
Minimalist Architecture to Generate

Embedded System Web User Interfaces

Fernando Pereira*±†, Luís Gomes *†

 *Universidade Nova de Lisboa - Faculdade de Ciências e Tecnologia – Portugal

±ISEL, Instituto Superior de Engenharia de Lisboa- Portugal

† UNINOVA - CTS – Portugal

fjp@deea.isel.ipl.pt, lugo@fct.unl.pt

Abstract. This paper presents a new architecture to semi-automatically

generate Web user interfaces for Embedded Systems designed using IOPT Petri

Net models. The user interfaces can be used to remotely control, monitor and

debug embedded systems using a standard Web Browser. The proposed

architecture takes advantage of the distributed nature of the Internet to store all

static user interface data and software on third-party Web services (the Cloud),

and execute the user-interface code on the user's Web Browser. A simplified

protocol is proposed to enable remote control, status-monitoring, debugging

and step-by-step execution, minimizing resource consumption on the physical

embedded devices, including processing load, memory and communication

bandwidth. As the user interface data and code are kept on third-party Web

services, these resources can be shared among multiple embedded device units,

and the hardware requirements to implement the devices can be simplified,

leading to reduced cost solutions. To prevent down-time due to network

problems or server failures, a fault-tolerant topology is suggested. The

distributed architecture is transparent to end-users, observing just a Web

interface for an embedded device on the other side of an Internet URL.

Keywords: Embedded-systems, Petri-Nets, Web User Interface

1 Introduction

The widespread dissemination of the Internet and the mass production of

telecommunication technology has significantly reduced the cost barrier to add

Internet connectivity to the most inexpensive embedded-system devices, ranging from

home appliances, medical and health monitoring devices, surveillance and security

equipment, in-vehicle systems, to industrial machinery. However, the traditional

Internet connectivity implementation strategies generally lead to increased product

complexity, longer development time and increased hardware requirements, including

more memory to store images and multimedia files and higher processing power to

execute user interface code, with the corresponding implications on power-

consumption and battery life.

This paper proposes a new architecture to overcome these limitations, taking

advantage of the distributed nature of the Internet and the processing capabilities

offered by modern Web browsers. All static data files are stored on external Web

servers and the user-interface code is executed directly on the user's personal

computer Web browser, greatly reducing the embedded devices hardware

238 F. Pereira and L. Gomes

requirements and contributing to minimize bandwidth consumption, as many user

interactions are dealt directly by the user interface code running on the browser.

To implement the new architecture, a new protocol is proposed to establish the

communication between the user-interface code running on the browser and remote

embedded devices, taking advantage of AJAX (Asynchronous Javascript and XML)

principles. The same protocol used to implement the Web user interfaces can also be

used to enable remote monitoring, debug and step-by-step execution of embedded

system controllers running on physical devices, or simulated on personal computers.

The proposed architecture is applied to embedded systems designed using the

IOPT Petri-net modeling framework [1] and the associated Web-based IOPT-tools [2]

tool-chain (http://gres.uninova.pt), including an editor to design IOPT models, a

model-checking framework based on a state-space generator and a query system, and

automatic "C" and VHDL code generators to produce the controller implementations.

The user interfaces are designed using an Animator tool [3] that permits the

interactive rule-based definition of Animated Graphical User interfaces for

embedded-systems. This tool has been previously used to design and generate

simulation control-panels and graphical user interfaces for systems running on FPGA

(Field Programmable Gate Array) reconfigurable devices. Using the Animator tool,

the user-interface designer creates a set of screen background images, used to

implement application dialogs, and sets of static or animated icons and images. Each

dialog contains a table of rules associating internal state variables (IOPT Marking)

and Input/Output Signals with the appearance and screen location of the selected

icons and images, creating an animated SCADA-like user interface that reflects the

system-state in real-time. To control the system from the Web interface, Input Signals

can be associated with icons and images activated using mouse clicks to implement

bidirectional user-feedback.

The new architecture proposes the execution of Animator-generated user interfaces

inside a Web browser, converting the Animator rules into equivalent Javascript code

and establishing the communication with the physical systems using remote

procedure calls over a protocol based on AJAX XmlHttpRequests.

