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Abstract. This paper applies to the scientific area of electronic design 

automation (EDA) and addresses the automatic sizing of analog integrated 

circuits (ICs). Particularly, this work presents an innovative approach to 

enhance a state-of-the-art layout-aware circuit-level optimizer (GENOM-POF), 

by embedding statistical knowledge from an automatically generated gradient 

model into the multi-objective multi-constraint optimization kernel based on the 

NSGA-II algorithm. The approach was validated with typical analog circuit 

structures, using the UMC 0.13 µm integration technology, showing that, by 

enhancing the circuit sizing optimization kernel with the gradient model, the 

optimal solutions are achieved, considerably, faster and with identical or 

superior accuracy. Finally, the results are Pareto Optimal Fronts (POFs), which 

consist of a set of fully compliant sizing solutions, allowing the designer to 

explore the different trade-offs of the solution space, both through the achieved 

device sizes, or the respective layout solutions. 

Keywords: Analog Integrated Circuits Design; Automatic Sizing; Electronic 

Design Automation; Evolutionary Computation; Gradient Model. 

1   Introduction 

In the System-on-Chip (SoC) age it is common to find devices where the whole 

system is integrated in a single chip, this is done to reduce production costs and 

increase performance. These complex integrated circuit (IC) designs are established in 

telecommunications, medical and multimedia applications, where blocks of Analog 

and Mixed-Signal (AMS), digital processors and memory blocks appear together [1]. 

Presently most functions in mixed-signal ICs and SoC designs are implemented using 

digital or digital signal processing (DSP) circuitry, where analog blocks constitute 

only a small part of the components, being essentially the link between digital 

circuitry and the continuous-valued external world. However, when integrating digital 

and analog circuits together on the same die, it becomes notorious that the 

development time of analog blocks is much higher when compared to the digital 

counterpart [2].This difference is due to that analog design in general is less 

systematic, more heuristic and knowledge intensive than digital, and the lack of 

maturity of the EDA that are in fact used by analog designers. 
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Historically, the tools for automated circuit sizing are classified as knowledge-

based or optimization based, and an extensive analysis of the related work can be 

found in [1]. The early strategies [5] tried to systematize the design by using a pre-

designed plan built with equations and a design strategy provided by the designer, 

which will produce component sizes that meet the performance requirements. Despite 

the short execution time, deriving the design plan is hard and time-consuming, and it 

requires constant maintenance in order to keep it up to date with technological 

evolution, also, the results are not optimal, suitable only as a first-cut-design. 

Aiming for optimality, the next generations of sizing tools apply optimization 

techniques. Based on the evaluation techniques employed, the optimization-based 

sizing tools can be further classified into two main sub-classes, respectively, equation-

based and simulation-based. The equation-based approaches [6][7] use analytic 

design equations to evaluate the circuit’s performance during the optimization loop. 

The main drawbacks are that not all design characteristics can be easily mapped by 

analytic equations and the approximations introduced in the equations yield low 

accuracy designs, suited only to derive first-cut designs. The simulation-based 

approaches [8] [9] [10] use an electrical simulator to evaluate the circuit’s 

performance. The strong points of this approach are generality and easy-and-accurate 

model, however, typified by long execution time. In order to cope with this limitation 

alternative approaches have been explored, e.g., use equations to derive an 

approximate initial solution, use parallel mechanisms that shares the evaluation load 

among multiple computers, use macro modeling techniques  to speed up the 

evaluation of the circuit’s performance, etc. 

In this paper, a methodology to enhance the state-of-the-art layout-aware circuit-

level optimizer, GENOM-POF [3], by adding circuit specific knowledge that is 

automatically extracted using machine learning techniques is described. The Gradient 

Model, here introduced, is embedded in the genetic operators of the NSGA-II [4] 

optimization kernel and is generated by sampling the design space, extracting and 

ranking the contributions of each design variable to each performance measure or 

objective, and, finally, building the model based on a set of gradient rules.  

