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Keypoint detection in RGBD images based on an
anisotropic scale space
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Abstract—The increasing availability of texture+depth (RGBD)
content has recently motivated research towards the design of
image features able to employ the additional geometrical infor-
mation provided by depth. Indeed, such features are supposed
to provide higher robustness than conventional 2D features in
presence of large changes of camera viewpoint. In this paper we
consider the first stage of RGBD image matching, i.e., keypoint
detection. In order to obtain viewpoint-covariant keypoints, we
design a filtering process, which approximates a diffusion process
along the surfaces of the scene, by means of the information
provided by depth. Next, we employ this multiscale representation
to find keypoints through a multiscale keypoint detector. The
keypoints obtained by the proposed detector provide substantially
higher stability to viewpoint changes than alternative 2D and
RGBD feature extraction approaches, both in terms of repeatabil-
ity and image classification accuracy. Furthermore, the proposed
detector can be efficiently implemented on a GPU.

Index Terms—RGBD, texture+depth, local features, keypoints,
SIFT, anisotropic diffusion.

I. INTRODUCTION

Local image features represent a key tool in a number of
practical scenarios and applications in multimedia, including
visual search [2], classification [3], indexing [4], image anal-
ysis [5], etc. Several comparative evaluations of local features
have appeared in the past decade [6], [7], [8], [9], [10], [11],
[12], [13], in response to the increasing research interest in
this field. At the same time, the industrial demand for robust,
distinctive and compact visual features has stimulated MPEG
standardization activities for Compact Descriptors for Visual
Search (CDVS) [14] and Compact Descriptors for Visual
Analysis (CDVA) [15].

While 2D visual features have nowadays achieved a substan-
tial level of maturity in terms of robustness, compactness, and
efficiency, the emergence of richer image and video formats,
such as texture+depth (RGBD), multiview or plenoptic images,
have recently attracted attention towards the definition of
features able to capture and leverage the geometric information
of a scene [1], [16], [17]. Indeed, acquiring scene geometry
is nowadays feasible with low-cost devices, such as Microsoft
Kinect [18], Asus Xtion [19], Structure Sensor, or even mobile
devices such as HTC One M8 and the upcoming Google
Tango, which are capable of acquiring depth together with
conventional color images.

The availability of geometrical information provided by
depth could help to improve the performance of current image
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matching techniques in the presence of large variations of
the camera viewpoint, where conventional feature schemes
fail to detect and match repeatable keypoints [1], [20], [21].
In our previous work [16], [20] we have shown that depth
information can be successfully used in the computation of
local descriptors, by locally resampling texture images based
on depth maps in such a way to “un-slant” [16] or unwrap [20]
object surfaces in the camera plane. In this way, we achieve a
sort of viewpoint normalization on image patches prior to their
descriptor computation. However, this process is done around
keypoints found using texture only, i.e., depth is ignored during
keypoint detection.

In this paper we consider instead the first stage of the image
matching problem, i.e., the extraction of repeatable RGBD
keypoints, making use of the available depth information.
Specifically, this paper presents two contributions. First, we
present an image smoothing filter that exploits the information
provided by depth in order to produce a scale space for
the texture map. Second, we propose a keypoint detector for
texture+depth images that uses the designed scale space as
the keypoint detection modality. The proposed detector aims
at improved keypoint repeatability under viewpoint position
changes.

In our preliminary work [1], we proposed a diffusion
process for RGBD data and proved that it engenders a scale
space, suitable for keypoint detection. This paper extends the
construction in [1] by addressing its two main limitations:

∙ The proposed scale space was initially tested with the
standard SIFT detector which is, however, not optimal
for the proposed scale space. In the present paper, we
propose a new detection scheme adapted to the proposed
scale space allowing for better performance on real data.

∙ The initially proposed diffusion process is computation-
ally expensive. In the present paper, we propose and test
a GPU implementation allowing for a substantial speed
up (tens of times with respect to our previous work).

Moreover, in this paper we test the entire proposed keypoint
detection scheme not only on synthetic RGBD data, but also
on real RGBD images that we captured using a Kinect sensor.

The rest of the paper is organized as follows. In Section II,
we present related work on local features for 2D images
and texture+depth content, as well as background concepts
on scale space construction in the context of keypoint detec-
tion. Section III discusses the proposed scale space definition
using a diffusion process, while Section IV describes how
to design a keypoint detector based on the proposed scale
space. In Section V, we present experimental results, including
repeatability score on synthetic RGBD images and a scene
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recognition application scenario on a set of Kinect images.
Finally, Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Image matching through local features
Sparse image matching is a basic task for a number of

problems in vision. It consists of three main steps: (i) detection
of interest points (keypoints), (ii) local description of all
detected keypoints, and (iii) descriptors matching. In this
paper, we focus on the first step of the image matching, whose
goal is to produce keypoints that are repeatable, i.e., reproduce
their locations in the image as independently as possible from
noise and different kinds of visual deformations, especially
viewpoint position changes.

A number of scale and rotation-invariant local features have
been proposed in the literature during the past decades. Scale-
Invariant Feature Transform (SIFT) [22], Speeded Up Robust
Features (SURF) [23] and binary features [24], [25] represent
some of the most successful examples of robust application-
independent local image features allowing for efficient sparse
image matching.

