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Abstract. This paper presents a distributed model predictive control (DMPC) 

for indoor thermal comfort that simultaneously optimizes the consumption of a 

limited shared energy resource. The control objective of each subsystem is to 

minimize the heating/cooling energy cost while maintaining the indoor 

temperature and used power inside bounds. In a distributed coordinated 

environment, the control uses multiple dynamically decoupled agents (one for 

each subsystem/house) aiming to achieve satisfaction of coupling constraints. 

According to the hourly power demand profile, each house assigns a priority 

level that indicates how much is willing to bid in auction for consume the 

limited clean resource. This procedure allows the bidding value vary hourly and 

consequently, the agents order to access to the clean energy also varies. Despite 

of power constraints, all houses have also thermal comfort constraints that must 

be fulfilled. The system is simulated with several houses in a distributed 

environment.  

Keywords: DMPC, DSM, Limited resources, Energy auction. 

1 Introduction 

Heating accounts for a significant proportion of the world’s total energy demand. The 

building sector alone consumes 35.3%, of which 75% is for space heating and 

domestic water heating. In Europe, the final energy demand for heating and cooling 

(49%) is higher than for electricity (20%) or transport (31%) [1]. Therefore, it is 

important economically, socially, and environmentally to reduce the energy 

consumption of buildings. New models and control techniques must be developed to 

move beyond standard heuristic approaches and seek to incorporate predictions of 

weather, occupancy, renewable energy availability, and energy price signals that can 

support real time energy auction markets [2], [3].  The desire approach here presented 

intends to take advantage from the innovative technology characteristics provided by 

future Smart Grids (SGs) [4]. In the smart world, simple household appliances, like 

dishwashers, clothes dryers, heaters, air conditioners will be fully controllable in 

order to achieve the network maximum efficiency. Renewable energies will be a 
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common presence and any kW provided by these technologies should not be wasted. 

Active demand side management (DSM) will control the loads in order to adapt them 

to the available renewable energy source. Therefore, how can the demand be adjusted 

to an intermittent energy source in a distributed network, in order to maximize the 

energy efficiency? 

Model Predictive Control (MPC) during the last years has been granted to reduce 

and optimize the energy consumption in the residential sector namely to deal with 

temperature set points regulations [5], [6]. Model predictive control can also naturally 

deal with the aforementioned predictions to improve building thermal comfort, 

decrease peak demand and reduce total energy costs. The optimal profile of delivered 

energy depends on various factors which include time varying utility prices, 

availability of renewable energy and ambient temperature variation. The MPC have 

also advantage in distributed systems [7], [8]. Distributed Model Predictive Control 

(DMPC) allows the distribution of decision-making while handling constraints in a 

systematic way. DMPC strategies can be characterized by the type of couplings or 

interactions assumed between constituent subsystems [9]. The DMPC strategy here 

presented uses the method of subsystems sharing coupled constraints [9], [10].  

In this context, in a scenario with distributed infrastructures that are interconnected 

or related with each other, makes them suitable for Multi Agent System (MAS) 

technology, and consequently, for the autonomous management of houses and 

buildings. 

The paper is organized as follows. Section 2 presents the technological 

contribution of this paper, Section 3 presents the implemented system, with the house 

dynamical thermal model, hourly auction scenario and DMPC formulation. Section 4 

illustrates the used methodology with simulation results and in Section 5 some 

conclusions are draw. 

2 Relationship to Internet of Thinks  

From the Internet of Things (IoT) perspective, SGs also predicts a future in which 

devices can communicate with one another across infrastructures much the way 

people communicate with one another via the web. As mentioned, simple household 

appliances will be linked in the grid and will be fully controllable, monitored and 

regulated in real time. Information will be exchanged between devices in order to 

manage energy demands more efficiently and incorporate the increasing amounts of 

renewable power from sources like the sun and wind. 

Assuming that future communication infrastructures will support real time energy 

auction markets, the hourly auction here presented is, as far as we know, a novelty 

contribution for what is expected to be a nearby reality. 

The work contributes with a new methodology to manage energy networks from 

the demand side with strong presence of intermittent energy sources. In a distributed 

network, the implementation of a constraint in the shared available resource 

consumption presented here, introduces a novelty that intends to give response to 

problem mentioned above. With this approach the system will try to adjust 

consumption to the value provided by the renewable resource maximizing the 
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efficiency and minimizing the consumer energy costs. The profile of delivered energy 

depends on several factors, such as price of conventional energy and availability of 

renewable energy. The MAS technology can solve the efficient management of clean 

(“green”) and dirty (“red”) resources, giving the priority to “green”.  

