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Abstract Since their discovery more than 30 years ago, low-
threshold T-type Ca2+ channels (T channels) have been sug-
gested to play a key role in many EEG waves of non-REM
sleep, which has remained exclusively linked to the ability of
these channels to generate low-threshold Ca2+ potentials and
associated high-frequency bursts of action potentials. Our
present understanding of the biophysics and physiology of T
channels, however, highlights a much more diverse and com-
plex picture of the pivotal contributions that they make to
different sleep rhythms. In particular, recent experimental
evidence has conclusively demonstrated the essential contri-
bution of thalamic T channels to the expression of slow waves
of natural sleep and the key role played by Ca2+ entry through
these channels in the activation or modulation of other
voltage-dependent channels that are important for the genera-
tion of both slow waves and sleep spindles. However, the
precise contribution to sleep rhythms of T channels in cortical
neurons and other sleep-controlling neuronal networks re-
mains unknown, and a full understanding of the cellular and
network mechanisms of sleep delta waves is still lacking.

Keywords Cortex . Thalamus . Sleep slowoscillation . Sleep
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Introduction

As this review is part of a special issue on T-type Ca2+

channels (T channels), it feels appropriate to firstly provide
the reader with an overview of the stereotyped sequences of
electrical waves that are recorded in the EEG during natural
non-REM sleep. Importantly, while the source(s) of the elec-
trical waves observed in scalp EEG recordings are located in
the upper layers of the neocortex, their generator(s) are the
dynamical interactions between the different neuronal net-
work activities that are expressed by various component neu-
rons of the corticothalamic loop. In humans, the occurrence of
theta waves (3–7 Hz) over a generally desynchronized EEG
characterizes the first stage of non-REM sleep, while in stage
2 occasional K-complexes and slow waves start to appear.
Sleep spindles are also present in stage 2, either in isolation or
associated with a K-complex. The EEG in stage 3 sleep still
presents spindle episodes but also shows clearly defined pe-
riods of delta waves (0.5–4 Hz) that together with slow waves
(<1–2 Hz) become the predominant activity as sleep deepens
into stage 4. This smooth and progressive transition from
stage 1 to stage 4 non-REM sleep is invariably accompanied
at the neuronal level by a reduction in the depolarizing tone
exerted by cholinergic, monoaminergic, and histaminergic
afferents from brainstem and mammillary body onto both
cortical and thalamic neurons [60] (with some exceptions,
see ref. [60]), leading to a progressive hyperpolarization of
the majority of cortical and thalamic neurons [42, 78, 89].

The first insight into the role of T channels in sleep waves
came from their discovery in thalamic neurons, and in partic-
ular the finding that activation of these channels, following a
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period of membrane hyperpolarization, leads to a voltage
waveform known as the low-threshold Ca2+ potential
(LTCP) or low-threshold spike [30, 32, 46, 47, 55]. Since
then, the main and only widely recognized function of tha-
lamic Tchannels in sleep waves has been that of providing the
rhythmic LTCP-mediated sequences of high-frequency bursts
of action potentials that characterize the cellular activity of
these neurons during sleep spindles and delta waves as well as
at the start of an up state of sleep slow waves [7, 8, 45, 53, 54,
61, 76, 81, 82, 84, 92]. However, the role of the T channels in
sleep and non-REM EEG oscillations can no longer be re-
stricted to the stereotypical LTCPs of thalamic neurons, since
(1) it involves other physiological voltage waveforms that are
dependent on the “window current” of these channels (i.e.,
ITwindow) [10, 43, 44, 91, 93], and (2) because non-thalamic
neuronal populations, e.g. those in the neocortex and in sleep-
controlling brain regions, show a marked expression of T
channels [28, 35, 38, 40, 41, 48, 71, 87]. This short review
will address these issues after presenting a brief overview on
the biophysics of T channels, and in particular on ITwindow and
its physiological consequences for neuronal excitability (for
detailed descriptions of the molecular genetics, biophysics,
and neuronal cell type distribution of T channels, see other
contributions to this special issue). In addition, as few exper-
iments have so far analyzed the role of T currents in naturally
sleeping animals, we will also discuss how the current view of
T channel function in sleep may be clouded by the speculative
extrapolations of data obtained either in brain slices or in
anesthetized preparations where EEG waves similar, though
not identical, to those observed during the various stages of
natural non-REM sleep can be recorded (see [21]). Finally, we
will highlight the current difficulty in correctly identifying the
cellular and network mechanisms of delta waves because of
the partial overlap of their frequency band with that of slow
waves.

