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Abstract. High-level Petri net classes are suited to specify concurrent processes 

with emphasis both in control and data processing, making them appropriate to 

specify distributed embedded systems (DES). Embedded systems components 

are usually synchronous, which means that DES can be seen as Globally-

Asynchronous Locally-Synchronous (GALS) systems. This paper proposes to 

include in high-level Petri nets a set of concepts already introduced for low-

level Petri nets allowing the specification of GALS systems, namely time 

domains, test arcs and priorities. Additionally, this paper proposes external 

messages and three types of (high-level) asynchronous communication 

channels, to specify the interaction between distributed components based on 

message exchange. With these extensions, GALS-DES can be specified using 

high-level Petri nets. The resulting models include the specification of each 

component with well-defined boundaries and interface, and also the explicit 

specification of the asynchronous interaction between components. These 

models will be used not only to specify the system behavior, but also to be the 

input for model-checking tools (supporting its verification) and automatic code 

generation tools (supporting its implementation in software and hardware 

platforms), giving a contribution to the model-based development approach and 

hardware-software co-design of DES based on high-level Petri nets. 

Keywords: Distributed embedded systems, GALS systems, model-based 

development, high-level Petri nets, asynchronous-channels. 

1   Introduction 

This work gives a contribution to the use of high-level Petri nets in the model-based 

development approach of distributed embedded systems (DES). Model-based 

development approaches [1, 2, 3, 4] and hardware-software co-design techniques [5] 

have been providing several development methods for embedded systems. Often 

supported by tools, these methods can provide benefits such as the reduction in the 

development time and in the number of development errors (bugs). DES are 

composed by a set of embedded systems (components) in interaction, which may be 

geographically distributed or not (implemented in a single implementation platform or 

chip). When these components, which may be hardware or software components, are 

synchronous with a specific clock tick (or clock signal), the DES is globally-

asynchronous locally-synchronous (GALS) [6]. 
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Several modeling formalisms, such as State-Diagrams, StateCharts [7] and Petri 

nets [8], have been used in model-based development approaches to develop 

embedded systems. Given that Petri nets are appropriate to specify concurrency, they 

were chosen in this work as the modeling formalism for DES. Low-level Petri net 

classes are appropriate to specify “control dominated” systems, whereas high-level 

Petri net classes are appropriate to specify not only control but also “data processing”. 

Low-level Petri nets were extended and used in [9, 10, 11] to specify GALS 

systems. Additionally, several works (such as in [12, 13, 14, 15]) addressed the 

development of distributed systems using low-level Petri nets. But no works are 

known, where globally-asynchronous locally-synchronous distributed embedded 

systems (GALS-DES) are explicitly specified through high-level Petri nets. 

The work presented in this paper is integrated in a PhD work, and contributes to 

answer the following research question: How to extend high-level Petri net classes to 

allow the explicit specification of GALS-DES? An explicit specification should 

include the specification of each component, its interface, and the specification of the 

asynchronous interaction between components. 

This paper presents an extension to high-level Petri nets, which contributes both to 

the model-based development and to the hardware-software co-design of distributed 

embedded systems that are also globally-asynchronous locally-synchronous (GALS-

DES). The extended high-level Petri net models are intended to support not only the 

system specification, but also to be used as input in model checking and automatic 

code generators tools for hardware and software platforms. 

Section 2 mentions how this paper contributes to the Internet of Things, section 3 

presents the proposed extension for high-level Petri nets, and finally in section 4 

conclusions and future work are presented. Due to space limitations it was not 

possible to present any complete application example in this paper. 

