
HAL Id: hal-01348757
https://hal.science/hal-01348757

Submitted on 25 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Augmenting High-Level Petri Nets to Support GALS
Distributed Embedded Systems Specification

Filipe Moutinho, Luís Gomes

To cite this version:
Filipe Moutinho, Luís Gomes. Augmenting High-Level Petri Nets to Support GALS Distributed
Embedded Systems Specification. 4th Doctoral Conference on Computing, Electrical and Industrial
Systems (DoCEIS), Apr 2013, Costa de Caparica, Portugal. pp.221-228, �10.1007/978-3-642-37291-
9_24�. �hal-01348757�

https://hal.science/hal-01348757
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Augmenting High-level Petri Nets to Support GALS

Distributed Embedded Systems Specification

Filipe Moutinho and Luís Gomes

Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia, Portugal

UNINOVA – CTS, Portugal

fcm@uninova.pt, lugo@fct.unl.pt

Abstract. High-level Petri net classes are suited to specify concurrent processes

with emphasis both in control and data processing, making them appropriate to

specify distributed embedded systems (DES). Embedded systems components

are usually synchronous, which means that DES can be seen as Globally-

Asynchronous Locally-Synchronous (GALS) systems. This paper proposes to

include in high-level Petri nets a set of concepts already introduced for low-

level Petri nets allowing the specification of GALS systems, namely time

domains, test arcs and priorities. Additionally, this paper proposes external

messages and three types of (high-level) asynchronous communication

channels, to specify the interaction between distributed components based on

message exchange. With these extensions, GALS-DES can be specified using

high-level Petri nets. The resulting models include the specification of each

component with well-defined boundaries and interface, and also the explicit

specification of the asynchronous interaction between components. These

models will be used not only to specify the system behavior, but also to be the

input for model-checking tools (supporting its verification) and automatic code

generation tools (supporting its implementation in software and hardware

platforms), giving a contribution to the model-based development approach and

hardware-software co-design of DES based on high-level Petri nets.

Keywords: Distributed embedded systems, GALS systems, model-based

development, high-level Petri nets, asynchronous-channels.

1 Introduction

This work gives a contribution to the use of high-level Petri nets in the model-based

development approach of distributed embedded systems (DES). Model-based

development approaches [1, 2, 3, 4] and hardware-software co-design techniques [5]

have been providing several development methods for embedded systems. Often

supported by tools, these methods can provide benefits such as the reduction in the

development time and in the number of development errors (bugs). DES are

composed by a set of embedded systems (components) in interaction, which may be

geographically distributed or not (implemented in a single implementation platform or

chip). When these components, which may be hardware or software components, are

synchronous with a specific clock tick (or clock signal), the DES is globally-

asynchronous locally-synchronous (GALS) [6].

220 F. Moutinho and L. Gomes

Several modeling formalisms, such as State-Diagrams, StateCharts [7] and Petri

nets [8], have been used in model-based development approaches to develop

embedded systems. Given that Petri nets are appropriate to specify concurrency, they

were chosen in this work as the modeling formalism for DES. Low-level Petri net

classes are appropriate to specify “control dominated” systems, whereas high-level

Petri net classes are appropriate to specify not only control but also “data processing”.

Low-level Petri nets were extended and used in [9, 10, 11] to specify GALS

systems. Additionally, several works (such as in [12, 13, 14, 15]) addressed the

development of distributed systems using low-level Petri nets. But no works are

known, where globally-asynchronous locally-synchronous distributed embedded

systems (GALS-DES) are explicitly specified through high-level Petri nets.

The work presented in this paper is integrated in a PhD work, and contributes to

answer the following research question: How to extend high-level Petri net classes to

allow the explicit specification of GALS-DES? An explicit specification should

include the specification of each component, its interface, and the specification of the

asynchronous interaction between components.

This paper presents an extension to high-level Petri nets, which contributes both to

the model-based development and to the hardware-software co-design of distributed

embedded systems that are also globally-asynchronous locally-synchronous (GALS-

DES). The extended high-level Petri net models are intended to support not only the

system specification, but also to be used as input in model checking and automatic

code generators tools for hardware and software platforms.

Section 2 mentions how this paper contributes to the Internet of Things, section 3

presents the proposed extension for high-level Petri nets, and finally in section 4

conclusions and future work are presented. Due to space limitations it was not

possible to present any complete application example in this paper.

