
HAL Id: hal-01348738
https://hal.science/hal-01348738

Submitted on 25 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Neural Network Based Security Tool for Analyzing
Software

Adetunji Adebiyi, Johnnes Arreymbi, Chris Imafidon

To cite this version:
Adetunji Adebiyi, Johnnes Arreymbi, Chris Imafidon. A Neural Network Based Security Tool for Ana-
lyzing Software. 4th Doctoral Conference on Computing, Electrical and Industrial Systems (DoCEIS),
Apr 2013, Costa de Caparica, Portugal. pp.80-87, �10.1007/978-3-642-37291-9_9�. �hal-01348738�

https://hal.science/hal-01348738
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Neural Network Based Security Tool for Analyzing

Software

Adetunji Adebiyi
1
, Johnnes Arreymbi

1
 and Chris Imafidon

1

1 School of Architecture, Computing and Engineering, University of East London,

London, UK

adetunjib@hotmail.com, {J.Arreymbi, C.O.Imafidon}@uel.ac.uk

Abstract. The need to secure software application in today’s hostile computer

environment cannot be overlooked. The increase in attacks aimed at software

directly in the last decade and the demand for more secure software

applications has drawn the attention of the software industry into looking for

better ways in which software can be developed more securely. To achieve

this, it has been suggested that security needs to be integrated into every

phase of software development lifecycle (SDLC). In line with this view,

security tools are now used during SDLC to integrate security into software

applications. Here, we propose a neural network based security tool for

analyzing software design for security flaws. Our findings show that the trained

neural network was able to match possible attack patterns to design scenarios

presented to it. With the information on the attack pattern identified, developers

can make informed decision in mitigating risks in their designs.

Keywords: Threat Modeling, Neural Network, Attack Patterns, Security Tools,

Secure software design

1 Introduction

 The dependence of our society today on software systems demand that they are

robust, reliable and secured when they are deployed. Therefore, it is very important

that the design of software must be that which makes it to function properly in a

hostile computer environment, protecting the information and systems on which it

runs with minimal risks. However, as software attacks become more sophisticated

especially with the increase of attack tools available, today’s security solutions are

no longer adequate in providing security[5][18] because many of these attacks

circumvent the traditional defenses and target the software directly [2]. By

retrofitting security into software after development exacerbate the issue as these may

lead to significant change in the architectural design and code of the software which

often introduces more flaws and increases the cost of production [4].

Reportedly, 50% of security problems in software products today have been found

to be design flaws [8]. In this view, many authors argue that it is much better to find

and fix flaws during the early phase of software development because it is more

costly to fix the problem at a late stage of development and much more costly when

the software has been deployed [4][11][18]. To achieve this, a neural network based

82 A. Adebiyi et al.

tool that would enable software engineers to evaluate their software design for

security flaws by matching attack patterns to software design scenarios presented to it

is proposed in this paper. Each attack pattern matched to the design helps the software

designer to see areas of vulnerability in the design that needs to be secured. Based on

this information, software designers can integrate security capabilities that will

mitigate the identified risks in their design before the software is coded.

2 Internet of Things (IoT)

One of the core issues in IoT is the connectivity between social, cloud, mobile and

everyday objects. While IoT has lots of benefits, it also increases the attack surface of

applications running on the connected devices. Many devices that were never

intended to be connected to the internet become exposed to software-based attacks

while connected to other devices. Furthermore, as devices connected in IoT will be

generating a huge amount of data, the risk of data breach also increases. Therefore,

the security of software running these devices connected in IoT cannot be overlooked,

This paper contributes in this area by proposing a tool based on neural network that

can be used to analyze the software design for security flaws.

3 Current Security Tools for Analyzing Software Design

 In recent years, various security tools have been developed to enable software

developers who are not security experts to scrutinize their software design and

identify security flaws in a similar way as a security expert. Microsoft developed two

of these security tools [10] [11]. The first was Threat Analysis and Modeling (TAM)

tool. This was developed with the aim of enabling non-security expert software

developers to use already known data and specific line of business application

requirement and architecture to carry out threat modeling in an asset-centric approach.

With this tool software developers can focus on protecting the assets within their

application by identifying associated threats and counter-measures when it’s being

designed. The second is SDL Threat Modeling Tool. This is a core element in the

design phase of Microsoft Security Development Lifecycle which helps software

developers to analyze their software designs prior to its implementation. Also, this

tool was not developed for security experts but for software developers to aid the

creation and analysis of threat models [10]. In contrast to TAM tool, SDL Threat

Modeling tool builds on well-known development activities such as the use of data

flow diagram (DFD) for drawing the architecture of the software being designed.