2   Relationship to Internet of Things 

The spread of embedded systems by devices, machines and infrastructures around us, 

and the possibility to interconnect via Internet or mobile connections, enabled the 

creation of many types of distributed embedded systems. The development of 

distributed systems when compared with the development of centralized systems is a 

challenging task, due to the interaction of concurrent components and also due to the 

large size/complexity of the overall system. This paper aims to contribute to the 

development of such systems using a model-based development approach and high-

level Petri net classes, which are suitable to specify concurrent controllers with 

control and data processing capabilities. High-level Petri nets were augmented in this 

work to allow the specification of distributed embedded systems, and are also 

intended to be the input for verification and automatic code generation tools. 
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3   Extending High-level Petri Nets for GALS-DES 

High-level Petri nets were defined in the international standards ISO/IEC 15909-1 and 

ISO/IEC 15909-2 [16]. Briefly presented in Fig. 1, high-level Petri nets 

(HLCoreStructure) are an extension of low-level Petri nets (PNMLCoreModel). It is 

important to note that the international standard does not define a concrete syntax for 

high-level Petri nets, and that in this paper is used a concrete syntax similar to the one 

used in Colored Petri nets [17]. 

 

 

Fig. 1. The UML class diagram of the HLCoreStructure package, image adapted from [16]. 

This paper extends high-level Petri nets with a set of concepts to support the 

development of GALS-DES with emphasis both on control and data processing. The 

proposed concepts are presented in Fig. 2, which is represented by an UML class 

diagram and by a set of constraints expressed in the Object Constraint Language 

(OCL). Some of the concepts (test arcs, priorities, and time domains) have already 

been proposed for low-level Petri nets in [18, 11], whereas the other concepts 

(external messages and three types of asynchronous channels) are new. 

Test arcs and priorities proposed here for high-level Petri nets, were proposed in 

[18] to support conflict arbiters. Test arcs (also known as read arcs) do not remove 

tokens from places, and are represented in Figs. 3, 4, and 5, by arcs with an arrow in 

the middle. When two or more transitions are in conflict, the one with higher priority 

(lower value) will fire. Priorities are represented in Fig. 5, by p:1 and p:2. 

3.1   Execution Semantics and Time-domains 

The concept of time-domains was proposed in [11] to extend the IOPT-net class [18], 

which is a low-level Petri net class. This class without time-domains has (globally) 

synchronous and maximal-step execution semantics, which means that transitions can 

only fire at specific time instants (given by a clock tick) and that all transitions that 

are enable and ready (see [18]) to fire (and also not in conflict) at a specific clock tick, 
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Fig. 2. The proposed GALS extension package. 

will fire simultaneously. The IOPT-net class extended with time-domains allows the 

specification of globally-asynchronous locally-synchronous systems, because all 

transitions with a specific time-domain are “locally synchronous” and have a “locally 

maximal-step” execution semantics. The concept of time-domain associates each Petri 

net node (transition or place) with a specific component, which is synchronous with a 

specific clock tick. Transitions with different time-domains belong to different 

components (synchronous with distinct clock signals). 
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The concept of time-domain when added into high-level Petri net classes, 

introduces the globally-asynchronous locally-synchronous execution semantics into 

high-level Petri nets, allowing the specification locally synchronous components 

(synchronous with specific clock signals). Fig. 2 presents the concept of time-domain 

added into high-level Petri nets, where Petri net nodes (transitions and places) can 

have an associated time-domain (represented as a node annotation). An OCL specifies 

that if two transitions have the same input message, they must have equal time-

domains, because an input message cannot be an input of several components. Fig. 3 

presents a high-level Petri net model with two components, each one specified by a 

specific time-domain (represented by td:1 and td:2). 

3.2   Asynchronous-channels 

Time-domains are used to identify components, whereas asynchronous-channels 

enable their interaction specification (the exchange of data between components). 

Three types of directed asynchronous communication channels are proposed in this 

paper: (1) Simple-Asynchronous-Channel (SAC); (2) Aware-Asynchronous-Channel 

(AAC); and (3) Test-Asynchronous-Channel (TAC). To ensure that messages are 

delivered by the same order that are sent, asynchronous channels have FIFO (First In, 

First Out) semantics. All the proposed channels assume that all sent messages 

eventually arrive (sometime in the future) at the destination component. 