The creation of Debug and monitoring interfaces has been presented in [4], with

the automatic generation of Animator screens that directly depict the corresponding

IOPT models and the automatic generation of rules that display the system status in

real-time, including place marking, transition firing readiness and the state of Input

and Output Signals. However, in order to fully support remote debug sessions over

the Internet, the communication protocol will be extended with additional remote

procedure calls implementing step-by-step execution, continuous execution, system

reset, force input signal values and the definition of breakpoints associated with

Transition firings.

Finally, this paper proposes a new type of Transition, called the Test-transition,

used during the debug and simulation development phases. Test-transitions differ

from standard IOPT Transitions because they are not allowed to change system

behavior in any form. This way, the new transitions can be freely added to existing

models without the risk of accidentally introducing behavioral modifications, to

define breakpoints associated with new conditions that were not verified in the

original models.

Minimalist Architecture to Generate Embedded System Web User Interfaces 239

2 Related Work and Research Innovation

Over the past decade, Internet enabled embedded devices with Web interfaces have

been offered by commercial systems and were implemented on many research

prototypes. The traditional architectures used to implement these solutions have

resorted to full-featured Web servers running over embedded operation systems, as

embedded Linux [5] and QNX [6], using standard interface technologies like

common-gateway-interface (CGI) to control the physical embedded devices.

However, solutions based on complex operating systems require advanced

microprocessors and occupy large amounts of memory, including many megabytes of

RAM (Random Access Memory) and mass storage devices to store operating system

files. The Web interfaces are generally created using standard Web page authoring

tools and the connection to the physical embedded systems are manually

programmed. All files used by the Web interface, including images and scripts are

usually stored in the device. Due to these requirements, Internet connectivity has

usually been skipped from the least expensive devices.

The new solution presented in this paper has many advantages over traditional

technologies. To start, the Web user interfaces are semi-automatically generated using

the rule-based Animator tool [3] and the Debug interfaces are fully automatically

generated [4] without the need to manually write any code. As the static files are

stored in external Web servers and the user interface code (Animator rules) is

executed by the user's Web browser, the computational requirements of the embedded

controller are largely reduced and the need to employ complex operating systems is

avoided, allowing the addition of internet connectivity and Web interfaces to the most

inexpensive devices without a significant cost increase. Instead of requiring 32-bit

microprocessors, the proposed minimalist architecture can be implemented with

simpler 8-bit embedded micro-processors using small TCP/IP stacks as uIP and LwIP

[7] that require just tens of Kilobytes of RAM and can entirely fit inside the memory

blocks offered by FPGA devices without external RAM. The usage of 8-bit micro-

processors also contributes to reduce FPGA resource consumption, enabling the

choice of smaller and less expensive reconfigurable devices.

In addition to the automatic generation of Web user interfaces, the proposed

communication protocol also permits remote debugging and step-by-step execution of

embedded-system controllers running on real hardware devices, allowing long

distance troubleshoot and maintenance operations over the internet. As the graphical

debug interfaces automatically generated by the PNML2Anim4Dbg [4] tool can be

directly presented in the new architecture, it is possible to monitor the state of remote

embedded-systems in real time, observing the graphical evolution of the underlying

IOPT Petri net model. Contrary to traditional remote administration tools, this

solution offers a high degree of intuitiveness and user friendliness, as the system

designer operates directly on the Petri net model used to design the original system.

Other Petri net tools, including CPN tools [8], CPN-Ami [9], Renew [10] and

others have implemented debug and step-by-step execution tools, but as these classes

of Petri nets are autonomous, the scope of these tools is generally restricted to

simulations running on personal computers and not for final implementations. Inside

these simulation tools, some authors have also defined the concept of breakpoints

240 F. Pereira and L. Gomes

associated with transitions and changes on place-markings [11], but the new concept

of Test-transition presented in this paper offers many advantages over these solutions

as it enables the definition of generic breakpoint conditions.

Finally, the new architecture was built on top of previous work, starting with the

definition of the IOPT Petri Net class [1], IOPT design tools [2], automatic code

generators and the Animator Tool [3]. The proposed architecture enables the porting

of previous Animator-designed user interfaces that were executed inside simulations

or on FPGA hardware [12] [13], to a distributed Web/Internet platform.

