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Abstract. Remote monitoring is an essential task to help maintaining Earth 

ecosystems. A notorious example is the monitoring of riverine environments. 

The solution purposed in this paper is to use an electric boat (ASV - 

Autonomous Surface Vehicle) operating in symbiosis with a quadrotor (UAV – 

Unmanned Air Vehicle). We present the architecture and solutions adopted and 

at the same time compare it with other examples of collaborative robotics 

systems, in what we expected could be used as a survey for other persons doing 

collaborative robotics systems. The architecture here purposed will exploit the 

symbiotic partnership between both robots by covering the perception, 

navigation, coordination, and integration aspects. 
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1 Introduction 

The monitoring of water in riverine environments is of enormous importance not only 

in controlling some of the most delicate ecosystems (some of the highest 

concentration of life forms are in the estuaries) but also for economic reasons, since 

almost all the potable water come from rivers or lakes making the control of water 

quality essential for industry, agricultural and human consume. It is an enormous 

challenge attending to the actual robotics state of the art to build a single robot with 

all the capabilities to survive and to be autonomous in this kind of environment. 

Although sensor networks are becoming popular solutions for this kind of problem, 

they are seriously limited by their static characteristics. Several projects [1], [2]had 

dealt with this limitation by introducing a very large number of sensors or combining 

static sensors with sensors with more or less locomotion capabilities or even using 

ASV - Autonomous Surface Vehicles. The use of small (ASV) are also becoming a 

reasonable and attractive alternative[3], [4].However, providing these boats with full 

autonomous behaviour is not a trivial task, there are many challenges, namely: The 

low height the sensors equipping these robots are from the water's surface limits their 

ability to perceive the far-field and consequently to ensure safety by means of a 
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proper path planning strategy. Another related limitation is their inability to inspect 

riverbanks, which are key elements in the riverine ecosystem. In RiverWatch we 

overcome the limitations imposed from observing the environment from a low 

vantage point, by pairing the ASV with a small unmanned aerial vehicle (UAV). With 

an aerial perspective, the UAV will extend the visual field of the ASV as well as it 

will enable the survey of riverbanks.  Equipped with solar panels, the ASV will be 

able to do energy harvesting for itself and for the UAV, in a mechanism known in 

biology as Trophallaxis. The project will exploit this symbiotic partnership between 

both robots by covering the perception, navigation, coordination, and integration 

aspects making the system extremely flexible, reliable and with extended capabilities 

for adaptation, self-organization and self-development.  

We expect the RiverWatch project to impact on scientific (novel perception, 

navigation, and coordination algorithms), technological (novel autonomous multi-

robot integrated platform), and application (novel environmental application scenario) 

dimensions. 

 

1.1    Progress beyond the state-of-the-art 

In order to overcome some of the limitations of static sensor networks, [5]propose the 

addition of a small ASV into the monitoring system. Although this approach improves 

the resolution of the performed analysis, the overall system continues to be spatially 

constrained. Several solutions have been proposed for dynamic monitoring of riverine 

ecosystems. A simple solution is to deploy drifters that flow with the river current 

gathering data along way [6]. This solution is limited to wide and obstacle free river 

streams, as otherwise drifters may get stuck. A more efficient solution is to use a set 

of ASVs [7], [8] to navigate along rivers while collecting environmental data.  The 

use of robotic sensors is motivated by the fact that they can achieve sufficient spatial 

coverage to perform complete measurements, i.e., they are not limited to a set of 

discrete sampling points. Although many work exists in aquatic robots, some already 

capable of performing energy harvesting [9] and multi-vessels coordinated behaviour 

[10], many challenges are still open. One particularly demanding is the ability to 

robustly segment the river from land and obstacles up to the far-field. The low 

vantage point afforded by medium size surface vehicles poses additional difficulties 

to this problem. Previous work [11] capitalized on the benefits of multi-robot systems 

to handle some problems arising from the low vantage point, by using an helicopter to 

provide the human operator with improved situation awareness in a hurricane post-

disaster situation. In this project we intend to exploit the same idea but in this case to 

extend the surface vehicle's situation awareness. Hence, we consider the coordination 

between both robots for autonomous behaviour, instead of the context of tele-

operation. Although previous work considered the docking of a UAV on a ground-
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based platform [12],[13], [14] docking on a moving aquatic platform has not been 

reported yet. Waves, wind, and displacement are variables that must be taken into 

account by the model. We will depart from previous work by considering the problem 

not only under the control perspective. A smart mechanism will be used to grasp the 

UAV, thus reducing the need to hover close to the landing surface, where chaotic 

airflow complicates the process. Furthermore, both ASV and UAV will negotiate a 

rendezvous site where it is more likely to occur successfully, such as by searching a 

less windy spot. This may require the ASV to actively search for this spot while the 

UAV is performing its delegated surveying task. 

