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Optimal trading policies for wind energy
producer

Zongjun Tan and Peter Tankov
Laboratoire de Probabilités et Modèles Aléatoires

Université Paris-Diderot

Abstract

We study the optimal trading policies for a wind energy producer who aims to
sell the future production in the open forward, spot, intraday and adjustment mar-
kets, and who has access to imperfect dynamically updated forecasts of the future
production. We construct a stochastic model for the forecast evolution and deter-
mine the optimal trading policies which are updated dynamically as new forecast
information becomes available. Our results allow to quantify the expected future
gain of the wind producer and to determine the economic value of the forecasts.
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1 Introduction
Wind power is now widely recognized as an important part of the global energy mix,
and the actors of the energy industry have no choice but to cope with the intermittent
and to a large extent unpredictable nature of the wind power production. In particu-
lar, as the guaranteed purchase schemes are either phased out or replaced with more
market-oriented subsidies, the wind power producers face the need to sell the future
power production in the open markets in the absence of precise knowledge of the vol-
ume to be produced. The need of wind power producers to adjust their delivery volume
estimates as the forecast becomes more precise is one of the factors behind the devel-
opment of intraday electricity markets, at which power can be traded up to 45 minutes
prior to delivery.

The aim of this paper is to determine the optimal strategies for selling the future
power production of a single wind park for a wind producer who has access to imperfect
dynamically updated forecast of the future production, which becomes progressively
more precise as the production horizon draws near. We formulate this problem as a
stochastic optimization problem where the power producer aims to maximize the ex-
pected gain from selling electricity penalized by terms accounting for market illiquidity
and the extra cost of using the adjustment market. To solve this problem, we develop a
stochastic model for the forecast evolution, and determine the optimal trading strategy
which is updated dynamically as new forecast information becomes available. This
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allows to quantify the optimal expected gain for the producer, and to compare the ex-
pected gain under different assumptions on the forecast dynamics, thus quantifying the
economic value of different forecasts.

Wind power producers in Europe and in many other countries with deregulated
energy sector have access to four types of markets.

• The forward market – more than 1 day prior to delivery, delivery periods are day,
week, month, quarter and year.

• Spot market – 1 day prior to delivery, delivery period is 1 hour.

• Intraday market – between 1 day and 45 min, delivery period is 1 hour.

• Adjustment (imbalance) market (usually managed by the power network opera-
tor such as RTE in France) – the last 45 minutes. In the adjustment market, the
bid-ask spread is very wide, which may be interpreted as a penalty imposed on
the agents for using this market.

Optimal trading strategies for wind power producer with a focus on intraday mar-
kets have been considered by several authors. Morales et al. [8] consider the short-term
trading for a wind power producer and determine the optimal strategies starting from a
small number of scenarios of wind power production generated with an autoregressive
model, without taking into account the available forecasts. Henriot [7] studies optimal
design of intraday markets in the presence of wind power producers who use certain
pre-determined strategies (without optimization). Garnier and Madlener [6] show how
forecast errors may be corrected by optimal trading in intraday markets. The paper
which is closest in spirit to ours is Aı̈d et al. [1]. These authors consider the optimal
trading problem in intraday markets in the presence of imperfect demand forecasts and
market impact, however, unlike our paper they do not focus on wind energy.

The rest of the paper is structured as follows. In section 2 we study the realized
production data and show that the distribution of the realized production is well de-
scribed with a truncated log-normal distribution. Section 3 focuses on forecast dynam-
ics: using some ideas from financial mathematics, we develop a stochastic model for
the forecast evolution which is compatible with the truncated log-normal distribution
for the realized production. Finally, in Section 4, we formulate and solve in several dif-
ferent settings, relevant for large and small power producers, the optimization problem
for the wind power producer who aims to maximize the expected gain from selling the
future production.

2 Modeling the realized production
We define the normalized output power of a wind park FT by

FT = 0 ∨ PT
Pmax

,

where PT is the actual instantaneous power production (in practice the instantaneous
production will be replaced with 10-minute average), and Pmax is the rated power of
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the park. Since some of the turbine equipment consumes power, the actual realized
power production may sometimes have small negative values; to remove this effect,
the normalized power output is truncated from below by 0.

To build a model for the normalized output power, we assume that FT is obtained
by applying a “stylized power curve” fprod to the “stylized wind speed” XT :

FT = fprod(XT )

We emphasize that the model is built for the output power directly and not for the wind;
the power curve and wind speed are introduced merely to provide a rationale for the
model. The stylized wind speed XT follows a log-normal distribution with parameters
µX and νX , whose density is

ρX(x) =
1

x
√

2πνX
exp

(
−1

2

(
lnx− µX

νX

)2
)
.

We assume that the variable XT follows a log-normal distribution because:

• The log-normal distribution has been used in the literature as a model for wind
speeds [5]. It is also quite close to the Weibull distribution, which is the para-
metric model of choice for wind speed data;

• The log-normal distribution is analytically tractable and allows to introduce a
dynamical aspect into the model via a Brownian motion.

The stylized production function is

fprod(x) =
(x− xmin)+ − (x− xmax)+

xmax − xmin
.

