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Abstract:We propose in this note a class of entropy-consistent hyperbolic models
for multi-phase barotropic flows. Relevant closure laws are derived and discussed.

Introduction: The accurate modelling of multiphase flows with mixtures involving
several components is crucial for several highly unsteady applications for petroleum
engineering, but also for nuclear safety applications and more generally for thermal-
hydraulics. Many studies in the nuclear framework, for instance those that aim at
predicting hydrogen risk, vapor explosion, or similar fast transient situations, require
models that comply with some basic specifications, in order to handle strong rarefac-
tion waves as well as shock waves. Rather recent proposals have arisen within the last
twenty years, at least for two-phase flow models. Some among them ([1, 2, 5, 9, 10,
14]), which rely on the two-fluid approach, enable meaningful unsteady computations.
However, only few multiphase flow models have emerged in the past in order to tackle
three-phase flows or even multiphase situations. Some among the latter assume a sys-
tem of PDE for mass balance of components, while simplified momentum equations
are considered (see for instance [3, 7] for flows in reservoirs). More recently, a couple
of contributions, among which we may cite [11, 12, 15, 16], has given focus on the
modeling of mass, momentum and energy balances for three-phase flow situations, and
even more. The main objective of the present contribution is to give some new insight
on this particular topic, while considering three-phase or four-phase models in order to
account for unsteady compressible flows. We only consider here barotropic situations
for sake of simplicity. We first give emphasis on the modelling of interfacial transfer of
momentum for multi-component flows. Next we discuss relevant closure laws for pres-
sure and velocity relaxation terms, but also for the interface velocity that governs the
evolution of statistical fractions. Finally we give some closure laws for mass transfer.

1 A class of compressible multiphase flow models
We consider N distinct compressible phases. We also assume that components are -at
least slightly- compressible. Thus the starting point is the governing set of equations:

∂t (αk)+Vi(Y )∂x (αk) = φk(Y ) ;
∂t (mk)+∂x (mkUk) = 0 ;
∂t (mkUk)+∂x

(
mkU2

k +αkPk(ρk)
)
+ΣN

l=1,l 6=kΠkl(Y )∂x (αl) = mkSk(Y ) .
(1)
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where we note mk =αkρk, and as usual αk,ρk,Uk represent the mean statistical fraction,
the mean density and the mean velocity in phase k. Mean densities are positive, and
the constraint :

Σ
N
k=1αk = 1

holds everywhere, at any time. The interfacial transfer terms φk(Y ),Sk(Y ) are such that:

Σ
N
k=1φk(Y ) = 0 ; Σ

N
k=1mkSk(Y ) = 0.

Thus the main unknown is:

Y = (α1, ...,αN−1,ρ1,U1, ...,ρN ,UN)
t (2)

It lies in R p, with p = 3N− 1. The functions Pk(ρk) are classically chosen such that
c2

k = P′k(ρk)> 0. We also define ψk(ρk) such that:

ψ
′
k(ρk) =

Pk(ρk)

ρ2
k

(3)

and the entropy of the mixture η(Y ) is defined as:

η(Y ) =
1
2

Σ
N
k=1mkU2

k +Σ
N
k=1mkψk(ρk). (4)

From now on, we will assume that the velocity Vi(Y ) is a convex combination of phasic
velocities Uk, so that we may write:

Vi(Y ) = Σ
N
k=1ak(Y )Uk (5)

where ΣN
k=1ak(Y ) = 1, and 0≤ ak(Y ).

We define the quantity A (Y,∂x (Y )) such that:

A (Y,∂x (Y )) = Σ
N
k=1
(
Σl 6=k(Pk(Vi(Y )−Uk)+UkΠkl(Y ))∂x (αl)

)
(6)

Using this definition, we can obtain the governing equation of η(Y ) for smooth solu-
tions of (1), which reads:

∂t (η(Y ))+∂x ( fη(Y )) = RHSη(Y )−A (Y,∂x (Y )) (7)

setting:
RHSη(Y ) = Σ

N
k=1 (mkSk(Y )Uk−φk(Y )Pk) (8)

fη(Y ) = Σ
N
k=1

(
U2

k
2

+ψk(ρk)+
Pk

ρk

)
mkUk. (9)

We wonder now whether there exists a unique set of N(N− 1) functions Πkl(Y )
with k 6= l that guarantees the minimal entropy dissipation A (Y,∂x (Y )) = 0, when
N ≤ 4.