For short range obstacle detection in the ASV, we will mostly recur to 3-D data 

provided by stereo vision, laser scanner, and underwater sonar scanner. For this 

purpose we intend to adapt some work on all-terrain obstacle detection [15][16] to the 

domain in question. An interesting point of this work is the use of visual attention 

parallel mechanisms, which we have been shown that, if operating in an intricate way 

with obstacle avoidance, the amount of processing can be considerably reduced [17], 

and as a consequence, the computational requirements as well. A key aspect of 

obstacle avoidance in aquatic environments, yet to be solved, is to filter out false 

positives induced by waves and large ripples in the water. For this purpose we intend 

to exploit the fact that false positives in this domain exhibit structured spatio-temporal 

patterns (propagating waves). These patterns can be determined in volumetric terms 

using the range image produced by the stereo-vision sensor and in appearance terms 

as produced by the aerial image provided by the UAV. 

To enable path planning in aquatic environments [18], long-range water/land 

segmentation of the environment is required. This includes the ability to detect sand 

banks. For this purpose we will recur mostly to appearance models learnt under the 

self-supervised learning paradigm, similar to work on ground-based vehicles [19]. In 

these models, near-field range data provided by stereo/laser is used to label patches of 

the robot's input image as belonging to the obstacle or non-obstacle class. In our case 

the classes are water and land and the input images are the ones obtained by both 

ASV and UAV. Then, an on-line machine learning mechanism can be used to learn a 

classifier in the appearance space given the provided water/land labels. This way the 

system learns to segment water from land in the appearance-space of the images 

obtained by both robots. This learning process requires to register the obstacle 

detection results obtained with range data onto the aerial image produced by the 

UAV. This in turn will require both robots to localise each other with respect to the 

other. We expect to solve this problem using their global localisation mechanism (i.e., 

GPS based) in addition to having the UAV performing visual tracking of the ASV. 

The transformations required to match the image obtained from an omnidirectional 

camera mounted on the ASV with the aerial image provided by the UAV may be 

useful to provide an additional cue on both robots' relative localisation. The proposed 
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method differs considerably from previous work on river [20] and coast-line [21] 

detection from aerial images, where human intervention was key to assist the learning 

process. We also expect to exploit maps provided by the Google Maps API, where 

rivers are already segmented, to score potential river hypotheses generated by the 

perceptual system against the map.  

With the purpose of reducing ambiguities in images classification process, we 

consider the possibility of having the classifiers as dynamical entities exploring the 

image to build contextual information [22]. Context is well recognised as a key 

component of any robust and parsimonious perceptual system [23]. In addition to 3-D 

information, the sky/water interface can also be useful to generate training labels. 

This innovative approach can exploit cues regarding the profile of the detected 

skyline. 

Shoreline orientation and position is also an important cue for ASV safe 

navigation. We intend to use particle swarms to detect and track shorelines. For this 

purpose we expect to use an omni-directional camera. Particle swarms have recently 

exhibited interesting properties, even better than particle filters, for object tracking 

[24]. Moreover, making these particles sensitive to contextual cues, we expect to 

improve detection rate while reducing computational cost. These techniques will also 

be used to determine shoreline from the aerial images obtained by the UAV, besides 

being equipped with a conventional photographic camera, it will be equipped with a 

near-infrared camera, as it is recognizably useful for water/land segmentation [25]. 

Our expectation is that the fusion of all these methods in addition to the long-range 

water/land segmentation mechanism results in a robust system, which in turn reduces 

the accuracy requirements for each of the techniques alone. 

2    Contribution to the development of the Internet of Things 

Remote monitoring is an essential task to help maintaining Earth ecosystems and will 

be without doubt influenced by the Internet of Things. The use of network sensors for 

monitoring some environmental aspects is already a reality [26]. Several TIWS – 

Tsunami International Warning Systems (IOTWS,NEAMTWS,PTWC, etc.) based on 

fixed DART© stations are actually working all over the world, coordinated by the 

Intergovernmental Oceanographic Commission of UNESCO integrated within the 

program GOOS – Global Ocean Observing System. Inspired on these systems and in 

the IoT the RiverWatch architecture will enable the cooperative robots of the system 

(UAV and the ASV) to interact and communicate among themselves and with the 

environment by exchanging data and information ‘sensed’ about the environment, 

while reacting autonomously to the ‘real/physical world’ events with or without direct 

human intervention depicted as one of the most important aspects in European IoT 

roadmap. It is our goal that with RiverWatch and by using ROS as the operating 
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system with its capacity of making transparent the communications between several 

nodes and the recent developments in support to IPv6 to allow those requirements. 

3   RiverWatch Architecture 

We use the ROS operating system as the background of our system with all the 

advantages that cross-language inter-process communication system will allow. 