Thus, following a software-centric approach, threat modeling with this tool focuses on

the software and the analysis of its design [17].

While these tools have lots of useful features that enable software developers to do

threat modeling easily, they have a few draw backs. Firstly, the quality of report

generated by the tools is still limited by the knowledge of the software developer

creating the threat model. Secondly, software developers require the understanding

A Neural Network Based Security Tool for Analyzing Software 83

and interpretation of the extensive list of threats identified by the tools. This may

become a daunting task especially when the threats are not prioritized as the case is

with the use of SDL Threat Modeling Tool. Thirdly the process of threat modeling

can increasingly become complex while using the tools due to factors such as number

of developers involved in the threat modeling process, the nature of DFD created and

potential stakeholders [1][11].

There is now a range of security tools from open source with similar threat

modeling approach like that of Microsoft threat modeling tools such as SeaMonster,

TRIKE and Coras, which use techniques that software developers are familiar with

for the identification and mitigation of threats. There are other threat modeling

approaches based on standards such as the Risk Analysis Toolkit (based on ISO

1799) which generates security polices from question and answers [15] and other

open security tools like the Common Vulnerability Scoring System (CVSS) that is

designed to for rating IT vulnerabilities [3].

4 The Neural Network Tool

Previous researches show various ways through which neural network have been used

in the area of security. Neural network based applications has been used successfully

in the area of network security as intrusion detection systems, misuse detection

systems and firewalls [19] [21] [22]. Also in the field of application security, neural

network has been proposed to be used as virus detection system [20]. It would be

noticed however, that these neural network based applications can only provide a

form security after software deployment.

Our proposed Neural Network tool is based on the abstract and match technique

through which software flaws in a software design can be identified when an attack

pattern is matched to the design. Using well known approaches such as DFD and

sequence diagrams, software developers are able to abstract information about their

software designs needed by the Neural Network tool for matching possible attack

patterns. When potential attack patterns are matched against the design, the software

developers are able to take the necessary steps in mitigating the security flaw

identified. Thus software developers are able to integrate security into their software

design during the design phase of SDLC when it is easy and cost effective to resolve

security problems.

One of the limitations with some of the current approaches is the difficulty of

getting software developers to think like attackers during the threat modeling process

as this mindset is not native to them [17]. It has been suggested that software

developers can instead look at the attack surface of their software design and think of

how to build defenses into their application [17]. Our proposed technique achieve this

by associating components in the design with attacks that can be performed on them

when possible attack patterns are matched to the software design thereby addressing

security defenses needed to be put in place.

84 A. Adebiyi et al.

4.1 The Neural Network Architecture

A three-layered feed-forward back-propagation neural network is used to evaluate

scenarios from software designs and identify possible attacks in the design. The back-

propagation neural network is a well-known type of neural network commonly used

in pattern recognition problems [16]. A back-propagation network has been used in

this research because of its simplicity and reasonable speed. The architecture of the

back-propagation network is shown in the figure below. This consists of the input

layer, the hidden layer and the output layer. Each of the hidden nodes and output

nodes apply a tan-sigmoid transfer function (2/(1+exp(-2*n))-1) to the various

connection weights. The weights and parameters are computed by calculating the

error between the actual and expected output data of the neural network when the

training data is presented to it. The error is then used to modify the weights and

parameters to enable the neural network to a have better chance of giving a correct

output when it is next presented with same input

4.2 Data Collection

Data of attack scenarios from online vulnerability databases such as CVE Details,

Security Tracker, Secunia, Security Focus and The Open Source Vulnerability

Database were used in this research. From the online vulnerability databases a total of

715 attack scenarios relating to 51 regularly expressed attack patterns by Williams

and Gegick [4] were analyzed. This consisted of 260 attack scenarios which were

unique in terms of their impact, mode of attack, software component and actors

involved in the attack and 455 attack scenarios which are repetition of the same type

of exploit in different applications they have been reported in the vulnerability

databases. The attacks were analyzed to identify the actors, goals and resources under

attack. Once these were identified the attack attributes in Table 1 were used to

abstract the data capturing the attack scenario for training the neural network.

