatial distribution of earthquake slip is heterogeneous at various length scales and is often described as
a stochastic field [e.g., Bouchon, 1997; Mai and Beroza, 2002; Liu-Zeng et al., 2005; Lavallée et al., 2006].
However, at the largest scales earthquake slip distributions have generic features: independent of slip mode,
magnitude, and tectonic setting, envelopes of earthquake slip profiles along strike are characterized by a pro-
nounced asymmetry and a fairly linear decrease over a long section of the rupture, leading on average to an
asymmetric triangular slip profile [Scholz and Lawler, 2004; Manighetti et al., 2005; Wesnousky, 2008] (see
Figure 3 further below). Although this systematic asymmetry of earthquake slip is well documented for large
earthquakes (Mw ≥~6), its origin is not yet understood. Here we address this open question by developing
empirical relations between large-scale asymmetry of earthquake slip and fault structural properties and
by investigating their connections to the physics of the rupture process and fault growth.

Earthquake slip asymmetry is a generic feature, and therefore, our objective here is to identify the deterministic,
generic factors that might control it. Slip heterogeneity may arise from heterogeneities of stress or material
properties, including fault friction properties, fluid-related fault zone properties, and elastic stiffness of the host
rock [e.g., Nur, 1978; Israel and Nur, 1979;Madariaga, 1979; Bürgmann et al., 1994]. Prior studies have shown that
certain structural properties of faults affect significantly the properties of the earthquakes they host, such as
their slip amplitude and rupture length [Manighetti et al., 2007], magnitude [Anderson et al., 1996],
magnitude-frequency distribution [Stirling et al., 1996], apparent stress drop [Cao and Aki, 1986; Choy and
Kirby, 2004; Manighetti et al., 2007; Hecker et al., 2010], number of broken segments [Wesnousky, 1988;
Manighetti et al., 2007], and ground motion amplitudes [Radiguet et al., 2009]. Scholz and Lawler [2004] and
Manighetti et al. [2005] suggested that linear earthquake slip profiles imply off-fault coseismic inelastic deforma-
tion, referred to as “coseismic damage.” Cappa et al. [2014] showed, through 3-D dynamic rupture simulations,
that asymmetric triangular earthquake slip profiles are produced by faults embedded in a permanent damage
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zone whose compliance varies along strike. These findings indicate that properties of both the faults and their
embedding medium might significantly affect earthquake slip distributions.

Here we examine which geological properties of faults might control the generic envelope of earthquake slip
distributions. In section 2, we define the qualitative concept of fault structural maturity, which we use later to
propose a unified interpretation of our observations. In section 3, we describe our compilation of slip distribu-
tions of about 30 large (Mw 6.5–8.1) well-documented continental earthquakes of various slip modes and loca-
tions worldwide, estimates of rupture speeds for 12 of them, maps of their causative faults, and information on
their long-term lateral growth (1–60Ma). In section 4, we show that although some of the data are inherently
qualitative and uncertain, they reveal general trends: the largest earthquake slips and faster rupture speeds are
systematically located on the portions of rupture lying on fault sections that formed earlier, and the fairly linear
decrease of earthquake slip with distance occurs in the direction of long-term fault propagation. In section 5, we
discuss our observations in relation with fault structural maturity and with earthquake physics.

2. Structural Maturity: A Multivariate Fault Property That Changes in Time
and Space

Long-term fault growth by lengthening (i.e., lateral propagation) has been observed on natural faults [e.g.,
Jackson et al., 1996; Burbank et al., 1996; Manighetti et al., 1997, 1998, 2001a, 2001b; Meyer et al., 1998;
Vermilye and Scholz, 1998; Armijo et al., 1999; Keller et al., 1999; Ferrill et al., 1999; Childs et al., 2003; Chen
et al., 2007; Aydin and Berryman, 2010; Faulkner et al., 2011], modeled experimentally [e.g., Moore and
Lockner, 1995; Mansfield and Cartwright, 2001; Otsuki and Dilov, 2005; Schlagenhauf et al., 2008] and theoreti-
cally [e.g., Segall and Pollard, 1983; Cowie and Scholz, 1992b; Bürgmann et al., 1994; Du and Aydin, 1995;Martel,
1997; Davatzes and Aydin, 2003; D’Alessio and Martel, 2004; Willson et al., 2007; Mutlu and Pollard, 2008], and
inferred from the empirical scaling relations between fault length and total accumulated displacement
(or “net slip”) [e.g., Walsh and Watterson, 1988; Marrett and Allmendinger, 1990; Cowie and Scholz, 1992a;
Dawers et al., 1993; Cartwright et al., 1995; Schlische et al., 1996; Manighetti et al., 2001a]. While slip accumula-
tion on a fault mainly occurs during earthquakes, fault lengthening is an episodic process that recurs every
multiple seismic cycles [e.g., Childs et al., 2003; Nicol et al., 2005, 2010; Bull et al., 2006; Schlagenhauf et al.,
2008; Meyer et al., 1998; Giba et al., 2012; Manighetti et al., 2015]. Fault propagation rates, averaged over
the entire fault lifetime, are up to several cm/yr [Mueller and Talling, 1997; Manighetti et al., 1997, 1998,
2001b; Meyer et al., 1998; Armijo et al., 1999; Keller et al., 1998, 1999; Morewood and Roberts, 1999; Jackson
et al., 2002; Childs et al., 2003; Hubert-Ferrari et al., 2003; Bennett et al., 2005, 2006; Chen et al., 2007].

