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Abstract. Even given today’s rich hardware platforms, computation-intensive 

algorithms and applications, such as large-scale simulations, are still 

challenging to run with acceptable response times. One way to increase the 

performance of these algorithms and applications is by using the computing 

power of Graphics Processing Units (GPU). However, effectively mapping 

distributed software models to GPU is a non-trivial endeavor. In this paper, we 

investigate ways of improving execution performance of multi-agent systems 

(MAS) models by means of relevant task allocation mechanisms, which are 

suitable for GPU execution. Several task allocation architecture variants for 

MAS using GPU are identified and their properties analyzed. In particular, we 

study three cases: Agents and their runtime environment can be (i) completely 

on the host (CPU); (ii) partly on host and device (GPU); (iii) completely on the 

device. For each of these architecture variants, we propose task allocation 

models that take GPU restrictions into account.  

Keywords: Multi-Agent Systems, GPGPU, CUDA. 

1   Introduction 

Today’s software-intensive networked applications, such as e.g. microscopic traffic 

simulations 1 cause increasing demand for computational resources. Moreover, 

Ubiquitous Artificial Intelligence (UAI, 5) applications such as decentralized energy 

systems control 2 or cooperative traffic management 3, are data-intensive: the amount 

of data steadily increases, and more powerful algorithms and more computational 

units are needed, while paying attention to better performance per Watt. 

A state-of-the-art approach to this challenge is to make use of recent progress in 

parallel and distributed computing. Distributed computing helps divide tasks across 

different computational units. If well coordinated, it can lead to improved 

performance and scalability performance improvement, as it provides a possibility to 

decrease computational time by using multiple machines. However, it trades off 

computation with communication overhead, thus Amdahl’s Law 4 and the specifics of 

the application at hand need to be taken into account. 
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Multi-Agent Systems (MAS) 8 are a paradigm, which is often used for UAI 

modeling and exploits both distributed and parallel computing.  A MAS represents a 

system as a set of interacting agents - software units that are able to execute tasks for 

reaching local (or system) goals. Agents co-exist in the environment, and they 

communicate with each other to exchange information and coordinate task execution.  

MAS can be applied to find solutions for complex problems by decoupling them into 

less complex subproblems and providing coordinated solution frameworks such as the 

contract net protocol 25 or simulated trading 28. MAS are of particular interest when 

viewed as a modeling and simulation paradigm 27. The MAS metaphor enables fine-

grained modeling of systems with local preferences, motivations, and capabilities, 

including issues of interaction, coordination, and cooperation. This is of use in many 

large-scale networked simulation tasks, such as traffic simulation 6 or physical, 

ambient intelligence simulations. However, a big challenge for agent-based 

simulation is that they are highly computation-intensive, which to date limits their 

scalability compared to e.g. approaches based on system dynamics. 

Thus, a key objective of this work is to make a contribution to more scalable, high-

performing agent-based simulation. In this paper, we focus on a specific aspect of 

MAS technology, i.e. on the question of how tasks in a MAS are assigned to agents.  

Typically, task allocation and scheduling in MAS is achieved by dedicated 

protocols for cooperative problem solving, such as the contract net protocol 25, which 

defines how problems are decomposed, assigned to agents, and scheduled for 

execution. Our hypothesis is that we can exploit information related to task 

decomposition, allocation, and scheduling contained in MAS models for efficiently 

mapping these models to models (code) executable on a parallel (e.g., graphics) 

hardware. 

Modern computers are highly parallel. Their Central Processing Units (CPU) have 

more than one core. In addition, most of the modern computers have Graphics 

Processing Units (GPU) that can be used as a coprocessor for computational tasks. 

This becomes possible because of frameworks such as CUDA/OpenCL, which 

support General-Purpose Computing on Graphics Processing Units (GPGPU) 7. 

This paper introduces an approach to tasks scheduling in MAS; our approach 

couples MAS technology with GPGPU programming. We present three types of task 

scheduling models for MAS that uses GPU for non-graphical tasks. Our goal is to 

establish a correspondence between agents (which plan and execute computational 

tasks) and massively parallel, GPGPU-capable computational resources. 