4.3 Data Encoding

The training data samples each consist of 12 input units for the neural network. This

corresponds to the values of the attributes abstracted from the attack scenarios. The

training data was generated from the attack scenarios using the attributes. For instance

training data for the attack on webmail (CVE 2003-1192) was generated by looking at

the online vulnerability databases to get its details on the attributes we are interested

in. This attack corresponds to regularly expressed attack pattern 3. Williams and

Gegick [4] describe the attack scenario in this attack pattern as a user submitting an

excessively long HTTP GET request to a web server, thereby causing a buffer. This

attack pattern is represented as:

(User)(HTTPServer)(GetMethod)(GetMethodBufferWrite)(Buffer)

A Neural Network Based Security Tool for Analyzing Software 85

Table 1. Sample of pre-processed training data from attack scenario

S\N Attribute Observed data Value
1 Attacker No Access 0
2 Source External 1
3 Target Buffer 9
4 Attack Vector Long Get Request 39
5 Attack Type Availability 5
6 Input Validation Partial Validation 2
7 Dependencies Authentication & Input

Validation
6

8 Output
Encoding

None 0

Authentication None 0
10 Access Control URL Access 2
11 HTTP Security Input Validation 3
12 Error None 0

In this example, the data generated from the attack scenario using the attribute list

is shown in Table 1. Using the corresponding values for the attributes; the data is then

encoded as shown in the Table 1. The second stage of the data processing involves

converting the value of the attributes in Table II into ASCII comma delimited format

before it is used in training the neural network. For the expected output from the

neural network, the data used in training network is derived from the attack pattern

which has been identified in each of the attack scenarios. Each attack pattern is given

a unique ID which the neural network is expected to produce as an output for each of

the input data samples. The output data sample consists of output units corresponding

to the attack pattern IDs. For instance, the above sample data on Webmail attack

which corresponds to regularly expressed attack pattern 3, the neural network is

trained to identify the expected attack pattern as 3.

4.4 The Neural Network Training

To train the neural network the training data set is divided into two sets. The first set

of data is the training data sets (260 samples) that were presented to the neural

network during training. The second set (51 Samples) is the data that were used to test

the performance of the neural network after it had been trained. At the initial stage of

the training, it was discovered that the neural network had too many categories to

classify the input data into (i.e. 51 categories) because the neural network was not

able to converge. To overcome the problem, the training data was further divided into

two sets. The first set contained 143 samples and the second set contained 117

samples. These were then used for training two neural networks. Mat lab Neural

Network tool box is used to perform the training. The training performance is

measured by Mean Squared Error (MSE) and the training stops when the

generalization stops improving or when the 1000th iteration is reached.

86 A. Adebiyi et al.

4.5 Result and Discussion

It took the system about one minute to complete the training for each the back-

propagation neural network. For the first neural network, the training stopped when

the MSE of 0.0016138 was reached at the 26th iteration. The training of the second

neural network stopped when the MSE of 0.00012841 was reached at the 435th

iteration.

To test the performance of the network, the second data sets were used to test the

neural network. It was observed that the trained neural network gave an output as

close as possible to the anticipated output. The actual and anticipated outputs

are compared in the Table 4. The test samples in which the neural network gave a

different output from the predicted output when testing the network includes

tests for attack patterns 10, 35, 39, 40 and 52. While looking into the reason

behind this, it was seen that the data observed for these attack patterns were not much.

With more information on these attack patterns for training the neural network, it is

predicted that the network will give a better performance. During the study of the

results from the neural networks, it was found that the first neural network had 96.51%

correct results while the second neural network had 92% accuracy. The accuracy for

both neural networks had an average of 94.1%. Given the accuracy of the neural

networks, it shows that neural networks can be used to assess the security in software

designs

Fig 2. Actual vs. Expected Output of the Neural Network

5 Conclusion

It cannot be overstated that the cost of fixing security flaws in software applications is

very costly after they are deployed. The cost could be 30 times more than the cost of

finding and fixing the problem early in the SDLC. Therefore, integrating security into

a software design will help tremendously in saving time and money during software

development and when the software is deployed. For instance, it is less expensive and

A Neural Network Based Security Tool for Analyzing Software 87

less disruptive to discover design-level vulnerabilities during the design, than during

implementation or testing, forcing a costly redesign of pieces of the application.

Therefore, the use of the proposed neural networks tool for analyzing software design

for security flaws will consolidate the efforts of software developers in identifying

areas of security weakness in their software design. By fixing the security flaws in

design before coding begins will subsequently lead to the development of more

secured software applications. Thus, neural networks given the right information for

its training will also contribute in equipping software developers to develop software

more securely especially in the area of software design.

6 Future Work

The regularly expressed attack pattern used in training the neural network is a generic

classification of attack patterns. Therefore, any unknown attack introduced to the

neural network will be classified to the closet regularly expressed attack pattern.