Biophysics and physiological impact of the “window
current” generated by Tchannels

Since their original characterization in primary sensory neu-
rons [11, 13, 36, 65], two main types of native T type Ca2+

currents that display either “fast” or “slow” activation and
inactivation kinetics were reported [45, 68]. Cloning of the
three low-threshold Ca2+ channel genes (Cav3) further con-
firmed this crude categorization. Cav3.1 and Cav3.2 (α1G
and α1H, respectively) generate low-threshold Ca2+ currents
displaying fast activation and inactivation mechanisms [18,
69], while Cav3.3 (α1I) shows much slower kinetics [52].
Regardless of this difference in gating kinetics, all native and
recombinant channels share the same basic voltage depen-
dence with an activation threshold and a nearly complete
steady-state inactivation around −60 mV [68].

However, a closer look at the gating properties of the T
channels reveals that the steady-state activation and inactiva-
tion curves overlap (Fig. 1(a)). Therefore, in this voltage
region that corresponds to neuronal resting membrane poten-
tials, a few T channels are not inactivated and their open
probability is close but not equal to zero, hence a tonic T
current (i.e., ITwindow) is generated. Since the activation and
inactivation curves are obtained by fitting currents that in this
voltage region are obviously very small, a precise estimation
of ITwindow, particularly for native channels, is difficult to
achieve, and thus great caution should be used in interpreting
these data. Nevertheless, investigations on recombinant chan-
nels have suggested that Cav3.3 channels may generate a
larger and more depolarized ITwindow (see Fig 7 in [68]; [15])
than that elicited by Cav3.1 and Cav3.2 channels. These
differences in ITwindow should be carefully considered when
assessing the precise role of this tonic current in the excitabil-
ity of neurons that possess different complements (and differ-
ent subcellular distributions) of the three isoforms of T chan-
nels. In particular, the glutamatergic thalamocortical (TC)
neurons only express Cav3.1 channels while the GABAergic
neurons of the nucleus reticularis thalami (NRT) possess
Cav3.3 channels in addition to a small component of Cav3.2
channels [45, 87].

Although ITwindow is an inherent biophysical property of all
T channels, its amplitude in some neurons may be too small,

�Fig. 1 The window T current tightly controls thalamic neuron
excitability. a Normalized activation and steady-state inactivation curves
of T current recorded in a TC neuron from the rat ventrobasal thalamic
nucleus. The activation curve was constructed by successive step depo-
larizations from −80 to −45 mV (2.5 mV increments) preceded by a 1-s
hyperpolarizing pre-pulse to −100 mV. Inactivation of the Tchannels was
induced using a 1-s pre-pulse of increasing potential (from −100 to
−60 mV with 2.5 mV increments) and the resulting channel availability
was estimated from the normalized current amplitude measured at
−50 mV. Data were fitted by Boltzmann equations. Inset illustrates the
voltage dependence of the steady-state channel activation (window cur-
rent) estimated from the product of the Boltzmann fits of the normalized
activation and inactivation curves. b The window T current evoked by a
10-s-long depolarizing voltage ramp from −100 to −40mV preceded by a
1-s hyperpolarizing prepulse to −100 mV is fully blocked by the selective
T channel blocker TTA-P2 (1 μM). B2 Voltage dependence of the
window T current shown in B1. c In the continuous presence of trans-
ACPD, recording from a cat TC neuron in an thalamic intralaminar
nucleus reveals a slow oscillation (top trace) consisting of regularly
recurring up and down states intermixed with much longer up states with
continuous tonic action potentials firing. Each down state starts with a
clear inflection point leading to a stereotypical large hyperpolarizing
potential that, upon Ih activation, slowly repolarizes the neuron up to
the LTCP threshold (see also Fig. 2c). Following the block of Ih with ZD
7288 (middle trace), the neuron exhibits two stable resting membrane
potentials. Transitions between stable equilibrium potentials are evoked
by short steps of positive or negative injected currents (I inj) that trigger
an LTCP and switch off ITwindow, respectively. Upon application of TTA-
P2 that progressively blocks the T channel population, the bistable
behavior quickly disappears due to the decrease in ITwindow while enough
Tchannels remain to evoke LTCPs (lower trace). B1–B2: reproduced with
permission from [34]
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thus precluding a significant physiological role in cellular
excitability. However, both TC and NRT neurons express
especially large T currents [6, 9, 31, 34] and a significant
number of T channels are still de-inactivated around
−60 mV. Thus, although the open probability of the channels
is very low at these potentials, an ITwindow of about 30 pA can
be measured in TC neurons using voltage ramps that are slow