A qualitative definition of the “structural maturity” of a fault is the degree of advancement in the evolution of its
structural properties. If the structural evolution of a fault were rate independent and driven only by the total
deformation it accommodates (i.e., if a fast fault and a slow fault reach identical structural states, but at different
times), fault maturity could be quantified by the net slip accumulated over the fault lifetime, as commonly done
[e.g., Wesnousky, 1988; Stirling et al., 1996; Choy and Kirby, 2004; Choy et al., 2006; Scholz, 2006; Sagy et al., 2007;
Hecker et al., 2010; Niemeijer et al., 2010; Malagnini et al., 2010; Wechsler et al., 2010; Ikari et al., 2011; Dolan and
Haravitch, 2014]. However, the competition between damage and healing processes may introduce rate depen-
dency in the evolution of fault structure (i.e., a slow fault may heal more than a fast fault and hence reach a similar
structural state at larger net slip), and hence, fault age and slip rate are also potentially relevant proxies for struc-
tural maturity. Since faults lengthen over their lifetime, their length can also be considered as a proxy for their
maturity. In practice, followingManighetti et al. [2007], we classify fault structural maturity through a combination
of four interrelated fault parameters that are potentially observable: initiation age (I-Age), net slip (DTotal), length
(L), and slip rate (MR).Manighetti et al. [2007] classify faults into “mature faults” (L≥ 1000 km and/or I-Age≥ 10Ma
and/or MR~a few cm/yr and/or DTotal≥ 100km), “immature faults” (L< 300 km and/or I-Age< a few Ma and/or
MR< 1 cm/yr and/or DTotal< 10 km), and faults of “intermediate maturity” (300≤ L< 1000 km and/or 5< I-
Age< 10Ma and/or MR~1 cm/yr and/or DTotal ~ a few tens of kilometers). Although this classification contains
subjective choices, it is based on more information than age or net slip alone and can be applied to most faults
worldwide. We will thus use it in the following. The structural maturity defined in that way describes a fault glob-
ally, over its entire length and lifetime, and therefore we call it the “overall maturity.”

Fault lengthening induces a pattern of decreasing age and decreasing cumulative slip along the fault in its
direction(s) of lateral propagation. A manifestation of this pattern is the typical linear tapering of net slip
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profiles in the direction(s) of fault lengthening [Peacock and Sanderson, 1991, 1994, 1996; Nicol et al., 1996;
Manighetti et al., 2001a; Davis et al., 2005]. Structural maturity is hence variable along a fault. Hereafter, we
refer to the local maturity as the “along-strike maturity.” It is not possible at present to quantify along-strike
maturity by simple metrics, because fault age, net slip, and slip rate data are too scarce along faults. However,
it is certain that maturity decreases systematically along a fault from the zone of fault initiation to the current
location of the fault propagating tip(s). Hence, knowledge of the fault propagation direction(s) is sufficient to
identify the most mature and least mature sections of a fault.

A concrete example is the ~1400 km long North Anatolian fault. The fault initiated in the east ~13Ma ago
[e.g., Sengör et al., 1985; Armijo et al., 1999; Bohnhoff et al., 2016]; it then propagated westward at ~20 cm/yr
[Hubert-Ferrari et al., 2003] so that its central part formed at ~8.5Ma [Hubert-Ferrari et al., 2002], its western
part across the Sea of Marmara at ~5Ma [Schindler, 1998; Armijo et al., 1999], and its western propagating
tip entered the Aegean Sea ~1Ma ago [Armijo et al., 1996]. Therefore, regarding its overall maturity, we
classify the North Anatolian fault as globally mature, and regarding its along-strike maturity, we identify its

Figure 1. Earthquake examples showing relations between surface rupture trace and slip, and architecture and long-term
propagation of causative fault (all earthquakes shown in Figure S1). (a) 1957 Mw 8.1 Bogd, (b) 1983 Mw 7.3 Borah Peak, (c)
1939 Mw 7.8 Erzincan, (d) 1999 Mw 7.4–7.6 Izmit, (e) 2005 Mw 7.6 Muzaffarabad, and (f) 2008 Mw 7.9 Sichuan earthquakes.
Causative fault and off-fault splays are in black, rupture surface trace is in red, zone of largest coseismic surface slips is in
green (≥80% of maximum slip, dashed line), and hypocenter (with 5 km uncertainty) as H. Slip mode and overall structural
maturity of causative faults are indicated. Rupture speeds are noted in red where available. More details and references on
earthquake and fault parameters can be found in Text S1 and Table S1.
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easternmost part as the most mature and its westernmost part as the least mature. In this particular example,
because constraints on local fault age are available we can even qualify the along-strike maturity in absolute
terms: the easternmost section is mature and the westernmost section is immature.

3. Earthquake and Fault Data

Here we summarize the earthquake and fault data we have compiled. A detailed description and complete
reference list are provided in Text S1 and Table S1 in the supporting information. Because uncertainties on
most fault and earthquake parameters cannot be quantified with simple metrics, we estimate their relative
quality, generally on the basis of the number and consistency of available data (Text S1). The relative quality
attributes are compiled in Table S2, so as to provide a comprehensive view of the robustness of the data.

The 27 large earthquakes we analyze are instrumental and historical continental events that were well docu-
mented in prior studies. They span a broad range of magnitudes (Mw 6.5–8.1), maximum coseismic slips at the
surface (0.4–14m), rupture lengths (25–475 km), slip modes (67% strike slip, 18% normal, and 15% reverse),

Figure 1. (continued)
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locations worldwide, and tectonic settings. Their causative faults have also various ages (1–60Ma), net slips
(from< 1 to 600 km), lengths (25–2300 km), and slip rates (0.2–35mm/yr).

The earthquake and fault parameters we analyze are the following (see Figures 1 and S1):

1. Maps of surface traces of earthquake ruptures. Those are available for all the earthquakes we analyze and
are generally consistent among studies.

2. Measured surface slip profiles along entire rupture lengths. Generally, the various slip profiles available for a
given earthquake are consistent, especially on the large-scale features that interest us, such as envelope
shape and location of largest slip.

3. Earthquake slip distributions at depth inferred through finite source inversion. We used 25 published finite
source rupture models available for 13 out of the 27 analyzed earthquakes. From each slip model we
derive a subsurface slip profile as in Manighetti et al. [2005]: at each position along strike we extract the
maximum slip value over all depths. For a given earthquake, the large-scale features of subsurface slip
profiles that interest us are generally consistent among available slip models. The models provide
additional information (Table S3) on rupture width (~22 km on average for all earthquakes) and depth
of largest slip (~6 km on average for all earthquakes).