2 Relationship to Internet of Things

The spread of embedded systems by devices, machines and infrastructures around us,

and the possibility to interconnect via Internet or mobile connections, enabled the

creation of many types of distributed embedded systems. The development of

distributed systems when compared with the development of centralized systems is a

challenging task, due to the interaction of concurrent components and also due to the

large size/complexity of the overall system. This paper aims to contribute to the

development of such systems using a model-based development approach and high-

level Petri net classes, which are suitable to specify concurrent controllers with

control and data processing capabilities. High-level Petri nets were augmented in this

work to allow the specification of distributed embedded systems, and are also

intended to be the input for verification and automatic code generation tools.

Augmenting High-level Petri Nets to Support GALS Distributed Systems 221

3 Extending High-level Petri Nets for GALS-DES

High-level Petri nets were defined in the international standards ISO/IEC 15909-1 and

ISO/IEC 15909-2 [16]. Briefly presented in Fig. 1, high-level Petri nets

(HLCoreStructure) are an extension of low-level Petri nets (PNMLCoreModel). It is

important to note that the international standard does not define a concrete syntax for

high-level Petri nets, and that in this paper is used a concrete syntax similar to the one

used in Colored Petri nets [17].

Fig. 1. The UML class diagram of the HLCoreStructure package, image adapted from [16].

This paper extends high-level Petri nets with a set of concepts to support the

development of GALS-DES with emphasis both on control and data processing. The

proposed concepts are presented in Fig. 2, which is represented by an UML class

diagram and by a set of constraints expressed in the Object Constraint Language

(OCL). Some of the concepts (test arcs, priorities, and time domains) have already

been proposed for low-level Petri nets in [18, 11], whereas the other concepts

(external messages and three types of asynchronous channels) are new.

Test arcs and priorities proposed here for high-level Petri nets, were proposed in

[18] to support conflict arbiters. Test arcs (also known as read arcs) do not remove

tokens from places, and are represented in Figs. 3, 4, and 5, by arcs with an arrow in

the middle. When two or more transitions are in conflict, the one with higher priority

(lower value) will fire. Priorities are represented in Fig. 5, by p:1 and p:2.

3.1 Execution Semantics and Time-domains

The concept of time-domains was proposed in [11] to extend the IOPT-net class [18],

which is a low-level Petri net class. This class without time-domains has (globally)

synchronous and maximal-step execution semantics, which means that transitions can

only fire at specific time instants (given by a clock tick) and that all transitions that

are enable and ready (see [18]) to fire (and also not in conflict) at a specific clock tick,

222 F. Moutinho and L. Gomes

Fig. 2. The proposed GALS extension package.

will fire simultaneously. The IOPT-net class extended with time-domains allows the

specification of globally-asynchronous locally-synchronous systems, because all

transitions with a specific time-domain are “locally synchronous” and have a “locally

maximal-step” execution semantics. The concept of time-domain associates each Petri

net node (transition or place) with a specific component, which is synchronous with a

specific clock tick. Transitions with different time-domains belong to different

components (synchronous with distinct clock signals).

Augmenting High-level Petri Nets to Support GALS Distributed Systems 223

The concept of time-domain when added into high-level Petri net classes,

introduces the globally-asynchronous locally-synchronous execution semantics into

high-level Petri nets, allowing the specification locally synchronous components

(synchronous with specific clock signals). Fig. 2 presents the concept of time-domain

added into high-level Petri nets, where Petri net nodes (transitions and places) can

have an associated time-domain (represented as a node annotation). An OCL specifies

that if two transitions have the same input message, they must have equal time-

domains, because an input message cannot be an input of several components. Fig. 3

presents a high-level Petri net model with two components, each one specified by a

specific time-domain (represented by td:1 and td:2).

3.2 Asynchronous-channels

Time-domains are used to identify components, whereas asynchronous-channels

enable their interaction specification (the exchange of data between components).

Three types of directed asynchronous communication channels are proposed in this

paper: (1) Simple-Asynchronous-Channel (SAC); (2) Aware-Asynchronous-Channel

(AAC); and (3) Test-Asynchronous-Channel (TAC). To ensure that messages are

delivered by the same order that are sent, asynchronous channels have FIFO (First In,

First Out) semantics. All the proposed channels assume that all sent messages

eventually arrive (sometime in the future) at the destination component.