This shape of this function is illustrated in Figure 1; note that there is no cut-out.
The above assumptions imply that FT follows a truncated log-normal distribution

with parameters 
ζ = − xmin

xmax−xmin
µ = µX − ln(xmax − xmin)
ν = νX .

(1)

On the interval (0, 1) this distribution is absolutely continuous with density given by{
ρF (y|µ, ν, ζ) =

1

(y − ζ)
√

2πν
exp

(
− (ln(y − ζ)− µ)2

2ν2

)
. (2)

In addition, at points 0 and at 1 the distribution has atoms given by

P[FT = 0] = P(XT ≤ xmin) = Φ

(
lnxmin − µX

νX

)
= Φ

(
ln(−ζ)− µ

ν

)
:= P0(µ, ν, ζ)

P[FT = 1] = P(XT > xmax) = 1− Φ

(
ln(1− ζ)− µ

ν

)
:= P1(µ, ν, ζ).

Note that while the original construction used four parameters (µX , νX , xmin, xmax),
one parameter is redundant, and the distribution of FT is completely characterized by
the three parameters µ, ν, ζ. To remove this redundancy, we shall set µX = − 1

2ν
2
X in

the following, which ensures that E[XT ] = 1.
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Figure 1: Stylized power curve used to model the realized production
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Figure 2: Histograms of 10-minute realized power production, with 4-hour subsam-
pling, for the three power plants which are the object of this study, excluding the atom
at zero.

Fitting the model The model was fitted to the output power at the wind park level
for 3 wind parks in France, sampled at 10-minute intervals from Jan 1st, 2011 to Jan
1st, 2015, provided by the company Maı̈a Eolis (hereafter referred to as Plant 1, Plant
2 and Plant 3). Figure 2 shows the histograms of the realized production for the three
plants (plants are numbered from left to right in this and other graphs).

Denote the observed normalized output power values by (F kT )Nk=1, and assume
that they are arranged in increasing order. The method consists in minimizing the
Euclidean distance between the empirical quantiles and the quantiles of the theoretical
distribution. More precisely, given α ∈ [0, 1], we define the empirical quantile

qαemp = max

{
F kT

∣∣∣ k
N
≤ α

}
, (3)

and, for P0(µ, ν, ζ) ≤ α ≤ 1− P1(µ, ν, ζ), we define the theoretical quantile

qα(µ, ν, ζ) = max

{
x|Φ

(
ln(x− ζ)− µ

σ

)
≤ α

}
,

where Φ is the standard normal distribution function. The parameters are estimated by
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Parameters Plant 1 Plant 2 Plant 3
µ −1.46551 −0.60213 −0.76199
σ 0.66020 0.46158 0.48778
ζ −0.13248 −0.33757 −0.26449

xmin 0.46129 0.55412 0.50312
xmax 3.94322 2.19561 2.40534
µXT −0.21793 −0.10653 −0.11896
σXT 0.66020 0.46158 0.48778

Table 1: Fitted parameters of normalized production and the corresponding parameters
(xmin, xmax, µXT , σXT ).
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Figure 3: Fitted vs. empirical densities for the three power plants. The total production
has been normalized to one.

minimizing
L∑
l=1

(
qαl(µ,ν,ζ)emp − qαl(µ,ν,ζ)(µ, ν, ζ)

)2
,

where (αl)
L
l=1 are probability levels, uniformly spaced between P0(µ, ν, ζ) and 1 −

P1(µ, ν, ζ), that is,

αl = P0(µ, ν, ζ) +
l − 1

L
(1− P1(µ, ν, ζ)− P0(µ, ν, ζ)).

In the numerical example below, L = 100 probability levels were used.
Table 1 gives the fitted optimal parameters (µ∗, ν∗, ζ∗) and the corresponding latent

parameters (µXT , νXT , xmin, xmax) obtained for the three power plants. The fitted
truncated log-normal densities are shown in Figure 3.

3 Modeling the forecast dynamics
To understand how to optimally update the trading strategy depending on the forecast,
we need to build a dynamic stochastic model for the forecast, which is consistent with
the distribution of the realized production described in the previous section. More
precisely, at every date t we assume that the forecast Ft is the best prediction of the
realized production given the available information.
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To build a forecast model formalizing this idea, we need to define a filtration F =
(Ft)0≤t≤T , where Ft models the information available to the wind producer at time t,
and a stochastic process (Ft)0≤t≤T with the following properties:

• It is a martingale with respect to the filtration F;

• FT has the truncated log-normal distribution described in the preceding section.

We now proceed with the construction of the filtration and the process F . LetW be
a standard Brownian motion, and Z be a standard normal random variable independent
from W . We define the process (Xt)0≤t≤T by

Xt = exp

(∫ t

0

σ(s)dWs −
1

2

∫ t

0

σ2(s)ds

)
, t < T

and

XT = exp

(∫ T

0

σ(s)dWs −
1

2

∫ T

0

σ2(s)ds

)
ebZ−

b2

2 .

where (σ(s))0≤s≤T is a square integrable deterministic function and b ≥ 0. We then
define F to be the natural filtration of X completed with the null sets.