3 Implemented System 

3.1 Thermal Model of the House 

The house for which MPC is designed is present in (1-3) and describes only the 

dominant dynamics of the house. 
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where in (1), lossesQ is heat and cooling losses (kW), houseT the inside temperature 

(K), C the thermal capacitance (kJ/K), and heatQ  the heat and cooling power (kW). In 

(3) oaT  is the outdoor temperature (K) and the parameter Req describes the equivalent 

thermal resistance of all walls (including roof and ceiling) and windows that isolate 

the house from outside, and can be describe as a electrical parallel resistance circuit 

[5]. The plant model representation (1) can be rewritten and changed into a discrete 

model using Euler discretization with a sampling time of t∆ . 

)()()()1( kvkBukATkT ++=+ , (4) 

where 
CR

t
A

eq

∆
−= 1 , 

C

t
B

∆
= , 

CR

tT

C

P
v

eq

oad ∆
+= , u(k) is the necessary heat/cooling  

power, T(k) is the indoor temperature, v(k) is a disturbance signal resulting from Pd 

the external disturbances (kW) (e.g. load generated by occupants, direct sunlight, 

electrical devices or doors and windows aperture to recycle the indoor air), and Toa,  

the temperature of outside air (K). 
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3.2 Hourly Auction S

The scenario considers two types of available energy resource

The green or clean resource must be always consumed (is non dispatchable) and it is 

limited to a maximum available value and 

opposition, the red is always available and it is considered a 

expensive than the green

demand required by the houses, the 

total energy cost. To incentive the 

the green energy price per kWh has a maximum auction value 

cheaper than the red energy price

bid in an auction (provided by

pay to consume the green

day ahead to show how much intend to pay per kW

each one of the next 24 hours

needs. Each house has a known 

established a priority level from 1 (low) to 3 (high)

hour is in terms of consumption

indicates high consumption and consequently a higher bid value (Table 

show the outdoor temperature forecasts for all houses.
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Hourly Auction Scenario 

The scenario considers two types of available energy resources, the green and the 

resource must be always consumed (is non dispatchable) and it is 

limited to a maximum available value and it’s considered a time variable resource

is always available and it is considered a dirty resource, more 

green. Therefore, if the green resource is insufficient to satisfy the 

demand required by the houses, the red must be consumed with an increase in the 

incentive the clean resource consumption, it is considered that 

energy price per kWh has a maximum auction value (0.09€/kWh) 

energy price (0.14€/kWh). The agents (one by each house) must 

bid in an auction (provided by the market operator), the price that they are willing to 

green resource. The agents make their bid in the auction 

ow how much intend to pay per kWh to consume the green resource in 

of the next 24 hours. The bid can be made according to the consumption 

. Each house has a known fixed 24 hours consumption profile (Fig. 1

established a priority level from 1 (low) to 3 (high), that indicates how important that 

hour is in terms of consumption (Fig. 3). Thus, the hours with high priority levels 

indicates high consumption and consequently a higher bid value (Table 1).

show the outdoor temperature forecasts for all houses. 

onsumption profile of each 

2 and C3). 

Fig. 2. Outdoor temperature forecasting

Fig. 3. Consumption priority level of each house. 
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resource consumption, it is considered that 

/kWh) always 

The agents (one by each house) must 

the market operator), the price that they are willing to 

The agents make their bid in the auction with one 

resource in 

made according to the consumption 

1) and it is 

that indicates how important that 
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). Figure 2 
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Table 1. Bid value for each consumption level by agent 

Consumption Priority Level House 1 House 2 House 3 

0-1 kW 1  2/5*0.09 3/5 *0.09 1/2*0.09 

1-2 kW  2 7/10*0.09 4/5*0.09 2/3*0.09 

>2 kW  3 8.5/10*0.09 9/10*0.09 3/4*0.09 

 

The bid value establishes an order to access to the resource, being the green 

resource consumption made by the agents sequentially by that order. The first agent 

consumes and the remainder green resource is passed to the next agent as the 

maximum green available resource. As mentioned, when the green resource becomes 

insufficient to satisfy all the demand, the red is available. The red resource 

consumption implies a penalty in the final cost function (3) due to the soft constraint 

violation imposed by the maximum available green resource is exceeded. 

3.3 Model Predictive Control 

MPC principle of controlling house heating and cooling is to react on the 

heating/cooling actuators based on current measurements/estimates of temperatures in 

T(k) and predictions of future disturbances in v(k) (obtained from the weather forecast 

service). The MPC will explicitly take into account the constraints of heating/cooling 

actuators and the temperature comfort limits while minimizing the energy inserted 

from the actuators in the one-day-ahead period. The objectives are: minimize the 

energy consumption to heating and cooling; minimize the peak power consumption; 

maintain the zones within a desired temperature range and maintain the used power 

within the green available bounds. At each time step, each one of the agents must 

solve is MPC problem. 
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Subject to the following constraints, 
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tktAtktA ii
UUU || ++

+≤≤− γγ ,
 

(8) 

0,,, ||| |
≥+++ + tkttkttkt tkt

εεγγ .
 