enough to achieve steady-state equilibrium between activation
and inactivation of the T channels (Fig. 1(b)). Block of this
tonic current with the specific T channel antagonist, TTA-P2,
induces a 3-mV hyperpolarization of TC neurons held at
−60 mV but has no effect when the neuron is held at a
membrane potential outside the voltage range of ITwindow
activation (see Fig. 3 in [34]). As predicted from the

membrane potential (mV)

I /
 Im

ax

1.0

0.8

0.6

0.4

0.2

0.0

-100 -90 -80 -70 -60

-80 -60 -40mV

0.002

0.001

0

20 pA

2 s

-60 mV

-100 mV

-40 mV

10 s 

0

-20

-40

-80 -70 -60 -50

cu
rr

en
t a

m
pl

itu
de

 (
pA

)

membrane potential (mV)

CTR

TTA-P2

c control (100 µM trans-ACPD)

+100 µM ZD-7288

+3 µM TTA-P2

20 mV

10 s

-60 mV

-60 mV

-60 mV

10 mV

10 mV

200 pA

200 pA

Iinj

Iinj

b2b1a

Pflugers Arch - Eur J Physiol (2014) 466:735–745 737



biophysics of recombinant Cav3.3 channels, an even larger
hyperpolarization (5 mV) is observed upon application of
TTA-P2 in NRT neurons [34], demonstrating that ITwindow
play a crucial role in setting the resting membrane potential
of both TC and NRT neurons. Moreover, when metabotropic
glutamate or muscarinic receptors are activated, the interplay
between the characteristic bell-shaped voltage dependence of
ITwindow (see inset in Fig. 1(a)) and the leak current creates a
marked (up to 20 mV) bistability of the resting membrane
potential of TC and NRT neurons (Fig. 1(c), middle trace)
[20, 44]. The shift between these two stable membrane poten-
tials can occur spontaneously as an intrinsic mechanism (lead-
ing to the appearance of repetitive up and down states of sleep
slow waves, see next section) (Fig. 1(c), top trace) [43] or can
amplify small-amplitude subthreshold synaptic potentials
leading to the generation of a rebound LTCP (see Fig. 6 in
[93]).

Importantly, it is possible to block membrane bistability
with the T channel blocker TTA-P2 while leaving the LTCP
and its associate firing almost intact (Fig. 1(c), bottom trace).
Indeed, up and down states quickly disappear upon a short
period of TTA-P2 application that slightly reduces the func-
tional T channel population whereas the full block of LTCPs
requires much longer antagonist application (see Fig. 7 in
[34]). These two experiments clearly demonstrated that the
high density of T channels expressed in thalamic neurons far
exceeds that required to generate a LTCP [9, 34]. Therefore, it
is highly probable that such high density of T channels pro-
vides the significant number of de-inactivated channels at
depolarized potentials that are required for the full repertoire
of the physiological responses of thalamic neurons. Finally, it
is important to point out that these T channels available at
depolarized membrane potentials not only generate ITwindow in
low-open probability conditions but are also recruited by
synaptic activities and intrinsic noise that, by mediating a
drastic increase in open probability, generate additional tran-
sient T currents that boost post-synaptic potentials (see Fig. 1
in [29]).