In other words, for each fixed t,

XT
d
= Xte

√
θ(t)N− θ(t)2 where N ∼ N(0, 1) and θ(t) =

∫ T

t

σ(s)2ds+ b2,

and N is independent from Xt. Letting (Ft)0≤t<T be the completed natural filtration
of the Brownian motion W and FT := F0∨σ(Z)∨σ(Ws, 0 ≤ s ≤ T ), we see that X
is an F-martingale which means that the variable Xt may be seen as the best prediction
of the stylized wind XT given the information available at time t. The jump at time
T is needed to model the component of the wind which is not predictable even at very
short time horizons. It is clear that by taking

νX = θ(0),

we recover the distribution of XT described in the preceding section.
We then define the forecast process by

Ft = E[fprod(XT )|Ft].

The following proposition gives an explicit form of this process.

Proposition 1. The forecast process is given explicitly by

Ft = g(Xt, θ(t)),

where

g(x, θ) =
1

xmax − xmin
[
x(Φ(dmin+ (x, θ))− Φ(dmax+ (x, θ)))

− xminΦ(dmin− (x, θ)) + xmaxΦ(dmax− (x, θ))
]

with dmin,max± (x, θ) = 1√
θ
[ln(x/xmin,max) ± θ/2] and Φ is the standard normal

distribution function.

6



This model fully describes the evolution of the forecast dynamics, while ensuring
that Ft(T ) ∈ [0, 1] for all t. For every forecast horizon, the forecast distribution is
parameterized by a single number, θ(t). Since the key quantity for determining the
optimal strategy is the forecast error, we fit the function θ by matching the empirically
observed variances of the forecasting errors for different horizons with the variances
predicted by the model and given by

E
[
(Ft − FT )2

]
= E

[
(g(θ(t), Xt)− fprod(XT ))2

]
= E

[
fprod(XT ))2

]
− E

[
g(θ(t), Xt)

2
]
.

Computing the second term requires a one-dimensional numerical integration:

E
[
g(θ(t), Xt)

2
]

=
1√
2π

∫
R
g

(
θ(t), exp

(√
ν2X − θ(t)z −

ν2X − θ(t)
2

))2

e−
z2

2 dz.

As for the first term, it may be evaluated explicitly:

E
[
fprod(XT ))2

]
= Φ

(
dmax−

)
+

e
ν2X
2

(xmax − xmin)2
{

Φ
(
dmin0

)
− Φ (dmax0 )

}
− 2xmin

(xmax − xmin)2
{

Φ
(
dmin+

)
− Φ

(
dmax+

)}
+

x2min
(xmax − xmin)2

{
Φ
(
dmin−

)
− Φ

(
dmax−

)}
,

where

dmax,min0 =
− log xmax,min +

3ν2
X

2

νX
, dmax,min± =

− log xmax,min ± ν2
X

2

νX
.

Therefore, for fixed parameters of the realized production distribution νX , xmin
and xmax, the forecast error variance E

[
(Ft − FT )2

]
is a function of θ(t) only. For

θ ∈ [0, ν2X ], let

φ(θ) = E
[
fprod(XT ))2

]
− 1√

2π

∫
R
g

(
θ, exp

(√
ν2X − θz −

ν2X − θ
2

))2

e−
z2

2 dz.

By Jensen’s inequality it can be shown that φ(θ) is strictly increasing in θ. Moreover it
is clearly continuous and satisfies φ(0) = 0 and φ(ν2X) = Var [fprod(XT )]. Therefore,
for any v in the interval (0,Var [fprod(XT )]), there exists a unique θ such that φ(θ) =
v. We use this property to calibrate the function θ(·) non-parametrically to the observed
variances of the forecast errors.

Alternatively, one can use a parametric volatility function given by

σt = σ0e
η(T−t)1t>T−τ∗ .

Here, τ∗ is the time horizon for which the forecast error variance becomes equal to
the unconditional variance of the realized power output, which means that the forecast
becomes useless. This corresponds to the function θ(t) given by

θ(t) =

{
b2 +

σ2
0

2η

(
e2η(T−t) − 1

)}
∧ ν2X .
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Figure 4: Plot of the forecast made at a given date as function of time horizon together
with the realized production for this horizon for four different starting times (given in
the legend). Accuracy decreases for longer horizons.

Fitting the model We estimate the function θ(·) in both the non-parametric and the
parametric form using the forecast data provided by Maı̈a Eolis. This data set contains
the forecasts of the power output at wind park level, produced by an independent fore-
casting company, for the period from December 7th 2011 to March 3rd 2015. In the
numerical examples we focus on the wind park 1 from the three parks considered in
the previous section. The forecasts are updated every 6 hours and cover time horizons
from 1h15min to 144 hours ahead with 15 minute step. The forecast values are pos-
itive, and in the analysis we normalize them by the rated power of the plant so that
Ft(T ) ∈ [0, 1]. Figure 4 shows examples of forecasts together with the actual realized
production. The forecasts appear quite precise for short time horizons, but the preci-
sion deteriorates significantly for longer horizons. This is further confirmed in Figure
5 which shows the histograms of the forecast errors for different horizons.