The models at the right hand side of Figs. 3, 4, and 5 present the semantics of each

channel and the models at the left hand side present their representation (clouds

connected to transitions by dashed arcs). Although it is only presented for SAC (in the

right model from Fig. 3), the behavioural model of the other two channels (right

models from Figs. 4 and 5) also have a reset transition to prevent the messages

identifier to grow indefinitely. Due to space restrictions the channels proposed in Fig.

2 will be briefly described.

Each SAC sends messages from one (master) transition to a set of (slave)

transitions. All slaves have the same time-domain (belong to the same component),

which is different from master time-domain. Fig. 3 (left) presents a high-level Petri

net model with a SAC, and its behavior is presented in Fig. 3 (right) model.

Fig. 3. A high-level Petri net model with a Simple-Asynchronous-Channel (at the left) and its

behavioral specification using a high-level Petri net model (at the right).

In an AAC, messages are sent as in a SAC, but an acknowledge is sent when the

message is read by destination component (even if the message is ignored). Fig. 4

(left) presents a model with an AAC, and its behavior is presented in Fig. 4 (right).

224 F. Moutinho and L. Gomes

Fig. 4. A high-level Petri net model with an Aware-Asynchronous-Channel (at the left) and its

behavioral specification using a high-level Petri net model (at the right).

Finally, in a TAC messages are sent as in a SAC, but when the message is read by

destination component, an accepted (acc) message (if the message fired the transition)

or a rejected (rej) message (if the message is ignored) is sent back. Fig. 5 (left)

presents a model with a TAC, and the TAC behavior is presented in Fig. 5 (right)

model. Each SAC or AAC can have several slave transitions, whereas each TAC can

only have one slave transition.

Any Petri net model with these three types of communication channels can be

specified by a Petri net model without channels, replacing the channels by their

behavioral models (right models from Figs. 3, 4 and 5).

Fig. 5. A high-level Petri net model with a Test-Asynchronous-Channel (at the left) and its

behavioral specification using a high-level Petri net model (at the right).

The GALS-DES specification using high-level Petri net classes extended with

time-domains and asynchronous-channels have a strong mathematical definition (not

presented in this paper) and a well defined execution semantics, allowing its use as

input for model-checking tools, to verify the extended high-level Petri net models

proprieties.

Augmenting High-level Petri Nets to Support GALS Distributed Systems 225

3.3 Messages

Input and output messages are proposed to specify the components interface (to allow

the specification of the interaction between the components and the environment or

between the components and the communication channels). After GALS-DES

specification and verification, and before components implementation, asynchronous

channels must be removed, and input and output messages must be inserted into Petri

nets. Inserted input and output messages are associated with master and slave

transitions (previously connected with asynchronous channels). The resulting models

with input and output messages can be used as input for automatic code generator

tools for software and hardware platforms.

Input and output messages are proposed in this paper as presented in Fig. 2.

Messages are Petri nets or Pages declarations, and are associated with transitions.

Both input and output messages can have associated Variables, which defines the

carried data. When an input message occurs, the associated transitions fire if enable

and ready (the carried data influence transition bindings). Output messages are

generated when associated transitions fire. An output message can carry data obtained

from place marking.

4 Conclusions and Future Work

This extension gives a contribution to the use of high-level Petri nets in the model-

based development approach of distributed embedded systems. The identification of

components sub-models is made through the use of time-domains; the interaction

between components is specified by asynchronous communication channels; and

external messages (input and output messages) are the components interface.

Some of the concepts (such as time-domains) proposed in this paper for high-level

Petri nets had already been proposed in the past for low-level Petri nets, whereas other

concepts (such as the three types of asynchronous communication channels with FIFO

semantics and the external messages) as far as we know, are new.

During our experience using these communication channels, it was possible to

specify all encountered communication scenarios between components of globally-

asynchronous locally-synchronous distributed embedded systems.

As future work we intend to extend the tool chain framework for a low-level Petri

net class (online available at http://gres.uninova.pt/), to allow the edition, the model-

checking, and the automatic code generation of distributed embedded systems using

high-level Petri nets.

Acknowledgments. This work was partially financed by Portuguese Agency "FCT -

Fundação para a Ciência e a Tecnologia" in the framework of project PEst-

OE/EEI/UI0066/2011. The first author was supported by a FCT grant, ref.

SFRH/BD/62171/2009.