Proposition 1 (Closure laws for interfacial pressures)
Smooth solutions of system (1) comply with the constraint A (Y,∂x (Y )) = 0, iff:

• N=2:

Π12(Y ) = Π21(Y ) = (1−a1(Y ))P1 +a1(Y )P2 (10)
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• N=3: 

Π12(Y ) = (1−a1(Y ))P1 +a1(Y )P2 ;
Π21(Y ) = a2(Y )P1 +(1−a2(Y ))P2 ;
Π13(Y ) = (1−a1(Y ))P1 +a1(Y )P3 ;
Π31(Y ) = a3(Y )P1 +(1−a3(Y ))P3 ;
Π23(Y ) = (1−a2(Y ))P2 +a2(Y )P3 ;
Π32(Y ) = a3(Y )P2 +(1−a3(Y ))P3 ;

(11)

• N=4:{
Πkl(Y ) = (1−ak(Y ))Pk +ak(Y )Pl (i f : 1≤ k < l ≤ 4) ;
Πkl(Y ) = al(Y )Pk +(1−al(Y ))Pl (i f : 1≤ l < k ≤ 4) . (12)

Sketch of proof: The proof is obtained by construction. It is almost obvious when
N = 2, but more tedious when N = 3 or N = 4. First it is necessary to rewrite the
scalar quantity A (Y,∂x (Y )) in terms of the N − 1 independent gradients ∂x (αl) for
l = 1→ N − 1 (since ∂x (αN) = −Σ

N−1
l=1 ∂x (αl)). All cofactors must be set to zero,

which results in a new set of (N−1) scalar equations LHSk(Y ) = 0. For each equation
among these, one must again rewrite quantities in terms of N−1 independent relative
velocities (UN −Ul) for l = 1→ N− 1, and also use the form (5) in order to obtain
(Ul −Vi(Y )) in terms of the latter relative velocities and of the al(Y ). Moreover, one
needs to take into account the constraint:

Σ
N
k=1

(
Σ

N
l=1,l 6=kΠkl(Y )∂x (αl)

)
= 0

that arises since these represent interfacial transfer terms inside the mixture. This ends
up in a system of N(N−1) scalar equations, which is linear with respect to the Πkl(Y ).
It only remains to find the unique N(N−1) solutions Πkl(Y ) of the latter system. �

Hence, once the ak(Y ) in (5) are given, there exists a unique choice for the Πkl(Y ).
Note that, unlike for two-phase flows, and for a given couple of phases (k, l), there
exists a disequilibrium at the (k, l) interface when three (or four) phases occur, since:

Πkl(Y )−Πlk(Y ) = (1−ak(Y )−al(Y ))(Pk−Pl) for: k < l

is non zero unless a perfect pressure equilibrium holds between the three (or four)
phases. This was actually expected, since the quantity Πkl∂x (αl)+Πlk∂x (αk) is no
longer null, for given (k, l) with k 6= l, when N > 2. Moreover, it clearly arises that
Πkl(Y ) is an average of pressures Pk and Pl .

Proposition 2 (Entropy inequality for multi-phase flow models)
We consider some fixed phase index k0 ∈ 1, ..,N. We assume that closure laws for
interfacial quantities φk(Y ),Sk(Y ) comply with the two constraints:{

0≤ ΣN
k=1

(
φk(Y )(Pk−Pk0)

)
;

0≤ ΣN
k=1

(
mkSk(Y )(Uk0 −Uk)

) (13)

then smooth solutions of system (1) satisfy the following inequality:

∂t (η(Y ))+∂x ( fη(Y ))≤ 0 (14)
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for the minimal entropy dissipation model associated with: A (Y,∂x (Y )) = 0.

The proof is straightforward. We may now give some admissible form for the pres-
sure relaxation terms.

Proposition 3 (Pressure-velocity relaxation terms for multi-phase flow models)
Assume that closure laws for φk(Y ),Sk(Y ) take the form:{

φk(Y ) = ΣN
l=1 (dkl(Y )(Pk−Pl)) ;

mkSk(Y ) = ΣN
l=1 (ekl(Y )(Ul−Uk))

(15)

with: 0 < dkl(Y ) = dlk(Y ), and: 0≤ ekl(Y ) = elk(Y ), then the pressure-velocity relax-
ation terms φk(Y ),Sk(Y ) comply with the entropy inequality (14).