Figure 6, left graph, plots the variance of the forecast error as function of time hori-
zon. More than τ∗ = 120h prior to production date the variance of the forecast error
exceeds that of the realized production and we consider that the forecast has no value.
The right graphs of this figure shows the function θ estimated using the non-parametric
method described above and the parametric method (when all error variances are fit-
ted at the same time by nonlinear least squares). The estimated parameter values are
σ0 = 0.040113, η = 0.004423 and b = 0.308817.

Finally, Figure 7 compares the empirical distribution of the forecast error with the
one generated by the model for the time horizon of 48 hours.

4 Optimization of market interventions
In this section, our aim is to determine the optimal strategies for selling electricity
produced during a short time period [T − δ, T ], where T is fixed. This electricity must
be sold in advance, in different markets (spot, forward, intraday), otherwise a penalty
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Figure 5: Histograms of the forecast error for different time horizons.

0 20 40 60 80 100 120 140
Forecast lag, hours

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

Fo
re

ca
st

 e
rr

o
r 

v
a
ri

a
n
ce

0 20 40 60 80 100 120 140
forecast time-lag in advance τ=T−t

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

θ t

expo regression: σ0=0.040113, η=0.004423, b=0.308817
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is applied for using the adjustment market. We assume that the wind power producer
does not know the exact production but has forecasts available.

There are several reasons for trading both in intraday and spot/forward markets.
First of all, intraday markets are very volatile and illiquid: if supply exceeds demand,
the prices plunge down and if demand exceeds supply, the prices shoot up (see Figure
9). This means that large amounts of energy can only be sold at a very low price.
For this reason, it is advantageous to sell in spot / forward markets if the amount of
electricity to be produced is known in advance. Also, by selling in the forward market,
one reduces the risk associated to the change in the price until the delivery date, since
forward prices fluctuate less than spot / intraday prices. On the other hand, selling in
the spot/intraday market reduces the penalty applied for not delivering the right amount
since the forecasts are better when the delivery horizon is close.

Forward price model In practice, the forward contracts are traded continuously but
cover an extended delivery period, e.g., one year, one quarter, one month, one week and
sometimes one day. In the spot market, trading takes place only once per day, and one
can make separate bids for each hour of the following day. The intraday market again
allows continuous trading and the basic contract covers a 15-minute delivery period.
To simplify the treatment and make our main ideas transparent, we do not distinguish
between different markets, and assume that at every time t, one can enter into a forward
contract allowing to buy / sell electricity at a future date T at the price Pt(T ). Our
methods and results can easily be adapted to a more realistic market structure.

Let G := (Gt)t≥0 be the filtration of the agent selling electricity. We assume that
the forward sale price process satisfies

dPt(T ) = µtdt+ βtdBt,

where µ and β are deterministic processes such that∫ T

0

(|µt|+ β2
t )dt <∞

and B is a G-Brownian motion. For longer horizons, the coefficient µ reflects the
average trend of forward prices as the delivery horizon draws near. As seen from
Figure 8, this trend is typically negative, which corresponds to a premium for early
trading. For shorter time horizons the negative coefficient µ may reflect the widening
of the bid-ask spread in the intraday market.

Volume penalty We assume that the wind power producer has the obligation to sell
all the produced energy and denote by φt the aggregate position at time t (total quantity
to deliver at time T owing to the contracts entered into prior to date t). The trading
starts at some fixed date 0. If, at date T , φT 6= FT , the agent must sell / purchase the
extra energy at price PT := PT (T ), and in addition pay a penalty equal to u(FT −φT ),
where u(0) = 0, u(x) is increasing for x > 0 and decreasing for x < 0.
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Figure 8: Evolution of future price difference Pt(T )−P0(T ) as function of t, averaged
over one year, with 95% confidence bounds. Left: base futures. Right: peak futures.

Admissible strategies We are interested in determining the optimal strategies for
two kinds of electricity producers: a small producer whose interventions do not affect
market prices, and a relatively large producers whose trades may impact the market.
The small producer is only selling the electricity and does not engage in proprietary
trading. Therefore, the class A of admissible strategies for a small producer contains
all G-adapted increasing processes φ with φ0 = 0 satisfying the condition

E

[∫ T

0

(φt|µt|+ φ2tβ
2
t )dt

]
<∞.

Indeed, allowing φ to both increase and decrease does not make sense in the absence
of market impact since in that case the optimal strategy would be to sell all produced
electricity just before the terminal date.

For the large producer, following [2], we assume that the trading strategy is abso-
lutely continuous and introduce a market impact term proportional to the square of the
rate of trading ψt = φ′t. The class Aac+ of admissible strategies for a large producer
who can only sell electricity thus contains all processes inA which are absolutely con-
tinuous. Finally, the class Āac of admissible strategies for a large producer who can
both buy and sell electricity contains all processes of the form φ = φ+−φ− where φ+

and φ− are in Aac+ .

