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Observer-Based Efficiency Enhancement
in Cell-Cycle Specific Therapies

Mazen Alamir and Mirko Fiacchini

Abstract— Cell-cycle specific drugs affect cells when they are
in specific phases of their periodic cycle. However, injecting
drug’s strategy can only by global. This rises the problem
of optimizing a global constrained decision variable (drug
delivery profile with limited volume) when its effect depends
on many local unknown characteristics (the individual cells
phases). In this paper, an observer-based framework is proposed
that enables a rational decision making in this particular
circumstance. Simulation on a simple case are proposed to show
the relevance of the proposed framework.

I. INTRODUCTION
The cell cycle is the sequence of phases leading to the cell
division. It is composed of four main phases during which
the cell prepares for the DNA synthesis (G1); duplicates
the DNA (S); and finally, after a phase (G2) of preparation,
reaches the mitosis phase (M) in which the cell is divided,
see [16]. Checkpoints are present along the cycle to ensure
that the cell is ready for proceeding in the division process
[15]. Such a complex process is driven by some proteins
(CDK) and regulated through the apoptosis, that is a
programmed cell death. The tumoral cells are characterized
by abnormal growth as well as mutations of genes, like the
p53 responsible for the cell cycle regulation and apoptosis,
resulting in an uncontrolled cells proliferation.

In parallel with standard chemotherapeutic agents, highly
toxic and non-selective in their targets, novel compounds
have been developed in the last decades that act on the cell
cycle-regulating molecules to interfere in the cell divisions
and to induce the apoptosis in the tumoral cells, [4], [7],
[10], [13]. These new cell cycle-specific inhibitors, together
with a deeper knowledge of the cell cycle, represent a
possible solution to overcome the tumoral resistance to
cytotoxic drugs. The appropriate sequencing and scheduling
of several cell cycle-specific agents can reduce the tumor
drug resistance and induce biochemical synergy (i.e. an
efficiency greater than the additive ones), by targeting
different processes in the cell cycle, see [12]. The evolution
of the cell cycle-mediated drug resistance, or kinetics
resistance, has been addressed by means of mathematical
and computational models, summarized in [5], employed
also for control-based therapeutic design, see [14], [9].

While some therapy agents are able to kill a cell during all
the phases of its cycle, cell-cycle specific agents are efficient
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only when the cell is in a (set) of specific phases of its
cycle [5]. Moreover, the distribution of phases over a given
population of tumor cells is unlikely to be uniform, that is
to say, the phase-in-the-cycle is an individual component
of each cell’s current state description. On the other hand,
the drug delivery is global whether it is taken orally or
intravenously and can therefore not be administered cell-by-
cell should the individual phases be known. Even when the
so-called direct advanced delivery methods are concerned
[11], the local areas being involved still englobe too many
cells with heterogeneous phase distribution. This raises the
obvious question regarding the way the time delivery of
a limited quantity of drug has to be administered so that
its efficiency is enhanced despite the lack of measurement
of the phase distribution over the population for a given
prediction horizon.

In this contribution, a tentative framework is proposed
to address this difficult problem. The framework is based
on a simple model and an associated observer design
together with an associated drug delivery strategy that is
based on the so reconstructed unknown aggregated quantity.

As far as the representation of the cell-cycle effect on
the drug’s efficiency is concerned, a phase-dependent
gain affecting the drug’s effect term is used in which a
periodic phase description is considered with cell-dependent
unknown internal state. Regarding the dynamics, a standard
population dynamics is considered in which the effect
of drug is represented as a sum over all individual cells
involved in the population description.

The case of a single chemotherapy drug is used for
illustration purposes in order to focus on the main
contribution. The latter can obviously be generalized to any
combined therapy in which at least one of the drugs is
cell-cycle-specific.

The paper is organized as follows: The mathematical
model used in the study is first introduced in section II,
the control problem being addressed is clearly stated in
Section III. In section IV, the observer-based proposed
solution to the problem of enhancing the drug efficiency
under partial knowledge and limited amount of available
drug is derived. Section V gives some simulations that
compare the efficiency of the proposed strategy to an
intuitive alternatives in order to assess the benefit from
the use of the observer-based drug administration profile.



Finally section VI concludes the paper and gives hints for
further investigation.