3 IOPT Petri Nets

The characteristics of the IOPT Petri net class [1] were selected to support the design

of embedded-system controllers. Beyond the Places and Transitions inherited from

classical Petri nets [14], IOPT nets also contain a set of non-autonomous properties

used to specify the interface between the controllers and the external world. This

interface comprehends Input and Output Signals, that can hold Boolean logic values

or Integer range values, and Input and Output Events associated with changes in

Signal values. Figure 1 displays an example IOPT Model implementing a UART

transmitter hardware module, edited with the IOPT-Tools model editor.

The model presented in Fig 1, has three Places (yellow circles), four Transitions

(cyan rectangles), three Input Signals (cyan circles), five Output Signals (green

circles), and one Output Event (green triangle). Associated with Places there are

Output Expressions that assign values to Output Signals whenever these Places are

marked. Guard conditions, associated with Transitions, inhibit the firing according to

the value of Input/Output Signals, Literals and Place marking. Transition firing is also

triggered by Input Events, and can produce Output Events that perform changes in

Output Signals. For example, transition TCount raises a Cntr Output Event, used to

count the number of bits transmitted by incrementing the value of the Cnt Output.

In order to ensure determinist execution, IOPT nets employ maximal-step execution

semantics, where every transition ready to fire will immediately fire on the next

execution step. Firing conflicts, when more than one transition is simultaneously

ready to fire, but the number of available tokens is not enough to fire all of them, can

be solved by assigning different priorities to each conflicting transition. A state-space

generation tool offered by IOPT-Tools can be used to automatically detect conflicts,

Fig. 1. IOPT-Tools Editor (UART Transmitter IOPT Model)

Minimalist Architecture to Generate Embedded System Web User Interfaces 241

deadlocks and to calculate the maximal and minimal bound of each Place.

4 Distributed Web User-interface Architecture

Figure 2 displays the distributed topology of the proposed embedded-system's Web

user interface architecture, employing the Web browser running on the user's personal

computer, an external Web server and the embedded-system.

The user interfaces are designed with the Animator tool [3], producing a set of

screen dialogs, image files and animation rules. Image files hold the background

pictures of each screen and graphical representations of icons, buttons and animation

frames. Animation rules define when images are show or hidden according to the

instantaneous embedded-system state, including the Place marking, Input signals and

Output signals.

As the Animator tool stores the animation rules under XML files, these rules can be

easily translated into equivalent Javascript code using XSL (Extensible Style Sheet

Transformation) transformations or other XML processing technologies. The resulting

Javascript code is executed inside the Web Browser, removing the computational load

of the user interface code from the physical embedded device.

All static files, including images and Javascript code, are stored in external servers,

eliminating the need to store large files on the embedded device. By moving the user

interface code and file storage to external computers, the embedded-system controller

can be implemented using minimal hardware specifications. The embedded system

controller only needs to implement a micro HTTP server, used to answer remote

procedure call from the Web browser and transmit information about the current

system state (almost) in real time.

5 Internet-enabled Embedded-system Internal Architecture

The main goal of the architecture proposed in this paper is the ability to add Internet

support to embedded-system devices with minimalist hardware specifications. Figure

3 presents a possible hardware architecture that fulfills these goals.

242 F. Pereira and L.

The proposed hardware architecture requires just a minimal set of components to

implement the TCP/IP communication protocol over Ethernet networks. The entire

system can be implemented in a single FPGA (or ASIC), with the addition of an

external Ethernet Physical Layer Integrated Circuit (PHY) and the respective

magnetics and connector, or equivalent components to support wireless networking.

Resource consumption inside the FPGA/ASIC device to implement TCP/IP over

Ethernet requires a standard Ethernet MII/

Media Access Controller) module and an embedded microprocessor, used to execute

the TCP/IP stack and a mini Web

offered by FPGA vendors and many open

As the open-source LwIP (Light Weight Internet Protocol) is coded using the “C”

Programming Language, the only processor choice requirements are the availability

of a “C” compiler and a 16 bit memory address space (or larger), in order to s

packets, plus the 40Kb LwIP code and a small HTTP command interp

requirements cover a wide range of microprocessors, ranging from 8

clones to more advanced 32 bit MicroBlaze cores.

A clock management unit is also employ

execution of the embedded

or sending individual clock pulses to run single execution steps.