Most of these features are invariant or exhibit high robust-
ness to scale changes and in-plane rotations, which is generally
sufficient in many image matching scenarios. However, in
some applications such as indoor localization or visual odom-
etry, images could undergo more complex deformations, such
as viewpoint position changes, perspective distortions or out-
of-plane rotations. At the image feature extraction level, these
deformations combined with in-plane translations, rotations
and scale changes are commonly considered as equivalent
(for these reason, we further refer to it as viewpoint position
changes). For conventional feature extractors that use only
2D information, this type of deformations is challenging. For
example, the authors of [22], [26] have found that out-of-plane
rotations larger than 40° entail a substantial decrease in SIFT
matching performance.

A common way to deal with out-of-plane rotations consists
in approximating the perspective distortions by local affine
transformations. Harris and Hessian affine-covariant detec-
tors [27], [28] based on an iterative procedure allow to estimate
a keypoint neighborhood by a local affine shape. Before the de-
scriptor extraction, the corresponding local patch undergoes an
affine normalization, consisting in applying the inverse of the
estimated affine transformation. Affine SIFT [26] consists in a
simulation of affine transformations instead of a normalization:
it samples affinely transformed patches in all keypoints, and
then retrieves the most frequent transformations between the
two images being matched. A similar affine generalization of
SURF is presented in [29].

Affine-invariant features demonstrate better stability with
respect to viewpoint position changes. A major limitation of
the affine invariance paradigm consists in the fact that it is not
able to distinguish between a square and a rectangle, or a circle
and an ellipse, as these shapes are equivalent to each other up
to an affine transformation [30]. Thus affine invariant features
can produce a more robust but less discriminative description
compared to standard scale and rotation-invariant features like
SIFT [16].

Therefore, dealing with out-of-plane rotations, viewpoint
position changes and 3D rigid scene deformations still remain
challenging for the repeatability and discriminability of local
image features. We believe that the main interest in using an
extended modality, i.e., the texture complemented by the depth
map, is to address these transformation classes and provide
more repeatable and distinctive features.

B. Keypoint detection in RGBD images

A texture+depth (RGBD) image could be considered as a
mesh with an associated texture. Thus, RGBD matching could
be cast as a problem of mesh matching, for which several
techniques have been proposed in the literature, such as the
Mesh Difference of Gaussians and Histograms of Oriented
Gradients (MeshDoG+MeshHOG) [31], Mesh Local Binary
Patterns [32], photometric heat kernel signatures [33]. How-
ever, several problems arise in such a setting. First of all, mesh
matching techniques are not apt to deal with occlusions that
are commonly present in images. Second, a mesh is typically
defined in its own coordinates, whereas an RGBD image is
given in the camera coordinates. Consequently, any camera
displacement corresponds to resampling the observed mesh,
which is affected by the acquisition noise and thus hinders
the repeatability of detected keypoints. Therefore, image-level
techniques for feature detection on RGBD content are of
interest.

Viewpoint invariant patches (VIP) [30] exploit the depth
map in order to discover dominant planes in the scene and then
render their frontal (normalized) views. SIFT features are then
extracted from the rendered views. This technique allows for
efficient matching of scenes with relatively simple geometry.
However, when smooth surfaces or high frequency details are
present in the input data, VIP may not perform well. Moreover,
VIP uses a RANSAC-based technique to detect the dominant
planes, which adds a randomness component in the extracted
features, especially in presence of noise in the depth: in some
cases, with a non-zero probability VIP may fail to match a
given image against itself.

A number of approaches for RGBD content matching do not
exploit the depth map at the keypoint detection stage, but use it
only to compute descriptors, e.g., Perspective Invariant Normal
features (PIN) [34], Binary Robust Appearance and Normal
Descriptor (BRAND) [21], Color Signature of Histograms of
OrienTations (CSHOT) [35], and our previous work [20]. In
these cases, keypoints are typically detected in the texture
image only using a conventional keypoint detector, and then
described with the aid of depth information. To the authors’
knowledge, there is a lack of RGBD keypoint detectors in the
literature. A reason for this could probably be that designing
a texture+depth descriptor is a simpler and less constrained
problem compared to the design of a texture+depth detector.

Other approaches focus on keypoint detection in depth
maps only, such as 2.5D SIFT [36], Normally Aligned Ra-
dial Feature (NARF) [37], or Scale Invariant Point Feature
(SIPF) [38]. Rejecting the texture information makes keypoint
detection invariant to illumination changes and can be useful in
privacy-enabled vision applications. Nevertheless, depth maps



3

alone, without texture, may be not informative enough to
provide a rich feature representation for many practical vision
applications.

C. Scale spaces

The Gaussian kernel is one of the most common linear
image smoothing operators:

𝐾𝜎(𝑥, 𝑦) =
1

2𝜋𝜎2
exp

(︂
−𝑥2 + 𝑦2

2𝜎2

)︂
. (1)

The kernel separability allows for a faster filter response
computation: the 2D convolution may be replaced by a set
of 1D convolutions over image lines and columns.

Compared to other common low-pass filters, Gaussian filter
is particularly important in computer vision due to certain
properties established within the diffusion equation frame-
work [39]. Specifically, it is well-known that the partial
differential equation (PDE) problem:⎧⎨⎩

𝜕𝑓

𝜕𝑡
=

𝜕2𝑓

𝜕2𝑥
+

𝜕2𝑓

𝜕2𝑦
≡ Δ𝑓

𝑓 |𝑡=0 = 𝑓0

(2)

where Δ𝑓 is the Laplacian operator, possesses a unique
solution 𝑓(𝑡, 𝑥, 𝑦) =

(︀
𝐾√

2𝑡 * 𝑓0
)︀
(𝑥, 𝑦), with * denoting

the convolution product. With this setup, where the initial
data 𝑓0 represents the input image, a set of properties may
be established for the Gaussian smoothing, proving that a
sequence of progressively smoothed images forms a scale
space. According to the definition proposed by Koenderink
in [40], to be a scale space such a set of images with different
scales must satisfy two properties (scale space axioms):

∙ causality (non creation of local extrema), i.e. any feature
at a coarse level of resolution1 is required to possess
a (not necessarily unique) “cause” at a finer level of
resolution;

∙ homogeneity and isotropy, i.e. the smoothing is spatially
invariant.