226 F. Moutinho and L. Gomes

References

1. Schatz, B., Pretschner, A., Huber, F., Philipps, J.: Model-based development of

embedded systems. In: Bruel, J.-M., Bellahsène, Z. (eds.) Advances in Object-Oriented

Information Systems, LNCS, vol. 2426, p.298. Springer, Heidelberg (2002)

2. Rust, C., Kleinjohann, B.: Modeling Intelligent Embedded Real-Time Systems using

High-Level Petri Nets. In: Proceedings of the forum on design languages FDL. (2001)

3. De Niz,D., Bhatia, G., Rajkumar, R.: Model-Based Development of Embedded Systems:

The SysWeaver Approach. In: Proceedings of the 12th IEEE Real-Time and Embedded

Technology and Applications Symposium, Washington, DC, USA (2006)

4. Gomes, L., Fernandes, J. (eds.): Behavioral Modeling for Embedded Systems and

Technologies: Applications for Design and Implementation. In: IGI Global’s. ISBN 978-

1-60566-750-8 (2009)

5. Wolf, W.H.: Hardware-software co-design of embedded systems [and prolog]. In:

Proceedings of the IEEE, vol. 82, no. 7, pp. 967-989 (1994)

6. Chapiro, D. M.: Globally-Asynchronous Locally-Synchronous Systems. Ph.D. Thesis:

Stanford University (1984)

7. Harel, D.: Biting the silver bullet: toward a brighter future for system development,

Computer , vol.25, no.1, pp. 8-20 (1992)

8. Reisig, W.: Petri nets: an introduction, Springer-Verlag New York, Inc., NY, USA (1985)

9. Nielsen, M., Sassone, V., Srba, J.: Towards a Notion of Distributed Time for Petri Nets.

In Proceedings of the 22nd International Conference on Application and Theory of Petri

Nets (ICATPN '01), José Manuel Colom and Maciej Koutny (eds.). Springer-Verlag,

London, UK, 23-31 (2001)

10. Kleijn, H., Koutny, M., Rozenberg, G.: Processes of Petri nets with localities, Technical

Report CS-TR-941, School of Computing Science, Newcastle upon Tyne, UK, (2006)

11. Moutinho, F., Gomes, L.: Asynchronous-channels and time-domains extending Petri nets

for GALS systems. In Camarinha-Matos, L.M., Shahamatnia, E., Nunes, G. (eds)

Technological Innovation for Value Creation. IFIP AICT, vol. 372, pp. 143–150.

Springer Berlin, Heidelberg (2012)

12. Hopkins, R.: Distributable nets. In Rozenberg, G. (ed.) Advances in Petri Nets, ser.

LNCS, vol. 524, pp. 161–187. Springer Berlin, Heidelberg (1991)

13. Badouel, E., Caillaud, B., Darondeau P.: Distributing finite automata through Petri net

synthesis. Formal Asp. Comput., vol. 13, no. 6, pp. 447–470 (2002)

14. Van Glabbeek, R., Goltz, U., Schicke, J.-W.: On synchronous and asynchronous

interaction in distributed systems. In: CoRR, vol. abs/0901.0048 (2009)

15. Van Glabbeek, R., Goltz, U., Schicke-Uffmann, J.-W.: On distributability of Petri nets.

In: Birkedal, L. (ed.) Foundations of Software Science and Computational Structures, ser.

LNCS, vol. 7213, pp. 331–345. Springer Berlin, Heidelberg (2012)

16. Hillah, L., Kindler, E., Kordon, F., Petrucci, L., Treves, N.: A primer on the Petri Net

Markup Language and ISO/IEC 15909-2. In: Petri Net Newsletter, vol. 24, no. 76, pp. 9–

28 (2009) (originally presented at the 10th International workshop on Practical Use of

Colored Petri Nets and the CPN Tools – CPN’09)

17. Jensen, K., Kristensen, L.M., Wells., L.: Coloured Petri Nets and CPN Tools for

Modelling and Validation of Concurrent Systems. In: International Journal on Software

Tools for Technology Transfer (STTT)9(3-4), pp. 213-254 (2007)

18. Gomes, L., Barros, J., Costa, A., Nunes, R.: The Input-Output Place-Transition Petri Net

Class and Associated Tools. In: Proceedings of the 5th IEEE International Conference on

Industrial Informatics (INDIN’07), Vienna, Austria (2007)