The embedded microprocessor I/O bus is connected to the embedded

core and is able to read signals containing the instantaneous values of Input Signals,

Output Signals and Place marking. It can also define the value of Signals associated

with Graphical User Interface objects. For example, an Icon or a Button

Animator screen can be associated with an Input Signal in the embedded system

controller and when the user manipulates that button, a HTTP request is sent to the

microprocessor to update the corresponding Signal value.

A set of optional internal signals is used to support remote debugging and

maintenance operations,

reset signal and three signals to control the clock management unit: stop, run and step.

The breakpoint mask is used to enable breakpoints on selected IOPT Transitions.

When a selected Transition fires, it will trigger a breakp

and L. Gomes

The proposed hardware architecture requires just a minimal set of components to

implement the TCP/IP communication protocol over Ethernet networks. The entire

system can be implemented in a single FPGA (or ASIC), with the addition of an

hysical Layer Integrated Circuit (PHY) and the respective

magnetics and connector, or equivalent components to support wireless networking.

Resource consumption inside the FPGA/ASIC device to implement TCP/IP over

Ethernet requires a standard Ethernet MII/MAC (Media Independent Interface /

Media Access Controller) module and an embedded microprocessor, used to execute

the TCP/IP stack and a mini Web-server. There are many microprocessor cores

offered by FPGA vendors and many open-source processor cores publicly available.

source LwIP (Light Weight Internet Protocol) is coded using the “C”

Programming Language, the only processor choice requirements are the availability

of a “C” compiler and a 16 bit memory address space (or larger), in order to s

packets, plus the 40Kb LwIP code and a small HTTP command interpreter. These

a wide range of microprocessors, ranging from 8-bit Zilog Z80

clones to more advanced 32 bit MicroBlaze cores.

A clock management unit is also employed to allow debugging and step

execution of the embedded-system controllers, by disabling the controller clock signal

or sending individual clock pulses to run single execution steps.

The embedded microprocessor I/O bus is connected to the embedded

core and is able to read signals containing the instantaneous values of Input Signals,

Output Signals and Place marking. It can also define the value of Signals associated

with Graphical User Interface objects. For example, an Icon or a Button

Animator screen can be associated with an Input Signal in the embedded system

controller and when the user manipulates that button, a HTTP request is sent to the

microprocessor to update the corresponding Signal value.

A set of optional internal signals is used to support remote debugging and

maintenance operations, including a breakpoint mask, a forced-input-signal mask, a

reset signal and three signals to control the clock management unit: stop, run and step.

The breakpoint mask is used to enable breakpoints on selected IOPT Transitions.

a selected Transition fires, it will trigger a breakpoint event that stops

Fig. 2: Distributed Web GUI Topology Fig. 3. Internal Controller Architecture

The proposed hardware architecture requires just a minimal set of components to

implement the TCP/IP communication protocol over Ethernet networks. The entire

system can be implemented in a single FPGA (or ASIC), with the addition of an

hysical Layer Integrated Circuit (PHY) and the respective

magnetics and connector, or equivalent components to support wireless networking.

Resource consumption inside the FPGA/ASIC device to implement TCP/IP over

MAC (Media Independent Interface /

Media Access Controller) module and an embedded microprocessor, used to execute

server. There are many microprocessor cores

icly available.

source LwIP (Light Weight Internet Protocol) is coded using the “C”

Programming Language, the only processor choice requirements are the availability

of a “C” compiler and a 16 bit memory address space (or larger), in order to store data

reter. These

bit Zilog Z80

ed to allow debugging and step-by-step

system controllers, by disabling the controller clock signal

 controller

core and is able to read signals containing the instantaneous values of Input Signals,

Output Signals and Place marking. It can also define the value of Signals associated

with Graphical User Interface objects. For example, an Icon or a Button inside an

Animator screen can be associated with an Input Signal in the embedded system

controller and when the user manipulates that button, a HTTP request is sent to the

A set of optional internal signals is used to support remote debugging and

signal mask, a

reset signal and three signals to control the clock management unit: stop, run and step.

The breakpoint mask is used to enable breakpoints on selected IOPT Transitions.

s the clock

Minimalist Architecture to Generate

management unit. The forced

value of Input signals read by the embedded controller, in order to bypass mechanical

problems in the physical embedded devices or to easily for

the model behavior during these conditions.