Gain from trading For a small producer whose transactions do not create market
impact, the total gain from selling electricity is modeled (in continuous time) by

G = FTPT −
∫ T

0

φtdPt(T )− u(FT − φT ),

where φ ∈ A. For a large producer, with the penalization by the market impact term,
the gain from trading becomes

G = FTPT −
∫ T

0

φtdPt(T )− u(FT − φT )− γ

2

∫ T

0

ψ2
sds.
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Figure 9: Intraday transaction prices for a fixed delivery hour. As the delivery horizon
draws close, volatility increases and bid-ask spreads widen.

where φ ∈ Aac. In the following sections we consider separately the problems of
maximizing the expected gain with and without market impact.

4.1 Trading for a small producer in absence of market impact
The optimization problem for trading in the absence of market impact writes

min
φ∈A

E

[ ∫ T

0

φtµtdt︸ ︷︷ ︸
Expected loss from
trading early (negative)

+u(FT − φT )︸ ︷︷ ︸
volume penalty

]
. (4)

Note that the stochastic part of the price process does not play a role in this optimization
problem, and the solution is therefore independent from the price volatility. One could
introduce a risk penalty to account for the price volatility effects but we do not pursue
this here.

Before obtaining a general solution with numerical methods, we first present ex-
plicit solutions in the cases where the forecast information is either exact or unavail-
able. This will allow us to establish upper and lower bounds on the expected gain which
may be obtained with probabilistic forecast.

Exact forecast Assume that the future realized production is known without error, in
other words, FT ∈ G0. In this case, the optimal strategy is described by the following
proposition, where we define

t∗ = arg min
0≤t≤T

∫ T

t

µsds, m∗ = mt∗ =

∫ T

t∗
µsds.

Proposition 2. Let the penalty function u be convex and continuously differentiable,
with u′(0) = 0 and limx→−∞ u′(x) = −∞. Then the value function of the the problem
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(4) is given by

FTm
∗ − v(m∗), m∗ < 0;

− v(0) ≡ u(0), otherwise,

where v(y) is the Fenchel transform of u: v(y) = supx{xy − u(x)}.
Denote by I(y) the inverse function of u′. The optimal strategy for the problem (4)

is described as follows.

• If m∗ ≤ 0, sell the quantity φ = FT − I(m∗) at time t∗.

• If m∗ > 0, sell at time T the amount FT .

Remark 1. Although the realized production is known in advance, sometimes it is
advantageous for the agent to sell more than the realized production, to be able to
benefit from the higher prices in the beginning of trading.

Proof. We first transform the optimization functional with an integration by parts.∫ T

0

φtµtdt+ u(FT − φT ) =

∫ T

0

(∫ T

t

µsds

)
dφt + u(FT − φT ).

It is now clear that for fixed φT , the optimal solution (φt)0≤t≤T is such that the measure
dφ is supported by the single point t∗. Therefore, φt = φ1t≥t∗ with a constant φ. If
m∗ > 0, it is optimal to choose t∗ = T and φ which minimizes u(FT − φ), that is
φ = FT . Otherwise, φ can be found by solving the optimization problem

min
φ≥0

[φm∗ + u(FT − φ)] .

The candidate optimizer is given by φ = FT − I(m∗). It is easy to check from our
assumption that this quantity is positive, which means that

min
φ≥0

[φm∗ + u(FT − φ)] = min
φ∈R

[φm∗ + u(FT − φ)] = v(m∗) + FTm
∗.

Absence of forecast In this case, we assume that the agent does not have access
to the forecast but only knows the distribution of power production, in other words,
(Gt)0≤t<T coincides with the completed natural filtration of B and GT in addition
contains FT . The agent’s strategy is then deterministic on [0, T ) with a possible
random jump at time T (when the realized production becomes known). The op-
timal strategy is described by the following proposition, where we define ũ(x) =
E [ū(FT − E[FT ] + x)] and ū(x) = u(x) if x ≤ 0 and ū(x) = u(0) if x > 0.

Proposition 3. Let E[|FT |] < ∞ and assume that the penalty function u satisfies the
assumptions of Proposition 2 and in addition

E[u(FT + x)] <∞ and E[|u′(FT + x)|] <∞ ∀x ∈ R.

13



Then the value function of the the problem (4) is given by

E[FT ]m∗ − ṽ(m∗), m∗ < 0;

u(0), otherwise,

where ṽ(y) = supx{xy − ũ(x)}. The optimal strategy is described as follows (we
denote the inverse function of ũ′ by Ĩ).

• If m∗ ≤ 0, sell the quantity φ = E[FT ] − Ĩ(m∗) at time t∗ then sell FT −
E[FT ] + Ĩ(m∗) (if this quantity is positive) at time T .

• If m∗ > 0, sell the quantity FT at time T .

Proof. Using the assumptions on u, by the dominated convergence theorem, we can
show that ũ is convex and continuously differentiable. Similarly to the proof of Propo-
sition 2, we find that when m∗ < 0, the optimal strategy has the form

φ1t≥t∗ + (FT − φ)+1t≥T ,

where φ is found by solving the optimization problem

min
φ≥0
{φm∗ + ũ(E[FT ]− φ)}.

The candidate optimizer is given by φ = E[FT ] − Ĩ(m∗). From our assumptions it
follows that φ is nonnegative, and therefore

min
φ≥0
{φm∗ + ũ(E[FT ]− φ)} = min

φ∈R
{φm∗ + ũ(E[FT ]− φ)} = E[FT ]m∗ − ṽ(m∗).