4. Earthquake hypocenter locations. Because uncertainties of hypocenter locations are rarely provided, we have
assigned to all epicenter coordinates a conservative uncertainty of 5 km in both horizontal directions.

5. Rupture speed estimates at multiple locations along the rupture. These are available for 12 out of the 27
earthquakes (Text S1). From these data, we summarize the rupture speeds on each of the two halves
(i.e., most mature versus most immature) of the ruptures (Table S4).

6. Maps of surface traces of earthquake causative faults. We generally collected these from tectonic studies
different from those where the earthquakes are described. These maps provide different levels of detail.
Yet the resolution differences do not alter the analysis of the large-scale features that interest us, including

Figure 2. Position of zone of largest surface slip (green) relative to rupture length for 27 earthquakes. Earthquakes are
ordered by increasing length of their causative fault. Slip mode and overall structural maturity of causative faults are
indicated (SS, strike slip; N, normal; R, reverse). For each earthquake, the rupture has been oriented so that the direction of
long-term fault propagation (and hence decreasing fault structural maturity) is on the right side of the figure. If fault
propagation is bilateral (empty symbols), we assume that fault growth initiated near the present fault center and consider
the half-fault length which hosts most of the rupture. Earthquakes with an asterisk are those for which the direction of
long-term propagation of their causative fault is more poorly constrained (quality Q3 in Table S2). Hypocenters (H) are
shown with a 5 km uncertainty; poorly constrained hypocenters are represented with a smaller symbol. More details and
references on earthquake and fault parameters can be found in Text S1 and Table S1.
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parent fault length, overall architec-
ture and extent of associated fault
networks, and overall location of lar-
gest coseismic slips within causative
faults. We were able to locate the rup-
ture traces precisely onto the long-
term fault maps (see Text S1).

7. Degree of overall structural maturity of
the causative faults. We have used the
classifications of Manighetti et al.
[2007], as specified in section 2, to
classify the overall structural maturity.
The population includes 40% of
immature faults, 17% of mature faults,
and 43% of faults with intermediate
overall maturity.

8. Direction(s) of long-term fault propaga-
tion. All faults studied here have been
active over long time spans≥ 1 Myr,
during which they have likely propa-
gated laterally. Indeed, 90% of the
faults have a length (Lf) greater than
twice the average seismogenic thick-
ness (i.e., Lf>~40km). We derived
their direction(s) of long-term propaga-
tion from published geological data
documenting the along-strike variation
in their ages and net slips. Although

such data are generally few, they are sufficient to reveal the direction(s) of overall fault age and/or net slip
decrease. In some cases, the along-strike decrease of the fault slip rate, the observation that fault segment
(s) near the actual fault tip(s) are the youngest or the observation that fault segments become less intercon-
nected in one or two directions along the fault, provide additional or alternative information to derive the
direction(s) of long-term fault propagation. The large-scale architecture of the fault zones provides comple-
mentary information. All faults have indeed one or both of their tips surrounded by large-scale networks of
secondary fault branches, forming a fan of splay faults (see Figures 1 and S1). The presence and geometry of
such tip splay networks have been shown to indicate the direction of long-term propagation of the parent
faults [McGrath and Davison, 1995; Manighetti et al., 1998; Kim et al., 2003; de Joussineau and Aydin, 2007;
Faulkner et al., 2011; Perrin et al., 2016]. Combining the information above, the directions of long-term pro-
pagation are well constrained for ~ 75% of the faults (Table S2). The San Andreas fault is a particular case:
while the Southern San Andreas fault has propagated southward [e.g., Powell and Weldon, 1992; Hull and
Nicholson, 1992; Sims, 1993; Nicholson et al., 1994; Lutz et al., 2006; Kirby et al., 2007; Dorsey et al., 2012],
the northern San Andreas fault had a more complex history due to its formation in interaction with a sub-
duction zone [e.g., Atwater, 1970; Nicholson et al., 1994; Atwater and Stock, 1998] (details in Text S1).
Therefore, the northern San Andreas fault did not propagate laterally as intraplate faults do. Yet the age
and amount of lateral slip vary along its length, decreasing from north to south [e.g., Nicholson et al.,
1994; Atwater and Stock, 1998; Liu et al., 2010] (see Text S1). Therefore, in the figures that follow, “direction
of long-term propagation” should read only as “direction of decreasing maturity” for the special case of the
northern San Andreas fault.

4. Distribution of Earthquake Slip and Rupture Speed in Relation to Long-Term
Fault Propagation

For each event in Figures 1 and S1, we identify a “zone of largest slip” in which surface slip exceeds 80% of its
maximum (shown in green). In all cases, there is a single zone of largest slip on the ruptured fault. Increasing

Figure 3. (a) All surface slip profiles normalized by their rupture length
and mean slip, oriented so that direction of long-term fault propagation
is on the right. Bilateral fault propagation treated as in Figure 2. In yellow is
the running average curve for the entire collection of slip profiles. (b)
Normalized earthquake surface slip profiles oriented so that the maximum
slip appears always on the left, from Manighetti et al. [2005]. Details and
references on earthquake slip profiles can be found in Text S1 and Table S1.
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the fraction of slip taken to represent the largest displacements does notmodify the finding of a single, large slip
zone (Figure S3). The zones of largest surface slips are generally colocated with those inferred at depth (compare
Figures S1 and S2), and therefore, considering slip at depth does not affect our analysis (see Figures S2 and S4).