The first axiom is crucial for keypoint detection. Thus,
the Gaussian scale space is widely used in feature extraction
algorithms, including SIFT [22].

A scale space may be defined without involving the second
axiom, for example, it can be based on a semantically con-
sistent smoothing that preserves the internal image structure
(notably, the edges) and still satisfy the causality axiom. The
first model of non-linear scale space was proposed by Perona
and Malik [41], who formulated a non-linear PDE problem
in such a way that the diffusion process is controlled by the
image gradient norm. Such a non-uniform scale space concept
is further generalized by the anisotropic diffusion filtering,
where the diffusivity becomes non-scalar [39], [42], and to
the multiscale image representations on manifolds [43]. Such
non-uniform scale spaces were successfully applied in feature
detection [44], [45], [46].

Differently from the cited works, the proposed approach
consists in exploiting the depth map in order to define a non-
uniform scale space for the texture image. The process we

1Here resolution means scale and not the image size.

Fig. 1. Scene surface parametrization in local camera coordinates.

define aims at exploiting the surface properties that do not
depend on the observer position in order to render a viewpoint-
covariant multiscale representation that is able to reveal robust
keypoints. To the authors’ best knowledge, this setting has
not yet been exploited in feature detection. Moreover, in spite
of its non-uniform nature, our scale space remains linear in
function of the input texture image (differently from Perona
and Malik’s construction [41], for example). Last but not least,
we prove that our proposed smoothing filter is numerically
stable, which is not always the case for complex scale spaces.
For example, Perona and Malik’s smoothing may demonstrate
unstable behavior [39].

III. DESIGN OF RGBD SCALE SPACE

A. Laplacian operator definition

We first define a Laplacian operator for RGBD content
that enables to establish a diffusion process in such a way
to engender a scale space.

Let the input image be of size 𝑊 ×𝐻 pixels, so that Ω =[︀
−𝑊

2 , 𝑊
2 − 1

]︀
×
[︀
−𝐻

2 ,
𝐻
2 − 1

]︀
denotes the image support. In

what follows, spatial image variables taking values from Ω are
referred to as 𝑢 and 𝑣. We denote by 𝐷 : Ω → R+ the depth
map associated to the image 𝐼 being processed. We assume
known the horizontal angle of view 𝜔 of the camera.

It can be easily shown using the pinhole camera model, that
the function �⃗� : Ω → R3 defined below parametrizes the image
surface in local camera coordinates as illustrated in Fig. 1:

�⃗�(𝑢, 𝑣) =

⎛⎝ 2𝑢 tan 𝜔
2

2𝑣 𝐻
𝑊 tan 𝜔

2
1

⎞⎠𝐷(𝑢, 𝑣). (3)

Let us now proceed to a discrete image support Ω𝑑 obtained
by sampling Ω with step ℎ in both dimensions. For a function
𝑓 defined on the continuous support Ω, we introduce the
following differential quantities, which are similar to the
notion of directional derivatives in [31]:

𝜕𝑢𝑓 =
𝑓(𝑢+ ℎ, 𝑣)− 𝑓(𝑢− ℎ, 𝑣)

‖�⃗�(𝑢+ ℎ, 𝑣)− �⃗�(𝑢− ℎ, 𝑣)‖
=

=
𝑓(𝑢+ ℎ, 𝑣)− 𝑓(𝑢− ℎ, 𝑣)

𝑟+−
𝑢

(4)
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𝜕𝑣𝑓 =
𝑓(𝑢, 𝑣 + ℎ)− 𝑓(𝑢, 𝑣 − ℎ)

‖�⃗�(𝑢, 𝑣 + ℎ)− �⃗�(𝑢, 𝑣 − ℎ)‖
=

=
𝑓(𝑢, 𝑣 + ℎ)− 𝑓(𝑢, 𝑣 − ℎ)

𝑟+−
𝑣

(5)

where 𝑟+−
𝑢 and 𝑟+−

𝑣 are introduced in order to simplify
notation. Applying twice this operator yields second-order
differential quantities, e.g., 𝜕𝑢𝑢𝑓 = 𝜕𝑢 (𝜕𝑢𝑓). For a better
operator kernel locality, we also introduce a definition through
one-sided finite differences as follows:

𝜕𝑢+𝑓 =
𝑓(𝑢+ ℎ, 𝑣)− 𝑓(𝑢, 𝑣)

‖�⃗�(𝑢+ ℎ, 𝑣)− �⃗�(𝑢, 𝑣)‖
=

𝑓(𝑢+ ℎ, 𝑣)− 𝑓(𝑢, 𝑣)

𝑟+𝑢
,

(6)

𝜕𝑢−𝑓 =
𝑓(𝑢, 𝑣)− 𝑓(𝑢− ℎ, 𝑣)

‖�⃗�(𝑢− ℎ, 𝑣)− �⃗�(𝑢, 𝑣)‖
=

𝑓(𝑢, 𝑣)− 𝑓(𝑢− ℎ, 𝑣)

𝑟−𝑢
,

(7)

𝜕𝑢𝑢𝑓 =
𝜕𝑢+𝑓 − 𝜕𝑢−𝑓

𝑟+−
𝑢

=
𝑓(𝑢+ ℎ, 𝑣)

𝑟+𝑢 𝑟
+−
𝑢

− 𝑓(𝑢, 𝑣)

𝑟+𝑢 𝑟
+−
𝑢

− 𝑓(𝑢, 𝑣)

𝑟−𝑢 𝑟
+−
𝑢

+
𝑓(𝑢− ℎ, 𝑣)

𝑟−𝑢 𝑟
+−
𝑢

.