This paper is organized as follows: next section briefly highlights the contributions 

to technological innovation; then, in section 3, the enhanced GENOM-POF with 

Gradient Model is described; afterwards, in section 4, the achieved results are 

discussed; and finally, in section 5, the conclusions are presented. 

2   Contribution to Internet of Things 

The implementation of Internet of Things requires low power circuits using 

challenging integration technologies. The design of such circuits includes the design 

of analog-to-digital and digital-to-analog interfaces which are highly specialized and 

time consuming, even for expert designers. The electronic design automation is a 

fundamental research area supporting the designer to find optimal implementation 

solutions in a reduced time frame. 
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3    GENOM-POF Enhanced with the Gradient Model 

GENOM-POF is part of the AIDA [11], an analog IC design automation framework 

that results from the integration of two in-house tools, GENOM-POF, and, 

LAYGENII [12], that performs the automatic layout generation from circuit-level 

specifications. Before moving to the description of how the gradient model is used to 

enhance GENOM-POF, the tool is reviewed and contextualized. 

3.1    GENOM-POF Architecture 

GENOM-POF is based on the elitist multi-objective evolutionary optimization kernel 

NSGA-II, and uses the industrial grade simulator HSPICE® to evaluate the 

performance of the design. It targets the design of robust circuits, by allowing the 

consideration of corner cases during optimization. 

The inputs are the circuit and test-benches in the form of HSPICE® netlists, and 

the layout template required by LAYGEN II to instantly generate the floor plan of 

each of the sizing solutions. The designer also defines ranges for the optimization 

variables, design constraints, and optimization objectives. Then, GENOM-POF 

models the circuit as an optimization problem, defined by the tuple {x - optimization 

variables, F(x) -objective functions, G(x) - constraint functions} and suitable to be 

optimized by the NSGA-II kernel. The output is a family of Pareto optimal sized 

circuits that fulfill all the constraints and represent the feasible tradeoffs between the 

different optimization objectives. 

In this work, the gradient model is integrated in GENOM-POF by embedding the 

extracted circuit knowledge into the evolutionary kernel operators increasing their 

efficiency. The enhanced GENOM-POF architecture is shown in Fig. 1, and the next 

section describes in detail how the integration is performed.  
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Fig.1. GENOM-POF architecture with the integration of the Gradient Model. 
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3.2    Gradient Model Generation 

The automatic generation of the Gradient Model is based on the Design of 

Experiments (DOE) [13] technique to sample the circuit behavior. The gradient model 

is generated by sampling the circuit design space (using DOE), extracting and ranking 

the contributions of each design variable (input) to each design performance or 

objective (output), and finally, building a set of gradient rules that will be used to 

enhance GENOM-POF. Two approaches of DOE will be used in this work, full 

factorial design and fractional factorial design. The number of samples, electrical 

simulations, required to construct the DOE’s matrix (or just matrix), of both strategies 

obeys to the following equation: ������	�		
��������
 = 	�(���) (1) 

where B is the number of points per variable or matrix base (B> 1), n is the number of 

input variables and p the number of non-elementary input variables. In the full 

fractional DOE the circuit is sampled in all the combinations of variables’ values. For 

each variable (xi), B logic levels are defined, and to each value, it is assigned a value 

vi,b derived from the variable’s range according to eq. 2. 

��,� = ����� + (����� − �����)2� × (1 + 2�), � = 0,… , � − 1 (2) 

 The next step is to perform the statistical analysis of the experiments in order to 

understand which variables affect most the outputs; this is called the main effect. The 

main effect is the effect of one independent (input) variable on the dependent (output) 

variable, ignoring the effects of all other independent variables0, where mi,j, the main 

effect of input variable i in the output variable j is computed according to eq. 3. 

��,& = ' (�,) 	× *)+,-.
)/0 , (�,) = 1+1	(ℎ��	3�,) ≥ � 25−1	(ℎ��	3�,) < � 25 7 (3) 

where k identifies the sample and y the output measure for the sample. When the total 

main effect of an input variable is positive/negative, this is an indication that if the 

value of that input variable is increased, the value of the output will tend to 

increase/decrease. 