The models at the right hand side of Figs. 3, 4, and 5 present the semantics of each 

channel and the models at the left hand side present their representation (clouds 

connected to transitions by dashed arcs). Although it is only presented for SAC (in the 

right model from Fig. 3), the behavioural model of the other two channels (right 

models from Figs. 4 and 5) also have a reset transition to prevent the messages 

identifier to grow indefinitely. Due to space restrictions the channels proposed in Fig. 

2 will be briefly described. 

Each SAC sends messages from one (master) transition to a set of (slave) 

transitions. All slaves have the same time-domain (belong to the same component), 

which is different from master time-domain. Fig. 3 (left) presents a high-level Petri 

net model with a SAC, and its behavior is presented in Fig. 3 (right) model. 
 

 

Fig. 3. A high-level Petri net model with a Simple-Asynchronous-Channel (at the left) and its 

behavioral specification using a high-level Petri net model (at the right). 

In an AAC, messages are sent as in a SAC, but an acknowledge is sent when the 

message is read by destination component (even if the message is ignored). Fig. 4 

(left) presents a model with an AAC, and its behavior is presented in Fig. 4 (right). 
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Fig. 4. A high-level Petri net model with an Aware-Asynchronous-Channel (at the left) and its 

behavioral specification using a high-level Petri net model (at the right). 

Finally, in a TAC messages are sent as in a SAC, but when the message is read by 

destination component, an accepted (acc) message (if the message fired the transition) 

or a rejected (rej) message (if the message is ignored) is sent back. Fig. 5 (left) 

presents a model with a TAC, and the TAC behavior is presented in Fig. 5 (right) 

model. Each SAC or AAC can have several slave transitions, whereas each TAC can 

only have one slave transition. 

Any Petri net model with these three types of communication channels can be 

specified by a Petri net model without channels, replacing the channels by their 

behavioral models (right models from Figs. 3, 4 and 5). 
 

 

Fig. 5. A high-level Petri net model with a Test-Asynchronous-Channel (at the left) and its 

behavioral specification using a high-level Petri net model (at the right). 

The GALS-DES specification using high-level Petri net classes extended with 

time-domains and asynchronous-channels have a strong mathematical definition (not 

presented in this paper) and a well defined execution semantics, allowing its use as 

input for model-checking tools, to verify the extended high-level Petri net models 

proprieties. 
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3.3   Messages 
 

Input and output messages are proposed to specify the components interface (to allow 

the specification of the interaction between the components and the environment or 

between the components and the communication channels). After GALS-DES 

specification and verification, and before components implementation, asynchronous 

channels must be removed, and input and output messages must be inserted into Petri 

nets. Inserted input and output messages are associated with master and slave 

transitions (previously connected with asynchronous channels). The resulting models 

with input and output messages can be used as input for automatic code generator 

tools for software and hardware platforms. 

Input and output messages are proposed in this paper as presented in Fig. 2. 

Messages are Petri nets or Pages declarations, and are associated with transitions. 

Both input and output messages can have associated Variables, which defines the 

carried data. When an input message occurs, the associated transitions fire if enable 

and ready (the carried data influence transition bindings). Output messages are 

generated when associated transitions fire. An output message can carry data obtained 

from place marking. 

4   Conclusions and Future Work 

This extension gives a contribution to the use of high-level Petri nets in the model-

based development approach of distributed embedded systems. The identification of 

components sub-models is made through the use of time-domains; the interaction 

between components is specified by asynchronous communication channels; and 

external messages (input and output messages) are the components interface.  

Some of the concepts (such as time-domains) proposed in this paper for high-level 

Petri nets had already been proposed in the past for low-level Petri nets, whereas other 

concepts (such as the three types of asynchronous communication channels with FIFO 

semantics and the external messages) as far as we know, are new. 

During our experience using these communication channels, it was possible to 

specify all encountered communication scenarios between components of globally-

asynchronous locally-synchronous distributed embedded systems. 

As future work we intend to extend the tool chain framework for a low-level Petri 

net class (online available at http://gres.uninova.pt/), to allow the edition, the model-

checking, and the automatic code generation of distributed embedded systems using 

high-level Petri nets. 
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