However, the success of the neural network in analyzing software design for security

flaws largely depends on the input data capturing the attributes of the software design

introduced to it. As this requires a human endeavor, further work is required in this

area to ensure that correct input data is retrieved for evaluation. In addition, the neural

network needs to be thoroughly tested before it can gain acceptance as a tool for

evaluating software design for security flaws. To further improve the performance of

the neural network system as a tool for evaluating software design, we are

currently looking into the possibility of the system suggesting solutions that can

help to prevent the identified attacks. Current research on solutions to software

design security flaws gives a good insight in this area. Suggested solutions such as

the use security patterns [6] and introduction of security capabilities into design in the

SAT [12]

References

1. Berg, B., SDL: Threat Modeling tools vs. Threat Analysis

tool,http://www.dib0.nl/code/166-sdl-threat-modeling-tool-vs-threat-analysis-tool

2. Burns, S. F., Threat Modeling: A Process to Ensure Application Security, SANS

Institute InfoSec Reading Room,

http://www.sans.org/reading_room/whitepapers/securecode/threat-modeling-process-

ensure-application- security_1646

3. Common Vulnerability Scoring System (CVSS-SIG), http://www.first.org/cvss

4. Gegick, M. and Williams, L. On the design of more secure software-intensive systems

by use of attack patterns’, Information and Software Technology, Vol.49, pp381-397,

(2006)

5. Keary, E., Integration into the SDLC, The OWASP Foundation,

https://www.owasp.org/images/f/f6/Integration_into_t he_SDLC.ppt

6. Kienzle, D. M and Elder, M. C., Final Technical Report: Security Patterns for Web

88 A. Adebiyi et al.

Application Development,

http://www.scrypt.net/~celer/securitypatterns/final%20report.pdf, (2002)

7. Kenneth, R., Wyk, V., and McGraw, G. Bridging the Gap Software Development and

Information Security, IEEE Security & Privacy, Vol. 3(5), pp. 75-79, (2005)

8. McGraw, G., Building Secure Software. A difficult but critical step in protecting your

business, Citigal, Inc, http://www.cigital.com/whitepapers/dl/Building_Secu

re_Software.pdf (2003)

9. McGraw, G., The Role of Architectural Risk in Software, Inform IT Network,

http://www.informit.com/articles/article.aspx?p=446451

10. Microsoft Security Development Lifecycle, SDL Threat Modeling Tool,

http://www.microsoft.com/security/sdl/adopt/threatm odeling.aspx

11. Mockel C and Abdallah, A.E, Threat Modeling Approaches and Tools for Securing

Architectural Designs of E-Banking Application, Journal of Information Assurance and

Security, Vol.6(5), pp346-356, (2010)

12. Mouratidis, H. and Giorgini, P., Security Attack Testing (SAT)- testing the security of

information systems at design time, Information Systems, Vol. 32, pp1166- p1183,

(2007)

13. OWASP Top 10, The Ten Most Critical Web Application Security Risk,

http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf

14. Pemmaraju, K., Lord, E. and McGraw, G. Software Risk Management. The importance

of building quality and reliability into the full development lifecycle, Citigal, Inc.,

http://www.cigital.com/whitepapers/dl/wp-qandr.pdf (2000)

15. Ricard, R. (2011) ISO 1799 Risk Analysis Toolkit,

http://sourceforge.net/projects/ratiso17799

16. Srinivasa, K.D. and Sattipalli, A. R, Hand Written Character Recognition using Back

Propagation Network, Journal of Theoretical and Applied Information Technology,

Vol. 5(3), pp257-269, (2009)

17. Swigart, S and Campell, S., Threat Modeling at Microsoft,

http://download.microsoft.com/download/6/9/B/69BCB7C6-D158-4073-AD3E-

F849E8ACBCE0/SDL_Series_-_4.pdf

18. Spampinato, D.G., SeaMonster: Providing Tool Support for Security Modeling, NISK

Conference, http://www.shieldsproject.eu/files/docs/seamonster_ni sk2008.pdf

19. Ahmad, I., Swati, S.U. and Mohsin, S., Intrusion detection mechanism by resilient bpck

Propagation (RPROP)”, European Journal of Scientific Research, Vol. 17(4), pp523-530

(2007)

20. Liu, G., Hu, F. and Chen, W., A neural network emsemble based method for detecting

computer virus,

In proceedings of 2010 International conference on computer, mechatronics, control and

electronic engineering, Vol. 1, pp391-393 (2010)

21. Pan, Z, Chen, S., Hu, G. and Zhang, D., Hybrid neural network and c4.5 for misuse

detection, In proceedings of 2003 International conference on machine learning and

cybernetics, Vol.4, pp2463-2467, (2003)

22. Joseph, A., Bong, D.B.L. and Mat, D.A.A, Application of Neural Network in User

Authentication for Smart Home Systems, World Academy of Science, Engineering and

Technology, Vol. 53, pp1293- 1300. (2009)