Example 1. Assume that the penalty is quadratic, that is, u(x) = κ
2x

2 and ū(x) =
κ
2x

21x<0, and the realized production FT is uniformly distributed on [0, 1]. Then

ũ(x) =
κ

6

(
1

2
− x
)3

1− 1
2≤x≤

1
2

+
κ

2

(
x2 +

1

12

)
1x<− 1

2

and thus

Ĩ(z) =

{
z
κ z < −κ2
1
2 −

√
− 2z

κ z ≥ −κ2

Discrete forecast updates In this paragraph we consider the more realistic situation
when the forecast is updated at a finite set of deterministic times 0 = t0 < t1 < · · · <
tn = T , that is,

Ft =

n−1∑
i=0

Fi1ti≤t<ti+1
+ Fn1tn≤t,

14



where (Fk) is a discrete-time martingale with respect to the discrete-time filtration
Fk = σ(Fi, 0 ≤ i ≤ k). Moreover, we make the assumption that µt ≤ 0 for t ∈ [0, T ],
that is, the expected price may only fall as the delivery date approaches. We denote

mk =

∫ tk+1

tk

µsds.

The optimal strategy is described by the following proposition.

Proposition 4. Let the penalty function u satisfy the assumptions of Proposition 3 and
assume in addition that

E[|u′(x− c(F0 + · · ·+ Fn))|] <∞

for all x ∈ R and some constant c > 1. Then there exists a discrete-time (Fk)-adapted
process (ξk)0≤k≤n such that

n−1∑
i=k

mi = E[u′(Fn − max
k≤i≤n

ξi)|Fk] (5)

for k = 0, . . . , n. The optimal trading strategy is given by

φt =

n−1∑
i=0

φi1ti≤t<ti+1
+ φn1tn≤t, (6)

where
φk = max

0≤i≤k
ξi

for 0 ≤ k ≤ n.

Remark 2. The process (ξk) may be computed by backward induction. This propo-
sition can be extended to the continuous-time case using the results of [3], following,
e.g., [4]. However, the discrete-time case is more relevant in practice, since the fore-
casts are updated in discrete time. In addition, for numerical computations time must
be discretized anyway. For this reason we concentrate on the discrete case in this paper.

Proof. We first prove the existence of the process (ξk) by an induction argument.
Clearly, one may choose ξn = Fn. Assume now that for some m ≤ n, we have
constructed a process (ξk)m≤k≤n satisfying (5) for m ≤ k ≤ n, and such that in
addition

0 ≤ ξk ≤ cFk − I

(
c

c− 1

n−1∑
i=k

mi

)
(7)

for m ≤ k ≤ n.
Consider a random function

ξ 7→ fm(ξ) = E[u′(Fn −max(ξ, max
m≤i≤n

ξi))|Fm−1].

15



This function is well defined and a.s. continuous for all ξ ∈ R by assumptions of the
proposition and estimate (7). Remark that

lim
ξ→∞

fm(ξ) = −∞

and by the induction hypothesis,

fm(0) =

n−1∑
i=m

mi.

Therefore, there exists ξm ∈ Fm with ξm ≥ 0, which solves the equation fm(ξ) =∑n−1
i=m−1mi. Moreover, by Markov inequality,

E[u′(Fn −max(ξ, max
m≤i≤n

ξi))|Fm−1] ≤ E[u′(Fn −max(ξ, Fn))|Fm−1]

≤ E[u′(min(Fn − ξ, 0))1Fn≤cE[Fn|Fm−1]|Fm−1]

≤ c− 1

c
u′(min(cE[Fn|Fm−1]− ξ, 0)) ≤ c− 1

c
u′(cE[Fn|Fm−1]− ξ).

This shows that

ξm−1 ≤ cE[Fn|Fm−1]− I

(
c

c− 1

n−1∑
i=m−1

mi

)
.

It remains to show the optimality of the proposed strategy. First, note that since
µt ≤ 0 for all t ∈ [0, T ], with each interval it is optimal to sell electricity as early as
possible, so that the optimal strategy has the form (6). Therefore, we need to minimize
the discrete-time version of the objective function

J(φ) = E

[
n−1∑
k=0

φkmk + u(Fn − φn)

]
over all increasing adapted discrete-time processes (φk)0≤k≤n. Let φ∗k = max0≤i≤k ξi
and let (φk) be any other admissible strategy. We denote ∆φi = φi − φi−1 for i =
1, . . . , n and ∆φ0 = φ0, and similarly for ∆φ∗i . Then,

J(φ)− J(φ∗) = E

[
n−1∑
k=0

(φk − φ∗k)mk + u(Fn − φn)− u(Fn − φ∗n)

]

≥ E

[
n−1∑
k=0

(φk − φ∗k)mk − u′(Fn − φ∗n)(φn − φ∗n)

]

= E

[
n∑
i=0

(∆φi −∆φ∗i )E

[
n−1∑
k=i

mk − u′(Fn − φ∗n)|Fk

]]
.