6 Information flow over the Internet

Figure 4 presents the flow of information over the Internet between the Browser, the

embedded-system and an external Web server. A typical interac

when the user accesses the embedded

Browser. The embedded system answers with a Top/Start HTML page containing just

a reference to a main script file stored in an external server. As soon as the main

is loaded and the user is successfully authenticated, it immediately starts downloading

all Animator files required to execute the graphical user interface, including imag

and the scripts that execute

failures in case the external Web server is not reachable, the Start HTML page might

include multiple references to copies of the main scrip

that will load only if the first server

does not respond during a predef

time interval.

After the start-up sequence is

finished, a Web user interface main

loop starts running, continuously

requesting updated state information

from the embedded-system, including

Place marking and Input and Output

Signal values. Using these values, the

animation scripts will update the

graphical user interface, almost in real

time, with an update rate

according to the available bandwidth

and the requirements of each

application.

As the static files stored in the

external server are loaded in

background, the distributed topo

transparent to end user

the address (URL) of the embedded

device.

7 The IOPT-Internet Protocol

The proposed Internet

defines a set of commands, viewed as

remote procedure calls over HTTP,

used to establish the communication

between the user interface code running

Minimalist Architecture to Generate Embedded System Web User Interfaces

management unit. The forced-input-signal mask can be used to remotely force the

value of Input signals read by the embedded controller, in order to bypass mechanical

problems in the physical embedded devices or to easily force error situations and test

the model behavior during these conditions.

Information flow over the Internet

Figure 4 presents the flow of information over the Internet between the Browser, the

system and an external Web server. A typical interaction session starts

when the user accesses the embedded-system URL (Web address) using a Web

Browser. The embedded system answers with a Top/Start HTML page containing just

a reference to a main script file stored in an external server. As soon as the main

is loaded and the user is successfully authenticated, it immediately starts downloading

all Animator files required to execute the graphical user interface, including imag

and the scripts that execute animation rules. To obtain redundancy and prevent service

failures in case the external Web server is not reachable, the Start HTML page might

include multiple references to copies of the main script located in different servers

that will load only if the first server

does not respond during a predefined

up sequence is

finished, a Web user interface main

loop starts running, continuously

requesting updated state information

system, including

Place marking and Input and Output

Signal values. Using these values, the

animation scripts will update the

graphical user interface, almost in real-

time, with an update rate configurable

to the available bandwidth

and the requirements of each

As the static files stored in the

external server are loaded in

background, the distributed topology is

transparent to end user that only sees

the address (URL) of the embedded

Internet Protocol

The proposed Internet-IOPT protocol

defines a set of commands, viewed as

remote procedure calls over HTTP,

used to establish the communication

between the user interface code running
 Fig. 4. Internet-IOPT Information Flow

 243

signal mask can be used to remotely force the

value of Input signals read by the embedded controller, in order to bypass mechanical

ce error situations and test

Figure 4 presents the flow of information over the Internet between the Browser, the

tion session starts

system URL (Web address) using a Web

Browser. The embedded system answers with a Top/Start HTML page containing just

a reference to a main script file stored in an external server. As soon as the main script

is loaded and the user is successfully authenticated, it immediately starts downloading

all Animator files required to execute the graphical user interface, including images

vent service

failures in case the external Web server is not reachable, the Start HTML page might

t located in different servers

IOPT Information Flow

244 F. Pereira and L. Gomes

on the Web Browser and the embedded-system HTTP command interpreter. It

comprehends three types of procedures calls: 1) front-page and authentication; 2)

status-monitoring and GUI interaction and 3) debug and step-by-step execution.

Start-page requests and user authentication are implemented with the standard

HTTP commands used to serve static HTML files. User sessions can be implemented

using a temporary HTTP cookie holding a random number that identifies each user

after the authentication phase is successfully passed.

The second group of commands implements remote procedure calls that produce

XML results, implementing the following methods:

getMarking() - read the instantaneous IOPT net marking vector

getInputs() - read the instantaneous input signal vector

getOutputs() - read the instantaneous output signal vector

getStateChanges(tm) - read «marking, inputs and outputs» changed since the

 previous read or wait «tm» seconds if there are no changes

setGUInput(sigName, value) - write the value of a GUI input signal.

All remote procedure calls are implemented using AJAX xmlHttpRequests, and the

embedded-system's Web server answers to each command with XML files containing

the requested values. The getStateChanges() method provides reduced bandwidth

consumption, as it only returns values that suffered changes since the last read

operation and will block when there are no changes during a specified timeout period.

