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Abstract. A body-biasing compensation scheme based on two proportional-to-

absolute-temperature (PTAT) circuits is proposed to reduce the PVT variability 

of the DC gain of cascode amplifiers. A brief description of a basic PTAT is 

given as well as its application to cascode-based operational transconductance 

amplifiers. Simulation results show that the proposed compensated circuit 

amplifier exhibit a (DC) gain variability smaller than the original 

(uncompensated) circuit, while reaching a gain enhancement of about 3 dB. 

Keywords: amplifier, body-biasing, CMOS analog circuits, PVT 

compensation 

1 Introduction 

In order to increase speed and reduce area, MOS devices are scaled down. However, 

this leads to short channel effects, thus reducing the intrinsic gain. Therefore, due to 

the supply reduction, high gain OpAmps are harder to design and cascode techniques 

are more difficult to employ 1.In analog CMOS circuit design, the transistor is 

preferentially used in saturation. The intrinsic gain of a MOS transistor is given by 

��� = �� ���⁄  (1) 

where�� is the transconductance and ��� is the output conductance.For a MOS 

device in saturation, assuming an approximate square law for the drain current, the 

transconductance is given by 

 
�� = ���

� �� �⁄ ����� − ���� �2� 
where � is the carrier mobility, ��

� is the oxide capacitance per unit of area, � and 

� are the width and length of the transistor, ���is the biasing gate source voltage and 

��is the threshold voltage. For a short channel, the increase of ��� leads to the 

decrease of��, thus increasing the drain current. This gives rise to an increase of 

���.So, despite the increase of transconductance with scaling, the intrinsic gain is 
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reduced 1. This is illustrated in 2.The temperature variation leads to a decrease in both 

the carrier mobility and the threshold voltage. In regards to the latter, it may decrease 

from 2 mV up to 4 mV for every 1º C rise 3. These factors will have a direct effect on 

the transconductance of a transistor, as seen in (2).Also, process corners refer to the 

variation of fabrication parameters used in applying an integrated circuit design to a 

wafer. If a circuit running on devices fabricated at these process corners does not 

function as desired, the design is considered to have inadequate design margin. In this 

paper we present a circuit technique to reduce gain variability with temperature, 

supply and process variations in cascode amplifiers using a body-suitable biasing 

circuitry and at the same time increase the overall amplifier gain by about 3 dB.  

2 Relationship to Internet of Things 

Operational and transconductance amplifiers are, most probably, the most active 

building-block in analog and mixed-signal integrated circuits used in wireless and 

wire line communication systems. The work presented in this paper can contribute to 

the future development of the Internet of Things, since it can provide improved 

energy efficient circuit amplifier architectures, robust to temperature, supply and 

process variations. This ensures that a circuit manufactured to work, will perform as 

expected, regardless of the environment conditions. 

3 Cascode Amplifiers 

A single-stage operational transconductance amplifier (OTA) has usually a cascode 

configuration 4. We consider a traditional cascode amplifier, shown inFig. 1. 

 

Fig. 1. Cascode Amplifier. All transistor sizes (W/L) are in µm. Sizes without brackets are for a 

65 nm technology and those within brackets are for a 0.13 µm one. 
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The gain of this circuit is given by 

�� = ��� ∙ � �
� !"

∙ #�$%
� !%

&' ||)*  �3� 
where)* is the resistance of the biasing current source, whose value is 100 µA 

and 150 µA for 65 nm and 130 nm technology, respectively. The positive power 

supply voltage is of 1.2 V. 

Fig. 2 shows the variations of ��, ��� , and gain of transistor -� (��/���) for 65 

nm and 130 nm. 

 

Fig. 2. Parameter variation with temperature for both node technologies. 

4 Proposed Solution 

Fig. 3 presents the basic proportional-to-absolute-temperature (PTAT) circuit used in 

this paper, known as “constant transconductance” bias circuit, proposed in 4, 5. 
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Fig. 3. Constant Transconductance Bias circuit. All transistor sizes (W/L) are in µm. Sizes 

without brackets are for a 65 nm technology and those within brackets are for a 0.13 µm one. 

The supply voltage is of 1.2 V. 

We investigate the variation with temperature of the voltages VA, VB, and VC, when 

all the transistors are matched. 

The variation of VA is irrelevant, since it varies less than 5 mV for the temperature 

range (-50 ºC to +85 ºC). For both technology nodes, VB decreases with temperature 

while VC increases, as shown in Fig. 4. 

 

Fig. 4. Voltage variation at nodes VB and VC (for both node technologies). 

-50 0 50 100
300

350

400

450

500

Temperature (ºC)

[m
V

]

 

 
V

B
 @ 65 nm

V
B
 @ 130 nm

-50 0 50 100
650

700

750

800

850

Temperature (ºC)

[m
V

]

 

 
V

C
 @ 65 nm

V
C
 @ 130 nm



Design of Cacode-based Transconductance Amplifiers 589 

The cascode amplifier (Fig. 1) with body-biasing by the circuit of Fig. 3 is shown 

in Fig. 5. The /* current source is replaced with a current mirror, and every biasing 

voltage source is replaced with a MOSFET in diode configuration. 