(8)

𝜕𝑣+𝑓 , 𝜕𝑣−𝑓 and 𝜕𝑣𝑣𝑓 are defined in an analogous way.
Finally, we define a Laplacian-like second order differential

operator summing up the second-order differential quantities
defined above:

𝐿 ≡ 𝜕𝑢𝑢 + 𝜕𝑣𝑣. (9)

B. PDE problem formulation

Next, we set up a partial differential equation problem that
describes the diffusion process with the proposed Laplacian
operator (9): ⎧⎨⎩

𝜕𝑓

𝜕𝑡
= 𝐿𝑓

𝑓 |𝑡=0 = 𝑓0.
(10)

This problem is very similar to the classic diffusion problem
(2). To study this similarity and set up some useful properties,
let us return back to the continuous definition domain. We
obtain a continuous generalization of the differential quanti-
ties (4) and (8) by letting ℎ tend towards zero, that is:

𝒟𝑢𝑓 = 𝑓𝑢‖�⃗�𝑢‖−1

𝒟𝑢𝑢𝑓 = 𝑓𝑢𝑢‖�⃗�𝑢‖−2 − 𝑓𝑢‖�⃗�𝑢‖−4 (�⃗�𝑢, �⃗�𝑢𝑢) . (11)

Thus, we get the continuous version of problem (10):⎧⎨⎩
𝜕𝑓

𝜕𝑡
= 𝒟𝑢𝑢𝑓 +𝒟𝑣𝑣𝑓

𝑓 |𝑡=0 = 𝑓0.
(12)

It is worth noticing that if the depth 𝐷 is constant (i.e., we have
a non-informative depth map), this PDE problem becomes
equivalent to the classic linear diffusion filtering (2), as the
differential operator on the right side of the equation turns
into the classic Laplacian up to a constant multiplier due to
�⃗�𝑢 = �⃗�𝑣 ≡ 𝑐𝑜𝑛𝑠𝑡 and �⃗�𝑢𝑢 = �⃗�𝑣𝑣 ≡ 0. This allows for a
“backward compatibility” of the proposed scale space to the
classic Gaussian scale space in the case when the depth map

is not provided. Moreover, this property is satisfied locally,
i.e., at points where 𝐷 is continuous and the surface normal
is parallel to the camera optical axis.

C. Well-posedness, numerical solution and its causality

In order to make use of the PDE problem (10), we have to
ensure that it has a unique solution that depends continuously
on the initial data 𝑓0. This is a fundamental property known
as well-posedness.

To establish the well-posedness of problem (10) we use
some of the results of [39]. We rewrite (10) in a vector
form, i.e., 𝑓(𝑡) ∈ R𝑊×𝐻 and the application of 𝐿 to 𝑓 is
represented by a matrix multiplication 𝒜𝑓 . The coefficients of
matrix 𝒜 depend only on �⃗� and are explicitly deduced from
its definition (8).

First, we apply theorem 4 of [39]. It is straightforward to
show that the operator matrix satisfies all the conditions except
the symmetry, i.e., it has vanishing row sums (S3), nonnegative
off-diagonals (S4) and is irreducible (S5). Lipschitz-continuity
(S1) is satisfied unconditionally as 𝒜 does not depend on 𝑓 .
The violated condition of the matrix symmetry (S2) is not
required for well-posedness and extremum principle, as it is
noticed afterwards [39, p. 76].

This proves that not only is the problem well-posed, but that
the solution 𝑓 respects the extremum principle allowing to set
up the causality. It implies that the resulting filter is causal in
spatial image variables, guaranteeing that no spurious features
will appear during the smoothing process.

Furthermore, theorem 8 of [39] proves a sufficient criterion
of stability for the following explicit numerical scheme that
allows to simulate the diffusion process:

𝑓 (𝑛+1) = 𝑓 (𝑛) + 𝜏𝒜𝑓 (𝑛)

𝑓 (0) = 𝑓0. (13)

The condition of stability consists in limiting the temporal step
of simulation 𝜏 . We reinterpret theorem 8 of [39] to obtain the
analytic expression:

𝜏 ≤ 𝜏* =

[︂
2max

Ω𝑑

{︂
1

𝑟+𝑢 𝑟
+−
𝑢

+
1

𝑟−𝑢 𝑟+−
𝑢

+
1

𝑟+𝑣 𝑟
+−
𝑣

+
1

𝑟−𝑣 𝑟+−
𝑣

}︂]︂−1

.

(14)
Now, using equations (13) and (14), we are able to perform the
computation of the filter response for a given image 𝐼 = 𝑓0
and depth map 𝐷. For a constant time step 𝜏 , the quantity
of resulting smoothing at the 𝑛-th iteration is then determined
by 𝑡(𝑛) = 𝑛𝜏 . However, nothing prevents to vary 𝜏 from one
iteration to the next one; we have only to respect the condition
𝜏 < 𝜏* in order to have a stable process.