For all earthquakes, Figure 2 shows the position of the zone of largest slip relative to the rupture length. Each
rupture is oriented so that the direction of long-term fault propagation appears on the right side. If long-term
fault growth is bilateral, we assume that the fault initiated near its present center, as described in Text S1, and
consider only the rupture part hosted on the half-fault length. The fault slip mode and overall maturity are
indicated, which allows comparing the results on normal, reverse, and strike-slip faults of different overall
maturities. We find that for all earthquakes, the largest coseismic slips are systematically located on the half
of the rupture most distant from the long-term fault propagation tip, that is, in the most mature part of the
rupture zone. This finding is independent of the earthquake slip mode, magnitude, length, and overall matur-
ity of the causative fault. In contrast, there is no systematic spatial relation between the zone of largest slip
and the hypocenter location; they can be close to each other (e.g., Hector Mine, Borrego Mountain, Manyi,
and Fuyun) but are more often distant, sometimes at opposite ends of the rupture (e.g., Denali, Kunlun,
and Landers). Earthquake ruptures can thus propagate over long distances either toward or away from the
zone of largest slip. These observations are similar when slip at depth is considered (Figures S2 and S4).

In Figure 3a, the surface slip profiles have been normalized by their mean value and rupture length (the run-
ning average is shown as a yellow curve). As in Figure 2, they have been oriented so that the direction of long-
term fault propagation is on the right side. In Figure 3a, all earthquakes are shown together, but we discrimi-
nate strike-slip and dip-slip ruptures in Figures S5a and S5b. Both figures confirm that the largest coseismic
slips are in the left half of the plot, i.e., in themost mature parts of the rupture zones, regardless of earthquake
slip mode, magnitude, length, and overall maturity of the causative fault. In addition, we observe that the
coseismic slip systematically tapers over a long distance (on average, 60% of the rupture length) in the

Figure 4. Location of ruptured sections and zones of largest surface slip along entire causative faults. Largest slip defined as in
Figure 2. Half-fault length is shown for faults with bilateral propagation. Earthquakes with an asterisk as in Figure 2. On each
fault, the rupture zone is in orange, and the white parts are the fault sections left unbroken. Note that the Izmit rupture is here
represented with respect to overall North Anatolian fault zone. We observe that some earthquakes broke a mature fault
section (e.g., Denali, Erzincan, Hebgen Lake, Fuyun, Muzaffarabad, and San Francisco), others broke an immature fault section
(e.g., Borrego Mountain, El Mayor Cucapah, Fort Tejon, Hector Mine, Imperial Valley 1979, Izmit, Mudurnu, Superstition Hills,
and Yushu), a few others broke a fault section with intermediate maturity (e.g., Kunlun, Sichuan, and Bogd), and a few others
broke or almost broke the entire fault (or half fault in bilateral cases) (e.g., Manyi, Landers, Chi-Chi, Imperial Valley 1940, Dixie
Valley, Pleasant Valley, Fairview Peak, Borah Peak, and El Asnam). Independent of these differences, largest coseismic slips
systematically locate on most mature portions of rupture zones (i.e., left part of the orange zones).
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direction of long-term fault propagation and hence in the direction of decreasing along-strike maturity. In
contrast to a similar figure byManighetti et al. [2005] (reproduced here in Figure 3b), in which the slip profiles
were oriented so that the maximum slip appeared on the left, in the present study the maximum slip is sys-
tematically located on the left part of Figure 3a not by design but as a natural result of the slip profiles being
oriented in the direction of long-term fault propagation.

In Figure 4, we examine the location of zones of largest coseismic slip relative to the entire causative faults. The
faults have been oriented as before so that the direction of their long-term propagation is to the right (bilateral
cases treated as before). The figure examines the earthquake slip behavior with respect to the relative distance
from the propagating fault tip. Most earthquakes did not rupture the entire fault length. Some of the ruptures
plot in the left part of the graph and hence broke a relatively mature section of their causative fault, far away
from the propagating fault tip (e.g., Denali, Erzincan, San Francisco, and Fuyun); other ruptures rather plot at
the right end of the graph and hence broke relatively immature sections of their causative fault close to the pro-
pagating fault tip (e.g., Izmit, Yushu, Superstition Hills, El Major Cucapah, and Borrego Mountain). Whether an
earthquake broke a more mature or a more immature part of its causative fault, its zone of largest slip is skewed
toward the most mature part of the rupture zone. However, the degree of slip asymmetry is higher in ruptures
onmature fault sections: the distance between the largest slip location and the (right) least mature rupture end,
normalized by rupture length, is 85% in the average slip profile of earthquakes on mature fault sections and
65% for earthquakes on immature sections (see Figures S5c and S5d).

In Figure 5 (data in Table S4), we have reported the available rupture propagation speeds, along with their
uncertainties (estimated here as the range of values reported by different studies of a same earthquake,
when available), distinguishing those in the most mature half of the rupture from those in its most imma-
ture half. While rupture speeds are subshear in the most immature broken fault sections, they are system-
atically faster in the most mature parts of the rupture zones, up to supershear. An exception is the 1979
Imperial Valley earthquake, but its rupture speed and southern rupture portion are not well constrained.
The estimated uncertainties on rupture speed are not large enough to mask the overall trend we highlight.

Commonly, large earthquakes do not rupture the entire length of their causative fault, as seen in
Figures S1 and 4. Present knowledge of large earthquake sequences that combined to rupture an entire
fault is limited because their duration is generally longer than human observation time. Figure 6 reports,

Figure 5. Rupture speeds estimated for 12 of the analyzed earthquakes, along with their uncertainties (data in Table S4).
For each earthquake, the rupture speeds along the most mature and along the most immature halves of the ruptures
(relative maturity inferred from direction of long-term fault propagation) are plotted with a same color. All ruptures (except
for possibly the 1979 Imperial Valley, whose rupture speed is not well constrained) have propagated faster, sometimes with
supershear speed, along the most mature part of the ruptures.
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however, two sequences of large earthquake sequences that are fairly well documented and examines the
earthquake slip distribution with respect to the long-term fault propagation. One sequence was a cluster of four
large earthquakes which broke entirely the ~450 km long Garze-Yushu fault in ~ 150years [Chen et al., 2010].
Another sequence comprises eight large earthquakes that broke the main strand of the North Anatolian fault
(in red in Figure 6b) in the last century (1939–1967 sequence: Barka [1996]; the 1999 Izmit and Duzce earth-
quakes broke the northern branch of the North Anatolian fault, in green in Figure 6b). In both cases, the slips
produced by the largest of these earthquakes were greatest on the most mature section of the fault and
decreased progressively in its direction of long-term propagation. The three large earthquakes that ruptured