Thalamic and cortical Tchannel contribution to sleep slow
waves

Sleep slow waves are one of the fundamental EEG wave of
non-REM sleep (Fig. 2a). They are present in almost all non-
REM sleep stages [1–3, 37, 58, 75, 77], underlie sleep K-
complexes [2, 3], and group together periods of sleep spindles
[3, 62] and delta waves [2, 77]. The cellular counterpart of the
sleep slow rhythm recorded in the EEG is the regular recur-
rence of a depolarized (up) state and a hyperpolarized (down)
state of the membrane potential, that occurs synchronously in
all cortical [77, 85, 86] and thalamic neurons [3, 16, 37, 58,
62, 75, 77, 79].

In cortical neurones, sleep slow waves result from intense
excitatory and inhibitory synaptic barrages that generate the
up state and their absence that causes the down state [73, 85,
86, 89]. Although T currents are not considered to play a
major role in this process, such powerful synaptic activity
and the resulting changes in membrane potential do of course
engage a variety of voltage-dependent channels, including T
channels. Indeed clear examples of LTCPs can be seen in
recordings from cortical neurons during slow waves in anes-
thetized animals [16], as one would expect from the presence
of (1) all three T channel isoforms in the neocortex [87] and
(2) LTCPs in layers V–VI pyramidal neurons [28, 38, 41], as
well as in somatostatin [48] and VIP [71] interneurons record-
ed in slices. It is surprising, therefore, that no study has
directly investigated so far the role of Tchannels in the activity
of different cortical neurons during slow waves of non-REM
sleep.

Because thalamic lesions do not suppress slow waves in
anesthetized cats [85] and up and down states can be recorded
in neocortical slices [17, 73] and in an isolated cortical gyrus
in vivo during anesthesia [88], these EEG slow waves were
originally viewed as a cortically generated rhythm [12, 14,
88]. however, up and down states and slow waves similar to
those observed in vivo can be recorded in thalamic slices [10,
21, 43], and a recent study has conclusively shown that
selective block of thalamic firing by tetrodotoxin markedly
reduces the frequency of EEG slow waves both in anesthe-
tized and naturally sleeping rats [26]. Thus, a dynamic inter-
play between the synaptically driven neocortical oscillator and
the thalamic oscillators of slow waves is necessary for the full
expression of these waves of natural non-REM sleep.

As far as the thalamic oscillators are concerned, many
studies have clearly demonstrated that the T channels of TC
and NRT neurons contribute to the expression of sleep slow
waves in three ways. Firstly, by evoking the LTCP (with high-
frequency burst of action potentials) that almost invariably
marks the start of every up state (Fig. 2c). Secondly (as
mentioned in the previous section), by providing the mem-
brane potential bistability that underlies the up and down state
transitions, i.e., up state=ITwindow “on” and down state=
ITwindow “off” (Fig. 2c) [19, 22]. Thirdly, by providing the
selective Ca2+ entry that is required to activate (1) the Ca2+-
activated, non-selective cation current (ICAN), which tightly
controls the durations of the up states [43] (Fig. 2c), and (2)
the Ca2+-activated, K+ channels (SK type) that contribute to
the hyperpolarization that follows an LTCP [23, 24] (for a
comprehensive biophysical description of these mechanisms
and a list of the other currents contributing to sleep slow
waves in thalamic neurons, see ref [22]).