The designed filter simulates a uniform smoothing along
the scene surface through a non-uniform diffusion in the
image plane. Since smoothing along surfaces is, in principle,
independent on the observer position, the proposed scale space
can provide keypoints that are invariant to viewpoint position
changes. This behavior is referred to as viewpoint covariance.
It mainly comes from the definition of the first order differ-
ential operators (4), where we weight the derivative computed
on two neighboring samples by the real distance between the
corresponding sample points on the scene surfaces, inferred
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from the depth map. In practice, this diffusion process only
approximates a diffusion process on the manifold defined by
the depth map, due to depth errors and texture sampling
precision. Therefore, the resulting scale space behavior will
be approximately viewpoint covariant.

Some examples of images obtained with the proposed
smoothing operator compared to the Gaussian smoothing are
presented in Fig. 2. The input image is taken from the
LIVE dataset [47], [48], which provides depth maps captured
through a laser scanner. The viewpoint-covariant behavior
could be observed on large scales (images (b), (c), (e), (f)):
as the smoothing is propagating along the surface, and not
uniformly in the image plane (as in case of the Gaussian scale
space), the image becomes less smoothed when the distance
increases.

D. GPU implementation of the proposed filter

As mentioned before, computing the filter output consists in
an iterative process according to Eq. (13). Since the operator
matrix 𝒜 is sparse, it is possible to parallelize the filtering
process, as the value of a given pixel at iteration 𝑛+1 depends
only on few pixels at iteration 𝑛. This allows to compute
the designed diffusion process on GPU in a very efficient
way. For our experiments in this paper, we implemented the
designed numerical scheme using modern OpenGL utilities.
Our implementation is outlined in the following.

We first allocate several textures to store the input image
(𝑇𝑖𝑛), the output image (𝑇𝑜𝑢𝑡) and the nonzero entries of the
operator matrix 𝒜. More precisely, there are only five non-
zero entries in each line of 𝒜, forming the defined discrete
Laplacian operator support, situated at left, right, top, bottom
and center pixel positions with respect to the current position
𝑢,𝑣. In our implementation, we compute these coefficients in
a single CPU pass on the input image, and assign them to five
separate single-channel textures.

The rendering is performed into an off-screen pixel buffer
bound to the output image texture. The updating step (Eq. (13))
is implemented in the fragment shader: the Laplacian is
computed using the stored coefficients, and then weighted by
the time step 𝜏 and added to the image. After the rendering, we
swap the textures 𝑇𝑖𝑛 and 𝑇𝑜𝑢𝑡. This is performed without any
time-consuming pixel transfer, simply by rebinding the two
textures in a crosswise manner. The rendering step is repeated
until the target level of smoothing 𝜎 is reached. Then the pixel
data can be read back from GPU memory and transmitted to
the application.

It worth noticing that the described process makes use of the
standard graphic pipeline and does not require any advanced
GPGPU2 technology such as CUDA, which is hardware
vendor-specific. Consequently, the designed scale space may
be rendered on any OpenGL-compliant graphic hardware. Due
to wide applicability of OpenGL, our approach could perform
efficiently on a large spectrum of devices, including modern
smartphones, tablets and even drones (equipped with a depth
sensor).

2General-Purpose computing on Graphics Processing Units

IV. PROPOSED DETECTOR

In this section, we use the scale space described above in
order to design a novel RGBD keypoint detector. A keypoint
detector mainly consists of three parts: (i) initial keypoint
candidates selection criteria selecting a set of locations with
corresponding scales in the input image, (ii) a candidate
filtering, aimed at rejecting candidates that are likely less
repeatable, and (iii) an accurate localization procedure of
remaining keypoints. We describe in detail each step in the
following.

A. Candidates selection

Similarly to the popular SIFT detector [22], the initial
keypoint candidates in our proposed detector are selected as
local extrema of the Laplacian operator. The SIFT detector
uses the classic image Laplacian in (2), approximated by
a difference of Gaussians, i.e., by subtracting consecutive
levels of the scale space. In our case, the proposed Laplacian
operator (9) is used. We do not need to approximate it by
taking differences of the smoothed images, as we simulate the
diffusion process where the Laplacian is computed explicitly
at each iteration.

However, the main difference with respect to the SIFT
detection criterion is that we look only for spatial local extrema
at each scale, i.e., over variables 𝑢, 𝑣, and not for the local
extrema along both spatial and scale coordinates, i.e., over 𝑢,
𝑣 and 𝜎. Indeed, in our experiments we found that keypoint
candidates issued from extrema along the 𝜎 axis are generally
unstable. A possible reason for that is related to the intrinsic
nature of our proposed scale space: the smoothing injected
into the image is spatially varying, so that 𝜎 represents a scale
with respect to the scene geometry, and not the scale in the
image plane. On the other hand, local minima and maxima of
our Laplacian (9) with respect only to spatial image variables
𝑢, 𝑣 turn out to be very repeatable, and reveal distinctive blob-
like structures on the scene surface. Such a setting, where the
keypoints are searched on different scale levels independently,
is a variation of the multiscale detector proposed by [27].

More precisely, we search for keypoints in a multiscale rep-
resentation obtained in a similar way to [49], by progressively
smoothing and subsampling the input image. We construct
a set of smoothed images of levels 𝜎0, 2𝜎0, 4𝜎0, ..., 2

𝑀−1𝜎0.
Here 𝜎0 is a constant, its value is set manually according to
the depth measurement unit used in the depth map. Each sub-
sequent image is subsampled by two in each dimension with
respect to the previous one: it reveals larger scale structures
and allows to reduce the computation time. The number of
levels 𝑀 is limited by the image size. In our experiments
we keep 𝑀 = 5, which is enough to detect blobs on a large
variety of scales.