Figure 6. Sequences of large historical earthquakes that combined to rupture a fault entirely. (a) Garze-Yushu fault and (b)
North Anatolian fault. In Figures 6a and 6b, long-term fault map is shown in the middle, earthquake time history at the bot-
tom, and maximum surface slips of historical earthquakes at the top. In time plots, arrows suggest earthquake clusters that
broke the fault entirely (for North Anatolian, main fault is shown in reddish and Northern Branch in greenish). In slip plots,
arrows show slip decrease among clustered events. Slip decreases in the direction of long-term fault propagation.
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the northern branch of the North Anatolian fault in the eighteen century (dark greenish colors, Figure 6b) seem
to have shown a similar behavior, with largest slips in the eastern, most mature section of the northern branch
fault. The Izmit and Duzce earthquakes which occurred later on this northern branch also produced slips con-
sistent with the overall pattern described above. Therefore, sequences of large earthquakes that combine to
break a fault entirely seem to produce larger slips in themost mature part of the fault and slips decreasing over-
all in the direction of long-term fault propagation.

Taken together, the observations above first show that the skewed, semitriangular pattern of earthquake slip
distributions (Figure 3) [Scholz and Lawler, 2004; Manighetti et al., 2005; Wesnousky, 2008] is independent of
whether the earthquake occurs on a more mature or on a more immature section of the fault. The observations
further suggest that the earthquake slip asymmetry is related to the direction of long-term propagation of the
causative fault: coseismic slip is systematically largest in themostmature part of the rupture zone and decreases
almost linearly over most of the rupture length in the direction of long-term fault propagation and hence of
decreasing maturity (Figures 2–4). In contrast, slip decreases abruptly in the opposite direction (Figure 3).
Rupture propagation speeds are subshear in the most immature sections of the rupture and faster in the most
mature sections, in some cases supershear (Figure 5). In large earthquake sequences, the total earthquake slip
distribution is also asymmetric, with largest slip in the most mature part of the fault (Figure 6).

The relations between earthquake slip distributions and long-term fault propagation are found in every
earthquake case we analyzed, despite data uncertainties. This suggests that the trends we report are not for-
tuitous. These relations are found despite the earthquake population spanning a broad range of magnitudes,
slip modes, slip amplitudes, and tectonic settings, and despite the causative fault population spanning a
broad range of ages, lengths, net slips, slip rates, and hence different degrees of overall structural maturity.
These systematics suggest that the relation between earthquake slip asymmetry and lateral fault growth
might be generic for continental faults.

5. Discussion

If the macroscopic characteristics of earthquake slip distributions on continental faults are generic, they likely
result from a deterministic, systematic control and are not much influenced by case dependent or local fac-
tors such as the nature of rocks around the fault, the thickness of the crust, etc. Our observations suggest that
the systematic control might relate to an intrinsic property of the causative faults: the systematic lateral
change of their structural maturity that arises from their long-term growth. Yet the question remains of which
fault property or properties might change along a continental fault as its maturity increases. Below we exam-
ine which fault properties might evolve with maturity (section 5.1), and then we discuss how these properties
might impact coseismic slip and speed (section 5.2).

5.1. 3-D Fault Architecture and Strength

Three principal, common properties of faults have been documented on natural continental faults and shown
to vary with net slip and hence with maturity: off-fault permanent damage, along-strike fault segmentation,
and nonplanarity of the fault surface. Their along-strike variation has not or rarely been addressed, however.
We present in Figure 7 our conceptual vision of their lateral variations in relation to fault growth, for a con-
tinental, crustal, strike-slip fault. The general picture is similar for a dip-slip fault (see Figure S6 in the support-
ing information) because we are concerned here with properties that mostly relate to the common fault
lengthening process.

As they grow, faults damage the embedding crust [e.g.,McGrath and Davison, 1995; Cooke, 1997; Vermilye and
Scholz, 1998; Cowie and Shipton, 1998; Kim et al., 2003; Manighetti et al., 2004; Myers and Aydin, 2004; de
Joussineau et al., 2007; de Joussineau and Aydin, 2007; Dieterich and Smith, 2009; Mitchell and Faulkner,
2009; Aydin and Berryman, 2010; Savage and Brodsky, 2011; Faulkner et al., 2011] (inset Figure 7). Part of the
damage occurs dynamically during earthquakes [e.g., Schaff and Beroza, 2004; Manighetti et al., 2005;
Andrews, 2005; Brenguier et al., 2008], part of it might be driven by static stress concentration near the tips
of the growing fault [e.g., Lehner et al., 1981; Cooke, 1997; Willemse and Pollard, 1998; Aydin and Berryman,
2010]. The irreversible part of the damage accumulates to form a wake of microscopic and macroscopic
cracks, fractures, and subsidiary faults that altogether constitute a permanent damage zone with altered rock
properties and reduced elastic moduli [e.g., Scholz et al., 1993; Chester and Chester, 1998; Sibson, 2003;
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Manighetti et al., 2004;Mitchell and Faulkner, 2009; Cochran et al., 2009; Aydin and Berryman, 2010; Savage and
Cooke, 2010; Smith et al., 2013] (inset Figure 7). These permanent damage zones have a nested hierarchical
architecture [e.g., Sibson, 1977; Mitchell and Faulkner, 2009; Finzi et al., 2009; Cochran et al., 2009; Shelef and
Oskin, 2010]. The principal slip zone or “fault core” is a few 0.1–1m thick and includes slip surfaces and highly
fractured, disaggregated, and crushed rocks commonly referred to as fault gouge. The core slip zone is sur-
rounded by an “inner damage zone,” up to few 100mwide, where rocks are densely fractured and brecciated
(Figure 7 and zooms) [e.g., Dor et al., 2006, 2008; Mitchell and Faulkner, 2009; Sagy and Brodsky, 2009; Shelef
and Oskin, 2010; Faulkner et al., 2011; Savage and Brodsky, 2011; Smith et al., 2013]. The width of the inner
damage zone seems to saturate with fault slip [Mitchell and Faulkner, 2009; Faulkner et al., 2011; Savage
and Brodsky, 2011]. The inner zone is surrounded by a wider “outer damage zone”made of more distributed
damage in the form of secondary faults [e.g.,McGrath and Davison, 1995; Vermilye and Scholz, 1999; Davatzes
and Aydin, 2003; Manighetti et al., 2004; de Joussineau et al., 2007; de Joussineau and Aydin, 2007; Mitchell and
Faulkner, 2009; Aydin and Berryman, 2010; Shelef and Oskin, 2010; Faulkner et al., 2011; Perrin et al., 2016]. The
across-fault width (Wd) of the outer damage zone scales with the parent fault length (Lf) (Wd ~ 10%Lf) [Perrin
et al., 2016] and hence increases in the direction of fault lengthening. This results in permanent damage
zones that are narrower around the more mature sections of their parent fault and wider around the more
immature sections. Seismological studies additionally suggest that while inner damage zones might extend
down to the base of the seismogenic crust [e.g., Evans et al., 2000; Mitchell and Faulkner, 2009; Wegler et al.,
2009; Viegas et al., 2010; Griffith et al., 2012; Smith et al., 2013; Valoroso et al., 2013, 2014; Liu et al., 2014;