 

Fig. 5. Telescopic-cascode with body-biasing circuitry. All transistor sizes (W/L) are in µm. 

Sizes without brackets are for a 65 nm technology and those within brackets are for 0.13 µm. 

In section III we have plotted the variations of �� and ��� in 65 nm and 130 nm. 
The main objective is to choose one of these voltage variations and apply it to the bulk 
of the -� transistor of the cascode circuit, biasing it in order to reduce the variability of 
the intrinsic gain, thus narrowing the variability of the overall gain, and increase the 
total gain of the circuit. The voltage VB is used, since it decreases with temperature (for 
either technology), as seen in Fig. 4. If it is applied to the bulk of the -� transistor, it 
reduces the amplifier gain variability. 

After replacing the current source with the current mirror, the MOSFETS that 

compose it also needed to have a temperature-independent behavior. Thus, the bulk of 

M11 should be connected to a symmetrical voltage to that applied to the bulk of M2. In 

order to do so, a mirrored version of the “constant transconductance” bias circuit was 

designed. 

Fig. 6 presents the variations of the transconductances of the -�,� transistors, when 

using body-biasing compensation. As it can be seen, the intrinsic gain of the -� 
transistor has a lower variation than that obtained when no body-biasing technique is 
used (Fig. 2), for both node technologies. Furthermore, the ��� of the -� transistor 
also reduces its value while �� increases, thus boosting the gain. 
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Fig. 6. Parameter variation with temperature with body-biasing compensation for both node 

technologies. 

5 Simulations and Results 

All simulations are performed using BSIM3v3 models for standard logic 65 nm and 

130 nm CMOS technology. A supply voltage of 1.2 V is used and the process 

variations considered are slow-slow (ss), typical-typical (tt) and fast-fast (ff). The 

temperature range is from -50 to +85 ºC. 

In Fig. 7, the gain of the circuit is plotted, for both technology nodes, with and 

without body-biasing technique. For both technology nodes the gain variability is 

lower when using the body-biasing circuitry. Furthermore, there is an enhancing of 

the gain by about 3 dB, as expected, as it was explained in section IV. 

With regard to supply variation, Fig. 8 shows that with a variation of ± 5% (1.14 V 

to 1.26 V) of the supply voltage, the body-biasing circuitry leads to a lower variability 

for the gain (below ± 0.5 dB). Some traces can be superimposed. 
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Fig. 7. Overall gain variability with temperature for both technologies node (with and without 

body-biasing technique). 

 

Fig. 8. Overall gain variability with temperature & supply variation for both technologies node 

(with and without body-biasing technique). 
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Concerning process variation,Fig. 9and 10 show that for the processes considered 

(ss, tt and ff), there is always an enhancement of the gain by about 3 dB. For most of 

the cases, the (DC) gain variability is below ± 0.5 dB (except for process ff, at 130 nm 

node technology, where the variability is higher than that without body-biasing). 

This body-biasing circuitry requires only an extra current consumption of about 

5% to 7% (for both technologies) of the total current consumption of the amplifier. 

This results in low power consumption, for both node technologies, from a 1.2 V 

supply. 

 

Fig. 9. Overall gain variability with temperature & process variation for 65 nm (with and 

without body-biasing). 

-50 0 50 100
51

51.5
52

52.5
53

53.5
54

54.5
55

Temperature (ºC)

[d
B

]

Effect of Process Variations (ss)

 

 

Process ss with Body-Biasing

Process ss without Body-Biasing

-50 0 50 100
50

50.5
51

51.5
52

52.5
53

53.5
54

Temperature (ºC)

[d
B

]

Effect of Process Variations (tt)

 

 

Process tt with Body-Biasing

Process tt without Body-Biasing

-50 0 50 100
49

49.5
50

50.5
51

51.5
52

52.5
53

Temperature (ºC)

[d
B

]

Effect of Process Variations (ff)

 

 

Process ff with Body-Biasing

Process ff without Body-Biasing



Design of Cacode-based Transconductance Amplifiers 593 

 

Fig.10. Overall gain variability with temperature & process variation for 130 nm (with and 

without body-biasing). 

6 Conclusions 

This paper presented a simple circuit technique to reduce gain variability with 

temperature, supply, and process variations in cascode amplifiers, using a body-

biasing scheme, and at the same time, enhance the overall gain of the amplifier. 

Simulation results of a standard telescopic-cascode amplifier, in two different 

nanoscale CMOS technologies (130 nm and 65 nm) have shown that it is possible to 

obtain process-supply-and-temperature-compensation. 

The simulated DC gain has low variability (below ± 0.5 dB for all supply-and-

temperature variations) while it is enhanced, over all PVT corners by 3 dB. 

The authors are unaware of the existence of similar body-biasing compensation 

schemes to reduce the PVT variability of the DC gain, up to this date. Therefore, it 

was impossible to perform a comparison with other body-biasing schemes. 
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