B. Candidates filtering

A common practice to reduce the number of poorly repeat-
able keypoints is to threshold a keypoint score, keeping only
candidates with highest scores. In a similar way, we keep only
those initial candidates that have a Laplacian operator response
greater in absolute value than a threshold.
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Fig. 2. An example of the proposed scale space on a real RGBD image. Top row: standard Gaussian scale space (no depth map used), second row: the
proposed scale space. Images (a), (b) and (c) in each row present different levels of smoothing: 𝜎 = 5, 10 and 25 for the Gaussian scale space and 𝜎 = 0.1,
0.2 and 0.5 for the proposed one. Images (d), (e) and (f) represent corresponding Laplacian operator outputs.

Once the initial candidates are selected, we apply Harris cor-
nerness measure [50] similarly to ORB [25] and CenSurE [51].
This technique allows to filter out the keypoints localized on
the edges that are likely to be unstable: they can move along
the edge when the camera position changes.

C. Accurate localization

In order to localize keypoints with subsample precision, we
apply the accurate localization procedure presented in [52],
reducing it from three dimensions (𝑢, 𝑣, 𝜎) to two. More
precisely, let 𝐿 be the Laplacian response, (𝑢, 𝑣) a candi-
date point, (𝑢*, 𝑣*) an accurately localized local extremum,
�⃗� = (𝑢* − 𝑢, 𝑣* − 𝑣)𝑇 . We develop the Taylor expansion of
𝐿(𝑢*, 𝑣*) with respect to (𝑢, 𝑣):

𝐿(𝑢*, 𝑣*) ≈ 𝐿+ (𝐿𝑢 𝐿𝑣) �⃗� +
1

2
�⃗�𝑇

(︂
𝐿𝑢𝑢 𝐿𝑢𝑣

𝐿𝑢𝑣 𝐿𝑣𝑣

)︂
�⃗�. (15)

𝐿 and its derivatives on the right side of the equation above are
taken at point (𝑢, 𝑣). Deriving (15) and exploiting the fact that
(𝑢*, 𝑣*) is a local extremum, i.e., 𝐿𝑢

⃒⃒⃒
𝑢*,𝑣*

= 𝐿𝑣

⃒⃒⃒
𝑢*,𝑣*

= 0,

we obtain:

�⃗� = −
(︂
𝐿𝑢

𝐿𝑣

)︂(︂
𝐿𝑢𝑢 𝐿𝑢𝑣

𝐿𝑢𝑣 𝐿𝑣𝑣

)︂−1

. (16)

Similarly to a known SIFT implementation [53], we apply
this procedure iteratively, cumulating the offset and reinterpo-
lating the derivatives of 𝐿. If after a fixed number of iterations
the displacement �⃗� remains large, the keypoint candidate is
considered as unstable and rejected.

After the keypoints are detected, in order to be able to
use standard descriptors, we derive their on-screen scale. We
consider keypoint 𝑘 as a sphere of radius 𝜎𝑘, situated on the
scene surface. 𝜎𝑘 is simply equal to the scale level where
the keypoint is detected. Assuming that its center is projected
on the screen at point (𝑢𝑘, 𝑣𝑘), obtained from the accurate
localization procedure, we apply the pinhole camera model to
get the output (on-screen) keypoint scale:

𝑠𝑘 =
𝜎𝑘𝑊

2𝐷(𝑢𝑘, 𝑣𝑘) tan
𝜔
2

. (17)

The set of triples {(𝑢𝑘, 𝑣𝑘, 𝑠𝑘)}𝑘 constitutes the detector out-
put and is sent to the descriptor extraction stage. An example

Fig. 3. Keypoints detected using the proposed method in an image of Bricks
sequence.

of detected keypoints in an image from Bricks sequence
is given in Fig. 3. We notice that the dominant direction
estimation and the consequent rotational normalization of the
patches, required to have in-plane rotation-invariant descrip-
tors, are performed on the descriptor side.

V. EXPERIMENTS

A. Repeatability evaluation

Repeatability [7], [8] is a commonly used measure to eval-
uate a keypoint detector. The evaluation consists in extracting
keypoints from several images (views) of a given scene, and
then counting the portion of repeated keypoints between a ref-
erence view and each remaining view. The keypoint 𝐴 coming
from the reference view is considered as repeated if there is
a keypoint 𝐵 in the test view that covers (approximatively)
the same area of the scene. In this experiment, we follow
our previous work [1], [20]: the keypoints are considered
as spheres on the scene surface, their centers are obtained
by projecting the keypoints locations on the scene surface,
and their radii are related to the keypoint scales according to
Eq. (17). The volumetric overlap of such spheres is then taken
into account. Specifically, for a given overlap error threshold
𝜂 ∈ (0, 1), keypoint 𝐵 is a repetition of keypoint 𝐴 if and
only if

|𝐴 ∩𝐵| ≥ (1− 𝜂)|𝐴 ∪𝐵|. (18)

The scenes that we use in this test contain all necessary ground
truth data to compute the overlap of any two keypoints [1].