Figure 7. Along-strike evolution of off-fault damage, fault segmentation, and fault planarity with increasing maturity along
fault strike. The example fault is strike slip (a dip-slip example is shown in Figure S6). The zone where the fault originally
initiated is placed to the left, and it is assumed that the fault lengthened rightward over its lifetime. Fault age, net displa-
cement, and along-strike maturity thus decrease rightward. Inset is a sketch of long-term fault propagation (unilateral case),
showing enlargement of the outer damage zone and increased connection of segments in the direction of propagation.
The two zooms are close-up views to distinguish the inner and outer damage zones (core is not represented for clarity). The
along-strike changes in structural maturity induce changes in off-fault damage width and compliance, fault strength, and
fault fracture energy. See text for more discussion.
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Carpenter et al., 2016] (zooms in Figure 7), outer damage zones are more shallow, extending down to ~5 km
[Ben-Zion et al., 2003; Peng et al., 2003; Lewis et al., 2005; Finzi et al., 2009; Lewis and Ben-Zion, 2010; Yang and
Zhu, 2010; Yang et al., 2011; Allam and Ben-Zion, 2012; Allam et al., 2014; Zigone et al., 2015] (zooms in
Figure 7).

To our knowledge, there exists no study that estimates damage compliance along a fault as a function of its
varying net slip. In Table S5, we have compiled the seismic velocity reductions and compliances that have been
measured at different sites along the northern San Andreas, San Jacinto, Elsinore, North Anatolian, Garze-Yushu,
and Longmen Shan faults (references in Table S5). These data show that for each fault, damage compliance
(damage taken here as a whole) is higher around the most mature parts of the fault and lower around its most
immature sections. More generally, larger velocity reductions and lower rigidities are measured around mature
faults such as the San Andreas fault (50–60% of rigidity reduction, see Jolivet et al. [2009]; 35–50% of velocity
reduction, seeMcGuire and Ben-Zion [2005]), whereas smaller velocity reductions are found aroundmore imma-
ture faults such as the Garze-Yushu and Longmen Shan faults (velocity reduction<~8% and~10%, respectively,
see Yang et al. [2015] and Lei and Zhao [2009]). Therefore, although the question is still begging for more data,
available estimates suggest that damage compliance is greater around the most mature parts of the faults.

Another fundamental property of faults is their along-strike segmentation. Faults are divided along their
length into discrete subparallel segments of different sizes separated by geometrical discontinuities, gener-
ally step overs, called “intersegments” [e.g., Segall and Pollard, 1980; Sibson, 1986; Barka and Kadinsky-Cade,
1988; Aydin and Schultz, 1990; Peacock, 1991; Walsh et al., 2003; Manighetti et al., 2009, 2015; De Joussineau
and Aydin, 2009; Dieterich and Richards-Dinger, 2010; Giba et al., 2012]. At least the largest intersegments,
which separate the longest fault segments, are of crustal scale [e.g., Sibson, 1986; Allam and Ben-Zion, 2012;
Valoroso et al., 2014; Allam et al., 2014].Manighetti et al. [2009, 2015] and Otsuki and Dilov [2005] showed that
fault segmentation follows a generic hierarchical structure at its largest scales: regardless of their length,
faults contain a similar number of largest-scale segments (i.e., longest segments within a fault), each one in
turn containing a similar number of subordinate segments (two to four segments). Data available on the
faults we analyzed confirm that 87% of these faults are divided into two to four major segments (Table S1), con-
sistent with general observations. Therefore, the generic segmentation of faults produces a remarkable, deter-
ministic horizontal division of their plane (Figure 7).

Intersegments are regions of distributed and pervasive cracking and faulting [e.g., King, 1983; Manighetti
et al., 2004; De Joussineau and Aydin, 2009; Allam and Ben-Zion, 2012; Allam et al., 2014] (inset Figure 7) that
accommodate off-fault deformation at the expense of on-fault slip [e.g., Dawers and Anders, 1995;Manighetti
et al., 2001a; Davis et al., 2005]. However, natural fault data show that as a fault accumulates more displace-
ment, its discrete segments increasingly coalesce so as to form a throughgoing fault, whereas on-fault slip
deficit at the intersegments is smoothed off [e.g., Wesnousky, 1988; Peacock, 1991; Stirling et al., 1996; Rahe
et al., 1998; Walsh et al., 1999; Ferrill et al., 1999; Manighetti et al., 2001a, 2009, 2015; Soliva and Benedicto,
2004; Cembrano et al., 2005; De Joussineau and Aydin, 2009; Aydin and Berryman, 2010; Marliyani et al.,
2013] (Figure 7). This is commonly described as the accumulation of slip leading to a geometrically simpler
fault [e.g., Wesnousky, 1988; Ben-Zion and Sammis, 2003; King and Wesnousky, 2007; Wechsler et al., 2010].
The evolution of on-fault slip at intersegments shows that immature intersegments, where on-fault slip def-
icit is pronounced, are zones of high fault strength which likely act as mechanical barriers to earthquake slip
(e.g., Scholz and Lawler [2004], Dieterich and Richards-Dinger [2010], and Allam et al. [2014]; for a theoretical
definition of earthquake barriers, see Das and Aki [1977], Nur [1978], and Boatwright and Cocco [1996]),
whereas more mature intersegments, where on-fault slip deficit is reduced, have a lower strength.
Therefore, segmentation also produces a lateral heterogeneity in the fault strength. Resistant intersegments
of different sizes punctuate the most immature parts of a fault, while their density and strength decrease pro-
gressively in the direction of greater maturity. If we call “seismic asperity” a fault segment of roughly homo-
geneous strength, the length of seismic asperities increases in the direction of increasing maturity (Figure 7).