On the basis of all these data, one would expect slowwaves
of natural sleep to be compromised in the absence of thalamic
T channels. Surprisingly, the original study in mice with
global knockout of the Cav3.1 isoform of the T channels
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reported no change in EEG slow wave power [50]. Similar
results were observed in mice with a “putative thalamic-
selective” knockout of the same T channel isoform, though
recombination was also present in some cortical regions and
hypothalamic nuclei [4]. However, the negative results of
these two studies cannot be simply interpreted as indicating
a lack of involvement of the Cav3.1 isoform in slow waves
since (1) compensation by other T channel isoforms or other
voltage- and transmitter-gated channels might have occurred
in the thalamus of these two types of KO mice, and(2)
Cav3.1 T channels that are strongly expressed in brain areas
other than the thalamus (see section below) were definitively
knocked-out in these mice, with unpredictable consequences
on slow waves and other sleep rhythms. Confirmation of an
essential role for thalamic T channels in sleep slow waves has
finally been provided by experiments where optogenetics and
neuronal ensemble recordings were combined with localized
thalamic microdialysis injections of the selective T channel
antagonist TTA-P2 [26]. Thalamic dialysis concentration of
TTA-P2 that fully blocks T channel mediated burst firing
produces a consistent reduction in the frequency of slow
waves during anesthesia and natural non-REM sleep
(Fig. 2a, b). In addition, block of thalamic T channels sup-
presses the ability of selective optogenetic activation of TC
neurons to entrain EEG slow waves [26]. These data, there-
fore, provide conclusive evidence on the essential role played
by thalamic T channels in slow wave of non-REM sleep.

Thalamic and cortical Tchannel contribution to sleep
spindles

A typical sleep spindle is a waxing and waning wave that lasts
for a few seconds, has a frequency of 12–15 Hz in humans
(but 8–12 Hz in rodents), and can occur in isolation from other
sleep waves though it is mostly observed in close association
with a K-complex (Fig. 3(A1, A2)) [3, 27, 62]. LTCPs are
present at almost every cycle of the spindle wave in NRT
neurons, and occasionally in TC neurones (Fig. 3(A3, A4)).
The firing associated with the LTCPs generated by NRT
neurons evokes GABAA IPSPs in TC neurons, some of which
provide enough time- and voltage-dependent removal of T
channel inactivation so that an LTCP (with or without the
associated high-frequency burst) can then be generated. In
turn, the LTCP-evoked firing of TC neurons elicits EPSPs in
NRT neurons which help to trigger LTCPs at spindle frequen-
cy (Fig. 3(A3, A4)).

In addition to the LTCPs, another key contribution of T
channels to the electrical activity of TC neurons during sleep
spindles is to provide the Ca2+ entry that regulates the cAMP-
mediated upregulation of Ih [56, 57]. It has been postulated
that the potentiation of this inward current leads to a progres-
sively larger depolarization of TC neurones during a spindle
wave and ultimately to their inability to generate LTCPs, thus
contributing to the spindle wave termination. A similar mech-
anism may occur in NRT neurons where the presence of HCN
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with permission from [26] and [20]
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isoforms [63, 64] and Ih [10, 72] has now been demonstrated.
Other roles of T channels in NRT neurons during sleep spin-
dles include the Ca2+ entry necessary to activate SK channels
[24] and potentially ICAN [10].

This well-accepted mechanism of spindle wave generation
based on the recruitment of both TC and NRT T channels has
emerged from intracellular recordings in anesthetized animals
(often after systemic injection of barbiturates to increase the
occurrence of spindle waves) and in in vitro slice preparations.
Therefore, caution should be used when interpreting these
results obtained in such different experimental conditions
and extrapolating this mechanism to natural sleep spindles.
Indeed, spindle waves tend not to occur in association with a
K-complex under barbiturate anesthesia, contrary to what is
observed during ketamine/xylazine anesthesia and natural
sleep. In addition, the LTCPs of NRT neurons in vivo during
spindle waves emerge from a depolarizing envelope, whereas
spindle-like activity in vitro consists of LTCPs of increasing
amplitude, each followed by a progressively larger
afterhyperpolarization (Fig. 3(A3)).