Now, on the one hand, for all k, φ∗n ≥ maxk≤i≤n ξi, which means that

E

[
n−1∑
k=i

mk − u′(Fn − φ∗n)|Fk

]
≤ E

[
n−1∑
k=i

mk − u′(Fn − max
k≤i≤n

ξi)|Fk

]
= 0.
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On the other hand, if, for some k, ∆φk > 0 then φk = ξk so that

E

[
n−1∑
k=i

mk − u′(Fn − φ∗n)|Fk

]
= E

[
n−1∑
k=i

mk − u′(Fn − max
k≤i≤n

ξi)|Fk

]
= 0.

Since the processes φ and φ∗ are nondecreasing, these observations together with the
above estimate imply that

J(φ)− J(φ∗) ≥ 0,

which means that φ∗ is the optimal strategy.

4.2 Trading for a large producer in presence of market impact
Our aim now is to maximize the expected gain penalized by market impact and volume
penalty. The optimization problem therefore takes the following form.

min
φ∈Aac+

E

[ ∫ T

0

φtµtdt︸ ︷︷ ︸
Expected loss from
trading early (negative)

+
γ

2

∫ T

0

ψ2
sds︸ ︷︷ ︸

Market impact
(ψ = φ′)

+u(FT − φT )︸ ︷︷ ︸
volume penalty

]
. (8)

When buying electricity is allowed, the set Aac+ is replaced with the set Aac.
We first consider the situation when the agent is only allowed to sell electricity.

As before, we first focus on the degenerate cases when the forecast is either exact or
unavailable.

Proposition 5 (Exact forecast). Let the penalty function u be strictly convex and con-
tinuously differentiable with u′(0) = 0 and limx→−∞ u′(x) = −∞. Then the optimal
strategy for the problem (8) is given by

ψ̄t =
1

γ

(
u′(FT − φ̄T )−

∫ T

t

µsds

)+

,

where the terminal value φ̄T is the solution of the equation

φ =
1

γ

∫ T

0

dt

(
u′(FT − φ)−

∫ T

t

µsds

)+

.

Proof. The Hamiltonian of this optimization problem is

H(t, φ, x, ψ; p) =
(
µtφ+

γ

2
ψ2
)

+ pψ

By Pontriagin’s principle for deterministic control problems, for each t, the optimal
strategy ψ̄t realizes the minimum of H(t, φ̄t, x, ψ; p̄t) = p̄tψ + γ

2ψ
2 + φ̄tµt over all

ψ ≥ 0, where φ̄t =
∫ t
0
ψ̄sds and the function p̄t satisfies

d

dt
p̄t = − ∂

∂φ
H(t, φ̄t, x, ψ̄t; p̄t) = −µt, pT = −u′(FT − φ̄T )
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Therefore,

p̄t = −u′(FT − φ̄T ) +

∫ T

t

µsds

and finally

ψ̄t = arg min
ψ>0

H(t, φ̄t, x, ψ; p̄t) = − 1

γ
(p̄t ∧ 0) =

1

γ

(
u′(FT − φ̄T )−

∫ T

t

µsds

)+

where the terminal value φ̄T is the solution of the equation

φ =
1

γ

∫ T

0

dt

(
u′(FT − φ)−

∫ T

t

µsds

)+

. (9)

It is easy to see that under our assumptions, this equation admits a unique solution
which is strictly positive.

Example 2. To obtain an explicit solution, assume that µs ≡ µ < 0 is constant, and
that the penalty function is quadratic: u(x) = κ

2x
2. A straightforward computation

then gives the solution to equation (9).

φ̄T =


FT −

µT 2

2 + γFT

κT + γ
,

µT 2

2
+ γFT ≥ 0

FT −
µ

κ2
(γ + κT )−

√
µ2

κ4
(γ + κT )2 − 2µ

κ2

(
µT 2

2
+ γFT

)
,

µT 2

2
+ γFT < 0

(10)
In the first case, φ̄T ≤ FT and the optimal trading strategy satisfies

ψ̄t =
− 1

2κµT
2 + γκFT − µγT
γκT + γ2

+
µ

γ
t ≥ 0, ∀t ∈ [0, T ].

In other words, the agent trades continuously between time t = 0 and t = T , at a
linearly decreasing rate. The expected gain of the power producer is

Gexact(T ) = E[PT ]FT −

γλ
2
T + µλT 2 +

µ2

3γ
T 3 +

κ

2

(
µT 2

2 + γFT

κT + γ

)2


where λ =
− 1

2κµT
2+γκFT−µγT
γκT+γ2 .

In the second case, we have φ̄T > FT . Introduce the time

t∗ = T −
(
T +

γ

κ

)
+

√(
T +

γ

κ

)2
− 2

µ

(
µT 2

2
+ γFT

)
. (11)

The optimal strategy is given by

ψ̄t =
µγ +

√
µ2γ2 − 2µκγ(κFT − µT )

γκ
+
µ

γ
t,
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for t ∈ [0, t∗] and ψ̄t = 0 for t > t∗. In other words, the agent trades continuously at
a linearly decreasing rate until time t∗ < T and then stops. The expected gain of the
power producer is

Gexact(T ) = E[PT ].FT−
[
γλ

2
t∗ + µλ(t∗)2 +

µ2

3γ
(t∗)3 + +µ(T − t∗)φ̄T +

κ

2

(
FT − φ̄T

)2]

where λ =
µγ+
√
µ2γ2−2µκγ(κFT−µT )

γκ

Remark 3. The solution in the case when no forecast is available can be obtained by
replacing the penalty function u with the average penalty

ũ(x) = E [u(FT − E[FT ] + x)]

in Proposition 5. The strategy is completely deterministic in this case since contrary to
the situation without market impact, there is no lump-sum trade at the terminal date.