Finally, the debug and step-by-step group of commands, used to directly control

the clock management unit shown on figure 3, implement the following methods:

reset() - reset embedded-system controller state

stop() - stop execution

run() - continue execution

step(n=1) - execute «n» execution steps (by default n=1)

setBreakpoint(trId) - enable breakpoints on transition «trId»

clearBreakpoint(trId) - disable breakpoints on transition «trId»

forceInput(sigName, value) - force the value of a non GUI input signal

 releaseInput(sigName) - release a forced input signal

8 Breakpoints and Test-transitions

The proposed hardware architecture and communication protocol supports remote

debug and step-by-step execution, including a hardware clock management unit that

can stop or run continuously and is able to generate individual clock pulses to perform

single execution steps. However, as complex embedded-systems often execute

thousands of execution steps before reaching a critical situation being tested, step-by-

step execution may not be practical. Other embedded-systems simply cannot be run

step-by-step because the controllers must respond to external input changes during

very fast time intervals in order to prevent malfunctions and mechanical damages. For

example, an automatic door controller must immediately turn off the door motor when

the door is being closed and a presence sensor detects a person inside the door limits.

To solve this problem, the concept of breakpoints, usually employed in software

debugging systems, was extended to the IOPT Petri net modeling framework, adding

the possibility to assign breakpoints to Transitions. When a Transition fires, a

Breakpoint event will be raised and execution is stopped before the Transition is

actually fired. Observing figure 3, breakpoint events are connected to the clock

Minimalist Architecture to Generate Embedded System Web User Interfaces 245

management unit and will immediately stop the clock signal. This concept can also be

easily ported to software implementations and may be applied on simulations or on

embedded devices running on microprocessors.

Finally, the test conditions corresponding to the error situations being debugged

may not directly correspond to the firing of any Transition existing in the model. As a

consequence, it might be necessary to add additional new Transitions to the model,

containing Arcs, Input events and Guard conditions that detect the (un)desired

situations. However, adding new Transitions to an existing model will usually

introduce changes to the behavior of the original model, potentially invalidating the

debug conclusions, as the new model may behave differently from the original one.

To solve this problem, a new concept of Test-transition is proposed. A Test-

transition has a set of restrictions that does not allow behavioral changes and can be

safely used to define test/debug conditions associated with breakpoints. In order to

achieve this effect, Test-transitions can only be connected to Test Arcs, cannot be

connected to Normal Arcs and may not be associated with Output events. As a result,

Test-transitions can only have input Test Arcs and cannot have output Arcs.

The concept of Test-transition has many advantages. First, Test-transitions can be

safely added to any model in any configuration without the risk of introducing any

behavioral changes. Second, Test-transitions can continue to be viewed as regular

Transitions by all IOPT Tools, including the automatic software and hardware code

generators, simulators and validation tools, without requiring additional development.

Finally, Test-transitions can also be safely removed from models using automated

filters, to generate final controller implementations without Debug code.

9 Conclusions and Future Work

The goal of this paper is to propose a new architecture to automatically add Web User

Interfaces to embedded-system controller designed with IOPT Petri net models. This

architecture employs a distributed topology to take advantage of the Web browser

processing power and the storage capacity offered by external Web servers, in order

to minimize the hardware requirements on the physical embedded-systems,

implementing Web awareness without almost no additional cost.

This work is an extension to previous work, where the Animator [3] concept and

tools were introduced. The proposed architecture can be used to automatically convert

existing user interfaces designed with the Animator tool, producing equivalent Web

interfaces.

In addition to automatic Web interface generation, the same communication

protocol was also extended to support remote debugging and step-by-step execution,

offering the possibility to perform maintenance and diagnose problems over the

Internet. The association of breakpoints to Transition firing and the new concept of

Test-transitions also contribute to reduce test and debugging effort, simplifying the

debug of systems where step-by-step execution would be impractical.

Although the proposed architecture was not yet implemented, all the components

used in the architecture are currently disseminated technologies, including the

suggested hardware platforms, the embedded TCP/IP protocol stack and the AJAX

technologies used to execute the user interface code in the Browser. All the

246 F. Pereira and L. Gomes

components employed are readily available, leading to the conclusion that the

implementation of the proposed ideas is feasible. Future work may lead to the

creation of prototypes based on the new architecture, with possible improvements to

overcome technical difficulties that may occur during development.