The structure of this paper is as follows: Section 2 describes the relationship to 

Internet of Things; Section 3 outlines the current state-of-the-art; Section 4 shows the 

research contribution and innovation of this work. In Section 5 we critically discuss 

the results; Section 6 gives conclusions and directions for future work. 

2   Relationship to Internet of Things 

Internet technology is becoming ubiquitous. This concerns the service layer as well as 

the network layer. At the same time, virtualization is used to provide network users 

with a homogeneous interface to ubiquitous, decentralized services. Cloud computing 
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is one example of this trend. MAS is a suitable metaphor to describe decentralized 

environments and applications where large numbers of semi-autonomous, self-

interested or cooperative  entities (services, objects, devices) interact and solve 

problems by collaboration and cooperation. Agents are considered as Smart Objects 

24 that have their own behavior. MAS have been successfully applied to a range of 

problems, e.g., simulations (see e.g. 9).  When it comes to simulation, MAS is a very 

interesting paradigm for the implementation and simulation of Ambient Intelligence 

scenarios. Here is the link to the Internet of Things: agents can provide semantics, 

behavior, and autonomy to smart objects created and described with Internet of 

Things technology.  To deal with the complexity and scalability issues that subsist in 

Internet of Things scenarios, we study mapping MAS models to scalable, massively 

parallel execution environment and hardware platforms – in this context, task 

allocation in MAS plays an important role, finally, in performance of the system. 

This article contributes to the improvement of task scheduling for MAS based on 

GPGPU. Our goal is to achieve improved performance and scalability. 

3   State-of-the-Art 

Agent-Oriented Programming 26 (including agent-based modeling simulation 27) is a 

fairly young thread in software development, which extends Object-Oriented 

modeling / programming by concepts such as beliefs, goals and intentions [5]. 

Numerous methodologies for MAS development have been proposed (see 11 for 

an overview). FIPA 10 provides a set of standardized specifications for MAS runtime 

architecture and interaction protocols. The reason for it is that different problems 

require specific approaches. GPGPU is represented by a set of technologies, including 

CUDA 12, OpenCL13, and DirectCompute14. In our work, we use CUDA by 

NVIDIA. OpenCL is based on similar concepts, so we expect that a solution for 

CUDA can be rather easily ported to OpenCL. 

In 15 the authors present the use of GPU technology for multiagent simulation. 

They demonstrate a performance improvement of their Multi-Agent Simulator by 

using a GPU to execute agent-based models, but they don't pay much attention to the 

agent environment. 

In Error! Reference source not found. an adaptation of the FIPA standard to 

GPU is proposed with an  example of crowd simulation. It is a continuation of earlier 

research 17 of the authors, where they compared JADE (Java Agent DEvelopment 

framework) and GPGPU, while operating with containers as in JADE. Authors claim 

about the necessity of standardization for agent creation on GPU. 

In summary, there is a tendency in attempts to use GPU for agents, and as new 

GPUs are released, new devices provide more computational resources. In our 

research we pay great attention to agent communication, collaboration and their 

environment. 
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4   Research Contribution and Innovation 

A common GPGPU application consists of two parts: host code and device code. Host 

code is executed by CPU, and device code is executed by GPU. Modern GPUs have a 

set of Streaming Multiprocessors (SM). Each SM represents a Single Instruction 

Multiple Threads (SIMT) architecture 18. There is a special “task manager” for every 

SM that groups threads, so they are finally executed in a Single Instruction Multiple 

Data (SIMD) manner. All threads are organized into blocks, with blocks belonging to 

grid(s) 19 . 

In this paper, we consider three architecture variants   to implement MASs that 

exploit GPU. The three variants are illustrated in Figure 1. 

Fig. 1. Architecture variants:  

a) Agents-on-Host (AoH); b) Agents-on-Device (AoD); c) Hybrid (HA) 

The Agents-on-Host (AoH) model shown in Fig. 1a) consists of three top-level 

components: environment, agents and task manager. We consider the individual 

components in details. On the host part of the system, agents (denoted by ai) can 

communicate with each other only by means of the environment, not directly with 

each other. An environment here holds all information about the current system state. 