Unfortunately, data obtained so far in naturally sleeping T
channel KOmice do not help to clarify the role of the different
T channel isoforms in the sleep spindle. Thus, genetic knock-
out of Cav3.1 channels (which abolishes T current in all TC
neurons) was originally reported to significantly decrease
EEG power in the 8–10 Hz frequency band [50], although
some remaining spindles showing a reduced amplitude were
still present, whereas a later study by the same group reported
no effect when spindle events were filtered at 6–15 Hz [51]. In
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displays continuous oscillations at delta frequency upon hyperpolarizing
DC current injection (top trace). In contrast, in vivo recordings in a cat TC
neuron under ketamine/xylazine anesthesia clearly showed that delta
waves occur as transient episodes during the down state of slow waves
(bottom trace). A1–B2: reproduced with permission from [92], [70], [79],
[26], [80]
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Cav3.3 KO mice, no difference in the 10–12 Hz EEG power
was observed when compared to wild-type animals [6]. Only
when the analysis was restricted to periods of transitions from
non-NREM to REM sleep (i.e., when sleep spindles are more
prominent), a reduction of the EEG power in the 10–12-Hz
frequency band measured about 30 s before REM sleep onset
was observed [6]. Since in NRT neurons, LTCPs are observed
at every cycle of spindle waves both in vivo [30, 39] and
in vitro [92] (see Fig. 3(A3)), the absence of a clear effect of
genetically deleting Cav3.3 channels (the main isoform pres-
ent in NRT neurons) on this sleep rhythm is highly surprising.
These contradictory results may once again be in part ex-
plained by compensatory mechanisms that occur in these T
channel isoform KOmice but may also result from difficulties
in clearly identifying spindle episodes in the EEG of naturally
sleeping mice. Indeed, although local field potential record-
ings in deep cortical areas reveal a comparable profile of
spindles in humans and mice, spindles are not clearly apparent
in EEG traces from mice and their identification require
sophisticated analysis to assess EEG spectral changes at the
level of individual sleep stage transitions [5, 94].
Notwithstanding these contrasting results in transgenic mice,
recent experiments in rats, using microdialysis of TTA-P2 in
the somatosensory thalamus and NRT, provide conclusive
evidence of a drastic decrease of spindle waves both during
anesthesia and natural sleep [26], confirming the key role of
thalamic T channels in the generation of this sleep rhythm.

Finally, since many cortical neurones possess a vast reper-
toire of T channels (see previous section) and the waveform of

cortical spindle waves spans the voltage region of T channel
activation/inactivation, a contribution of these cortical chan-
nels to the fine tuning of EEG sleep spindles would be
expected, although to the best of our knowledge, this has not
so far been rigorously investigated.

Thalamic and cortical Tchannel contribution to delta
waves

In TC neurons, membrane potential oscillations at delta fre-
quency (0.5–4 Hz) that consist of rhythmically occurring
LTCPs were the first T channel-dependent activity whose
mechanism was fully elucidated in vitro [53, 54, 61, 76].
This work, together with in vivo studies in anesthetized ani-
mals [33, 66, 67, 83], strongly suggested that delta oscillations
in TC neurones are fully determined in a pacemaker fashion
by the time and voltage dependencies of the h, T, and K+

channels, in both TC and NRT neurons [10, 54, 61] stressing
the key role of thalamic T channels in the generation of these
waves.

One important issue that has often been overlooked, how-
ever, is that the majority of EEG delta waves of natural sleep,
and its thalamic counterpart the delta oscillation, do not occur
in very long periods, as a somewhat inaccurate interpretation
of the initial in vitro studies (Fig. 3(B2), top trace) might led to
conclude. Indeed, thalamic delta oscillations appear to occur
mostly in discrete groups during the down state of slow waves
in both TC and NRT neurons (Fig. 3(B2), bottom trace) [43,
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preoptic neuron (VLPO, 4) and
hypocretin-orexin expressing
neurons (hcrt/orx, 5) of the lateral
hypothalamus. Both tonic firing
and LTCP are presented in 1, 4,
and 5. Traces reproduce with per-
mission from [28], [34], [40], [25]
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79, 90]. We are unaware of any evidence supporting the
presence of long period of delta oscillations in TC neurons
in vivo during natural sleep, raising the question of whether
these long sequences of repetitive LTCPs are only observed in
thalamic slices. An additional point of concern when
interpreting EEG data is the ambiguity in the definition of
delta waves of natural sleep and their potential overlap with
slow waves. In other words, it is possible that EEG delta
waves at the lower end of their frequency range (i.e., 0.5–
2 Hz) may correspond to a thalamic (and cortical) cellular
activity characterized by up and down states (i.e., slowwaves)
and not by repetitive LTCPs (compare Figs. 2(a) and 3(B1)).