II. MATHEMATICAL MODEL

Consider the dynamic model given by:

Ṫ = f(T )− T

 m∑
j=1

q∑
i=1

κj
q

(1− cos(ϕij))

D (1)

ϕ̇ij = ωj + δij (2)

Ḋ = −λD + αu (3)

where T is the size of the tumor cells population, D is
the concentration of drug, u is the drug delivery intensity
(the control input), q is the number of individual cells in
the population, m is the number of modes with constant
pulsations

ωj := 2jπ/Tc , j = 1, . . . ,m (4)

in which Tc stands for the period of the total sequence
of cycles, {δij}qi=1 describe the discrepancy of the j-th
mode pulsation value at the i-th cell’s level. Regarding this
discrepancies, it is assumed that:

|δij | � ωj (5)

The term f(T ) in (1) describes the drug-free evolution of
the tumor that can takes many forms in the literature (see for
instance [8], [3], [6] and the references therein). The precise
definition of this term is not necessary at this stage. Finally
λ and {κj}mj=1 are known positive constants describing the
drug dissolution rate and the periodic form of the cell-cycle
specific impact of the chemotherapy during the cell cycle.
More precisely, the following time profile’s is supposed to
faithfully describe the gain with which the drug concentration
D affects an individual tumor cell as a function of the time
t inside the cell’s cycle in a discrepancy-free case (δij = 0):

1

q

m∑
j=1

κj [1− cos(ωjt+ θj)] (6)

which is obviously sufficiently general to represent a wide
variety of cell-cycle specific drug’s effect variations.

Note that (6) leads to the second term in the r.h.s of
(1) by taking the sum over all individual cells, introducing
the pulsation discrepancies δij and defining ϕij to be the
argument of the cos function in (6).

Remark 1: Note that the basic period Tc involved in
the definition of the modes through (4) and the needed
number m of modes that are necessary to describe the
cycle-specific behavior of the drug through the gain (6)
represent a priori knowledge for the present contribution.
This knowledge is drug-dependent and should be viewed
as a drug’s characterization which implicitly includes the
knowledge of the coefficients κj , j = 1, . . . ,m. ♦

In the sequel, the following notation is used to simplify the
expressions:

G :=

m∑
j=1

Gj ; Gj :=

q∑
i=1

κj
q
gij ; gij = 1− cos(ϕij) (7)

so that equation (1) becomes:

Ṫ = f(T )− TGD (8)

III. PROBLEM STATEMENT

Cancer treatment protocols are generally defined by a
sequence of treatment periods separated by rest periods
during which no drug is delivered. Since this paper focuses
on deriving a rational computation of appropriate drug
injection profiles during the treatment periods, we consider
only a sequence of several successive days of treatment.
Moreover, we assume without loss of generality that the
basic cycles period Tc involved in the definition (4) of the
pulsations ωj invoked in the model [see equation (2)] is
equal to unity (one day) which is a reasonable order of
magnitude [2].

Let us use k to index the successive periods of length
Tc denoted hereafter by Tk = [tk, tk+1] where tk = kTc.
Denote by uk(τ) the intensity of drug delivery at instant
tk + τ , τ ∈ [0, Tc] inside the k-th period Tk.

The control profile uk(·) is constrained to be a piece-
wise constant function of time with a sampling period of τs
(2, 3, 4 or 6 hours are typical candidate values for τs). In
what follows it is assumed that Tc is a multiple Ns of the
sampling period τs, namely:

Tc = Nsτs (9)

Finally, it is assumed that some outer loop computation
procedure taking into account the total amount of available
drug for the whole treatment delivers a sequence of available
amounts {∆k}Mk=1 of drugs for the M treatment periods Tk.
More precisely, the following constraints have to be satisfied:

∀k ∈ {1, . . . ,M},
∫ Tc

0

uk(τ)dτ ≤ ∆k (10)

Note that the bounds ∆k, can be optimized by an outer loop
that assigns these upper bounds over the coming intervals
while using in the inner loop the optimization of the control
profiles proposed in this contribution for a given set of
upper bounds ∆k.

Regarding the updating period of the injection profiles, it
is assumed that at the beginning of each interval Tk, the
corresponding injection profile uk(·) is computed (based
on the past measurements collected during the past periods
Tk′ , k′ < k) and applied in open-loop during Tk, the data
collected during Tk is then used (together with the past
measurements) to compute the injection profile uk+1(·) to
be applied on Tk+1 and so on.



Based on the above discussion, the problem addressed
in the current contribution can be stated as follows:

Problem Statement:

Use the measured quantities D and T to compute, at
the beginning of each period Tk, an optimal injection
profile u∗k := u∗k(·) satisfying the constraints (10) while
maximizing the drug’s effect on the tumor size.