The next component is Task Manager (TM) consisting of two modules: Tasks and 

Results. Module “Tasks” serves for GPU tasks preparation and GPU resource 

allocation; it also sends data to GPU and calls respective kernel functions. At the 

beginning, agents – which have their own tasks – make requests for computational 

resources to accelerate their tasks execution. Then TM starts the GPU task preparation 

phase, during which data obtained from agents are organized in a way that the kernel 

function can process them. There are numerous copies of the kernel function, each 

working on different data. This complies to the needs of similar agents, when they 

have analogous tasks. The next step is to allocate resources on the GPU and copy the 

data there. Then computation on the GPU is ready to start. TM sets a number of 

threads and number of blocks that will be executed on GPU. It means that the total 

number of copies of our kernel function equals the total number of GPU threads. 

When execution is completed, the “Results” module takes control. This module 
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finally synchronizes GPU threads and solutions gathered from the kernel functions 

back to the host. Finally, the TM provides the environment with all these solutions.  

This model can be mapped to more than one machine by uniting local 

environments of model instances. So we will get a global environment, where agents 

placed on one machine can ask for computational resources on others. (Here it should 

be noted that characteristics of the network connection and its bandwidth need to be 

taken into account while evaluating the system performance). 

Another model is Agents on the Device (Fig. 1b, AoD), which includes 

environment on GPU. Here within a GPU we consider its global memory like an 

environment, and kernel-function call concurrency is considerably helpful here. 

The host part has two modules: Initializer and Results. Initializer has initial data 

and it also allocates GPU resources. Then it copies data to the device. It is also 

possible to dynamically allocate memory on GPU, but it takes special attention while 

doing so. For example, as we dynamically allocate GPU global memory - it is the 

slowest on GPU - we should evaluate the necessary amount of memory and check 

whether it meets the default size that we can allocate. Otherwise, it should be marked 

on the host before executing on the device. Another aspect of dynamic memory 

allocation is the expensiveness of this operation. So a good practice is to allocate 

memory and then just reuse it by overwriting data. The Results module returns the 

results after computation or simulation on GPU. Depending on next actions it either 

de-allocates GPU resources and/or passes execution to Initializer. 

Components on the device are the environment, managers and agents. Every 

manager works within single multiprocessor and has access to the environment (here 

GPU global memory plays this role). As every multiprocessor has its own shared 

memory, which is a fast memory type on GPU, the manager is going to work with 

blocks. As threads running in a block can interconnect with each other and have 

access to shared memory, we can consider one separate thread in a block like a 

manager which can take part in tasks assignment for the rest threads in this block. But 

it makes other threads in a block waiting. After tasks assignment, this “manager” 

thread can also take part in computations. The main role of this manager is to 

synchronize threads in current block, copy data from global memory to shared one 

(when necessary). The amount of shared memory is limited and it should be properly 

used for communications between threads in this block. 

After finishing all tasks on the GPU, we synchronize all GPU threads and copy 

data back to host. And it is Results-module that gets final results (solutions). 

As an advantage, by using MAS conception, threads can be considered like agents, 

and every block has its manager-thread responsible for synchronization in current 

block and can copy necessary data to faster shared memory. 

However, there are some bottlenecks in this model. As we check threads in blocks 

during execution and conditional expressions (if...then) are evaluated, it influences on 

GPU’s scheduler. It means that our threads for which these conditions are true will be 

executed, and others have to wait wasting time by standing idle. Also, 

synchronization is an expensive operation, so we use it either at the end of block 

execution or during threads communication and using shared memory (to protect 

variables in shared memory while reading/writing by threads, we use atomic 

functions). 
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And the third model – the Hybrid architecture (HA, Fig. 1c) incorporates and 

integrates both AoH and AoD. In the host part we have also the environment (global, 

which can be connected or united with remote machines), agents, and the Task 

Manager TM. Here agents, like in AoH model, make requests for GPU computational 

resources. Then, the environment passes all requests to TM. TM can act either 

concurrently or sequentially. It depends on the number and type of the tasks, e.g., TM 

can organize tasks by agent types. So the module Tasks sets final input 

representations for the GPU (this module is a part of TM and it also has a concurrent 

nature). 