Finally, fault planes are rough surfaces. The nature of fault roughness is not completely understood, one rea-
son being that fault roughness cannot be observed at the relevant seismogenic depth. Fault roughness has
thus only been described so far from limited exposures of fault scarps formed at shallow depth and from sur-
face rupture traces [Renard et al., 2006; Candela et al., 2009, 2011, 2012; Brodsky et al., 2011]. Based on these
observations, it has generally been suggested that increasing slip reduces the fault roughness [Cooke, 1997;
Choy and Kirby, 2004; Sagy et al., 2007; Sagy and Brodsky, 2009; Mitchell and Faulkner, 2009; Wechsler et al.,
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2010; Savage and Brodsky, 2011]. We argue that fault segmentation significantly contributes to the nonpla-
narity of fault surfaces because, whatever their length, fault segments are separated across strike or con-
nected through fault bends. Although continued slip tends to smooth off the smallest step overs and
bends, especially along strike-slip faults [e.g., Nur, 1978; Stirling et al., 1996; Choy and Kirby, 2004; Newman
and Ashley Griffith, 2014], some remain on the fault plane even after segments have coalesced [Klinger,
2010; Candela et al., 2012]. We suggest that these small-scale nonplanar features form small “contact zones”
or “protrusions” on the fault plane and hence produce roughness (Figure 7). We anticipate that the density of
such protrusions decreases in the direction of net slip increase. Therefore, the most mature seismic asperities,
which host fewer contacts and are smoother, have a smaller fracture energy than the rest of the fault (less
contact zones needing to be broken) [e.g., Tinti et al., 2005; Ben-David et al., 2010]. They are thus zones that
are most prone to be broken efficiently [e.g., Cooke and Murphy, 2004; Tinti et al., 2005; Fang and Dunham,
2013; Newman and Ashley Griffith, 2014].

In the framework of fault structural evolution presented here, the observations we reported in section 4 sug-
gest that largest coseismic slips and faster rupture speeds are systematically produced (i) on fault sections
embedded in narrowest but most compliant damage zones, (ii) onmoremature fault segments and therefore
on longer seismic asperities with more homogeneous strength, and (iii) on smoother fault sections with lower
fracture energy.

5.2. Relations Between 3-D Fault Architecture and Strength, and Earthquake Slip and Speed

We found that earthquake slip asymmetry is independent of the location of earthquake initiation relative to
the rupture. Therefore, the slip asymmetry is not or not significantly controlled by dynamic effects that
depend on rupture direction. This observation is difficult to explain in the framework of bimaterial interface
rupture models which predict rupture propagation preferentially in the direction of motion of the more com-
pliant side of the fault [e.g., Ben-Zion and Huang, 2002; Brietzke and Ben-Zion, 2006; Shi and Ben-Zion, 2006]. In
particular, pulse-like rupture models on bimaterial faults generate slip asymmetry [Ampuero and Ben-Zion,
2008] but generally in association with a preference for rupture and slip asymmetry in the direction of displa-
cement of the most compliant material. This is not what is observed here since all earthquake cases show slip
asymmetry, regardless of their rupture direction.

Therefore, we rather propose that the systematic location of largest coseismic slips in the most mature part of
a rupture zone is primarily a static effect, resulting from the elastostatic relation between stress drop, slip, and
elastic modulus of the faulted medium. In linear elasticity, earthquake slip roughly equals stress drop multi-
plied by a characteristic rupture length and divided by the elastic shear modulus of the faulted medium. In a
fault surrounded by damaged material, the elastic modulus is expected to decrease as a function of decreas-
ing distance to the fault [e.g., Huang and Ampuero, 2011], and an effective shear modulus is approximately
given by the harmonic average of the local modulus over an off-fault distance comparable to the rupture
length [see Kaneko et al., 2011, equation E2]. Hence, even if stress drop is constant over the rupture, the
strong reduction of elastic modulus in the zone of most intense damage—at least the inner damage zone
—leads to significantly larger slip. For the ruptures analyzed here, the zones of largest coseismic slips are
located at an average depth of ~6 km, where the inner and even possibly the outer damage zones exist.

The rationale we propose is consistent with the simulations by Cappa et al. [2014] of ruptures embedded in
an existing damage zone whose compliance increases and width decreases in one direction along the fault.
In these models a constant stress drop rupture develops an asymmetric slip profile with the largest slip in the
most compliant part of the rupture. The effect of greater compliance is not offset by the narrower width of
the mature damage zone. The earthquake stress drops need not depend on the overall fault maturity. In their
empirical study of earthquake slip-to-length ratios versus overall fault structural maturity, Manighetti et al.
[2007] reached a similar conclusion since they showed that stress drops range between ~3 and 7MPa (esti-
mated from surface earthquake data) and hence are fairly constant, whatever the degree of overall structural
maturity of the broken faults. The lower stress drop values were found, however, on the most mature faults.