In the next section, an observer-based solution to the
above stated problem is introduced.

IV. DERIVATION OF THE PROPOSED FEEDBACK
The starting point of the proposed solution is to observe
that if one can perfectly predict the evolution of G over Tk,
denoted hereafter by Gk(τ) := G(tk + τ), τ ∈ [0, Tc], then
the optimal injection profile would be given by the solution
of the constrained optimization problem:

Pk(Gk(·)) : u∗k ← max
uk(·)

[∫ Tc

0

Dk(τ)Gk(τ)dτ

]
(11)

under the constraints (∀τ)

Ḋk(τ) = −λDk(τ) + αuk(τ) (12)∫ Tc

0

uk(τ)dτ ≤ ∆k (13)

0 ≤ uk(τ) ≤ umax (14)

which is obviously an easy-to-solve Linear Progamming
(LP) problem in the decision variable uk ∈ RNs

+ representing
the piece-wise constant nature of the control profile uk(·):

uk :=


uk(0)
uk(τs)

...
uk(Tc − τs)

 (15)

which are the successive constant values to be applied over
the sampling periods contained in Tk.

Note that the cost function (11) maximizes the drug’s
effect by accommodating for high values of D over the
sub-interval of Tk where the gain Gk is the most important.
This is done by taking into account the dynamic of the
drug concentration, the available upper bound on the drug
delivery during the interval and on the necessarily positive
nature of the control variable. Moreover, an upper bound
umax on the maximal intensity of the injection is also
introduced in the r.h.s of (14).

It comes from the preceding discussion that the prediction
of the future evolution Gk(·) over the interval Tk that is
used in the expression of the cost function (11) is the key
task in achieving the control objective. Indeed, once such a
prediction Ĝk(·) is available, the optimal injection profile
can be obtained by solving the associated LP problem
Pk(Ĝk(·)).

In the remainder of this section, it is shown that such
a prediction Ĝk(·) can be achieved by mean of dynamic
state estimation. To do so, the following Lemma is needed:

Lemma 1: The evolution of the gain G involved in (8)
obeys the following dynamic equations:

z̈j = −ω2
j zj − εj ; j = 1, . . . ,m (16)

G =

m∑
j=1

(zj + κj) (17)

where |εj | � |ω2
j zj |. ♦

PROOF. Using the definition gij = 1 − cos(ϕij), it comes
that:

g̈ij = −ω2
j (gij − 1)− 2ωjδij(gij − 1) (18)

Using this to compute Gj according to (7) gives:

G̈j = −ω2
jGj + κjω

2
j − εj (19)

where

εj :=
2

q

q∑
i=1

κjωjδij(gij − 1) (20)

Using the following notation:

ηj := max
i∈{1,...,q}

[
δij
ωj

]
� 1 (21)

the following bound can be derived on |εij |:

|εij | ≤
2

q
ηj

q∑
i=1

κjω
2
j (1− gij)

= 2ηjω
2
j (Gj − κj)� ω2

j |Gj − κj |

where the last inequality comes from (21). Now using the
notation zj = Gj − κj , the result follows. �

The consequence of Lemma 1 is that one can approximately
predict the future evolution of G provided that the state of
the dynamic system (16) can be observed. But since ωj are
different, the estimation of the state:

z =
(
z1 ż1 . . . zm żm, e

)T ∈ R2m+1 (22)

can be done if a good estimation Ĝ (and not prediction)
of G can be delivered. Indeed, in this case, a standard
(Luenberger or Kalman)-like observer can be built for the
dynamic system:

ż = Az ; y = Cz (23)

where

A := diag

({(
0 1
−ω2

j 0

)}m

j=1

, 0

)
(24)

C :=
((

1 0
)
⊗ 1T 1

)
(25)

Indeed, (23) represents (16) in which εj = 0 is used while
an additional scalar e is added to accommodate for a drift in



G that might be due to the presence of small terms εj . Note
that by virtue of (17), the measurement y is precisely given
by:

y = Ĝ−
m∑
j=1

κj (26)

The fact that (23) is observable is obvious and is not
explicitly proved here as it directly follows from a careful
examination of the observability rank. Instead, the way
a reconstruction of an estimation Ĝ of G is explained
hereafter since it is used in the delivery of the output y in
(23) according to (26).