Then, a refinement procedure is executed. For each output variable *&, a new DOE 

matrix is constructed using the fractional factorial sampling, with the N input 

variables that have the larger contributions as the only elementary variables. 

The refined DOE matrix is then converted to the set of gradient rules for that output 

variable. This is done by discarding the columns referring to non-elementary variables 

and transforming the levels of the elementary variables 3�into input gradient symbols 8��,&,) according to: 

8��,&,) = 1(+)	(ℎ��	3�,) ≥ � 25(−)	(ℎ��	3�,) < � 25 7 
 

(4) 

where k identifies the line of the matrix. The output gradient symbols So are 

converted from the output values as: 
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8�&,) = 9 (+)	(ℎ��	*&,) ≥ :&��� − ∆&(<)	(ℎ��	=:&��� + ∆&> < *&,) < (:&��� − ∆&)(−)	(ℎ��	*&,) ≤ :&��� + ∆& 7 (5) 

where	:&���  and :&���  are, respectively, the maximum and minimum values of the 

output *& obtained in the DOE matrix (not the refined DOE matrix), and ∆& is @:&��� − :&���@ 3⁄ . The meanings of the symbols are: (-) decrease; (+) increase and 

(U) undefined. 

 

3.3    Gradient Model applied to the Mutation Operator 

The integration of the Gradient Model into GENOM-POF is done in two fronts, first 

by embedding it in the evolutionary operator of mutation and second by adding the 

Gradient Model setup interface to the AIDA graphical user interface. 

In GENOM-POF the chromosome is represented by the vector of continuous 

variables = {30, … , 3�} representing the design variables. In order to speed up the 

convergence of the algorithm the gradient model is used to introduce design 

knowledge into the mutation operator. 

The mutation operator in GENOM-POF uses the continuous valued operator 

introduced Deb and Goyal in [4]. In this operator, E� defined as E� = (3�� − 3�) (��F3 − ��F��)⁄ , where 3�� and 3� are the mutated and original values 

respectively, is the mutation  perturbation applied. E�is a random variable, with values 

in [ -1,1] and p.d.f. G(E) = 0.5	 × (J + 1) × (1 −	 |E|)L (6) 
 A factor of disturbanceE̅of Ecan be obtained from an uniform random number �	N	[0, 1[ using eq. 6, which is obtained from eq. 7by solving P G(E)QR�0 = �. 

 

E̅ = S (2�) TUVT − 1,																					�	�<	0.51 − [2(1 − �)W TUVT, �		� ≥ 0.57 (7) 

  

The mutated value, 3��, is given by 3�� = 3� + EXR(����� − �����). The gradient 

rules are then applied. The application of the rules follows the expression in eq. 8: 3�Y = =1 + Z ∙ \(8��)>3�� (8) 
 

where	3�Y is the variable value after the application of the rule, \(8��) is a function 

of the gradient symbol defined in eq. 9, and �	N	[0, ][ is a uniformly distributed 

random number between 0 and c, the change rate model parameter. 
 \(8��) = ^+1	(ℎ��	8�� = (+)−1	(ℎ��	8�� = (−)7 (9) 

The rules are selected by searching for each optimization objective if there is a rule 

that causes the desired effect in the corresponding response variable. Finally, fig. 2 

illustrates how the automatic generated gradient model is applied to the mutation 

operator. 
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Fig.2. Example of applying the Gradient Model to the mutation operator. 

 

4   Results 
 

The proposed methodology was tested on an Intel® Core™ 2 Quad CPU 2.4 GHz 

with 6 GB of RAM and multi-threads to perform the evaluation process of each 

population. 

The circuit used to compare the GENOM-POF with GENOM-POF integrated with 

Gradient Model is the single ended folded cascade amplifier, presented in Fig. 3(a)(b). 