7

10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100
Repeatability (Bricks sequence)

Angle of view difference, °

R
ep

ea
ta

bi
lit

y,
 %

 

 SIFT, η=0.5

VIP, η=0.5

Proposed, η=0.5

SIFT, η=0.25

VIP, η=0.25

Proposed, η=0.25

20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90
Repeatability (Graffiti sequence)

Angle of view difference, °

R
ep

ea
ta

bi
lit

y,
 %

 

 SIFT, η=0.5

VIP, η=0.5

Proposed, η=0.5

SIFT, η=0.25

VIP, η=0.25

Proposed, η=0.25

5 10 15 20 25
0

10

20

30

40

50

60

70
Repeatability (House sequence)

Angle of view difference, °

R
ep

ea
ta

bi
lit

y,
 %

 

 SIFT, η=0.5

VIP, η=0.5

Proposed, η=0.5

SIFT, η=0.25

VIP, η=0.25

Proposed, η=0.25

Fig. 4. Repeatability score on synthetic RGBD sequences in function of angle of view difference between reference and test images.

For each test view, we report the repeatability score, equal
to the number of repeated keypoints divided by the maximum
possible number of repetitions. For the latter we take the
maximum number of keypoints detected in one of the two
views, excluding those keypoints that fall out of the field of
view of any of the two cameras, so that only the surface area
present in both views is considered. Moreover, we assume
that each keypoint may be repeated at most once (multiple
repetitions are not counted: for each 𝐴 only the best matching
𝐵 is considered).

In different variants, this evaluation procedure, originally
proposed by Mikolajczyk et al. [7], [8], appears in comparative
evaluations of local features, e.g. [6], [10], [11].

We compare the proposed detector to the standard SIFT
detector (VLFeat [53] implementation) and to Viewpoint In-
variant Patches [30] (original authors’ implementation), which
incorporates a keypoint detector that uses the depth map. Three
RGBD test sequences are used [1], representing different
content, containing significant viewpoint position changes:
Bricks (20 images), Graffiti (25 images, re-synthesized from
the original Graffiti sequence from [7]) and House (25 images).
The repeatability score of each detector is computed for two
values of the overlap error threshold 𝜂 = 0.5 and 𝜂 = 0.25.
Using two values allows to compare the approaches in two
different conditions: the smaller 𝜂 is, the more precisely the
keypoints should be repeated. The results of this experiments
are shown in Fig. 4.

It can be observed that, for both values of the overlap
𝜂, the proposed detector clearly outperforms the two other
approaches. Moreover, even in the tighter condition 𝜂 = 0.25
our proposed detector demonstrates a comparable or better
repeatability to the two other detectors, even when those are
matched using the more tolerant value 𝜂 = 0.5.

It is worth noticing that in this experiment the number of
keypoints detected by SIFT and our proposed method remain
comparable (vary between 1000 and 2500 depending on the
input image), however VIP detects generally more keypoints
(up to 5000).

B. Scene recognition using Kinect images

In this section, we analyze the performance of the proposed
RGBD detector in a simple scene recognition application
which requires repeatable local features. Using Microsoft

Kinect sensor, we captured 75 RGBD images in 15 different
indoor location (5 images per location taken from different
positions, but in such a way that the same objects are visible
in all the 5 images). The images are shown in Fig. 5. The
problem is, e.g., for a mobile robot or a drone, to recognize
the location (room) where it is situated, solely using visual
sensors data and prior knowledge, i.e., a database of local
features representing different locations.

This problem may be reduced to a simple classification task.
In order to classify a given image 𝐼 with respect to a set of
references ℛ = {(𝐼𝑘, 𝑙𝑘)}𝐾𝑘=1, where 𝑙𝑘 represent the ground
truth class label (i.e., room number), we simply look for an
index 𝑘* of an image from ℛ that represents the best match
against 𝐼 . The best match is the one that maximizes an image
similarity score, which is computed as follows.

We detect keypoints in both images and match their cor-
responding descriptors. Since the description of detected key-
points is out of scope of this paper, we use existing state-
of-the-art descriptors presented further in this section. The
descriptors are matched testing all descriptor pairs: for each
given descriptor from the first image we pick the closest
descriptor from the second image. If the number of closely
matching descriptors (those that have a distance less than
a given matching selectivity threshold 𝑡) is large enough,
then the two images are assumed visually similar. Thus, to
recognize the location, we select the most similar image and
take its label.

Specifically, let 𝑁𝑓𝑒𝑎𝑡(𝐼) denote the number of features
extracted from image 𝐼 and 𝑁𝑚𝑎𝑡𝑐ℎ𝑒𝑠(𝐼, 𝐼𝑘, 𝑡) the number of
matching descriptor pairs having the inter-descriptor distance
less than a threshold 𝑡. Then, the image-level similarity score
is given by

𝐽(𝐼, 𝐼𝑘, 𝑡) =
𝑁𝑚𝑎𝑡𝑐ℎ𝑒𝑠(𝐼, 𝐼𝑘, 𝑡)

𝑁𝑓𝑒𝑎𝑡(𝐼) +𝑁𝑓𝑒𝑎𝑡(𝐼𝑘)−𝑁𝑚𝑎𝑡𝑐ℎ𝑒𝑠(𝐼, 𝐼𝑘, 𝑡)
.

(19)
The best match with respect to the given set of references ℛ
is the one maximizing 𝐽 :

𝑘*(𝐼, 𝑡) = argmax
𝑘

{𝐽(𝐼, 𝐼𝑘, 𝑡)} . (20)

The label 𝑙𝑘* is then attributed to 𝐼 . If the ground truth label
of 𝐼 is equal to 𝑙𝑘* , the image is classified correctly, i.e., the
location is correctly recognized.
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Fig. 5. Images used for scene recognition task: texture and depth maps of 15 indoor scenes of 5 images acquired with Microsoft Kinect 2 sensor (color image
following by depth map in each column). The depth maps are aligned to the texture maps using calibration coefficients carried by the sensor. The images
were cropped and subsampled to 720×540 pixels. No other preprocessing (filtering or denoising) is applied.