Therefore, a constant stress drop well reproduces the observation of earthquake slip asymmetry. This sug-
gests that variations in on-fault prestresses and dynamic friction do not play a significant role in the generic
earthquake slip distributions. This further supports the suggestion that bimaterial effects have a limited role
on the earthquake slip distribution.
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The distribution of fault strength is also expected to contribute to the earthquake slip asymmetry. Prior works
have suggested on a theoretical basis that earthquake slip distributions might be controlled by strength and
stress variations along fault planes [e.g., Das and Aki, 1977; Nur, 1978; Israel and Nur, 1979; Madariaga, 1979;
Bürgmann et al., 1994; Boatwright and Cocco, 1996; Cooke, 1997; Noda and Lapusta, 2010; Kaneko et al., 2010].
The reduction of on-fault slip deficit at intersegments in the direction of greater maturity leads to longer fault
segments in that direction (see Bohnhoff et al. [2016] for related observations on the North Anatolian fault). As
shown byMadariaga [1979], the seismic moment of a multisegment rupture is controlled by the length of the
broken segments. Hence, slip is expected to be larger on portions of the fault that have longer segments
because of their greater maturity.

The faster rupture speeds found along the most mature parts of the ruptures (Figure 5) suggest that earth-
quake dynamics is influenced by the along-strike changes of fault maturity. This observation is consistent
with dynamic rupture simulations showing an enhancement of rupture speed and supershear transition
on faults surrounded by damaged zones [Huang et al., 2014, 2016]. Preexisting damage reduces the rupture
speed of subshear ruptures by a moderate amount (several 10%). This reduction is comparable to uncertain-
ties in rupture speed estimates; hence, it is difficult to robustly observe this effect of damage on subshear rup-
tures. Our observations instead relate to the effect of damage on supershear ruptures, which is stronger.
Dynamic rupture models in homogeneous media show that a rupture becomes supershear beyond some
critical propagation distance, if the initial stress exceeds a critical threshold [Andrews, 1976; Dunham, 2007].
The presence of a low-velocity damage zone reduces both the critical distance and the stress threshold:
the more compliant the damage zone, the shorter the critical distance and the smaller the stress threshold
[Huang et al., 2016]. Therefore, a rupture in a more damaged zone has a higher chance to jump to supershear
speeds. While seismological support for this mechanism was found in a few earthquakes [Huang et al., 2016],
our study provides evidence from a broad set of large earthquakes.

Systematic along-strike variations of fault strength controlled by maturity can also contribute to rupture
speed patterns. We suggest that two earthquake situations might occur. Some earthquakes are observed
to nucleate at the edge of a mature zone (e.g., Bogd, Borah Peak, Borrego Mountain, Dixie Valley, El Mayor
Cucapah, Erzincan, Fairview Peak, Fort Tejon, Fuyun, Hector Mine, Imperial Valley 1979, Izmit, Manyi,
Mudurnu, Muzzafarbad, Sichuan, and Superstition Hills earthquakes; Figures 2 and S1) and break first a
mature, large-slip fault segment, which then triggers the rupture of adjacent more immature fault sections.
Observations show that the rupture speed in the primary, mature rupture zone is fast, up to supershear.
Other earthquakes nucleate in more immature fault sections (e.g., Chi-Chi, Denali, El Asnam, Hebgen Lake,
Imperial Valley 1940, Kunlun, Landers, San Francisco, and Yushu earthquakes; Figures 2 and S1) then propa-
gate in the direction of greater maturity. As they propagate, they encounter less resistance in larger and
smoother seismic asperities (i.e., barriers are fewer or easier to skip, and seismic asperities have smaller frac-
ture energy due to fewer contacts; Figure 7; see also Das [2007] for similar finding) and they gather higher
driving energy from larger slip promoted by increasing off-fault compliance. Altogether, these factors likely
contribute to accelerate the rupture in the direction of greater maturity.

These factors also make rupture arrest less and less likely as the rupture progresses in the direction of increas-
ingmaturity, yet ruptures stop systematically at the very edge of the zone that hosts the largest slips. We infer
that rupture arrest is governed by an additional factor, namely an “external barrier” which can be either a
strong “tectonic feature” (e.g., a very strong intersegment, an intersection with an oblique fault) or a major
stress gap resulting from a prior earthquake release or from insufficient stress loading [e.g., Husseini et al.,
1975; Nur, 1978; Scholz, 1998; Scholz and Lawler, 2004]. Whatever the reason, slip profiles suggest that the
rupture arrest is abrupt and hence prone to generate strong ground motions [Madariaga, 1983].

6. Conclusions

Our analysis of 27 large (Mw ≥ 6.5) continental earthquakes and their causative faults shows that the largest
slips and higher rupture speeds are most likely to occur on the half of the rupture most distant from the
long-term fault propagation tips, that is, in the most mature half of the ruptured fault section. Our empirical
observations, with support from dynamic rupture models, suggest that asymmetry of earthquake slip and
rupture speed in large continental earthquakes is likely governed by along-strike heterogeneity of (i) material
compliance and strength off the fault as a result of permanent damage, (ii) strength on the fault as a result of
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lateral fault segmentation, and (iii) fault fracture energy as a result of fault roughness. We suggest that these
heterogeneities along faults are systematic because they result from the long-term fault growth process. Our
results thus provide important insight on the connection between long-term fault evolution and rupture
dynamics processes. They validate earlier suggestions that seismic characteristics of a fault evolve in tandem
with its structural evolution [Wesnousky, 1988; Wechsler et al., 2010].

Our results might have important practical implications for earthquake hazard mitigation. The direction(s) in
which a fault has been propagating over its lifetime can be determined from geological evidence. Based on
this prior tectonic knowledge, it seems possible to anticipate on which side of the fault future earthquake
slips and rupture speeds will tend to be larger. Moreover, once earthquake initiation is identified on a conti-
nental fault whose long-term propagation direction is known, it seems possible to anticipate in which direc-
tion earthquake slip may increase and rupture may accelerate. This information can be constrained in real
time and could critically contribute to earthquake early warning systems, helping anticipate sites of largest
ground motions and warn populations on the way of the growing rupture [e.g., Böse and Heaton, 2010;
Böse et al., 2012, 2015].
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