In order to estimate G, the dynamic equation (8) of
the tumor is rewritten by using the notation ψ = −TGD:

Ṫ = ψ + f(T ) (27)

Now since T is measured and f(T ) is assumed to be known,
a high gain observer can enable recovering ψ by building a
dynamic observer to the following dynamic system

Ṫ = ψ + f(T ) ; ψ̇ = 0 (28)

This is possible because this system in the state (T, ψ) and
the exogenous measured signal f(T ) involves the state matrix(

0 1
0 0

)
and the measurement matrix

(
1 0

)
which obvi-

ously corresponds to an observable pair with an observability
matrix that is equal to the identity matrix in R2×2. Based on
the estimation ψ̂ of the state component ψ, the estimation of
G can then be given by:

Ĝ = − ψ̂

TD
(29)

Finally, given the specific nature of the problem where
continuous measurements are not available, reconstruction
algorithms should be designed in a discret-time setting using
a measurement sampling period τm. In the statement of the
following result, the notation Ā1 denotes the τm-discrete
version of the matrix A defined by (24). Moreover Ā2

and B̄2 denote the τm-discrete versions of the (A,B) pair
involved in the description of the two-dimensional system
(28).

Proposition 1: There is two computable gain matrices
L1 ∈ R2m+1 and L2 ∈ R2 such that the following
dynamic system is an approximate observer of ẑ and Ĝ (the
superscript + denotes the next measurement sampling period
related quantities):[

T̂

ψ̂

]+
= Ā2

[
T̂

ψ̂

]
+
B̄2

2

[
f(T ) + f(T+)

]
+ L2(T − T̂ )

ẑ+ = Ā1ẑ + L1

− ψ̂

TD
−

m∑
j=1

κj − Cẑ


Ĝ = − ψ̂

TD

Moreover, the gains L1 and L2 are any discrete-time observer
gains for the dynamic system (23) and (28) which are
observable linear (up to an output injection) systems.

PROOF. Straightforward given the above discussion. Note
simply that the second term in the r.h.s of the first equation
approximates the average of f(T ) over the measurement
period as the time discretization are based on a piece-wise
constant exogenous signals. �

Having the estimation of the state ẑ(tk) at instant tk,
the prediction Ĝk(·) is given by:

Ĝk(τ) := Cz̃(tk + τ |ẑ(tk)) +

m∑
j=1

κj (30)

where z̃(tk + τ |ẑ(tk)) is the prediction of future evolution
of z based on the dynamic model ż = Az and the initial
state ẑ(tk).

This estimation can then be used in the formulation
of the LP optimization problem P(Ĝk(·)) defined by
(11)-(14) leading to the injection profile u∗k one is looking
for. This solves the problem stated in Section III.

Remark 2: It is worth underlying that the number q of
cells used in the description of the dynamic model does
not appear in the solutions’s algorithms. Namely, q is not
explicitly involved neither in the observer’s equations of
Proposition 1 nor in the expression of the LP problem that
is used to derive the optimal injection profile. This feature is
induced by the fact that κj is an aggregated quantity related
to the set of cells and not to a single cell. That is why q
appears in the denominator of the gain expressed in (6). ♦

V. ILLUSTRATIVE EXAMPLES

Let us consider the drug-free evolution term proposed in [6],
[1]:

f(T ) := aT (1− bT ) (31)

where a = 4.31 × 10−3 day−1 and b = 1.02 × 10−14

cell−1. Simulations are done in the case where m = 3 modes
describe the evolution of the drug gain term involved in (1)
and (2). Two different possible values of Tc ∈ {1, 1.1} are
simulated in the sequel. The coefficient κj , j = 1, . . . , 3 are
given by:

κ1 = 3× 10−1 ; κ2 = 6× 10−3 ; κ3 = 3× 10−2 (32)

The coefficients λ and α involved in equation (3) describing
the evolution of the drug concentration is given by λ = 10
and α = 0.1.

The maximal intensity of drug injection umax used in
the definition of the control computation through (14) is
given by umax = 8 while the maximum quantity of injected
drug during a cycle [see equation (13)] is taken uniform
(along the cycles) and two values are simulated ∆k ∈ {4, 1}.



The sampling period τs that defines the piece-wise
constant control is given by τs = 0.1 day, namely 144
minutes (2.4 hour). The basic sampling period for the
measurement is taken equal to τm = 0.01 day, namely 14.4
minutes.