A device part represents the AoD model: GPU environment, manager-agents and 

agents (inside blocks). They act in the same manner: managers are responsible for 

control actions within their block, including synchronization and shared memory use. 

When a kernel-function completes its execution, module Results synchronizes tasks 

from the kernel-function and sends results back to the environment with TM help. 

So our kernel-functions work independently and solve agents’ tasks according to 

the type of agents or their tasks. TM also plays a role of load-balancer, because it 

should maximize the usage of both CPU and GPU to get the best performance. 

5   Discussion and Critical View 

We presented three types of task allocation architectures for MAS that use GPU as an 

underlying execution hardware. Like the authors in 20, we do not assume a strong 

definition of an agent, but rather take a “useful-first” approach. Conception of MAS 

helps to abstract from implementation details, but needs to be adapted with respect to 

the main restrictions of GPU. We decided to analyze the conceptual model and then 

implement a prototype. 

The AoH model, where agents request their environment for computational 

resources, can be used for systems with a small number of agents. But agents can be 

the complex ones. Every agent should have its own tasks (which is, for example, an 

independent subproblem). In addition, the Task Manager ™ uses several criteria for 

grouping tasks, e.g. agent type, task type. For instance, if our agents are working with 

matrices, TM can vary available resources for concrete agents depending on the type 

of operation (e.g., inversion) and the amount of data. 

As modern CPU is also multi-core, and we exploit this parallelism. A TM that 

operates with kernel-function calls puts them in separate streams and execution is 

asynchronous. This helps to decrease the amount of wasted computational time, but it 

takes a thorough analysis of the granularity: number of kernels executing in different 

streams. 

The AoD model – with agents on GPU – suits for such tasks that could be divided 

into smaller subtasks that can be processed independently. For example, we should 

find a global minimum of a function in a space of values. We divide our space into 

subspaces and look for local minima. Here agents communicate when they found 

local minima and check whether it is less than the current minimum for all agents. 

After checking the whole space of values, agents will find the global minimum. To 

accelerate this process, a heuristic approach should be used. 
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The hybrid model, which is a mixture of AoH and AoD, is the most flexible among 

these models. Firstly, it can be scaled in two directions: locally and globally. Local 

scaling includes adding more GPUs to the machine and create a united GPU 

environment (so we have more GPU computational resources and GPU memory 

altogether). Global scaling implies extending environment by connecting machine 

environments with each other and organizing a common space. Technologies such as 

GPUDirect21, rCUDA22, OpenMPI23 help to implement such environments. 

6   Conclusions and Future Work 

 

In this article we presented three types of task allocation architectures for MAS which 

use GPU. We discussed advantages and disadvantages of every architectural type. 

Also we mentioned possible bottlenecks. Based on the discussion, we believe that the 

third (hybrid) type  of model is the most promising: it is a general architecture that is 

aimed at performance improvement of the whole system. Moreover, there is a 

potential for scaling into two dimensions: local and global. 

The main long-term goal of our research, of which this paper is a part, is to create a 

methodology of multi-agent system development with the help of general purpose 

computing on graphics processing units. At the end it will be realized as a framework 

or simulation tool. As there is a wide range of MAS application, we focus on traffic 

simulations and combinatorial optimization problems. Future versions could be 

extended to other application domains. Currently there are lots of tools for simulation, 

even agent-based, but the problem is that within a single machine it is difficult to 

achieve high performance. 

Next steps are to implement all these models and create corresponding prototypes. 

So we can analyze performance empirically. Firstly, we will consider all models 

within a context of single machine, and find out the performance and behavior of the 

system. Then we will investigate ways of scaling, which we mentioned above. 
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