(9) 

In (5), � represents the power control inputs, φ is the penalty on peak power 

consumption, ρ  is the penalty on the comfort constraint violation, ψ the penalty on 
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the power constraint violation and N is the length of the prediction horizon. In (7), � 

and �	 are the vectors of temperature violations that are above and below the desired 

comfort zone defined by � and �. In (8), coupled constraint, � and � are the power 

violations that are above or lower the maximum, 
iAU , and minimum, 

iA
U , available 

green power for heating/cooling the space, with 
i

i
AA

UU −= .A scheme of the system 

implemented is shown in the next picture. 
 

TgreenU

1AU 11
uU A −

2AU 22
uUA −

 

Fig. 4. Implemented system. 

[ ]Tiii NkckcC )(),...,( += , (10) 

[ ]TTgreenTgreenTgreen NkukuU )(,...,)( += ,

 

(11) 

[ ]Tiii Nkukuu )(,...,)( += ,
 

(12) 

where, for a generic Agent i at the control horizon, 
iAU represents the green 

available resource for indoor comfort , UTgreen represents the green available total 
resource, Ci the fixed consumption profile and ui the used power to heating/cooling the 
space that results from the optimization program.  

4 Results 

The presented results were obtained with an optimization Matlab routine that finds a 

constrained minimum of a quadratic cost function that penalizes the sum of several 

objectives. It is considered that all houses have the same outdoor temperature 

presented in Fig. 1. The thermal characteristics, load disturbances profile (Fig. 4) and 

comfort temperature bounds are different for all houses (Table 2). Agents can also 

have distinct penalties on power and temperature constraints violations, they can 

hourly privilege comfort or cost according to consumer choice. Here, is assumed that 

the penalty values of each agent are always the same. Table 2 shows the used 

parameters. 
In the figures here presented, the subtitles “Power constraint” represents

iiAA CuUU
ii

−−= −− 11
, “Green resource” represents 11 −−

− iA uU
i

 and 

”Heating/Cooling used power” represents ui.  
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Table 2. Scenario parameters 

Parameter A1 A2 A3 Units 

Req 50 25 75 K/kW 

C 9.2×10
3
 4.6×10

3
 11×10

3
 kJ/K 

ρ 100 100 300 - 

ψ 500 200 300 - 

Φ 2 2 2 - 

∆t 1 1 1 H 

N 24 24 24 - 

T(0) 297.15 296.15 297.15 ºK 

 

  
Fig. 5. Disturbance forecasting (Pd). Fig. 6. A1, A2 and A3 indoor temperature and 

their constraints. 

  
Fig. 7. Used power to heat/cool and their 

constraints. 

Fig. 8. a) Total available green resource and 

used power. b) Heating/cooling total cost. 

 

In Figure 6, it can be seen that the comfort constraint is respected, the indoor 

temperature is always inside the comfort zone for all agents. Taking advantage of the 

predictive knowledge of the disturbance (Pd) and making use of the space thermal 

storage, it can also be seen that in both scenarios the MPC treats the indoor 

temperature before the disturbance beginning. The used power to heat/cool the space 

is maintained inside the constrained bounds. Note that when the “Power Constraint” 

is null the used power is also null, Fig. 7. The “Used Power”, 
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[ ]∑
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i

iiused kCkukU , is sometimes above the daily maximum green 

available resource, meaning that the red resource was consumed, Fig 8(a). Figure 8(b) 

illustrates the effectiveness of the approach and demonstrates the advantage of the 

auction. For each one of the agents it can be seen that the “Real Cost” is much lower 

than the cost of not to bid in auction and only consume the red resource “Red Cost”.  

5 Conclusions 

In this paper, a distributed MPC control technique was presented in order to provide 

thermal house comfort. The obtained solution solves the problem of control of 

multiple subsystems subject to coupled constraint that changes hourly. Each 

subsystem solves is own problem involving its own state predictions and the shared 

constraints. It could be observed through the simulations and results analysis that 

were obtained suitable dynamic performances. Despite access orders being changing 

hourly, the predictive characteristics of the implemented system were not lost, being 

the soft constraints, temperature and power satisfied. By changing the penalties values 

during the day, the implemented system also allows the consumer to shift hourly 

between indoor comfort and lower costs. 
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