We´ve decided to adopt as possible open sources solutions as pointed on the 

following sub-chapters. 

3.1 UAV (Multi-rotor, Variable Configuration) 

We had evaluated several platforms Comercial: AirRObot, Asctec, Microdones, 

Draganfly, Cyberquadand several open source: MikroKopter, Mikro'sAeroquad, NG-

UAVP, UAVX & UAVP, OpenPilot, Arducopter, Multipilot 32.The price of these 

commercial solutions ranges from 5000€ to more than 20000€. All of them, uses 

some patented and closed mechanisms of control what was unacceptable to our 

project. With the open-source projects, we have access to all the code and in some of 

them the solutions available are more complex and with more functions than the 

commercial solutions, and so we decided to build a platform based in open source 

solutions. For the low level control boards, we´ve adopted the Multipilot 32 solution 

that is totally open source, compatible with the project Arducopter (a very large active 

community) and offers the best processor and IMU capabilities. For the mechanical 

platform we´ve selected the open source Mikrokopter solution that offers 

reconfigurable frames that allow to build any configuration: Quadrotor, Quadrotor 

coaxial, X6 , X6 axial, Octo. Power distribution boards that allow a very easy mount 

with a minimum of connections and wires, very good motors (MK3638) and I2C high 

speed motor controllers. The batteries selected were the Maxamps 11Ah 4S. For  

manual and emergency control we will use the system OSRC. 
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Fig.1. UAV components and architecture 

3.2 USV  

In partnership with the company Jetbuster we´ve decided to use the commercial hulls 

from model JETRIDER XXL and the water turbine propulsion system. We´ve 

adopted a modular configuration with 4 main components (2 hulls, connection 

platform and electronics boxes) that will allow the easy setup and transport of the 

ASV. The propulsion unit based on ducted water jets systems have great advantages 

in shallow waters when compared with tradition propellers, namely the possibility to 

navigate with few centimetres of water, more resistance to impacts, etc.  

The on board sensors are divided in two categories:“Localization and attitude” and 

“Obstacle detection”. In “Localization and attitude” we have a PB200 weather station 

and a CS4500 water speed sensor from Airmair and a complete GPS RTK from 

Ashtech (Proflex 800 base and rover). In “Obstacle detection” we have a multibeam 

DT837B sonar from Imagenex mounted in a tilt system based on servos EX-106  

from Dynamixel, sonar that will allow us to create a 3D map of the bottom of the 

river to detect and predict what will be the best way in the presence of sand banks or 

other subaquatic obstacles. For collision detection, the main sensor we will use is the 

LIDAR LD-LRS2100 system from Sick. For segmentation water algorithms and 

detection of obstacles, we will use a Ladybug3 360 degrees camera from Pointgrey. 

For low visibility (nigh, fog, etc) and for segment the ASV from the water using its 
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special thermal signature, we will use thermal cameras. In the ASV the FLIR Quark 

640 with wide angle lens, while for the UAV the camera selected was a Quark 336. 

For special safety precautions we will have on board an active radar deflector, 

infrared and visible light marks and redundant communications with VHF modem 

(ADL Vantage radio system), Long range Wifi and GSM modem as we could see in 

Fig.2. 

 

Fig.2. USV components and architecture 

3.3 Operations Centre 

In its first version, the control centre has been developed to run as a web-based 

application. This has the advantage of allowing the use of a simple web-browser for 

interacting with the robotic system. However, it is also relevant to enable the 

integration of the control centre software in custom applications. For instance, the 

control centre can be part of a larger software package that not only allows human-

robot interaction but also integration with simulators and information management 

systems. Bearing this in mind, the control centre has been wrapped as a QT 

component that can be integrated in any QT application. An important part of this 
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software package will be the GSC – Ground Station Control that will allow to have 

access to all the attitude information from ASV and from the AGV. Since we adopted 

the open-source solution based the project Multipilot32, that follow the MAVLINK 

protocol there are several Mission Planners open source available. In Fig.3 we can see 

the hardware to run the GSC. 

 

Fig.3.  Control center hardware 

4 Conclusions and Further Work 

The use of robots working in a symbiotic relation is a solution that shows very 

promising results, although the topic is still in its infancy. Some results are: Increase 

of autonomy of the entire system, the increase in flexibility and reliability. There are 

however drawbacks and problems that must be yet solved. They constitute challenges 

that could lead to promising research directions. As examples: Intelligent power share 

mechanisms, intelligent docking, identification of each robot (not only the robot but 

also its relative orientation) in the system by the others, the possibility of sensorial 

expansion of the main robot of the system or the whole system itself, etc. With 

RiverWatch, we hope to contribute with some answers. Many more questions will 

prevail and it’s our hope that this paper contributes to arouse some curiosity in the 

reader and makes him think about them. 
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