Proof: It is classical for N = 2. We skip the case N = 3, and we only consider
here the case N = 4. We define: x = P1−P2, y = P1−P3, z = P1−P4. The remaining
pressure desequilibria may be written as follows: P4 − P3 = y− z, P4 − P2 = x− z,
P3−P2 = x− y. Hence we may compute:

σ4 = Σ
4
k=1 (φk(Y )(Pk−P1))

which turns to be:

σ4 = d21(Y )x2+d31(Y )y2+d41(Y )z2+d42(Y )(z−x)2+d32(Y )(y−x)2+d43(Y )(y−z)2

Thus σ4 is strictly positive unless P1 = P2 = P3 = P4. �

A similar proof holds for velocity relaxation contributions. We emphasize first that
the counterpart of properties 2,3 also holds for non isentropic two or three-phase flow
models (see [5, 12, 15]). Quantities Sk(Y ) stand for drag effects between phases; be-
sides, pressure relaxation terms φk(Y ) are already present in all standard two-phase
flow models such as those described in [1, 14] for instance. Physically relevant pres-
sure relaxation time scales associated with the dkl were proposed in [8]. One may
nonetheless wonder whether these relaxation terms act as expected. Actually, the fol-
lowing result clearly provides some assessment of the latter claim. For that purpose,
we consider some flow in a box (thus neglecting all convective effects), so that system
(1) reduces to:  ∂t (αk) = φk(Y ) ;

∂t (mk) = 0 ;
∂t (mkUk) = mkSk(Y ) .

(16)

Proposition 4 (Pressure relaxation for barotropic three-phase flow models)
We set: N = 3, and we assume for sake of simplicity that pressure relaxation time scales
are equal, so that: φk(Y ) = d(Y )ΣN

l=1(Pk−Pl). We also define :

EP(Y ) = ((P1−P2)
2 +(P1−P3)

2 +(P2−P3)
2)/2.

Then solutions of (16) comply with:

0≤ EP(Y )(t)≤ EP(Y )(0)× exp
(
−6
∫ t

0
f P
min(t)dt

)
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if the frequency 0 < f P
min(t) denotes some positive lower bound of (ρkc2

kd(Y )/αk)(t)
(for k = 1,3).

Proof: We define: y = P1 − P2 and: x = P2 − P3, thus: P1 − P3 = y + x, and :
EP(Y ) = x2 + y2 + xy. We use the notation: βk = ρkc2

k/αk. Using the second equation
of (16), which gives: ∂t (ρk) =−ρk∂t (αk)/αk, and hence: ∂t (Pk) =−ρkc2

k∂t (αk)/αk,
it clearly arises that solutions of (16) agree with:

∂t (x) =−β2∂t (α2)+β3∂t (α3)

∂t (y) =−β1∂t (α1)+β2∂t (α2)

Since ∂t (αk) = 2d(Y )(Pk − Plm), with: Plm = (Pl + Pm)/2, for k, l,m non equal in
{1,2,3}3, we get at once:

∂t (EP(Y )) =−d(Y )
(
β2(x− y)2 +β3(2x+ y)2 +β1(x+2y)2)

which yields:

∂t (EP(Y ))≤− f P
min(t)

(
(x− y)2 +(2x+ y)2 +(x+2y)2)

or alternatively:
∂t (EP(Y ))≤−6 f P

min(t)EP(Y )(t)

which ends up with the above statement. �

This property is still valid for four-phase flow models (see [13]). Considering the
same assumption of a flow in a box (16), a similar property may be obtained for velocity
relaxation effects in three-phase flow models, considering the counterpart of EP(Y ):

EU (Y ) = ((U1−U2)
2 +(U1−U3)

2 +(U2−U3)
2)/2.