Acknowledgments. This work was partially financed by Portuguese Agency “FCT –

Fundação para a Ciência e Tecnologia”, in the framework of project Pest-

OE/EEI/UI0066/2011.

References
1. L. Gomes, J. Barros, A. Costa, and R. Nunes, “The Input-Output Place-Transition Petri Net

Class and Associated Tools,” in Proceedings of the 5th IEEE International Conference on

Industrial Informatics (INDIN’07), Vienna, Austria, July 2007

2. F. Pereira, F. Moutinho, L. Gomes, "Model-checking framework for embedded systems

controllers development using IOPT Petri nets," Industrial Electronics (ISIE), 2012 IEEE

International Symposium on , vol., no., pp.1399-1404, 28-31 May 2012

doi: 10.1109/ISIE.2012.6237295

3. L. Gomes and J. Lourenco, “Rapid Prototyping of Graphical User Interfaces for Petri-Net-

Based Controllers,” in IEEE Transactions on Industrial Electronics, vol. 57, May 2010, pp.

1806 – 1813.

4. F. Pereira, L. Gomes, F. Moutinho, “Automatic generation of run-time monitoring capabilities

to Petri nets based Controllers with Graphical User Interfaces” in Proceedings of DoCEIS’11 -

Technological Innovation for Sustainability, IFIP AICT 349, Springer, pp 246-255; February

21-23 2011, Costa da Caparica, Portugal

5. R.N. de Souza, D.N. Muniz, A.V. da Silva Fidalgo, "Ethernet communication platform for

synthesized devices in Xilinx FPGA," EUROCON - International Conference on Computer as

a Tool (EUROCON), 2011 IEEE , vol., no., pp.1-4, 27-29 April 2011 doi:

10.1109/EUROCON.2011.5929377

6. QNX website (accessed 6 January 2013) http://www.qnx.com/

developers/docs/6.3.0SP3/neutrino/user_guide/embedded_web_server.html

7. A. Dunkels, Full TCP/IP for 8 Bit Architectures. In Proceedings of the First ACM/Usenix

International Conference on Mobile Systems, Applications and Services (MobiSys 2003), San

Francisco, May 2003.

8. K. Jensen, “Coloured Petri Nets. Basic Concepts, Analysis Methods and Pratical Use” -

Volume 1 Basic Concepts. Berlin. Germany.: SpringerVerlag., 1997.

9. A. Hamez, L. Hillah, F. Kordon, A. Linard, E. Paviot-Adet, X. Renault, Y. Thierry-Mieg,

"New features in CPN-AMI 3: focusing on the analysis of complex distributed systems,"

Application of Concurrency to System Design, 2006. ACSD 2006. Sixth International

Conference on, pp.273-275, 28-30 June 2006 doi: 10.1109/ACSD.2006.15

10. O. Kummer, F. Wienberg, M. Duvigneau, L. Cabac, “Renew – User Guide ”, University of

Hamburg, Department for Informatics, Theoretical Foundations Group, Release 2.2, August

28, 2009

11. D. A. Sadilek, G. Wachsmuth, “Prototyping Visual Interpreters and Debuggers for Domain-

Specific Modelling Languages”, In Model Driven Architecture – Foundations and

Applications, Lecture Notes in Computer Science Volume 5095, 2008, pp 63-78, 10.1007/978-

3-540-69100-6_5

12. F. Moutinho and L. Gomes, “From models to controllers integrating graphical animation in

FPGA through automatic code generation”, in IEEE International Symposium on Industrial

Electronics (ISlE 2009), Seoul Olympic Parktel, Seoul, Korea, July 5-8 2009.

13. F. Moutinho, F. Pereira, L. Gomes, “Automatic Generation of Graphical User Interfaces for

VHDL based Controllers”, in ISIE’2011 – 20th IEEE International Symposium on Industrial

Electronics; 27-30 June 2011, Gdansk, Poland; pp. 1491-1496; ISBN: 978-1-4244-9312-8;

DOI 10.1109/ISIE.2011.5984381

14. W. Reisig, Petri nets: an introduction. New York, USA: SpringerVerlag New York, 1985.