For the setup of this comparison the items required were the net list and the test bench 

of the circuit. This case study was done considering 15 input variables, 2 objectives 

and 19 constraints defined in Fig. 3(c).The optimization variables are the widths and 

lengths of the cascade bias tensions vbnc and vbpc, and the bias current. This circuit is 

optimized in both GENOM-POF and GENOM-POF integrated with Gradient Model 

in exactly the same conditions, for a fair comparison. For this study all the 15 input 

variables are considered, the Gradient Model was generated with a base of two (B = 

2) and considering only the design variable with larger contribution (N = 1). The 

extracted gradient rules for the optimization objective are shown in Fig. 3(d). The 

model was automatically generated in less than 5 minutes and can be reused. 

Fig. 4 illustrates the improvements achieved by the proposed approach. 

Particularly, it shows that the Gradient Model enhanced GENOM-POF by achieving 

better solutions at generation 2.000 than GENOM-POF at generation 2.000 or 4.000. 

The Fig. 4 also shows that even for 60.000 generations GENOM-POF does not 

reach the maximum DC Gain obtained by the new approach.  

In order to confirm that this is not an isolated case, 20 executions with different 

seeds were done. The output is shown in Fig. 5, were it can be seen that the inclusion 

of gradient model consistently lead to better solutions. The 20 runs show an average 

number of points in the final POF of 51.55 for GENOM-POF and 81.70 for GENOM-

POF integrated with Gradient Model. Furthermore, the normalized non-dominated 

area, which measures the ratio between the non-dominated and dominated area in the 

performance planer each an average area of 0.43 for GENOM-POF and 0.20 for 

GENOM-POF integrated with Gradient Model. This confirms the analysis of Fig. 5, 

where the GENOM-POF enhanced with the Gradient Model produces more and better 

solutions. 

 

 
Variables cn, cp, l1, l4, l5, l7, l9, l11,  

ib, w1, w4, w5, w7, w9, w11 

Ranges 0.18e-6 <= l* <= 5.0e-6 
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0.24e-6 <= w* <= 200.0e-6 

-0.4    <= cn <= 0.0  

0.0     <= cp <= 0.4 

30.0e-6 <= ib <= 400.0e-6 

Objectives min(area) 

max(a0) 

Constraints gb    >= 1.2e7 

a0    >= 80 

55    <= pm <= 90 

sr    >= 1e7   

ov_m(*) >= 30e-3  

d_m(*)  >= 1.2 

osp>= 0.3 

osn<= -0.3 

(*) the constraint applies to: M1, 

M4, M5, M7, M9 and M11 
(c) 

 

Target Variable / Gradient  

A0, (-) L9, (-) 

A0, (+) L9, (+) 

area, (-)  W11, (-) 

area, (+) W11, (+) 
(d) 

 

Fig.3. (a) Electrical schematic and (b) testbench of the single-ended folded cascode amplifier 

and(c)ranges, objectives and constraints.(d) Gradient Rules. 
 

  
 

Fig. 4. Pareto Fronts:  GENOM-POF (for 

60.000, 4.000 and 2.000 generations) vs. 

Enhanced GENOM-POF (for 2.000 

generations). 

 

Fig. 5.  GENOM-POF vs. Enhanced GENOM-

POF for 20 different initial populations (for 

2.000 generations). 

 

5   Conclusions 

The work presented in this paper corresponds to an innovative IC design automation 

approach by embedding a simple but effective design knowledge model, Gradient 

Model, into the evolutionary optimization kernel of a state-of-the-art sizing tool. The 
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new technique proved to be capable to accelerate and reduce the execution time of the 

circuit-level optimizer GENOM-POF. This integration of the Gradient Model with 

GENOM-POF enhances the optimizer efficiency, forwarding the data to the desired 

objectives and causing a significant reduction in the number of electrical simulations. 

The model potential has been proved through a complex case study presented. 

Finally, the proposed objectives for this work were achieved and a new optimizer was 

created. 
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