Differently to the previous experiment, here we involve
complete feature extraction pipelines (containing both detector
and descriptor). We compare the following local feature ex-
traction methods, representing well-known techniques to deal
with out-of-plane rotations:

∙ original VIP features [30],
∙ standard SIFT features (VLFeat [53] implementation,

referred to as DOG+SIFT),
∙ SIFT descriptors undergoing affine normalization [28],

bootstrapped with SIFT keypoints (VLFeat implementa-
tion, referred to as DOG+AFFINE),

∙ our proposed detector with standard SIFT descriptors
(referred to as PROPOSED+SIFT),

∙ SIFT descriptors undergoing affine normalization [28],
bootstrapped with our proposed detector (referred to as
PROPOSED+AFFINE).

To keep the comparison fair, for all the detectors we keep
at most 1000 keypoints with the highest scores (Laplacian
response). All input parameters of all the methods keep their
default values.

All the descriptors are represented by 128-dimensional
numerical vectors. There are two options to measure the inter-
descriptor similarity:

1) simple Euclidean norm of inter-descriptor difference
taken as a vector;

2) ratio of Euclidean distances to the 1st closest and the 2nd
closest descriptor, as proposed in [22].

It is known [22] that in case of standard SIFT descriptors,
the second measure allows to preserve better true positive
matches when thresholding. However, for descriptors that
undergo the affine normalization, the first measure gives
higher performance [16]. For each method we simply use

VIP DoG+SIFT Proposed+SIFT DoG+Affine Proposed+Affine
0

0.2

0.4

0.6

0.8

1

Recognition accuracy

 57.3%  34.7%  85.3%  49.7%  96.0%  60.6%  97.3%  68.5%  98.7%  71.0%

 

 

Complete
Single ref.

Fig. 6. Accuracy of scene recognition on the images of Fig. 5. The left bars
(complete) are computed by matching a query image to all the remaining
74 images in the dataset. In the single-reference classification, instead, each
image is classified using a set of 15 randomly selected reference images (one
per class). In this case the reported results are the average over 100 repetitions,
corresponding standard deviation is displayed.

the option that performs better: the first one is used with
DOG+AFFINE and PROPOSED+AFFINE, the second one is
used for the rest. Moreover, to have a fair comparison between
the tested methods, we perform the experiment for a set of
matching selectivity threshold values 𝑡, as there is no reason
that different features will perform equally well with the same
threshold. For each method we present its best result over all
the used values of 𝑡.

Similarly to [32], we first match all the images against each
other computing confusion matrices. This allows to classify
each given image with respect to all the others, so that the
reference set ℛ is different for each input and consists of 74
remaining images. The portion of correctly classified images
per method in this setting is reported in Fig. 6 (left bars,
referred to as complete). Then we switch to a more practical
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Fig. 7. Raw (putative) feature matches between two RGBD images from
Board scene obtained with affine-covariant descriptors on top 1000 keypoints
in each image. Left: SIFT detector (243 matches), right: the proposed detector
(419 matches).

scenario. We randomly select a single image per location,
forming a reference set ℛ of 15 images, and then classify
all the remaining images with respect to the given reference
set. The obtained recognition accuracy is also shown in Fig. 6
(right bars, referred to as single-ref ). In order to avoid the
influence of the random reference selection, we repeat the
experiment 100 times.

Our proposed detector achieves a higher recognition accu-
racy in both the experiments. Affine normalization compen-
sates the perspective distortions on the descriptor computa-
tion stage, yielding improved performance compared to the
unnormalized SIFT descriptors. For qualitative comparison,
an additional illustration of matching using these descriptors
is given in Fig. 7: keypoints detected with the proposed
detector generally provide more consistent and regular cor-
respondences. Moreover, in spite of the noise present in depth
maps and their incompleteness (some areas have undefined
depth, which is a common problem of infrared depth sensors),
our proposed approach is able to detect repeatable keypoints.
However, the degraded depth map quality is probably the
reason for the limited performance of VIP.

In this experiment we also report that the keypoint detection
time taken by our proposed detector averaged over all the
75 images is about 0.42 seconds3. It is nearly half of the
average computation time of VLFeat SIFT detector, which is
implemented in a single thread on CPU, but uses vectorial
processor instructions in order to speed up the processing.

VI. CONCLUSION

In this paper we have proposed a multiscale representation
and a keypoint detector for RGBD images. First, we have
proven that the proposed multiscale representation is causal
in the image plane, i.e., it engenders a scale space. Second,

3Run on a Windows 7 machine with 12-core 3.5 GHz Intel Xeon CPU, 16
GB RAM and NVidia Quadro K620 graphic card.

since the generation of this scale space corresponds to an
approximated diffusion along the surfaces of the scene, the
resulting keypoints have a higher stability to large viewpoint
changes than conventional, isotropic scale spaces. Finally, the
proposed diffusion scheme is numerically stable, linear in the
input texture image, and can be efficiently computed on GPU
using OpenGL.

These properties have been leveraged to design a novel
multiscale detector, which offers a significant gain in terms
of keypoint repeatability with respect to viewpoint position
changes, both on synthetic and real RGBD images, in a
computational time comparable to alternative conventional
detectors such as SIFT. Future work will concentrate on
completing the feature extraction pipeline with an efficient
local description of RGBD content adapted to the proposed
detector.
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