It now remains to select admissible closure laws for the interface velocity Vi(Y )
which governs the statistical fractions evolution. The specifications that are enforced
here correspond to the fact that the αl should be perfectly advected (if all phase pres-
sures are in equilibrium), and thus without any thickening; as a consequence, one must
enforce that the field associated with the eigenvalue λ = Vi(Y ) should be linearly de-
generated. The next proposition illustrates that feature, and it is indeed a well-known
result for two-phase flow models (see [4] and [5] for instance, for barotropic and non
isentropic models respectively, and also [6] for some generalization):

Proposition 5 (Admissible interface velocity in barotropic three-phase flow mod-
els) We set: N = 3, and we still assume that: Vi(Y ) =ΣN

k=1ak(Y )Uk, with: ΣN
k=1ak(Y ) =

1. We set: ak(Y ) = mk/M where: M = ΣN
k=1mk. Then the field associated with:

λ1,2 = Vi(Y ) is linearly degenerated.

Proof: It is straightforward but cumbersome. We define r1(Y ),r2(Y ) the two right
eigenvectors associated with the eigenvalue: λ = Vi(Y ), it then only remains to check
that: ∇Y λ1,2(Y ).r1(Y ) = ∇Y λ1,2(Y ).r2(Y ) = 0. �

A similar result holds for four-phase flow models. The structure of the contact wave
associated with λ = Vi(Y ) is examined in detail in [13] for N = 3 and N = 4. Actu-
ally the connection of states through the latter wave is very similar to what happens in
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two-phase flow models (see [4, 5]). Eventually, we may give the expected result, that is:

Proposition 6 (Structure of the convective part of system (1))
We assume that: |Uk−Vi(Y )|/ck 6= 1. Then system (1) is hyperbolic, since all eigen-
values are real, and the set of right eigenvectors spans the whole space of states R p.

2 Taking mass transfer into account
We consider now the following system for a mixture of N phases with possible mass
transfer between phases. This reads:


∂t (αk)+Vi(Y )∂x (αk) = φk(Y ) ;
∂t (mk)+∂x (mkUk) = ΣN

l=1,l 6=kΓkl(Y ) = Gk(Y ) ;
∂t (mkUk)+∂x

(
mkU2

k +αkPk(ρk)
)
+ΣN

l=1,l 6=kΠkl(Y )∂x (αl) = mkSk(Y )+SG
k (Y ) .

(17)
with:

SG
k (Y ) = Σ

N
l=1,l 6=kVkl(Y )Γkl(Y )

and: Γkl(Y )+Γlk(Y ) = 0. We also enforce the law:

Vkl(Y ) = βkl(Y )Uk +(1−βkl(Y ))Ul ,

with: βkl(Y ) ∈ [0,1]. We evenmore assume symmetry, that is: Vkl(Y ) = Vlk(Y ), which
means that: βkl(Y )+βlk(Y ) = 1. The term Γkl(Y ) simply denotes the interfacial mass
transfer between phases k and l. Of course, we still consider the previous closure laws
for φk(Y ),Sk(Y ) and Πkl(Y ).

The time evolution of the entropy η is now governed by:

∂t (η(Y ))+∂x ( fη(Y )) = RHSG
η (Y ) (18)

but the source term on the right handside becomes:

RHSG
η (Y ) = ΣN

k=1 (mkSk(Y )Uk−φk(Y )Pk)

+ΣN
k=1

(
Uk(Σ

N
l=1,l 6=kVkl(Y )Γkl(Y )− Uk

2 Gk(Y ))+Gk(Y )(
Pk
ρk
+ψk(ρk))

)
(19)

Thus we get :

Proposition 7 (An entropy-consistent closure law for the interfacial mass transfer)
Assume that: βkl(Y ) = 1/2, and also that fkl(Y ) = flk(Y ) > 0. Then the following
closure law for the mass transfer:

Γkl(Y ) = fkl(Y )
(
(

Pl

ρl
+ψl(ρl))− (

Pk

ρk
+ψk(ρk))

)
(20)

complies with the entropy inequality for smooth solutions Y of (17):

∂t (η(Y ))+∂x ( fη(Y ))≤ 0 (21)
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The proof is simple and left to the reader, who is refered to [13]. The latter reference
also provides more details and a thorough analysis of the statistical fraction LD wave
λ = Vi(Y ). Details on (unique) jump conditions can also be found therein. The exten-
sion to the framework of non-isentropic multiphase multi-component flows is currently
investigated for 4≤ N.
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