Continuous forecast updates In the presence of market impact, since the trading
strategy is necessarily continuous-time, we assume that the forecast is updated in con-
tinuous time as well. To solve this problem, introduce the value function

w(t, φ, x) = min
ψ≥0

E

[∫ T

t

φsµsds+
γ

2

∫ T

t

ψ2
sds+ u(FT − φT )

∣∣∣φt = φ,Xt = x

]
.

The following proposition can be obtained using standard tools of stochastic control
(see [9]).

Proposition 6. The value function w(t, φ, x) is the unique viscosity solution of the
Hamilton-Jacobi-Bellman equation

min
ψ≥0

{
γ

2
ψ2 +

∂w

∂φ
ψ

}
+ φµt +

∂w

∂t
+

1

2
σ2
t x

2 ∂
2w

∂x2
= 0

or equivalently,

− 1

2γ

(
∂w

∂φ
∧ 0

)2

+ φµt +
∂w

∂t
+

1

2
σ2
t x

2 ∂
2w

∂x2
= 0

for φ ≥ 0, x ≥ 0 and t ∈ [0, T ] with the terminal condition

w(T, φ, x) = u(fprod(x)− φ).

The case when both buy and sell transactions are allowed In the final paragraph
we consider the situation when the agent can both buy and sell electricity. In this
case, for the quadratic penalty function, the optimal strategy is explicit (since Aac is a
linear space) and described by the following proposition. For the non-quadratic penalty
function the optimal strategy may be found by solving the HJB equation as above.
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Proposition 7. Assume that the penalty function is quadratic: u(x) = x2

2 . Then the
optimal trading rate satisfies

ψ∗t =
E[FT |Gt]− φ∗t − 1

γ

∫ T
t
ds (γ + T − s)µsds

γ + T − t
.

Proof. The first order condition writes

E

[∫ T

0

dt ξt

(∫ T

t

µsds+ γψt − (FT − φT )

)]
= 0

for every G-adapted process ξ. Therefore,

γψt +

∫ T

t

µsds = E
[
FT − φT

∣∣∣Gt] , (12)

which means that the left-hand side is a martingale. This in turn means that for s ≥ t,

E[ψs|Gt] = ψt +
1

γ

∫ s

t

µudu.

Substituting this formula into (12), we then obtain

(γ + T − t)ψt = E[FT |Gt]− φt −
1

γ

∫ T

t

ds (γ + T − s)µsds.

4.3 Numerical illustrations
In this section, we illustrate the optimal trading policies for a large producer, deter-
mined in section 4.2, with numerical examples.

In these examples, we assume that the trading takes place continuously over T = 6
days, that µ = −0.2 (this means that the forward price per MWh decreases by 1 euro
every 5 days as one approaches maturity), γ = 4800 (liquidating 0.1MWh over 1 hour
has a cost of approximately 1 euro), the daily volatility of (Xt) is σt ≈ 27% (that is,
66% over the 6 days; this corresponds roughly to the estimated value for one of the
power plants we studied in this paper), and that the penalty function is u(x) = Px2

with P = 100 (this means that with, e.g., 0.1MWh volume mismatch, the extra price
to pay is 1 euro).

To obtain the numerical examples, we first solve the HJB equation by finite differ-
ences, and then simulate random trajectories of the forecast process with a fixed value
of realized production. For these trajectories, we compute the corresponding trajec-
tories of the optimal trading strategy φt. Figure 10 shows several sample trajectories
when only selling is allowed (on the left graph) and when both buy and sell transactions
are permitted (right graph).

Finally, we compute the realized penalty (the value of the expression under the ex-
pectation in (8)) corresponding to the simulated trajectories of the forecast process and
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Figure 10: Sample selling strategies with market impact. Strategies are updated dy-
namically as new information becomes available. The left graph shows three strategies
where sales only are allowed. The right graph shows one strategy with sales only and
one with both buy and sell transactions.
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Figure 11: Left: Realized penalty for different forecast quality. Right: realized penalty
with and without buy transactions.

the optimal trading strategy, with the objective of evaluating the economic value of the
optimal strategy in different contexts. Figure 11, left graph compares the distribution
of the realized penalty with volatility σ = 66% and that with volatility 33%. One can
see that with the lower volatility, the premium for early trading compensates the cost
of market impact and the volume penalty, leading to negative overall penalty for most
of the trajectories, whereas for the higher volatility, the penalty is positive for most
trajectories. Figure 11, right graph, quantifies the impact of allowing both buy and sell
transactions (the volatility was taken to be 66% for both experiments). One can see that
once again, if the agent is allowed to both buy and sell, the premium for early trading
compensates the volume penalty and the cost of market impact.
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