The proposed strategy is compared to a drug injection
strategy in which a maximal uniform drug injection is used,
namely a strategy in which

uk(tk + τ) := u† =
∆k

Tc
(33)

which obviously satisfies the constraints (13)-(14) while
injecting the maximal quantity of drug over each cycle.

The unknown discrepancies δij on the pulsation are
introduced such that:

δi1 = 0.04 ; δi2 = −0.06 ; δi3 = 0.12 (34)

Note that in the forthcoming simulations, the proposed
strategy is fired only at the beginning of the second cycle in
order to avoid the initial transient on the observer’s states.
That is the reason why in all the simulations, the behavior
of the system under the two strategies coincide during the
first cycle.

In the sequel, two scenarios are simulated in which
the pair (Tc,∆k) takes respectively the values (1, 4) and
(1.1, 1). Figures 1-4 concern the first scenario while Figures
5 and 6 concern the second scenario. More precisely:
• Figure 1 shows the evolution of the tumor size for

the first scenario [(Tc,∆k) = (1, 4)]. It clearly shows
that the proposed observer-based injection strategy
enhances the efficiency of the drug on towards the
contraction of the tumor.

• Figure 2 shows the evolution of the phase-dependent
gain G and its observer-based estimation Ĝ. One can
note that the evolution is not purely periodic because
of the discrepancies on the pulsations ωj that are
introduced through the parameters δij . The Figure
shows however good estimation profile despite the
absence of asymptotic convergence which is due to the
approximation ψ̇ = 0 which is obviously not rigorously
satisfied.

• Figure 3 shows a zoom representing the evolution of G
and Ĝ during four successive cells cycles. This Figure
suggests that for the simulated case, the gain varies
by a factor 4 during a single cycle. This obviously
suggests that a gain-dependent strategy is likely to
perform better performance that a constant uniform
strategy.

• Figure 4 shows the evolution of the drug injection in-
tensity for the two competing strategies. More precisely,
while the uniform maximal strategy corresponds to a

0 5 10 15 20 25

0.6
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·1010

time (days)

Evolution of the tumor size (T)

Proposed Strategy
Uniform Maximal

Fig. 1. Case 1 (Tc,∆k) = (1, 4). Evolution of the tumor. Comparison
between the proposed strategy and the uniform maximal injection strategy.
Note that the two strategies coincide on the first cycle in order to avoid
transient on the observer state evolution.

0 5 10 15 20 25

0

0.5

1

Time (Days)

Real/estimated G and the corresponding error

G

Ĝ

G− Ĝ

Fig. 2. Case 1 (Tc,∆k) = (1, 4). Evolution of the phase-dependent gain
G together with its estimated value Ĝ and the corresponding estimation
error. Note that the evolution is not rigorously periodic because of the
discrepancies δij (34) affecting the individual pulsations. The persistence of
the estimation error is due to the approximation according to which ψ̇ = 0
while ψ is dynamically varying.

constant profile, the observer-based strategy tends to
inject the drug during phases where the gain is high
in order to enhance the efficiency of the treatment.

• Figures 5 and 6 shows the evolution of the tumor and
the corresponding injection profiles in the case where
the cycles duration is slightly different (Tc = 1.1 instead
of Tc = 1 for the first scenario) and the available drug
is drastically lower (∆k = 1 instead of ∆k = 4). Note
that in this case, the uniform maximal injection is almost
unsuccessful as the tumor size remains almost constant
while the observer-based optimal strategy enables a
better use of the small available drug in order to enhance
the decrease (although slow) of the tumor.

VI. CONCLUSION AND FUTURE WORK

In this paper, an observer-based drug injection protocol is
proposed for the case where the drug is cell-cycle specific,
namely, when its efficiency on a given cell depends on
the current phase of the cell’s cycle. In its current form,
the success of the strategy depends on the knowledge of
the cycle period and the terms involved in the dynamic
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Fig. 3. Case 1 (Tc,∆k) = (1, 4). Zoom on Figure 2 showing four
successive cycles.
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Fig. 4. Case 1 (Tc,∆k) = (1, 4). Evolution of the injection intensity u
for the two strategies.

of the tumor as this knowledge is used to reconstruct the
time-evolution of the gain affecting the drug’s concentration
in the tumor dynamical equation.

Although the current implementation accommodates
for slight errors on the vector of pulsations, further
investigation should more seriously evaluate the robustness
of the proposed scheme against model mismatch affecting
the remaining terms. Moreover, the extension to combined
therapy in which one of the drug at least is cell-cycle
specific is to be investigated.
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