Together with compensatory mechanisms (as highlighted
in previous section), the above two issues might explain the
contradictory results on delta waves obtained in mice with
genetic ablation of T channels. Thus, total KO of the Cav3.1
isoform was shown to induce a marked decrease in the power
density of delta frequency band (selected as 2–6.5 Hz) [50]
whereas in the “putative thalamic-selective” Cav3.1 KO
mouse, there is a moderate increase in EEG spectral power
within the delta frequency range (selected as 1–4 Hz) [4].
Moreover, no change in delta frequency power was observed
in global Cav3.3 KOmice [6], while the impact of deleting the
Cav3.2 isoform on sleep rhythms has not yet been analyzed.
To complicate this picture further, systemic injection of selec-
tive antagonists of all T channel isoforms has been shown to
dose-dependently increase delta waves and reduce slow
waves in wild-type mice and rats, respectively [26, 49].

As far as cortical T channels are concerned, the firing input
at delta frequency from TC to cortical neurones might clearly
play an important contribution to the expression of delta
waves of natural sleep in the EEG. However, membrane
potential oscillations at delta frequency have been observed
in cortical neurones [77] and the full mechanisms of the delta
waves (i.e., the relative contribution of synaptic and intrinsic
conductances, including a precise role for T channels) in
cortical neurons remains to be fully elucidated.

Contribution of Tchannels in other brain regions
to the expression of sleep waves

The difficulty in the interpretation of sleep studies using
global, genetic, or pharmacological T channel block that we
have outlined in the previous sections clearly stems from our
lack of knowledge of the contribution of T channels not only
in cortical neurons but also in other brain networks that control
and/or modulate natural sleep. In fact, neurons expressing
LTCPs are present in the ventrolateral preoptic nucleus [40]
and in the lateral hypothalamus (i.e., hypocretin-orexin-
expressing neurons) [35], two strongly interacting regions that
belong, respectively, to the sleep-promoting and ascending
arousal pathways [74] (Fig. 4). The potential presence of T

channels mediated electrical events (e.g. LTCPs, ITwindow, T
channel-dependent Ca2+ modulation or activation of various
voltage-gated channels, etc.) in neurons of these pathways
should therefore be investigated to gain a full understanding
of the role of T channels in sleep. In this respect, it is clear that
manipulating T channels not only has an impact on various
sleep rhythms but also on sleep architecture and the transitions
between wake and sleep as well as between non-REM and
REM sleep. Both global and “putative thalamic-selective”
Cav3.1 KO mice (but not cortical KO mice) show an in-
creased number of frequent brief awakenings that interrupt
non-REM sleep and a delayed sleep onset [4, 50]. Moreover,
systemic injection of TTA-A2/P2 in wild-type mice acutely
reduces the mean time spent in active wake [49] and induces
dose-dependent behavioral and EEG changes indicative of
sedation/sleep in rats [59].

Conclusions

After 30 years since the discovery of T channels in thalamic
neurons, we have a very comprehensive view of their precise
contribution to slow waves and spindles of natural sleep,
including the role of LTCPs and ITwindow. A similar under-
standing of delta waves is still missing, in part because of lack
of appropriate studies and uncertainties on an appropriate
classification of these waves. Moreover, we still know very
little about the contribution of T channels in neurons of the
neocortex and other neuronal networks involved in sleep.
Undoubtedly, the development of selective blockers for dif-
ferent T channel isoforms and of conditional and area-
selective KO animals will contribute to unravel the full role
played by these widely expressed voltage-gated channels in
sleep waves and architecture.
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